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Hybrid Systems

Suggested Text 1: Switching in Systems and Controls e

by Daniel Liberzon -

Switching in

Highly Recommend: One of the best texts in any field Syeiems and Control

Suggested Text 2:

Hybrid Dynamical Systems: Modeling, Stability, and Robustness
by R. Goebel; R. G. Sanfelice; A. R. Teel

Link:
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https://hybrid.soe.ucsc.edu/sites/default/files/preprints/65.pdf

What Are Hybrid Systems?

Classes of Hybrid Systems

State-Dependent Switching

i(t) = {file@®) (1) € X,

Systems with Logical States

(1) = {fi(x(t)) o(t) € X
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Systems with Resets

and
{x+ =g(z) z€CG

Discontinuous Control
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Thermostat Control: The Hybrid Model

Control Logic:

> if u=1 and T>= 80 then
u=0

elseif u=0 and T<= 70 then
u=1

end

vV V V V

Temperature Dynamics:
T(t) = co(Te = T(t)) + cqult)
® T, is the external temperature.
® ¢, is thermal resistance of the wall
® ¢4 is the capacity of the HVAC

M. Peet Lecture 19: 3/22



Discontinuous Control: The Brockett Integrator

Non-holonomic systems
Unicycle Dynamics:
T = uqcosf

1 = uy cosb

é = U2z

® z,y are the position.

® @ is the angle of the wheel.

® qu; is the forward force.

® s is the rotation rate.

Pose as T cos 6 0 cosf O ”

y = [sinf| u; + |0 up = |sinf 0O [ul}
9 0 1 0o 1| L™

Brockett's condition: if
o(t) = G(x(t))u(t)
and rank(G(0)) < n where x € R™, then there is no asymptotically stabilizing

continuous feedback control law
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Discontinuous Control: The Brockett Integrator

Lecture 19

I—Discontinuous Control: The Brockett Integrator

Spacecraft Attitude dynamics is another famous case:
e Three torques are required for existence of a continuous controller.

e Discontinuous control makes pointing problems hard.



What Are Hybrid Systems?

A Unified Definition of Hybrid Systems

Definition 1 (Hybrid System).
A hybrid system H is a tuple:
H: (Q7E7D7F7G7R)
where
® ( is a finite collection of discrete modes, states or indices.

® FC @ xQ is a collection of edges.

® D = {Dg}qcq is the collection of Domains associated with the discrete
states, where for each ¢ € Q, D, C R".

F = {f4}qeq is the collection of vector fields associated with the discrete
states, where for each ¢ € Q, f, : Dy — R".

® G ={G.}ccE is a collection of guard sets, each associated with an edge.
where for each e = (¢,¢') € E, G. C D,
® R ={dec}ecr is a collection of Reset Maps, where for each e = (¢,¢’) € E,

(be : Ge — Dq/.

M. Peet Lecture 19 5/22



2022-06-07

Lecture 19

L What Are Hybrid Systems?

%= @, (4, (4,60)

&

Note: Discrete-time systems are a bit tricky
e A hybrid system with no continuous evolution?
e Can we combine discrete and continuous dynamics?

e Where are the guard sets?

e Hybrid Systems?



Thermostat Control: The Hybrid Model

Control Logic:

> if u=1 and T>= 80 then
u=0

elseif u=0 and T<= 70 then
u=1

end

vV V V VvV

(Thermostat Control) For heating, define the hybrid system Hr as:
HT - (QaE7D7F7GaR)

where
° Q= {132}
L4 E:{Gl,eg}, 61:(1 2) 2(2 1)
o D:={Dy,D,}, Dy = [70,80], Do = [70, 80]

G:={G1,Ga}, G, ={T:T = 70}, Ge, ={T: T =80}
F={f1, 2}, [i = co(Te = T(t)), fo = cw(T. = T(t)) + cq.
R =0 - No Reset Map.
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Bouncing Ball: The Hybrid Model

E(t) = —g/m [2] = {8 (ﬂ Bj * {—go/m}

When the ball hit the floor, it bounces back up with coefficient of restitution c.

(Bouncing Ball) We define the hybrid system Hp as:

HB = (QanDaFaGaR)
where

°Q={1}

e E={ei}, e1 =(1,1)

® D:={D:}, D; =[0,00]

° G:={G1}, Go, ={z:21 =0,29 <0}

F=dfi=|o o] 2]+ [ om]

r-tohe([]) -2

M. Peet Lecture 19: 7/22




State-Dependent Switching

General Form

State-Dependent Switching is typically defined by
® A family of dynamical systems, one for each switching region

® A set of regions, defined by switching surfaces
it) = {file(®)) () € D,
In this case, H = (Q,0, D, F,0,0), Q = {i}*_,, D ={D;}, F = {f:}.

Example:
IR T | 2\
To|
-1
0 o , otherwise. \
0 - X9

Error Trajectories

Sliding Surface

s if £1 > o

If A € (—=1,1), the surface z1 = x2 is stable. o0

Note: State-Dependent Switching can also be defined by discrete-time
dynamics
® But this is Rare.
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I—State—Dependent Switching

We probably should have defined E, G, and R.

e But this seems pedantic.




State-Dependent Switching

Gain Scheduling and Logical Switching
Several Operating Points:

Table 11.2 Parameter Values at the Seven Operating Points

Time (s) 4 ty t ty t5 o t7

a 1.593 1.485 1.269 1130 0.896 0.559 0.398
a; (3] 0.285 0.192 0.147 0.118 0.069 0.055 0.043
ax(t) 260.559 | 266.415 | 196.737 | 137.385 | 129.201 66.338 | 51.003
az(t) 185.488 | 182532 | 176,932 | 160.894 | 138.591 78.404 | 53.840
ag(t) 1.506 1.295 1.169 1130 1.061 0.599 0421
as(t) 0.298 0.243 0217 0.191 0.165 0.105 0.078
by(t) 1.655 1.502 1.269 1130 0.896 0559 0.398
b’l (] 0.295 0.195 0.147 0.118 0.069 0.055 0.043
by(t) 39.988 | —24.627 | ~31.452 | —41.425 | —68.165 | —21.448 | —9.635
by(t) 159.974 [ 170.532 | 182.030 | 184.093 | 154.608 89.853 | 59.587
by(t) 0771 0.652 0.680 0.691 0.709 0.360 0.243
bs(t)y 0.254 0.191 0.188 0.182 0.162 0.102 0.072

Dynamics:

#(t) = Az(t) + Bu(t)

Kiz(t), if|z(t) <1
Kox(t), if |z(t)] € [1,2]
Ksx(t), otherwise.

u(t) =

There can be a large array of gains.

M. Peet

In Gain Scheduling, the controller
switches depending on operating point.

&

el L el L L
i 445 119s 1955 230s 280s 3505 400s

Often used to control nonlinear systems

® Each controller designed for
linearized dynamics at a specific
operating point.
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State-Dependent Switching

Input Saturation and Queueing

A common source of state-dependent Switching is

Viout

Input power is limited: |u(t)| < s

Saturation Clipping Limiting

(t) = Az(t) + Bu(t) / \ / \ /

) Kuz(t) lu(t)] < s
u =
sign(u(t))Ks |u(t)] > s
Another source of switching in congestion control is due to
® Packets arrive at rate u(t)

M ™ f
® Packets are processed at constant rate ¢ . / i b ]
® Router can't process packets if queue is / LLLHI / LLHLLH ;

| e 1
empty: ) ) "
() = u(t) —c x(t) 2.0 u(t) —c>0 e
0 otherwise.
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State-Dependent Switching with Reset Maps

The General Form

Recall: H = (Q,E,D,F,G,R). Now, we add in
Guard Sets: G,

® A set of surfaces, typically the boundaries of D;.

® Dynamics are continuous until we encounter a guard set

(t) = {fi(x(t)) if 2(t) € D; and a(t) & Gy, 5y for any j

® For e = {i,j}, Ge are the points which transition the state from D, to D;
Reset Maps: ¢,
e If z(t) € D; and z(t) € G, ;, we reset x to
ry = ¢ (@)

® Thus e = {3, j} implies ¢.(x) € D; for all
r e D;NG,
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Recall the Bouncing Ball

What is a solution?
Dynamics are & = —g until we hit the floor...

(Bouncing Ball) Define the hybrid system Hp as:

HB - (QzEaDaFaG7R)

where
cQ={1)
c E={(1,1)}

* D:={zeR?:z >0}
o Gi={z€R?:2;=0, 22 <0}

F= {[fz}} i.e. T1 = x9 and Ty = —g.

R = ¢(z) = [0, —cx3]T. Here, ¢ < 1is the
coefficient of restitution.
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Zeno Equilibria

A Zeno Equilibrium is a point which is attractive, but is not an equilibrium
(f(ze) # 0).
The Bouncing Ball vividly illustrates the concept of a
Zeno Equilibrium.

® The floor is NOT an equilibrium! At
[Ihl‘g] = [070]

® Yet clearly the floor ic a stahla naint

/ \/ N\

a e

Historical Note: Zeno of Elea (c 490-430 BC) did not invent hybrid systems.

® Zeno's paradox rather illustrated the need for a concept of limit.
® Mostly irrelevant to Zeno equilibria
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Zeno Equilibria without Resets
Sliding Modes

The concept also applies to switching systems without resets
® Sliding Mode control forces trajectories to a desired Manifold

Consider this simple example (Not Sliding
Mode):

o )t —u x>0(D)
x(t)_{—cab—Fu x <0 (D).

Figure: lllustration of Sliding
Mode Control

fl(xhxz):[ o ]

—Ccxo — U

f2($1a$2)_{ . ]

—CcIo +Uu
The Origin is stable, but is not an equilibrium!
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Define the Solution of a Hybrid System : An Execution
Definition 2 (Hybrid System Execution).

We say that the tuple — (I,T,p,C)
where
® | C N index the time intervals when the trajectory continuously evolves.
e T = {T;}icr are the time intervals when the trajectory continuously
evolves: T; = (7;,Ti+1) C R} where T; 1 = (Tiy1, Tit2).
® p: I — @ assigns each time interval to a discrete mode.
® C = {c¢;}ier are the trajectories on each time interval ¢; € C[T;].
is an execution of the hybrid system H = F(Q, E, D, F, G, R) with initial
condition (qo, xo) if
¢1(0) = xo and p(1) = qo.
¢i(t) = fp@iy(ci(t)) for t € T; for every i € I.
ci(t) € Dy for t € T; for every i € I.
ci(Tit1) € G(p(i),p(i+1)) for every i € I. (End intervals on the Guard)

Cir1(Tiy1(1)) = D(p(iy pli+1)) (ci(Ti(2))) for every i € I. (Start intervals
with a reset)
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Hybrid Execution: Example

Bouncing Ball

(Bouncing Ball) For an initial condition zy = [0, v,

the Hybrid Execution is

XB = (IaT7pvc)

[ ] I — 1, “ e ,OO
® T; = [7i,Ti+1] where 71 = 0 and
. 2¢t " Lyg
Titl (=Tt T

°p =1
° ci(t) =gt — i) — 3g(t —7)?

M. Peet

Lecture 19:

16 / 22



Zeno Execution: Formal Definition

Note that an execution does not require lim;_,, 7, = 00, so the solution may
not be defined for all time.
® An execution with infinite transitions in finite time is called Zeno.

Definition 3 (Zeno Execution).
We say an execution x = (I, T, p, C) starting from (qo, o) of a hybrid System
H=(Q,E,D,F,G,R) is Zeno if

1. I=N

2. lim; oo 7 < 00

Question: is the bouncing ball a Zeno execution?

i

Z 2vg ;_
T = 7C7' 1

i=1 9

Taking the limit:
2 2 1
lim T = ﬂC—|— ﬂ
i—o0 g g 1—c

< o0

So this is a zeno execution!
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Zeno Equilibria: Formal Definition

Definition 4 (Zeno Equilibrium).
A set z = {24 }qeq With z4 € D, is a Zeno equilibrium of a Hybrid System
H=(Q,E,D,F,G,R) if it satisfies

1. For each edge e = (¢,¢') € E, z4 € G and ¢e(z4) = 24

2. fq(zq) #0 for all g € Q.

For any z € {z4}4ecq, where {z;}4c0 is a Zeno equilibrium of a cyclic hybrid
system H.,

(¢i_r0---0dy- i) (2) = 2

For the Bouncing Ball, %= @, (4, (4,09)

is a Zeno Equilibrium.
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Zeno Behaviour: Simulation

Zeno Executions are Notoriously hard
to simulate accurately

® Simulation relies on numerical
integration

® But integration must stop when
state encounters guard

® As intervals become smaller, this
causes BIG problems

There are Specialized Software tools
which handle this problem well.

® HyEQ is freely available and
reliable

® Executions may still get stuck at
Zeno points.

Link:

M. Peet

Position

T1 05

oo

20 202 204 206 208 21
Time

212 214 216 218 22
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https://www.mathworks.com/videos/hyeq-a-toolbox-for-simulation-of-hybrid-dynamical-systems-81992.html

Avoiding Zeno with Logical and Hysteresis Switching

Thermostat Control

A Thermostat uses Memory to avoid Zeno behaviour.

® The thermostat is binary.
P It is either ON - u =1
» or OFF-u=0

® Controls to set point, say T = 75°.

® But allows the temperature to vary in a Band £5°.
» Avoids Chattering associated with Zeno Executions

Control Logic:

> if u=1 and T>= 80 then

> u=0

> elseif u=0 and T<= 70 then
> u=1

> end

Temperature Dynamics:
T(t) = culT. — T(t)) + cqu(t)
® T, is the external temperature.
® ¢, is thermal resistance of the wall
® cq is the capacity of the HVAC

M. Peet
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Thermostat Control: The Hybrid Model

Control Logic:

> if u=1 and T>= 80 then
u=0

elseif u=0 and T<= 70 then
u=1

end

vV V V VvV

(Thermostat Control) For heating, define the hybrid system Hr as:
HT - (QaE7D7F7GaR)

where
° Q= {132}
L4 E:{Gl,eg}, 61:(1 2) 2(2 1)
o D:={Dy,D,}, Dy = [70,80], Do = [70, 80]

G:={G1,Ga}, G, ={T:T = 70}, Ge, ={T: T =80}
F={f1, 2}, [i = co(Te = T(t)), fo = cw(T. = T(t)) + cq.
R =0 - No Reset Map.
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The Thermostat Model with heating AND cooling

(Thermostat Control) To include heating and cooling, redefine Hr as:

HT == (Q3E7D7F7G7R)
where

Q=1{1,2,3}

o E={e1,ea,e3,e4}, 1 =(1,2), ea=1(2,1), e3 =(1,3), e4 = (3,1),
® D :={Dy,D;, D3}, Dy = Dy = D3 = [70, 80].

G :={G1,G2,G3}, G1 ={G.,,Ge, }, G2 = {G,,}, Gs ={G.,}

Go, ={T:T=70,T>T), G ={T:T=80},
Gy ={T:T=80,T<T.)}, G., ={T:T=10,}
F={f, f2},
[1(T) =co(Te=T), [fo(T)=co(Te=T)+cq, f3(T) = co(Te—T)—ce.

® R =0 - No Reset Map.

Question: How to verify executions don't leave the domain?
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