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Overview

Our next goal is to extend LMI’s and optimization to nonlinear systems analysis.

Today we will discuss

1. Nonlinear Systems Theory

1.1 Existence and Uniqueness
1.2 Contractions and Iterations
1.3 Gronwall-Bellman Inequality

2. Stability Theory

2.1 Lyapunov Stability
2.2 Lyapunov’s Direct Method
2.3 A Collection of Converse Lyapunov Results

The purpose of this lecture is to show that Lyapunov stability can be solved
Exactly via optimization of polynomials.
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Ordinary Nonlinear Differential Equations
Computing Stability and Domain of Attraction

Consider: A System of Nonlinear Ordinary Differential Equations

ẋ(t) = f (x(t))

Problem: Stability
Given a specific polynomial f : Rn → Rn,
find the largest X ⊂ Rn
such that for any x(0) ∈ X,
limt→∞ x(t) = 0.
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Lecture 15

Ordinary Nonlinear Differential Equations

Linearity refers to the map from inputs to outputs vs. linearity in the RHS of

the representation.



Nonlinear Dynamical Systems
Long-Range Weather Forecasting and the Lorentz Attractor

A model of atmospheric convection analyzed by E.N. Lorenz, Journal of
Atmospheric Sciences, 1963.

ẋ = σ(y − x) ẏ = rx− y − xz ż = xy − bz
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Lecture 15

Nonlinear Dynamical Systems

Nonlinear Systems may have

� Multiple Equilibria

� Regions of Attraction

� Limit Cycles

� Chaos

� Invariant Manifolds

� Non-exponential stability

� Finite-Escape Time

� Implicit (vs Excplicit) Algebraic Constraints



Stability and Periodic Orbits
The Poincaré-Bendixson Theorem and van der Pol Oscillator

An oscillating circuit model:

ẏ = −x− (x2 − 1)y

ẋ = y
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Domain−of−attraction

Figure: The van der Pol oscillator in reverse

Theorem 1 (Poincaré-Bendixson).

Invariant sets in R2 always contain a limit cycle or fixed point.
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Stability of Ordinary Differential Equations

Consider

ẋ(t) = f(x(t))

with x(0) ∈ Rn.

Theorem 2 (Lyapunov Stability).

Suppose there exists a continuous V and α, β, γ > 0 where

β‖x‖2 ≤ V (x) ≤ α‖x‖2

−∇V (x)T f(x) ≥ γ‖x‖2

for all x ∈ X. Then any sub-level set of V in X is a Domain of Attraction.

A Sublevel Set: Has the form Vδ = {x : V (x) ≤ δ}.
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Do The Equations Have a Solution?
The Cauchy Problem

The first question people ask is the Cauchy problem:

For Autonomous (Uncontrolled) Systems:

Definition 3 (Cauchy Problem).

The Cauchy problem is to find a unique, continuous x : [0, tf ]→ Rn for some
tf such that ẋ is defined and ẋ(t) = f(t, x(t)) for all t ∈ [0, tf ].

If f is continuous, the solution must be continuously differentiable.

Controlled Systems:
• For a controlled system, we have ẋ(t) = f(x(t), u(t)) and assume u(t) is

given.
I This precludes feedback

• In this lecture, we focus on the autonomous system.
I Including t complicates the analysis.
I However, results are almost all the same.
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Ordinary Differential Equations
Existence of Solutions

There exist many systems for which no solution exists or for which a solution
only exists over a finite time interval.

Even for something as simple as

ẋ(t) = x(t)2 x(0) = x0

has the solution

x(t) =
x0

1− x0t

which clearly has escape time

te =
1

x0

1

Nonlinear Control Theory 2006
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• Nonlinear Phenomena and Stability theory

◮ Nonlinear phenomena [Khalil Ch 3.1]
◮ existence and uniqueness
◮ finite escape time
◮ peaking

◮ Linear system theory revisited
◮ Second order systems [Khalil Ch 2.4, 2.6]

◮ periodic solutions / limit cycles
◮ Stability theory [Khalil Ch. 4]

◮ Lyapunov Theory revisited
◮ exponential stability
◮ quadratic stability
◮ time-varying systems
◮ invariant sets
◮ center manifold theorem

Existence problems of solutions

Example: The differential equation

dx
dt
= x2, x(0) = x0

has the solution

x(t) = x0

1− x0t
, 0 ≤ t < 1

x0

Finite escape time

t f =
1
x0

Finite Escape Time
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Finite escape time of dx/dt = x2

Uniqueness Problems

Example: The equation ẋ = √x, x(0) = 0 has many solutions:

x(t) =
{
(t− C)2/4 t > C

0 t ≤ C
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Compare with water tank:

Previous problem is like the water-tank problem in backward
time

(Substitute τ = −t in differential equation).

dh/dt = −a
√

h, h : height (water level)

Change to backward-time: “If I see it empty, when was it full?”)

Existence and Uniqueness

Theorem

Let ΩR denote the ball

ΩR = {z; qz− aq ≤ R}

If f is Lipschitz-continuous:

q f (z) − f (y)q ≤ Kqz− yq, for all z, y∈ Ω

then ẋ(t) = f (x(t)), x(0) = a has a unique solution in

0 ≤ t < R/CR,

where CR = maxΩR q f (x)q

see [Khalil Ch. 3]

The peaking phenomenon

Example: Controlled linear system with right-half plane zero

Feedback can change location of poles but not location of zero
(unstable pole-zero cancellation not allowed).

Gcl(s) =
(−s+ 1)ω 2

o
s2 + 2ω os+ω 2

o
(1)

A step response will reveal a transient which grows in amplitude
for faster closed loop poles s = −ω o, see Figure on next slide.

Figure: Simulation of ẋ = x2 for several
x(0)
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Ordinary Differential Equations
Non-Uniqueness

A classical example of a system without a unique solution is

ẋ(t) = x(t)1/3 x(0) = 0

For the given initial condition, it is easy to verify that

x(t) = 0 and x(t) =

(
2t

3

)3/2

both satisfy the differential equation.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure: Matlab simulation of
ẋ(t) = x(t)1/3 with x(0) = 0
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Figure: Matlab simulation of
ẋ(t) = x(t)1/3 with x(0) = .000001
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Ordinary Differential Equations

� Systems without a unique solution are hard to simulate

� prone to numerical errors

� no smoothness with respect to initial conditions.



Ordinary Differential Equations
Non-Uniqueness

An Example of a system with several solutions is given by

ẋ(t) =
√
x(t) x(0) = 0

For the given initial condition, it is easy
to verify that for any C,

x(t) =

{
(t−C)2

4 t > C

0 t ≤ C

satisfies the differential equation.
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Uniqueness Problems

Example: The equation ẋ = √x, x(0) = 0 has many solutions:

x(t) =
{
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Compare with water tank:

Previous problem is like the water-tank problem in backward
time

(Substitute τ = −t in differential equation).

dh/dt = −a
√

h, h : height (water level)

Change to backward-time: “If I see it empty, when was it full?”)

Existence and Uniqueness

Theorem

Let ΩR denote the ball

ΩR = {z; qz− aq ≤ R}

If f is Lipschitz-continuous:

q f (z) − f (y)q ≤ Kqz− yq, for all z, y∈ Ω

then ẋ(t) = f (x(t)), x(0) = a has a unique solution in

0 ≤ t < R/CR,

where CR = maxΩR q f (x)q

see [Khalil Ch. 3]

The peaking phenomenon

Example: Controlled linear system with right-half plane zero

Feedback can change location of poles but not location of zero
(unstable pole-zero cancellation not allowed).

Gcl(s) =
(−s+ 1)ω 2

o
s2 + 2ω os+ω 2

o
(1)

A step response will reveal a transient which grows in amplitude
for faster closed loop poles s = −ω o, see Figure on next slide.

Figure: Several solutions of ẋ =
√
x
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Continuity of a Function
Customary Notions of Continuity

Nonlinear Stability requires some additional Math Definitions.

Definition 4 (Continuity at a Point).

For normed spaces X,Y , a function f : X → Y is continuous at the point
x0 ∈ X if for any ε > 0, there exists a δ > 0 such that ‖x− x0‖ < δ (U)
implies ‖f(x)− f(x0)‖ < ε (V ).
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Ordinary Differential Equations
Customary Notions of Continuity

Definition 5 (Continuity on a Set of Points (B)).

For normed spaces X,Y , a function f : A ⊂ X → Y is continuous on B if it is
continuous at any point x0 ∈ B. A function is simply continuous if B = A.

Dropping some of the notation,

Definition 6 (Uniform Continuity on a Set of Points (B)).

f : A ⊂ X → Y is uniformly continuous on B if for any ε > 0, there exists a
δ > 0 such that for x, y ∈ B, ‖x− y‖ < δ implies ‖f(x)− f(y)‖ < ε.

Example: f(x) = x3 is uniformly continuous on B = [0, 1], but not B = R

f ′(x) = 3x2 < 3 for x ∈ [0, 1]

hence |f(x)− f(y)| ≤ 3|x− y|. So given ε > 0, choose δ < 1
3ε.
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Lipschitz Continuity
A Quantitative Notion of Continuity

Definition 7 (Lipschitz Continuity).

The function f is Lipschitz continuous on X if there exists some L > 0 such
that

‖f(x)− f(y)‖ ≤ L‖x− y‖ for any x, y ∈ X.

The constant L is referred to as the Lipschitz constant for f on X.

Definition 8 (Local Lipschitz Continuity).

The function f is Locally Lipschitz continuous on X if for every x ∈ X, there
exists a neighborhood, B of x such that f is Lipschitz continuous on B.

Definition 9.

The function f is Globally Lipschitz if it is Lipschitz on its entire domain.

Example: f(x) = x3 is Locally Lipschitz on [−1, 1] with L = 3.

• But f(x) = x3 is NOT Globally Lipschitz on R
• L is typically just a bound on the derivative.
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A Theorem on Existence of Solutions
Existence and Uniqueness

Let B(x0, r) be the unit ball, centered at x0 of radius r.

Theorem 10 (A Typical Existence Theorem).

Suppose x0 ∈ Rn, f : Rn → Rn and there exist L, r such that for any
x, y ∈ B(x0, r),

‖f(x)− f(y)‖ ≤ L‖x− y‖

and ‖f(x)‖ ≤ c for x ∈ B(x0, r). Let tf < min{ 1
L ,

r
c}. Then there exists a

unique differentiable x : [0, tf ] 7→ Rn, such that x(0) = x0, x(t) ∈ B(x0, r) and
ẋ(t) = f(x(t)).

Solution Map: If solutions are well-defined, we may define the solution map
g : [0, tf ]× Rn as the unique functions such that

g(0, x) = x, ġ(t, x) = f(g(t, x))
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A Theorem on Existence of Solutions

The solution map is a rather important conceptual tools

� An explicit representation of the solutions of the system (as opposed to
solutions implicit in the ODE)

� Encodes every possible solution of the system

� It is almost impossible to find an analytic expression for the solution map
(except for linear systems)



Counterexamples on Existence of Solutions

Theorem 11 (A Typical Existence Theorem).

Suppose x0 ∈ Rn, f : Rn → Rn and there exist L, r such that for any
x, y ∈ B(x0, r),

‖f(x)− f(y)‖ ≤ L‖x− y‖

and ‖f(x)‖ ≤ c for x ∈ B(x0, r). Let tf < min{ 1
L ,

r
c}. Then there exists a

unique differentiable solution on interval [0, tf ].

Recall:
ẋ(t) = x(t)2 x(0) = x0

has the solution
x(t) =

x0
1− x0t

Lets take r = 1, x0 = 1. Then L = supx∈[0,2] |f ′(x)| = 4.
c = supx∈[0,2] |f(x)| = 4. Then we have a solution for

tf < min{ 1
L ,

r
c} = min{ 14 ,

1
4} = 1

4 and where |x(t)| < 2 for
t ∈ [0, tf ].
We can verify that the solution x(t) = 1

1−t <
4
3 for t < tf .

1
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Uniqueness Problems

Example: The equation ẋ = √x, x(0) = 0 has many solutions:
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Compare with water tank:

Previous problem is like the water-tank problem in backward
time

(Substitute τ = −t in differential equation).

dh/dt = −a
√

h, h : height (water level)

Change to backward-time: “If I see it empty, when was it full?”)

Existence and Uniqueness

Theorem

Let ΩR denote the ball

ΩR = {z; qz− aq ≤ R}

If f is Lipschitz-continuous:

q f (z) − f (y)q ≤ Kqz− yq, for all z, y∈ Ω

then ẋ(t) = f (x(t)), x(0) = a has a unique solution in

0 ≤ t < R/CR,

where CR = maxΩR q f (x)q

see [Khalil Ch. 3]

The peaking phenomenon

Example: Controlled linear system with right-half plane zero

Feedback can change location of poles but not location of zero
(unstable pole-zero cancellation not allowed).

Gcl(s) =
(−s+ 1)ω 2

o
s2 + 2ω os+ω 2

o
(1)

A step response will reveal a transient which grows in amplitude
for faster closed loop poles s = −ω o, see Figure on next slide.
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Counterexamples on Existence of Solutions
Non-Uniqueness

Theorem 12 (A Typical Existence Theorem).

Suppose x0 ∈ Rn, f : Rn → Rn and there exist L, r such that for any
x, y ∈ B(x0, r),

‖f(x)− f(y)‖ ≤ L‖x− y‖

and ‖f(x)‖ ≤ c for x ∈ B(x0, r). Let tf < min{ 1
L ,

r
c}. Then there exists a

unique differentiable solution on interval [0, tf ].

Recall the system without a unique solution is

ẋ(t) = x(t)1/3 x(0) = 0

The problem here is that f ′(x) = 1
3x
− 2

3 = 1

3x
2
3

.

L = sup
x∈[0,2]

|f ′(x)| = sup
x∈[0,2]

∣∣∣∣
1

3x
2
3

∣∣∣∣ =∞

Since 1
0 =∞. So there is no Lipschitz Bound.
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Concepts of State and Solution Maps

Definition 13.

The State of the system (x ∈ X) is the knowledge needed to propagate the
solution forward in time.

• For every state, one and only one solution should exist, and small changes
in state should cause small changes in solution.

Examples:

NDEs: x(t) ∈ Rn, PDEs: xss(t, ·) ∈ L2, TDS: x(t) and x(t+ s) for s ∈ [−τ, 0].

Definition 14.

The Solution Map g : R+ ×X → X is a function of both time and state.

• g(x, t) is the state at time t if x(0) = x.

Examples:
NDEs: ∂tg(t, x) = f(g(t, x)), g(0, x) = x
PDEs: yt(s, t) = A0(s)y(s, t) + A1(s)ys(s, t) + A2(s)yss(s, t), y(s, t) =

∫ s
a (s − η)g(xss, t)(η)dη

TDS: ∂t

[
g1(φ, t)
g2(φ, t)

]
=

[
A0g1(φ, t) + A1g2(φ, t)(−τ)

∂sg2(φ, t)(s)

]
and xt(s) =

[
x(t)

x(t + s)

]
for s ∈ [−τ, 0].
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Stability Definitions
Whenever you are trying to prove stability, Please define your notion of stability!

Denote the set of bounded continuous functions by
C̄ := {x ∈ C : ‖x(t)‖ ≤ r, r ≥ 0} with norm
‖x‖ = supt‖x(t)‖.

We define g : D → C̄ to be the solution map: g(x0, t) if

∂

∂t
g(x0, t) = f(g(x0, t)) and g(x0, 0) = x0 x0 ∈ D

Definition 15.

The system is locally Lyapunov stable on D where D contains an open
neighborhood of the origin if it defines a unique map g : D → C̄ (x 7→ g(x, ·))
which is continuous at the origin (x0 = 0).

The system is locally Lyapunov stable on D if for any ε > 0, there exists a δ(ε)
such that for ‖x(0)‖ ≤ δ(ε), x(0) ⊂ D we have ‖x(t)‖ ≤ ε for all t ≥ 0
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Stability Definitions



Stability Definitions

Definition 16.

The system is globally Lyapunov stable if it defines a unique map g : Rn → C̄
which is continuous at the origin.

We define the subspace of bounded continuous functions which tend to the
origin by G := {x ∈ C̄ : limt→∞ x(t) = 0} with norm ‖x‖ = supt‖x(t)‖.

Definition 17.

The system is locally asymptotically stable on D where D contains an open
neighborhood of the origin if it defines a map g : D → G which is continuous at
the origin.
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Stability Definitions

Definition 18.

The system is globally asymptotically stable if it defines a map g : Rn → G
which is continuous at the origin.

Definition 19.

The system is locally exponentially stable on D if it defines a map g : D → G
where

‖g(x, t)‖ ≤ Ke−γt‖x‖

for some positive constants K, γ > 0 and any x ∈ D.

Definition 20.

The system is globally exponentially stable if it defines a map g : Rn → G
where

‖g(x, t)‖ ≤ Ke−γt‖x‖

for some positive constants K, γ > 0 and any x ∈ Rn.
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What are Lyapunov Functions?
Necessary and Sufficient Condition for Stability

Consider

ẋ(t) = f(x(t))

with x(0) ∈ X.

Theorem 21 (Lyapunov Stability).

Suppose there exists a V where

V (x) > 0 for x 6= 0, and V (0) = 0

V̇ (x) = ∇V (x)T f(x) ≤ 0

for all x ∈ X. Then any sub-level set of V in X is a Domain of Attraction.
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Lyapunov Theorem for Lyapunov Stability

Consider the system:
ẋ = f(x), f(0) = 0

Theorem 22.

Let V : D → R be a continuously differentiable function and D compact such
that

V (0) = 0

V (x) > 0 for x ∈ D, x 6= 0

∇V (x)T f(x) ≤ 0 for x ∈ D.

• Then ẋ = f(x) is well-posed and locally Lyapunov stable on the largest
sublevel set Vγ = {x : V (x) ≤ γ} of V contained in D.

• Furthermore, if ∇V (x)T f(x) < 0 for x ∈ D, x 6= 0, then ẋ = f(x) is
locally asymptotically stable on the largest sublevel set
Vγ = {x : V (x) ≤ γ} contained in D.
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Lyapunov Theorem for Lyapunov Stability

Consider the system:
ẋ = f(x), f(0) = 0

Theorem 22.

Let V : D → R be a continuously differentiable function and D compact such
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∇V (x)T f(x) ≤ 0 for x ∈ D.

• Then ẋ = f(x) is well-posed and locally Lyapunov stable on the largest
sublevel set Vγ = {x : V (x) ≤ γ} of V contained in D.

• Furthermore, if ∇V (x)T f(x) < 0 for x ∈ D, x 6= 0, then ẋ = f(x) is
locally asymptotically stable on the largest sublevel set
Vγ = {x : V (x) ≤ γ} contained in D.
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Lyapunov Theorem for Lyapunov Stability

Proof Notes for Lyapunov Theorem
Sublevel Set: For a given Lyapunov function V and positive constant γ, we
denote the set Vγ = {x : V (x) ≤ γ}.
Existence: Denote the largest bounded sublevel set of V contained in the interior
of D by Vγ∗ . Because V̇ (x(t)) = ∇V (x(t))T f(x(t)) ≤ 0, if x(0) ∈ Vγ∗ , then
x(t) ∈ Vγ∗ for all t ≥ 0. Therefore since f is locally Lipschitz continuous on the
compact Vγ∗ , by the extension theorem, there is a unique solution for any initial
condition x(0) ∈ Vγ∗ .
Lyapunov Stability: Given any ε′ > 0, choose ε < ε′ with B(ε) ⊂ Vγ∗ , choose
γi such that Vγi ⊂ B(ε). Now, choose δ > 0 such that B(δ) ⊂ Vγi . Then
B(δ) ⊂ Vγi ⊂ B(ε) and hence if x(0) ∈ B(δ), we have x(0) ∈ Vγi ⊂ B(ε) ⊂
B(ε′).
Asymptotic Stability:

� V monotone decreasing implies limt→ V (x(t)) = 0.

� V (x) = 0 implies x = 0.



Examples of Lyapunov Functions

Mass-Spring: Pendulum:

ẍ = − c

m
ẋ− k

m
x

V (x) =
1

2
mẋ2 +

1

2
kx2

V̇ (x) = ẋ(−cẋ− kx) + kxẋ

= −cẋ2 − kẋx+ kxẋ

= −cẋ2 ≤ 0

ẋ2 = −g
l

sinx1 ẋ1 = x2

V (x) = (1− cosx1)gl +
1

2
l2x22

V̇ (x) = glx2 sinx1 − glx2 sinx1

= 0
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A Lyapunov Function for Every Purpose ...
Mathematical Optimization and Curly’s Law:
Curly: Do you know what the secret of life is?
Curly: One thing (metric). Just one thing. You stick to
that (metric) and the rest don’t mean ****.

Given a performance metric
• In a well-posed system, your current state tells you everything you need to

know about the future (no inputs, disturbances).

• The Lyapunov function says how well that future performs in your metric.

Definition 23.

If h : L2 → R+ is your metric and g : X → L2 is your solution map, the
Lyapunov Function is V (x) = h(g(x, ·)).

Note: Lyapunov Functions are simpler than solution maps because they contain
less information.

• V : X → R+ vs. g : X × t→ X
I “the rest don’t mean ****”

• It is impossible to find solution maps except for Linear ODEs.
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Example: Some Solutions are Better than Others

Consider: Linear Ordinary Differential Equations with a regulated output:

ẋ(t) = Ax(t) +Bu(t) y(t) = Cx(t)

Question: Which solutions, x(·), are better?
Answer: Our metric is

∫∞
0
‖y(t)‖2dt

Question: How to compute V (x) =
∫∞
0
‖Cg(x, t)‖dt?

Answer: The solution map is

x(t) = g(x0, t) = eAtx0,

Hence the performance is

V (x0) =

∫ ∞

0

xT0 e
AT tCTCeAtx0dt = xT0

(∫ ∞

0

eA
T tCTCeAtdt

)
x0 = xT0 Pox0

V (x) is our first Lyapunov function. Po is called the observability Grammian.
But to find it, we solve V̇ (x) = −‖y(t)‖2 or

ATPo + PoA = −CTC
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Lyapunov Theorem for Exponential Stability

Theorem 24.

Suppose there exists a continuously differentiable function V and constants
c1, c2, c3 > and radius r > 0 such that the following holds for all x ∈ B(r).

c1‖x‖2 ≤ V (x) ≤ c2‖x‖2

∇V (x)T f(x) ≤ −c3‖x‖2

Then ẋ = f(x) is exponentially stable on any ball contained in the largest
sublevel set contained in B(r).

Exponential Stability allows a quantitative prediction of system behavior.

M. Peet Lecture 15: 25 / 38
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Lyapunov Theorem for Exponential Stability

The proof of exponential stability is so short and so widely used, we give an
overview

� Easily extended to PDEs, switched systems, delay systems, etc.



The Gronwall-Bellman Inequality
Proof of Exponential Stability

Lemma 25 (Gronwall-Bellman).

Let λ be continuous and µ be continuous and nonnegative. Let y be continuous
and satisfy for t ≤ b,

y(t) ≤ λ(t) +

∫ t

a

µ(s)y(s)ds.

Then

y(t) ≤ λ(t) +

∫ t

a

λ(s)µ(s) exp

[∫ t

s

µ(τ)dτ

]
ds

If λ and µ are constants, then

y(t) ≤ λeµt.

For λ(t) = y0, the condition is equivalent to

ẏ(t) ≤ µ(t)y(t), y(0) = y(t).
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ẏ(t) ≤ µ(t)y(t), y(0) = y(t).

2
0

2
1

-0
3

-0
3

Lecture 15

The Gronwall-Bellman Inequality

The application of Gronwall Bellman to Lyapunov functions is rather simple.

� It is important that the function y(t) be a scalar

� We don’t use vector-valued Lyapunov functions

V̇ (t) ≤ µ(t)V (t)

becomes

V (t) ≤ V (0) +

∫ t

0

µ(s)V (s)ds



Lyapunov Theorem
Exponential Stability

Proof.

We begin by noting that we already satisfy the conditions for existence,
uniqueness and asymptotic stability and that x(t) ∈ B(r).
Now, observe that

V̇ (x(t)) ≤ −c3‖x(t)‖2 ≤ −c3
c2
V (x(t))

Which implies by the Gronwall-Bellman inequality (µ = −c3
c2

, λ = V (x(0)))
that

V (x(t)) ≤ V (x(0))e−
c3
c2
t.

Hence

‖x(t)‖2 ≤ 1

c1
V (x(t)) ≤ 1

c1
e−

c3
c2
tV (x(0)) ≤ c2

c1
e−

c3
c2
t‖x(0)‖2.
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Problem Statement 1: Global Lypunov Stability

Given:

• Vector field, f(x)

Find: function V , non-negative scalars αi, βi such that
∑
i αi = .01,∑

i βi = .01 and

V (x) ≥
p∑

i=1

αi(x
Tx)i for all x

V (x) ≤
p∑

i=1

βi(x
Tx)i for all x

∇V (x)T f(x) ≤ 0 for all x

Conclusion:

• Lyapunov stability for any x(0) ∈ Rn.

• Can replace V (x) ≤
∑p
i=1 βi(x

Tx)i with V (0) = 0 if it is well-behaved.

M. Peet Lecture 15: 28 / 38



Problem Statement 1: Global Lypunov Stability

Given:

• Vector field, f(x)

Find: function V , non-negative scalars αi, βi such that
∑
i αi = .01,∑

i βi = .01 and

V (x) ≥
p∑

i=1

αi(x
Tx)i for all x

V (x) ≤
p∑

i=1

βi(x
Tx)i for all x

∇V (x)T f(x) ≤ 0 for all x

Conclusion:

• Lyapunov stability for any x(0) ∈ Rn.

• Can replace V (x) ≤
∑p
i=1 βi(x

Tx)i with V (0) = 0 if it is well-behaved.

2
0

2
1

-0
3

-0
3

Lecture 15

Problem Statement 1: Global Lypunov Stability

Strict Positivity and negativity is a bit more challenging in the nonlinear case

≥ εI

means
≥ εxTx

which we relax to the weaker condition:

≥
p∑
i=1

αi(x
Tx)i



Problem Statement 2: Global Exponential Stability

Given:

• Vector field, f(x), exponent, p

Find: function V , positive scalars α, β, δ > 0, such that

V (x) ≥ α(xTx)p for all x

V (x) ≤ β(xTx)p for all x

∇V (x)T f(x) ≤ −δV (x) for all x

Conclusion:

• Exponential stability for any x(0) ∈ Rn.

Convergence Rate:

‖x(t)‖ ≤ 2p

√
βmax

αmin
‖x(0)‖e−

δ
2p t
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Problem Statement 2: Global Exponential Stability
Example

Consider: Attitude Dynamics of a rotating Spacecraft:

J1ω̇1 = (J2 − J3)ω2ω3

J2ω̇2 = (J3 − J1)ω3ω1

J3ω̇3 = (J1 − J2)ω1ω2

What about:
V (x) = ω2

1 + ω2
2 + ω2

3?

∇V (x)T f(x) =



ω1

ω2

ω3



T


J2−J3
J1

ω2ω3
J3−J1
J2

ω3ω1
J1−J2
J3

ω1ω2




=

(
J2 − J3
J1

+
J3 − J1
J2

+
J1 − J2
J3

)
ω1ω2ω3

=

(
J2
2J3 − J2

3J2 + J2
3J1 − J2

1J3 + J2J
2
1 − J2

2J1
J1J2J3

)
ω1ω2ω3

OK, maybe not. Try ui = −kiωi.
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Problem Statement 3: Local Exponential Stability

Given:

• Vector field, f(x), exponent, p

• Ball of radius r, Br := {x ∈ Rn : xTx ≤ r2}

Find: function V , positive scalars α, β, δ > 0, such that

V (x) ≥ α(xTx)p for all x : xTx ≤ r2

V (x) ≤ β(xTx)p for all x : xTx ≤ r2

∇V (x)T f(x) ≤ −δV (x) for all x : xTx ≤ r2

Conclusion: A Domain of Attraction! of the origin

• Exponential stability for x(0) ∈ Vγ := {x : V (x) ≤ γ} if Vγ ⊂ Br.

Sub-Problem: Given, V , r,

max
γ

γ such that

V (x) ≤ γ for all x ∈ {xTx ≤ r}

M. Peet Lecture 15: 31 / 38



Domain of Attraction
The van der Pol Oscillator

An oscillating circuit: (in reverse time)
ẋ = −y
ẏ = x+ (x2 − 1)y

Choose:
V (x) = x2 + y2, r = 1

Derivative

∇V (x)T f(x) =

[
2x
2y

]T [
y

−x− (x2 − 1)y

]

= −xy + xy + (x2 − 1)y2

≤ 0 for x2 ≤ 1

Level Set:

Vγ=1 = {(x, y) : x2 + y2 ≤ 1} = B1

So B1 = Vγ=1 is a Domain of Attraction!

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x

y

Domain−of−attraction

Figure: The van der Pol oscillator
in reverse
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Recall the Problem of Invariant Manifolds
Finding the Lorentz Attractor

A model of atmospheric convection analyzed by E.N. Lorenz, Journal of
Atmospheric Sciences, 1963.

ẋ = σ(y − x) ẏ = rx− y − xz ż = xy − bz
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Lyapunov Theorem
Invariance

Sometimes, we want to prove convergence to a set. Recall

Vγ = {x , V (x) ≤ γ}

Definition 26.

A set, X, is Positively Invariant if x(0) ∈ X implies x(t) ∈ X for all t ≥ 0.

Theorem 27.

Suppose that there exists some continuously differentiable function V such that

V (x) > 0 for x ∈ D, x 6= 0

∇V (x)T f(x) ≤ 0 for x ∈ D.

for all x ∈ D. Then for any γ such that the level set
X = {x : V (x) = γ} ⊂ D, we have that Vγ is positively invariant.
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Problem Statement 4: Invariant Regions/Manifolds

Given:

• Vector field, f(x), exponent, p

• Ball of radius r, Br

Find: function V , positive scalars α, β, δ > 0, such that

V (x) ≥ α(xTx)p for all x : xTx ≥ r2

V (x) ≤ β(xTx)p for all x : xTx ≥ r2

∇V (x)T f(x) ≤ −δV (x) for all x : xTx ≥ r2

Conclusion: Choose γ such that Br ⊂ Vγ . Then

• There exist a T such that x(t) ∈ {x : V (x) ≤ γ} for all t ≥ T .

Sub-Problem: Given, V , r,

min
γ

γ such that

xTx ≥ r2 for all x ∈ {V (x) ≥ γ}
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Problem Statement 5: Controller Synthesis (Local)

Suppose
ẋ(t) = f(x(t)) + g(x(t))u(t) u(t) = k(x(t))

Given:

• Vector fields, f(x), g(x), exponent, p

Find: functions, k, V , positive scalars α, β, δ > 0, such that

V (x) ≥ α(xTx)p for all x : xTx ≤ r2

V (x) ≤ β(xTx)p for all x : xTx ≤ r2

∇V (x)T f(x) +∇V (x)T g(x)k(x) ≤ 0 for all x : xTx ≤ r2 (BILINEAR)

Conclusion:

• Controller u(t) = k(x(t)) stabilizes the system for x(0) ∈ {x : V (x) ≤ γ}
if Vγ ⊂ Br.
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Problem Statement 6: Output Feedback Controller
Synthesis (Global Exponential )

Suppose

ẋ(t) = f(x(t)) + g(x(t))u(t) u(t) = k(y(t))

y(t) = h(x(t))

Given:

• Vector fields, f(x), g(x), h(x) exponent, p

Find: function functions, k, V , positive scalars α, β, δ > 0, such that

V (x) ≥ α(xTx)p for all x

V (x) ≤ β(xTx)p for all x

∇V (x)T f(x) +∇V (x)T g(x)k(h(x)) ≤ −δV (x) for all x

Conclusion:

• Controller u(t) = k(y(t)) exponentially stabilizes the system for any
x(0) ∈ Rn.
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How to Solve these Problems?
General Framework for solving these problems

Convex Optimization of Functions: Variables V ∈ C[Rn] and γ ∈ R

max
V ,γ

γ

subject to

V (x)− xTx ≥ 0 ∀x ∈ X
∇V (x)T f(x) + γxTx ≤ 0 ∀x ∈ X

Going Forward

• Assume all functions are polynomials or rationals.

• Assume X := {x : gi(x) ≥ 0} (Semialgebraic)
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