
LMI Methods in Optimal and Robust Control

Matthew M. Peet
Arizona State University

Lecture 1: The Big Picture



Who Am I?

Website: http://control.asu.edu

Research Interests: Computation, Optimization and Control

Focus Areas:

• Control of Nuclear Fusion

• Immunology

• Thermostats, Renewable Energy,
and Power Distribution

Expertise with LMI Methods:

• Optimization of Polynomials

• Parallel Computing for Control

• Control of Delayed Systems

• Control of PDE Systems

• Control of Nonlinear Systems

My Background:

• B.Sc. University of Texas at Austin

• Ph.D. Stanford University

• Postdoc at INRIA Paris

• NSF CAREER Awardee

Office: ERC 253; Lab: GWC 531

M. Peet Lecture 1: Introduction 2 / 22

http://control.asu.edu


MAE 598: LMI Methods in Optimal and Robust Control
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Required: LMIs in Control Systems
by Duan and Yu

LMIs in Systems and Control Theory
by S. Boyd
Link: Available Online Here

Linear State-Space Control Systems
by Williams and Lawrence

Convex Optimization
by S. Boyd
Link: Available Online Here

Link: Entire Course Online Here
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https://web.stanford.edu/~boyd/lmibook/lmibook.pdf
https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
https://www.youtube.com/watch?v=McLq1hEq3UY&list=PL3940DD956CDF0622


MAE 598: LMI Methods in Optimal and Robust Control

What are the challenges?

Megatrends:

• Increased Complexity (Embedded Computation and Control)

• Increased Connectivity (Internet of Things)

• Robots, Drones and Self-Driving Cars

• Increased Demands (Higher Standards)

• Mobile Computing (Mobile Apps)
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MAE 598: LMI Methods in Optimal and Robust
Control

� Sources of Complexity: Smarter devices have more complicated action
spaces; Ubiquitous computation; Cheap sensors and actuators;

� Sources of Connectivity: RFID, bluetooth, low-energy bluetooth, LAN,
WiFi, WAN, 5G LTE, GPS, satellite broadband, TDRS, integrated circuits

– Problems: delay, lost packets, noise, loss of signal, hacking

� Sources of Demands: Improved Efficiency; Expanded Functionality; User
Friendliness; Reduced Tolerance for Failure.



Challenges for Control in the 21st century
Privatization of Space Travel

Challenges

• Safety

• Complexity

• Uncertainty

Links:
Blue Origin Successful Landing
Blue Origin Successful Landing: Flight 3
SpaceX Landing, Second Attempt
Proton M launch Failure (FCS was for wrong rocket)
Kepler Space Telescope
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https://www.youtube.com/watch?v=txOVV_KSugM
https://www.youtube.com/watch?v=YU3J-jKb75g
https://www.youtube.com/watch?v=GeIHJ-i7yVk
https://www.youtube.com/watch?v=Zl12dXYcUTo
https://www.youtube.com/watch?v=uFulGxT9r3U


Challenges for Control in the 21st century
UAVs and Drones (Delay, Sampled-Data)

Safe Interaction with

• Crowded Airspace

• Real-Time Obstacle
Avoidance

Precision Control with

• Delayed Feedback

ẋ(t) = Ax(t) +Bu(t− τ)

• Lossy Connections

ẋ(t) = Ax(t) +Bu(tk)

Links:
X47 Drone Carrier Landing
Raff’s TED talk
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https://www.youtube.com/watch?v=kw3m7bqrQ64
https://www.youtube.com/watch?v=w2itwFJCgFQ


Challenges for Control in the 21st century
Self-Driving Vehicles

Challenges:

• Safety (Provable)

• Uncertainty (in model,
environment)

• Other Drivers (Multi-Agent)

• Obstacles

Self-Driving Vehicles

• Google (Waymo)

• Über

• Tesla, Mobileye

• Toyota, Nutonomy

Links:
Toyota’s Research Expansion in Automation
Uber’s self-driving Taxis are in Pittsburg
Self-Driving Cars Flood into Arizona
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http://fortune.com/2016/04/07/toyota-ai-robotics-cars/
https://www.youtube.com/watch?v=qfpaze5DpbY
https://www.wired.com/story/mobileye-self-driving-cars-arizona/


Challenges for Control in the 21st century
Interconnectivity (Decentralized Control)

Surface Coal Mine
Underground Coal Mine
Biomass Power Plant
Coal Power Plant
Geothermal  Power Plant
Hydroelectric Power Plant

Natural Gas Power Plant
Nuclear Power Plant
Other Power Plant
Petroleum Power Plant
Pumped Storage Power Plant
Solar Power Plant

Wind Power Plant
Petroleum Refinery
Biodiesel Plant
Ethanol Plant
Natural Gas Processing Plant (z)
Ethylene Cracker

HGL Market Hub (z)
Natural Gas Market Hub (z)
Electricity Border Crossing
Natural Gas Pipeline Border Crossing

0 30 6015 Miles
mN
Credits : layer1 : Esri, HERE, DeLorme, MapmyIndia, © OpenStreetMap contributors, and the GIS  user community;    State Layers : ;    layer0 : Esri, HERE,
DeLorme, MapmyIndia, © OpenStreetMap contributors, and the GIS  user community

 

Figure: Power Generation and Distribution Map of AZ and Southern CA
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Challenges for Control in the 21st century
Robotics (Hybrid and Nonlinear Dynamics, PDE systems)

HARD Robots

• Uncertain Terrain

• Interactions with the environment

If x(t)>0:

ẋ(t) = Ax(t)

If x1(t)=0 AND x2(t)<0: Set

x2(t) = −x2(t)
Link:
Boston Dynamics, Atlas Mark 3

SOFT Robots

• Infinite Degrees of Freedom

• Material Dynamics

Link:
Robotic Worm
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https://www.youtube.com/watch?v=rVlhMGQgDkY
https://www.youtube.com/watch?v=f6mA8walaSk


Challenges for Control in the 21st century
Arduino and Raspberry Pi

Trends:

• Rapid prototyping

• Internet of Things

• Control is Everywhere

Challenges

• Noisy Sensors

• Data-Driven Modeling

• Dynamics with logical switching

ẋ = Ax+Bu(t)

If Occupied=True :

u(t) = K1x(t)

Else : u(t) = K2x(t)
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MAE 598: LMI Methods in Optimal and Robust Control

This course is on RECENT Developments in Control

• Techniques Developed in the Last 20 years
• Computational Methods

I No Root Locus
I No Bode Plots
I No PID (Proportion-Integral-Differential)

We focus on State-Space Methods

• In the time-domain

• We use large state-space matrices

d

dt




x1(t)
x2(t)
x3(t)
x4(t)


 =




−1 1.2 −1 .8
1 0 0 0
0 1 0 0
0 0 1 0







x1(t)
x2(t)
x3(t)
x4(t)


+




1 0
0 1
0 0
0 0



[
u1(t)
u2(t)

]

• We require Matlab
I Need robust control toolbox.
I Recommend using YALMIP.

Link: Installs YALMIP and some other toolboxes
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https://www.mpt3.org/Main/Installation?action=download&upname=install_mpt3.m


So What is an Automatic Control System???

Well... What is a System?

Definition 1.

A System is anything with Inputs and Outputs

There should ALWAYS be Inputs and Outputs!

• If No Inputs: You can’t change anything.

• IF No Outputs: Then it doesn’t matter anyway.
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So What is an Automatic Control System???
12 - 2 LFTs and stability 2001.11.07.04

2-input 2-output framework

exogenous inputs wz regulated outputs

y sensed outputs actuator inputs u
Plant

Inputs

• Actuator inputs u are those inputs to the system that can be manipulated by the
controller.

• Exogenous inputs w are all other inputs.

Outputs

• Regulated outputs z are every output signal from the model.

• Sensed outputs are those outputs which are accessible to the controller.

Notes

• Objective is to write all specifications in terms of z and w.

In Controls, we separate internal signals from external signals.
Output Signals:

• z: Output to be controlled/minimized

• y: Output used by the controller

Input Signals:

• w: Disturbance, Tracking Signal, etc.

• u: Output from controller
I Input to actuator
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So What is an Automatic Control System???
State-Space System

12 - 2 LFTs and stability 2001.11.07.04

2-input 2-output framework

exogenous inputs wz regulated outputs

y sensed outputs actuator inputs u
Plant

Inputs

• Actuator inputs u are those inputs to the system that can be manipulated by the
controller.

• Exogenous inputs w are all other inputs.

Outputs

• Regulated outputs z are every output signal from the model.

• Sensed outputs are those outputs which are accessible to the controller.

Notes

• Objective is to write all specifications in terms of z and w.

A state-space system has the form (9-matrix representation)

ẋ(t) = Ax(t) +B1w(t) +B2u(t)

z(t) = C1x(t) +D11w(t) +D12u(t)

y(t) = C2x(t) +D21w(t) +D22u(t)

x(t) ∈ Rn is the internal state.
x ∈ Ln

2 is the internal signal.
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So What is an Automatic Control System???

Notation Matters

� y ∈ L2 is a function

� y(t) ∈ Rm is a real number

� Systems (e.g. K) map signals to signals

– We can say y = Ku
– We can NOT say y(t) = Ku(t)



So What is an Automatic Control System???

12 - 6 LFTs and stability 2001.11.07.04

Linear fractional transformations

Suppose P and K are state-space systems with

[
z
y

]
=

[
P11 P12

P21 P22

] [
w
u

]
where P̂ =




A B1 B2

C1 D11 D12

C2 D21 D22




and

u = Ky where K̂ =

[
AK BK

CK DK

]

The following interconnection is called the (lower) star-product of P andK, or the (lower)
linear-fractional transformation (LFT).

wz

y u
P

K

The map from w to z is given by

S(P,K) = P11 + P12K(I − P22K)−1P21

The controller, K, determines how to use the signal y to get the signal u.

• Can be dynamic : u(t) = Fx̂(t), ˙̂x(t) = Ax̂(t) + L(y(t)− Cx̂(t))
• Can be static : u(t) = Fy(t).

Our job is to find the BEST K.
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So What is an Automatic Control System???
Consider the Tracking Problem12 - 5 LFTs and stability 2001.11.07.04

Example: a tracking problem
nproc nsensoru

r

e

P
0

K + +

−

y u

P0

P

WsensWact

WprocWerr

K

n wproc 2=

r w= 1

nsensor = w3

z1 = e

z u2 =

++

−r = reference input w2 = nproc w1 = r

e = tracking error w3 = nsensor u = u

nproc = process noise z1 = e y1 = r

nsensor = sensor noise z2 = u y2 = yp
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Tracking Control

12 - 5 LFTs and stability 2001.11.07.04

Example: a tracking problem
nproc nsensoru

r

e

P
0

K + +

−

y u

P0

P

WsensWact

WprocWerr

K

n wproc 2=

r w= 1

nsensor = w3

z1 = e

z u2 =

++

−

P =




I −P0 0 −P0

0 0 0 I
I 0 0 0
0 P0 I P0




z1 = r − P0(nproc + u)

z2 = u

y1 = r

y2 = w3 + P0(nproc + u)
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What is Optimization?
An Optimization Problem has 3 parts.

min
x∈F

f(x) : subject to

gi(x) ≥ 0 i = 1, · · ·K1

hi(x) = 0 i = 1, · · ·K2

Variables: x ∈ F
• The things you must choose.
• F represents the set of possible choices for the variables.
• Can be vectors, matrices, functions, systems, locations, colors...

I However, computers prefer vectors or matrices.

Objective: f(x)
• A function which assigns a scalar value to any choice of variables.

I e.g. [x1, x2] 7→ x1 − x2; red 7→ 4; et c.

Constraints: g(x) ≥ 0; h(x) = 0
• Defines what is a minimally acceptable choice of variables.
• Equality forces two things to be the same
• Inequalities force one thing to be “better” than another

I x is OK if g(x) ≥ 0 and h(x) = 0.
• Constraints mean variables are not independent.
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What is Optimization?

The word “better” is defined using a notion of positivity (A Complete or Partial
Ordering)

EVERYTHING is an Optimization Problem

� Teaching

� Studying

� Choosing a Class

� Getting Lunch

� Getting to Class

� Doing chores

The Trick is Modeling the Optimization Problem



How Hard is it to Solve Optimization Problems

For Humans:

• Almost always IMPOSSIBLE (or at least tedious)

For Computers:

• Easy if the Problem is CONVEX. (Polynomial Time)

• Otherwise IMPOSSIBLE. (NP-Hard)

We will talk about this a bit more later!
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Now What is an LMI?
An LMI is a type of constraint

Definition 2.

A symmetric matrix (P = PT ) is Positive Definite (denoted P > 0) if all of its
eigenvalues are positive.

A Linear Matrix Inequality (LMI) is a constraint that looks like

AiPBi +Qi > 0

where P is the variable and Ai, Bi, Qi are matrices.

Question: Why do we have a whole controls course devoted to LMIs?

• LMI constraints are convex (Computers can solve them)

• Positive matrices can be used to study systems.
I This is because we are really optimizing Lyapunov functions.
I V (x) = xTPx ≥ 0 if P > 0.

Almost ALL computational methods in Control are based on LMIs.

• Or at least be reformulated as an LMI.
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Now What is an LMI?

LMIs define a Partial Ordering

� One matrix may not be better or worse than another

� The LMI means the LHS must be better in EVERY way.



Now What is an LMI?
An Example: The Lyapunov Inequality

The system
ẋ = Ax

is stable (eigenvalues have negative real part) if and only if there exists a P > 0
such that

ATP + PA < 0

YALMIP Code for Stability Analysis:
> A = [-1 2 0; -3 -4 1; 0 0 -2];

> P = sdpvar(3,3);

> F = [P >= eye(3)];

> F = [F, A’*P+P*A <= 0];

> optimize(F);

If Feasible, YALMIP Code to Retrieve the Solution:
> Pfeasible = value(P);
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Class Project

In lieu of a final exam, we will have two class projects (Alone or in pairs).
1. Write a Wikibook Chapter
• Include a minimum of 10 pages (20 for pairs)

2. Do Research/Solve a Problem
• Can be based on existing research.

Some Project Ideas:
• Gain Scheduling for Missile Attitude Control (Switched Systems)

• Control of Robots over the internet (Sampled-Data Systems)

• Spacecraft Attitude Control with delayed communication (Delay Systems)

• Social Cognitive Therapy using Discrete Inputs (Mixed-Integer Control)

• Self-Driving Vehicles (Decentralized Control)

• Soft Robotics (Decentralized Control)

• Thermostat Programming (Dynamic Programming)

• Flow Control (PDEs)

• Controller/Estimator Design using Arduino and Simulink (Robust Control)

• System Identification using LMIs

• Mobile App for solving an optimization or control problem.

For those who dislike Projects, we can arrange to take a Final Exam instead.
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