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Observability
Consider a system with no input:

ẋ(t) = Ax(t), x(0) = x0

y(t) = Cx(t)

Definition 1.

For a given T , the pair (A,C) is Observable on [0, T ] if, given y(t) for
t ∈ [0, T ], we can reconstruct x0.

Definition 2.

Given (C,A), the flow map, ΨT : Rp → F(R,Rp) is

ΨT : x0 7→ CeAtx0 t ∈ [0, T ]

So y = ΨTx0 means y(t) = CeAtx0.

Proposition 1.

The pair (C,A) is observable if and only if ΨT is invertible, which implies

ker ΨT = 0
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Again, the system defines a map from x0 7→ y(t) = CeAtx0.

� The system (C,A) is invertible if the only state which gets mapped to
zero is zero.



Observability

Definition 3.

The Observability Matrix,
O(C,A) is defined as

O(C,A) =


C
CA

...
CAn−1



Theorem 4.

ker ΨT

= kerC ∩ kerCA ∩ kerCA2 ∩ · · · ∩ kerCAn−1

= ker


C
CA

...
CAn−1


Definition 5.

The Unobservable Subspace is NCA = ker ΨT = kerO(C,A).

Theorem 6.

For a given pair (C,A), the following are equivalent
• kerY = 0 • ker ΨT = 0 • kerO(C,A) = 0

Y =
∫∞
0
eA

T sCTCeAsds is the Observability Grammian.

If the state is observable, then it is observable arbitrarily fast.
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Again: we relate

� Properties of the map x0 → y(·)
� Properties of a matrix, O(C,A)

� Existence of a Positive matrix, Y



The Observability Gramian

Definition 7.

For pair (C,A), the Observability Grammian is defined as

Y = Ψ∗TΨT =

∫ ∞
0

eA
T sCTCeAsds

Observable Ellipsoid: The set of initial states which result
in an output y with norm ‖y‖L2

≤ 1 is given by the ellipsoid

{x ∈ Rn : ‖ΨTx‖2L2
= xTY x ≤ 1}

• an ellipsoid with semiaxis lengths 1
λi(Y )

• an ellipsoid with semiaxis directions given by
eigenvectors of Y

• If λi(Y ) = 0 for some i, (C,A) is not observable.

1√
λ1

1√
λ2

{ }

Note that the major axes are the WEAKLY observable states
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The Observability Gramian

Note the duality.

� For the controllability and observability grammians. largest singular values
are strongly controllable in case a) (length λ) and strongly observable in
case b) (length 1/λ).

� Theorem 6 describes conditions under which the kernel is 0, while the
controllability equivalent describes conditions under which image is full
rank (kernel of transpose is 0)

� In fact, controllability and observability are duals. This is formalized in the
following slide.

xT0 Y x0 =

∫ ∞
0

xT0 e
AT sCTCeAsx0ds = ‖CeAtx0‖2L2



Duality

The Controllability and Observability matrices are related

O(C,A) = C(AT , CT )T

C(A,B) = O(BT , AT )T

For this reason, the study of controllability and observability are related.

NCA = kerO(C,A) = [imageC(AT , CT )]⊥ = C⊥ATCT

CAB = imageC(A,B) = [kerO(BT , AT )]⊥ = N⊥ATBT

We can investigate observability of (C,A) by studying controllability of
(AT , CT )

• (C,A) is observable if and only if (AT , CT ) is controllable.

Lemma 8 (An LMI for the Observability Gramian).

(C,A) is observable iff Y > 0 is the unique solution to

ATY + Y A+ CTC = 0

Recall W > 0 and AW +WAT +BBT = 0 for controllability!
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Duality

Note the duality.

� For a given subspace X, the orthogonal complement is denoted

X⊥ := {y : yTx = 0 for all x ∈ X}

� From linear algebra, imageM = (kerMT )⊥

Recall u 7→ x(·)

x(t) =

∫ t

0

eA(t−s)Bu(s)ds

And x0 7→ y(·)
y(t) = CeAtx0

The duality relationship follows by using the expansion

eA = eA = I +A+
1

2
A2 +

1

6
A3 + · · ·+ 1

k!
Ak

where by Cayley-Hamilton, we can stop at k = N



Observers (aka Estimators)

Suppose we have designed a controller

u(t) = Kx(t)

but we can only measure y(t) = Cx(t)!

Question: How to find x(t)?
• If (C,A) observable, then we can observe y(t) on t ∈ [t, t+ T ].

I But by then its too late!
I we need x(t) in real time!

Definition 9.

An Observer, is an Artificial Dynamical System whose output tracks x(t).

Suppose we want to observe the following system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

Lets assume the observer is state-space
• What are our inputs and output?
• What is the dimension of the system?
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Observers

Inputs: u(t) and y(t).
Outputs: Estimate of the state: x̂(t).

Assume the observer has the same dimension as the system

ż(t) = Mz(t) +Ny(t) + Pu(t)

x̂(t) = Qz(t) +Ry(t) + Su(t)

We want limt→0 e(t) = limt→0 x(t)− x̂(t) = 0

• for any u, z(0), and x(0).

• We would also like internal stability, etc.
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Observers

� Actually, if the dimension of the observer is any less (even n− 1) than
that of the original system, the problem becomes NP-hard.

� This is the most general case of an observer. In this lecture, we will
reduce the number of variables. However, we will later return to the most
general form in order to improve performance.



Coupled System and Error Dynamics

System Dynamics:
ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

Observer Dynamics:
ż(t) = Mz(t) +Ny(t) + Pu(t)

x̂(t) = Qz(t) +Ry(t) + Su(t)

DYNAMICS Of The Error: What are the dynamics of e(t) = x(t)− x̂(t)?

ė(t) = ẋ(t)− ˙̂x(t)

= Ax(t) +Bu(t)−Qż(t) +Rẏ(t) + Su̇(t)

= Ax(t) +Bu(t)−Q(Mz(t) +Ny(t) + Pu(t)) +R(Cẋ(t) +Du̇(t)) + Su̇(t)

= Ax(t) +Bu(t)−QMz(t)−QN(Cx(t) +Du(t))−QPu(t)

+RC(Ax(t) +Bu(t)) + (S +RD)u̇(t)

= (A+RCA−QNC)e(t) + (AQ+RCAQ−QNCQ−QM)z(t)

+ (A+RCA−QNC)Ry(t) + (B +RCB −QP −QND)u(t) + (S +RD)u̇(t)

Designing an observer requires that these dynamics are Hurwitz.
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The Luenberger Observer

For now, we consider a special kind of observers, parameterized by the matrix L

ż(t) = (A+ LC)z(t)− Ly(t) + (B + LD)u(t)

= Az(t) +Bu(t)︸ ︷︷ ︸
Propagate estimate

+L(Cz(t) +Du(t)︸ ︷︷ ︸
Predicted Output

− y(t)︸︷︷︸
Actual Output

)

︸ ︷︷ ︸
Correction Term

x̂(t) = z(t)

In the general formulation, this corresponds to

M = A+ LC; N = −L; P = B + LD;

Q = I; R = 0; S = 0;

So in this case z(t) = x̂(t) and the error dynamics simplify to

ė(t) = (A+ LC)e(t)

Thus the criterion for convergence is A+ LC Hurwitz.

Question Can we choose L such that A+ LC is Hurwitz?
Similar to choosing A+BF .
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The Luenberger Observer

� The estimator state is itself the estimate of the state.

� Recalling

M = A+ LC; N = −L; P = B + LD;

Q = I; R = 0; S = 0;

� (A+RCA−QNC) = QM = A+ LC

� (A+RCA−QNC)R = 0

� AQ+RCAQ−QNCQ−QM = 0

� B +RCB −QP −QND = 0

� S +RD = 0



Observability

If turns out that observability and detectability are useful

Theorem 10.

The eigenvalues of A+ LC are freely assignable through L if and only if (C,A)
is observable.

If we only need A+ LC Hurwitz, then the test is easier.

• We only need detectability

Theorem 11.

An observer exists if and only if (C,A) is detectable

Note: Theorem applies to ANY observer, not just Luenberger observers.

• This implies Luenberger observers are necessary and sufficient for design of
stable estimators.

M. Peet Lecture 06: Observability 10 / 19



An LMI for Observer Synthesis
Question: How to compute L?
• The eigenvalues of A+ LC and (A+ LC)T = AT + CTLT are the same.
• This is the same problem as controller design!

Theorem 12.

There exists a K such that A+BK is stable if and only if there exists some
P > 0 and Z such that

AP + PAT +BZ + ZTBT < 0,

where K = ZP−1.

Theorem 13.

There exists an L such that A+ LC is stable if and only if there exists some
P > 0 and Z such that

ATP + PA+ CTZ + ZTC < 0,

where L = P−1ZT .
So now we know how to design an Luenberger observer.
• Also called an estimator

The error dynamics will be dictated by the eigenvalues of A+ LC.
• generally a good idea for the observer to converge faster than the plant.
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Observer-Based Controllers

Summary: What do we know?
• How to design a controller which uses the full state.
• How to design an observer which converges to the full state.

Question: Is the combined system stable?
• We know the error dynamics converge.
• Lets look at the coupled dynamics.

Proposition 2.

The system defined by

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

u(t) = Kx̂(t)

˙̂x(t) = (A+ LC)x̂(t)− Ly(t) + (B + LD)u(t)

= Ax̂(t) +Bu(t) + L(Cx̂(t) +Du(t)− y(t))

= (A+ LC +BK + LDK) x̂(t)− Ly(t)

has eigenvalues equal to that of A+ LC and A+BK.
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Observer-Based Controllers

The proof is relatively easy

Proof.

The state dynamics are

ẋ(t) = Ax(t) +BKx̂(t)

Rewrite the estimation dynamics as

˙̂x(t) = (A+ LC +BK + LDK) x̂(t)− Ly(t)

= (A+ LC) x̂(t) + (B + LD)Kx̂(t)− LCx(t)− LDu(t)

= (A+ LC) x̂(t) + (B + LD)u(t)− LCx(t)− LDu(t)

= (A+ LC) x̂(t) +Bu(t)− LCx(t)

= (A+ LC +BK) x̂(t)− LCx(t)

In state-space form, we get[
ẋ(t)
˙̂x(t)

]
=

[
A BK
−LC A+ LC +BK

] [
x(t)
x̂(t)

]
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Observer-Based Controllers

Proof. [
ẋ(t)
˙̂x(t)

]
=

[
A BK
−LC A+ LC +BK

] [
x(t)
x̂(t)

]
Use the similarity transform T = T−1 =

[
I 0
I −I

]
.

TĀT−1 =

[
I 0
I −I

] [
A BK
−LC A+ LC +BK

] [
I 0
I −I

]
=

[
I 0
I −I

] [
A+BK −BK
A+BK −(A+ LC +BK)

]
=

[
A+BK −BK

0 A+ LC

]
which has eigenvalues A+ LC and A+BK.

Eigenvalues are invariant under similarity transforms.
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An LMI for Observer D-Stability

• Use the Controller Synthesis LMI to choose K.

• Then use the following LMI to choose L.

• If both A+ LC and A+BK satisfy the D-stability
condition, then the eigenvalues of the close-loop
system will as well.

Lemma 14 (An LMI for D-Observer Design).

Suppose there exists X > 0 and Z such that[
−rP (PA+ ZC)T

PA+ ZC −rP

]
< 0,

(PA+ ZC)T + PA+ ZC + 2αP < 0, and[
((PA+ ZC)T + PA+ ZC) c((PA+ ZC)T − (PA+ ZC))
c(PA+ ZC − (PA+ ZC)T ) ((PA+ ZC)T + PA+ ZC)

]
< 0

Then if L = P−1Z, the pole locations, z ∈ C of A+ LC satisfy |x| ≤ r,
Rex ≤ −α and z + z∗ ≤ −c|z − z∗|.
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One Step Discrete-Time Observers

Nominal System:

xk+1 = Axk +Buk yk = Cxk +Duk

Observer Format:

x̂k+1 = Ax̂k +Buk + L(Cx̂k +Duk − yk)

This gives error (ek = xk − x̂k) dynamics

ek+1 = (A+ LC)ek

So the Problem is exactly the same as for the continuous-time case.
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Separation Principle for Discrete-Time Observers

Closed-Loop System Dynamics:

xk+1 = Axk +Buk = Axk +BKx̂k

Closed-Loop Estimator Dynamics:

x̂k+1 = Ax̂k +Buk + L(Cx̂k +Duk − yk)

= Ax̂k +BKx̂k + L(Cx̂k +DKx̂k − Cxk −DKx̂k)

= (A+BK + LC)x̂k − LCxk

Coupled System-Estimator Dynamics[
xk+1

x̂k+1

]
=

[
A BK
−LC A+BK + LC

] [
xk
x̂k

]
Which (as for continuous-time) has eigenvalues A+ LC and A+BK.
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Summary of LMIs Learned
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Examples:

Example 6.2: Jet Aircraft ẋ = Ax+Bu and y = Cx.

A =


−.0558 −.9968 .0802 .0415
.5980 −.1150 −.0318 0
−3.0500 .388 −.465 0

0 .0805 1 0



B =


.0729 .0001
−4.75 1.23
1.53 10.63

0 0

 C =

[
0 1 0 0
0 0 0 1

]

Example 6.3: Discrete-Time System xk+1 = Axk +Buk and y = Cxk.

A =

 0 1 0
1 1 0
−1 0 0

 B =

0
1
0

 , C =

[
1 0 0
0 0 1

]
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