LMI Methods in Optimal and Robust Control

Matthew M. Peet Arizona State University

Lecture 15: Nonlinear Systems and Lyapunov Functions

Our next goal is to extend LMI's and optimization to nonlinear systems analysis.

Today we will discuss

- 1. Nonlinear Systems Theory
 - 1.1 Existence and Uniqueness
 - 1.2 Contractions and Iterations
 - 1.3 Gronwall-Bellman Inequality
- 2. Stability Theory
 - 2.1 Lyapunov Stability
 - 2.2 Lyapunov's Direct Method
 - 2.3 A Collection of Converse Lyapunov Results

The purpose of this lecture is to show that Lyapunov stability can be solved **Exactly** via optimization of polynomials.

Ordinary Nonlinear Differential Equations

Computing Stability and Domain of Attraction

Consider: A System of Nonlinear Ordinary Differential Equations

$$\dot{x}(t) = f(x(t))$$

Problem: Stability Given a specific polynomial $f : \mathbb{R}^n \to \mathbb{R}^n$, find the largest $X \subset \mathbb{R}^n$ such that for any $x(0) \in X$, $\lim_{t\to\infty} x(t) = 0$. Lecture 15

-Ordinary Nonlinear Differential Equations

Ordinary Nonlinear Differential Equations Computing Stability and Domain of Attraction

Consider: A System of Nonlinear Ordinary Differential Equations

 $\dot{x}(t) = f(x(t))$

Problem: Stability Given a specific polynomial $f : \mathbb{R}^n \to \mathbb{R}^n$, find the largest $X \subset \mathbb{R}^n$ such that for any $x(0) \in X$, $\lim_{t \to \infty} x(t) = 0$.

Linearity refers to the map from inputs to outputs vs. linearity in the RHS of the representation.

Nonlinear Dynamical Systems

Long-Range Weather Forecasting and the Lorentz Attractor

A model of atmospheric convection analyzed by E.N. Lorenz, Journal of Atmospheric Sciences, 1963.

$$\dot{x} = \sigma(y - x)$$
 $\dot{y} = rx - y - xz$ $\dot{z} = xy - bz$

Lecture 15

-Nonlinear Dynamical Systems

Nonlinear Dynamical Systems Long-Range Wrather Forecasting and the Lonests Attracts

A model of atmospheric convection analyzed by E.N. Lorenz, Journal of Atmospheric Sciences, 1963.

 $\dot{x} = \sigma(y - x)$ $\dot{y} = rx - y - xz$ $\dot{z} = xy - bz$

Nonlinear Systems may have

- Multiple Equilibria
- Regions of Attraction
- Limit Cycles
- Chaos
- Invariant Manifolds
- Non-exponential stability
- Finite-Escape Time
- Implicit (vs Excplicit) Algebraic Constraints

Stability and Periodic Orbits

The Poincaré-Bendixson Theorem and van der Pol Oscillator

An oscillating circuit model:

$$\dot{y} = -x - (x^2 - 1)y$$
$$\dot{x} = y$$

Figure: The van der Pol oscillator in reverse

Theorem 1 (Poincaré-Bendixson).

Invariant sets in \mathbb{R}^2 always contain a limit cycle or fixed point.

Stability of Ordinary Differential Equations

Consider

$$\dot{x}(t) = f(x(t))$$

with $x(0) \in \mathbb{R}^n$.

Theorem 2 (Lyapunov Stability).

Suppose there exists a continuous V and $\alpha,\beta,\gamma>0$ where

$$\beta \|x\|^2 \le V(x) \le \alpha \|x\|^2$$
$$-\nabla V(x)^T f(x) \ge \gamma \|x\|^2$$

for all $x \in X$. Then any sub-level set of V in X is a Domain of Attraction.

A Sublevel Set: Has the form $V_{\delta} = \{x : V(x) \leq \delta\}.$

Do The Equations Have a Solution?

The Cauchy Problem

The first question people ask is the Cauchy problem:

For Autonomous (Uncontrolled) Systems:

Definition 3 (Cauchy Problem).

The Cauchy problem is to find a *unique*, continuous $x : [0, t_f] \to \mathbb{R}^n$ for some t_f such that \dot{x} is defined and $\dot{x}(t) = f(t, x(t))$ for all $t \in [0, t_f]$.

If f is continuous, the solution must be continuously differentiable.

Controlled Systems:

- For a controlled system, we have $\dot{x}(t) = f(x(t), u(t))$ and assume u(t) is given.
 - This precludes feedback
- In this lecture, we focus on the autonomous system.
 - Including t complicates the analysis.
 - However, results are almost all the same.

Ordinary Differential Equations

Existence of Solutions

There exist many systems for which no solution exists or for which a solution only exists over a finite time interval.

Even for something as simple as

$$\dot{x}(t) = x(t)^2$$
 $x(0) = x_0$

has the solution

$$x(t) = \frac{x_0}{1 - x_0 t}$$

which clearly has escape time

$$t_e = \frac{1}{x_0}$$

Figure: Simulation of $\dot{x}=x^2$ for several x(0)

Ordinary Differential Equations

Non-Uniqueness

A classical example of a system without a *unique* solution is

$$\dot{x}(t) = x(t)^{1/3}$$
 $x(0) = 0$

For the given initial condition, it is easy to verify that

$$x(t) = 0$$
 and $x(t) = \left(\frac{2t}{3}\right)^{3/2}$

both satisfy the differential equation.

Figure: Matlab simulation of $\dot{x}(t) = x(t)^{1/3}$ with x(0) = 0

Figure: Matlab simulation of $\dot{x}(t) = x(t)^{1/3}$ with x(0) = .000001

-Ordinary Differential Equations

A denoised accepted of a spatian value at a single value in $\begin{array}{l} (d) = (\frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} - \frac{1}{2} \\ \mbox{Tr} \$

Ordinary Differential Equations

- Systems without a unique solution are hard to simulate
- prone to numerical errors
- no smoothness with respect to initial conditions.

Ordinary Differential Equations

Non-Uniqueness

An Example of a system with several solutions is given by

$$\dot{x}(t) = \sqrt{x(t)} \qquad \qquad x(0) = 0$$

For the given initial condition, it is easy to verify that for any C,

$$x(t) = \begin{cases} \frac{(t-C)^2}{4} & t > C\\ 0 & t \le C \end{cases}$$

satisfies the differential equation.

Figure: Several solutions of $\dot{x} = \sqrt{x}$

Continuity of a Function

Customary Notions of Continuity

Nonlinear Stability requires some additional Math Definitions.

Definition 4 (Continuity at a Point).

For normed spaces X, Y, a function $f : X \to Y$ is **continuous at the point** $x_0 \in X$ if for any $\epsilon > 0$, there exists a $\delta > 0$ such that $||x - x_0|| < \delta$ (U) implies $||f(x) - f(x_0)|| < \epsilon$ (V).

Customary Notions of Continuity

Definition 5 (Continuity on a Set of Points (*B***)).**

For normed spaces X, Y, a function $f : A \subset X \to Y$ is **continuous on** B if it is continuous at any point $x_0 \in B$. A function is simply **continuous** if B = A.

Dropping some of the notation,

Definition 6 (Uniform Continuity on a Set of Points (B)).

 $f: A \subset X \to Y$ is **uniformly continuous on** B if for any $\epsilon > 0$, there exists a $\delta > 0$ such that for $x, y \in B$, $||x - y|| < \delta$ implies $||f(x) - f(y)|| < \epsilon$.

Example: $f(x) = x^3$ is uniformly continuous on B = [0, 1], but not $B = \mathbb{R}$

$$f'(x) = 3x^2 < 3$$
 for $x \in [0, 1]$

hence $|f(x) - f(y)| \le 3|x - y|$. So given $\epsilon > 0$, choose $\delta < \frac{1}{3}\epsilon$.

A Quantitative Notion of Continuity

Definition 7 (Lipschitz Continuity).

The function f is $\mbox{Lipschitz}\ \mbox{continuous}\ \mbox{on}\ X$ if there exists some L>0 such that

$$\|f(x) - f(y)\| \le L \|x - y\| \quad \text{for any } x, y \in X.$$

The constant L is referred to as the Lipschitz constant for f on X.

Definition 8 (Local Lipschitz Continuity).

The function f is **Locally Lipschitz continuous** on X if for every $x \in X$, there exists a neighborhood, B of x such that f is Lipschitz continuous on B.

Definition 9.

The function f is **Globally Lipschitz** if it is Lipschitz on its entire domain.

Example: $f(x) = x^3$ is Locally Lipschitz on [-1, 1] with L = 3.

- But $f(x) = x^3$ is NOT Globally Lipschitz on $\mathbb R$
- L is typically just a bound on the derivative.

A Theorem on Existence of Solutions

Existence and Uniqueness

Let $B(x_0, r)$ be the unit ball, centered at x_0 of radius r.

Theorem 10 (A Typical Existence Theorem).

Suppose $x_0 \in \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}^n$ and there exist L, r such that for any $x, y \in B(x_0, r)$, $\|f(x) - f(y)\| \le L \|x - y\|$ and $\|f(x)\| \le c$ for $x \in B(x_0, r)$. Let $t_f < \min\{\frac{1}{L}, \frac{r}{c}\}$. Then there exists a unique differentiable $x : [0, t_f] \mapsto \mathbb{R}^n$, such that $x(0) = x_0, x(t) \in B(x_0, r)$ and $\dot{x}(t) = f(x(t))$.

Solution Map: If solutions are well-defined, we may define the solution map $g: [0, t_f] \times \mathbb{R}^n$ as the unique functions such that

$$g(0,x) = x, \qquad \dot{g}(t,x) = f(g(t,x))$$

—A Theorem on Existence of Solutions

A Theorem on Existence of Solutions

Let $B(x_0, r)$ be the unit ball, centered at x_0 of radius r

Theorem 10 (A Typical Existence Theorem).

Suppose $x_0 \in \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}^n$ and there exist L, r such that for any $x, y \in B(x_0, r)$,

 $||f(x) - f(y)|| \le L||x - y||$

and $\|f(x)\| \le c$ for $x \in B(x_0, r)$. Let $t_f < \min\{\frac{1}{2}, \frac{c}{2}\}$. Then there exists a unique differentiable $x : [0, t_f] \mapsto \mathbb{R}^n$, such that $x(0) = x_0$, $x(t) \in B(x_0, r)$ are $\dot{x}(t) = f(x(t))$.

Solution Map: If solutions are well-defined, we may define the solution map $g:[0,t_f]\times\mathbb{R}^n$ as the unique functions such that

 $g(0,x)=x,\qquad \dot{g}(t,x)=f(g(t,x))$

The solution map is a rather important conceptual tools

- An explicit representation of the solutions of the system (as opposed to solutions implicit in the ODE)
- Encodes every possible solution of the system
- It is almost impossible to find an analytic expression for the solution map (except for linear systems)

Counterexamples on Existence of Solutions

Theorem 11 (A Typical Existence Theorem).

Suppose $x_0 \in \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}^n$ and there exist L, r such that for any $x, y \in B(x_0, r)$,

$$||f(x) - f(y)|| \le L||x - y||$$

and $||f(x)|| \le c$ for $x \in B(x_0, r)$. Let $t_f < \min\{\frac{1}{L}, \frac{r}{c}\}$. Then there exists a unique differentiable solution on interval $[0, t_f]$.

Recall:

$$\dot{x}(t) = x(t)^2$$
 $x(0) = x_0$

has the solution

$$x(t) = \frac{x_0}{1 - x_0 t}$$

Lets take r = 1, $x_0 = 1$. Then $L = \sup_{x \in [0,2]} |f'(x)| = 4$. $c = \sup_{x \in [0,2]} |f(x)| = 4$. Then we have a solution for $t_f < \min\{\frac{1}{L}, \frac{r}{c}\} = \min\{\frac{1}{4}, \frac{1}{4}\} = \frac{1}{4}$ and where |x(t)| < 2 for $t \in [0, t_f]$. We can verify that the solution $x(t) = \frac{1}{1-t} < \frac{4}{3}$ for $t < t_f$.

Counterexamples on Existence of Solutions

Non-Uniqueness

Theorem 12 (A Typical Existence Theorem).

Suppose $x_0 \in \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}^n$ and there exist L, r such that for any $x, y \in B(x_0, r)$, $\|f(x) - f(y)\| \le L \|x - y\|$

and $||f(x)|| \le c$ for $x \in B(x_0, r)$. Let $t_f < \min\{\frac{1}{L}, \frac{r}{c}\}$. Then there exists a unique differentiable solution on interval $[0, t_f]$.

Recall the system without a unique solution is

$$\dot{x}(t) = x(t)^{1/3}$$
 $x(0) = 0$

The problem here is that $f'(x) = \frac{1}{3}x^{-\frac{2}{3}} = \frac{1}{3x^{\frac{2}{3}}}$.

$$L = \sup_{x \in [0,2]} |f'(x)| = \sup_{x \in [0,2]} \left| \frac{1}{3x^{\frac{2}{3}}} \right| = \infty$$

Since $\frac{1}{0} = \infty$. So there is no Lipschitz Bound.

Concepts of State and Solution Maps

Definition 13.

The **State** of the system $(x \in X)$ is the knowledge needed to propagate the solution forward in time.

• For every state, one and only one solution should exist, and small changes in state should cause small changes in solution.

Examples:

NDEs: $x(t) \in \mathbb{R}^n$, PDEs: $x_{ss}(t, \cdot) \in L_2$, TDS: x(t) and x(t+s) for $s \in [-\tau, 0]$.

Definition 14.

The **Solution Map** $g : \mathbb{R}^+ \times X \to X$ is a function of both time and state.

• g(x,t) is the state at time t if x(0) = x.

Examples:

 $\begin{array}{l} \text{NDEs: } \partial_t g(t,x) = f(g(t,x)), \quad g(0,x) = x \\ \text{PDEs: } y_t(s,t) = A_0(s) y(s,t) + A_1(s) y_s(s,t) + A_2(s) y_{ss}(s,t), \qquad y(s,t) = \int_a^s (s-\eta) g(x_{ss},t)(\eta) d\eta \\ \text{TDS: } \partial_t \left[\begin{array}{c} g_1(\phi,t) \\ g_2(\phi,t) \end{array} \right] = \begin{bmatrix} A_0 g_1(\phi,t) + A_1 g_2(\phi,t)(-\tau) \\ \partial_s g_2(\phi,t)(s) \end{bmatrix} \text{ and } x_t(s) = \begin{bmatrix} x(t) \\ x(t+s) \end{bmatrix} \text{ for } s \in [-\tau,0]. \end{array}$

Stability Definitions

Whenever you are trying to prove stability, Please define your notion of stability!

Denote the set of bounded continuous functions by $\overline{C} := \{x \in C : ||x(t)|| \le r, r \ge 0\}$ with norm $||x|| = \sup_t ||x(t)||.$

$$rac{\partial}{\partial t}g(x_0,t)=f(g(x_0,t)) \quad \text{and} \quad g(x_0,0)=x_0 \qquad x_0\in D$$

Definition 15.

The system is **locally Lyapunov stable** on D where D contains an open neighborhood of the origin if it defines a unique map $g: D \to \overline{C} \ (x \mapsto g(x, \cdot))$ which is continuous at the origin $(x_0 = 0)$.

The system is locally Lyapunov stable on D if for any $\epsilon > 0$, there exists a $\delta(\epsilon)$ such that for $||x(0)|| \le \delta(\epsilon)$, $x(0) \subset D$ we have $||x(t)|| \le \epsilon$ for all $t \ge 0$

Lecture 15

-Stability Definitions

Stability Definitions Whenever you are trying to prove stability. Please define your notice

Denote the set of bounded continuous functions by $C := \{x \in C : ||x(t)|| \le r, r \ge 0\}$ with norm $||x|| = \sup_{t \in C} ||x(t)||$.

We define $g:D\to \tilde{\mathcal{C}}$ to be the solution map: $g(x_0,t)$ if

 $\frac{\partial}{\partial x}g(x_0, t) = f(g(x_0, t))$ and $g(x_0, 0) = x_0$ $x_0 \in D$

Definition 15.

The system is **locally Lyapunov stable** on D where D contains an open neighborhood of the origin if it defines a unique map $g: D \rightarrow \tilde{C}$ $(x \mapsto g(x, \cdot))$ which is continuous at the origin $(x_0 = 0)$.

The system is locally Lyapunov stable on D if for any $\epsilon > 0$, there exists a $\delta(\epsilon)$ such that for $||x(0)|| \le \delta(\epsilon)$, $x(0) \subset D$ we have $||x(t)|| \le \epsilon$ for all $t \ge 0$

Stability Definitions

Definition 16.

The system is **globally Lyapunov stable** if it defines a unique map $g : \mathbb{R}^n \to \overline{C}$ which is continuous at the origin.

We define the subspace of bounded continuous functions which tend to the origin by $G := \{x \in \overline{C} : \lim_{t \to \infty} x(t) = 0\}$ with norm $\|x\| = \sup_t \|x(t)\|$.

Definition 17.

The system is **locally asymptotically stable** on D where D contains an open neighborhood of the origin if it defines a map $g: D \to G$ which is continuous at the origin.

Definition 18.

The system is globally asymptotically stable if it defines a map $g:\mathbb{R}^n\to G$ which is continuous at the origin.

Definition 19.

The system is locally exponentially stable on D if it defines a map $g:D\to G$ where

$$|g(x,t)|| \le K e^{-\gamma t} ||x||$$

for some positive constants $K, \gamma > 0$ and any $x \in D$.

Definition 20.

The system is globally exponentially stable if it defines a map $g:\mathbb{R}^n\to G$ where

$$\|g(x,t)\| \le Ke^{-\gamma t} \|x\|$$

for some positive constants $K, \gamma > 0$ and any $x \in \mathbb{R}^n$.

What are Lyapunov Functions?

Necessary and Sufficient Condition for Stability

Consider

$$\dot{x}(t) = f(x(t))$$

with $x(0) \in X$.

Theorem 21 (Lyapunov Stability).

Suppose there exists a V where

$$V(x) > 0$$
 for $x \neq 0$, and $V(0) = 0$
 $\dot{V}(x) = \nabla V(x)^T f(x) \le 0$

for all $x \in X$. Then any sub-level set of V in X is a Domain of Attraction.

Lyapunov Theorem for Lyapunov Stability

Consider the system:

$$\dot{x} = f(x), \qquad f(0) = 0$$

Theorem 22.

Let $V:D\to \mathbb{R}$ be a continuously differentiable function and D compact such that

$$V(0) = 0$$

 $V(x) > 0$ for $x \in D, x \neq 0$
 $abla V(x)^T f(x) \le 0$ for $x \in D$.

 Then x̂ = f(x) is well-posed and locally Lyapunov stable on the largest sublevel set V_γ = {x : V(x) ≤ γ} of V contained in D.

Furthermore, if ∇V(x)^T f(x) < 0 for x ∈ D, x ≠ 0, then x
 = f(x) is locally asymptotically stable on the largest sublevel set V_γ = {x : V(x) ≤ γ} contained in D.

```
Lecture 15
```

```
2021-03-03
```

```
Lyapunov Theorem for Lyapunov Stability
```


Proof Notes for Lyapunov Theorem

Sublevel Set: For a given Lyapunov function V and positive constant γ , we denote the set $V_{\gamma} = \{x : V(x) \leq \gamma\}$.

Existence: Denote the largest bounded sublevel set of V contained in the interior of D by V_{γ^*} . Because $\dot{V}(x(t)) = \nabla V(x(t))^T f(x(t)) \leq 0$, if $x(0) \in V_{\gamma^*}$, then $x(t) \in V_{\gamma^*}$ for all $t \geq 0$. Therefore since f is locally Lipschitz continuous on the compact V_{γ^*} , by the extension theorem, there is a unique solution for any initial condition $x(0) \in V_{\gamma^*}$.

Lyapunov Stability: Given any $\epsilon' > 0$, choose $\epsilon < \epsilon'$ with $B(\epsilon) \subset V_{\gamma^*}$, choose γ_i such that $V_{\gamma_i} \subset B(\epsilon)$. Now, choose $\delta > 0$ such that $B(\delta) \subset V_{\gamma_i}$. Then $B(\delta) \subset V_{\gamma_i} \subset B(\epsilon)$ and hence if $x(0) \in B(\delta)$, we have $x(0) \in V_{\gamma_i} \subset B(\epsilon) \subset B(\epsilon')$.

Asymptotic Stability:

- V monotone decreasing implies $\lim_{t\to} V(x(t)) = 0$.
- V(x) = 0 implies x = 0.

Examples of Lyapunov Functions

Mass-Spring:

Pendulum:

$$\ddot{x} = -\frac{c}{m}\dot{x} - \frac{k}{m}x$$

$$V(x) = \frac{1}{2}m\dot{x}^2 + \frac{1}{2}kx^2$$

$$\dot{V}(x) = \dot{x}(-c\dot{x} - kx) + kx\dot{x}$$

$$= -c\dot{x}^2 - k\dot{x}x + kx\dot{x}$$

 $= -c\dot{x}^2 \leq 0$

$$\dot{x}_2 = -\frac{g}{l}\sin x_1$$
 $\dot{x}_1 = x_2$
 $V(x) = (1 - \cos x_1)gl + \frac{1}{2}l^2x_2^2$

$$\dot{V}(x) = glx_2 \sin x_1 - glx_2 \sin x_1$$
$$= 0$$

A Lyapunov Function for Every Purpose ...

Mathematical Optimization and Curly's Law: Curly: Do you know what the secret of life is? Curly: One thing (metric). Just one thing. You stick to that (metric) and the rest don't mean ****.

Given a performance metric

- In a well-posed system, your current state tells you everything you need to know about the future (no inputs, disturbances).
- The Lyapunov function says how well that future performs in your metric.

Definition 23.

If $h: L_2 \to \mathbb{R}^+$ is your metric and $g: X \to L_2$ is your solution map, the Lyapunov Function is $V(x) = h(g(x, \cdot))$.

Note: Lyapunov Functions are simpler than solution maps because they contain less information.

- $V: X \to \mathbb{R}^+$ vs. $g: X \times t \to X$
 - "the rest don't mean ****"
- It is impossible to find solution maps except for Linear ODEs.

Example: Some Solutions are Better than Others

Consider: Linear Ordinary Differential Equations with a regulated output: $\dot{x}(t) = Ax(t) + Bu(t)$ y(t) = Cx(t)

Question: Which solutions, $x(\cdot)$, are better? Answer: Our metric is $\int_0^\infty ||y(t)||^2 dt$ Question: How to compute $V(x) = \int_0^\infty ||Cg(x,t)|| dt$? Answer: The solution map is

$$x(t) = g(x_0, t) = e^{At} x_0,$$

Hence the performance is

$$V(x_0) = \int_0^\infty x_0^T e^{A^T t} C^T C e^{At} x_0 dt = x_0^T \left(\int_0^\infty e^{A^T t} C^T C e^{At} dt \right) x_0 = x_0^T P_o x_0$$

V(x) is our first Lyapunov function. P_o is called the observability Grammian. But to find it, we solve $\dot{V}(x)=-\|y(t)\|^2$ or

$$A^T P_o + P_o A = -C^T C$$

Theorem 24.

Suppose there exists a continuously differentiable function V and constants $c_1, c_2, c_3 >$ and radius r > 0 such that the following holds for all $x \in B(r)$.

 $c_1 ||x||^2 \le V(x) \le c_2 ||x||^2$ $\nabla V(x)^T f(x) \le -c_3 ||x||^2$

Then $\dot{x} = f(x)$ is exponentially stable on any ball contained in the largest sublevel set contained in B(r).

Exponential Stability allows a quantitative prediction of system behavior.

Lyapunov Theorem for Exponential Stability

Lyapunov Theorem for Exponential Stability

Theorem 24.

Suppose there exists a continuously differentiable function V and constants $c_1,c_2,c_3>$ and radius r>0 such that the following holds for all $x\in B(r).$

 $c_1 ||x||^2 \le V(x) \le c_2 ||x||^2$ $\nabla V(x)^T f(x) \le -c_3 ||x||^2$

Then $\dot{x} = f(x)$ is exponentially stable on any ball contained in the largest sublevel set contained in B(r).

Exponential Stability allows a quantitative prediction of system behavior

The proof of exponential stability is so short and so widely used, we give an overview

• Easily extended to PDEs, switched systems, delay systems, etc.

The Gronwall-Bellman Inequality

Proof of Exponential Stability

Lemma 25 (Gronwall-Bellman).

Let λ be continuous and μ be continuous and nonnegative. Let y be continuous and satisfy for $t \leq b$,

$$y(t) \le \lambda(t) + \int_{a}^{t} \mu(s)y(s)ds.$$

Then

$$y(t) \le \lambda(t) + \int_{a}^{t} \lambda(s)\mu(s) \exp\left[\int_{s}^{t} \mu(\tau)d\tau\right] ds$$

If λ and μ are constants, then

$$y(t) \le \lambda e^{\mu t}.$$

For $\lambda(t) = y_0$, the condition is equivalent to

$$\dot{y}(t) \le \mu(t)y(t), \qquad y(0) = y(t).$$

└─ The Gronwall-Bellman Inequality

The application of Gronwall Bellman to Lyapunov functions is rather simple.

- It is important that the function y(t) be a scalar
- We don't use vector-valued Lyapunov functions

 $\dot{V}(t) \leq \mu(t) V(t)$

becomes

$$V(t) \le V(0) + \int_0^t \mu(s) V(s) ds$$

Lyapunov Theorem

Exponential Stability

Proof.

We begin by noting that we already satisfy the conditions for existence, uniqueness and asymptotic stability and that $x(t) \in B(r)$. Now, observe that

$$\dot{V}(x(t)) \le -c_3 \|x(t)\|^2 \le -\frac{c_3}{c_2} V(x(t))$$

Which implies by the **Gronwall-Bellman** inequality $(\mu = \frac{-c_3}{c_2}, \lambda = V(x(0)))$ that

$$V(x(t)) \le V(x(0))e^{-\frac{C_3}{c_2}t}.$$

Hence

$$\|x(t)\|^2 \leq \frac{1}{c_1} V(x(t)) \leq \frac{1}{c_1} e^{-\frac{c_3}{c_2}t} V(x(0)) \leq \frac{c_2}{c_1} e^{-\frac{c_3}{c_2}t} \|x(0)\|^2.$$

Problem Statement 1: Global Lypunov Stability

Given:

• Vector field, f(x)

Find: function V, non-negative scalars α_i , β_i such that $\sum_i \alpha_i = .01$, $\sum_i \beta_i = .01$ and

$$V(x) \ge \sum_{i=1}^{p} \alpha_i (x^T x)^i \quad \text{for all } x$$
$$V(x) \le \sum_{i=1}^{p} \beta_i (x^T x)^i \quad \text{for all } x$$
$$\nabla V(x)^T f(x) \le 0 \quad \text{for all } x$$

Conclusion:

- Lyapunov stability for any $x(0) \in \mathbb{R}^n$.
- Can replace $V(x) \leq \sum_{i=1}^{p} \beta_i (x^T x)^i$ with V(0) = 0 if it is well-behaved.

Lecture 15

Can replace V(x) ≤ ∑^p_{i=1} β_i(x^Tx)ⁱ with V(0) = 0 if it is well-behaved.

Strict Positivity and negativity is a bit more challenging in the nonlinear case

 $\geq \epsilon I$

means

 $\geq \epsilon x^T x$

which we relax to the weaker condition:

$$\geq \sum_{i=1}^{p} \alpha_i (x^T x)^i$$

Problem Statement 2: Global Exponential Stability

Given:

• Vector field, f(x), exponent, p

Find: function V, positive scalars $\alpha, \beta, \delta > 0$, such that

$$V(x) \ge \alpha (x^T x)^p \quad \text{for all } x$$
$$V(x) \le \beta (x^T x)^p \quad \text{for all } x$$
$$V(x)^T f(x) \le \beta V(x) \quad \text{for all } x$$

$$\nabla V(x)^T f(x) \le -\delta V(x)$$
 for all x

Conclusion:

• Exponential stability for any $x(0) \in \mathbb{R}^n$.

Convergence Rate:

$$\|x(t)\| \le \sqrt[2p]{\frac{\beta_{\max}}{\alpha_{\min}}} \|x(0)\| e^{-\frac{\delta}{2p}t}$$

Problem Statement 2: Global Exponential Stability Example

Consider: Attitude Dynamics of a rotating Spacecraft:

$$J_1 \dot{\omega}_1 = (J_2 - J_3) \omega_2 \omega_3$$

$$J_2 \dot{\omega}_2 = (J_3 - J_1) \omega_3 \omega_1$$

$$J_3 \dot{\omega}_3 = (J_1 - J_2) \omega_1 \omega_2$$

What about:

$$V(x) = \omega_1^2 + \omega_2^2 + \omega_3^2?$$

$$\nabla V(x)^T f(x) = \begin{bmatrix} \omega_1 \\ \omega_2 \\ \omega_3 \end{bmatrix}^T \begin{bmatrix} \frac{J_2 - J_3}{J_1} \omega_2 \omega_3 \\ \frac{J_3 - J_2}{J_2} \omega_3 \omega_1 \\ \frac{J_1 - J_2}{J_3} \omega_1 \omega_2 \end{bmatrix}$$
$$= \left(\frac{J_2 - J_3}{J_1} + \frac{J_3 - J_1}{J_2} + \frac{J_1 - J_2}{J_3}\right) \omega_1 \omega_2 \omega_3$$
$$= \left(\frac{J_2^2 J_3 - J_3^2 J_2 + J_3^2 J_1 - J_1^2 J_3 + J_2 J_1^2 - J_2^2 J_1}{J_1 J_2 J_3}\right) \omega_1 \omega_2 \omega_3$$

OK, maybe not. Try $u_i = -k_i \omega_i$.

M. Peet

Problem Statement 3: Local Exponential Stability

Given:

- Vector field, f(x), exponent, p
- Ball of radius r, $B_r := \{x \in \mathbb{R}^n : x^T x \le r^2\}$

Find: function V, positive scalars $\alpha, \beta, \delta > 0$, such that

$$\begin{split} V(x) &\geq \alpha (x^T x)^p & \text{ for all } x \ : \ x^T x \leq r^2 \\ V(x) &\leq \beta (x^T x)^p & \text{ for all } x \ : \ x^T x \leq r^2 \\ \nabla V(x)^T f(x) &\leq -\delta V(x) & \text{ for all } x \ : \ x^T x \leq r^2 \end{split}$$

Conclusion: A Domain of Attraction! of the origin

• Exponential stability for $x(0) \in V_{\gamma} := \{x : V(x) \leq \gamma\}$ if $V_{\gamma} \subset B_r$.

Sub-Problem: Given, V, r,

$$\label{eq:relation} \begin{array}{ll} \max_{\gamma} & \gamma & \text{such that} \\ V(x) \leq \gamma & \text{ for all } & x \in \{x^T x \leq r\} \end{array}$$

Domain of Attraction

The van der Pol Oscillator

An oscillating circuit: (in reverse time)

$$x = -y$$
$$\dot{y} = x + (x^2 - 1)y$$

Choose:

$$V(x) = x^2 + y^2, r = 1$$

Derivative

$$\nabla V(x)^T f(x) = \begin{bmatrix} 2x \\ 2y \end{bmatrix}^T \begin{bmatrix} y \\ -x - (x^2 - 1)y \end{bmatrix}$$
$$= -xy + xy + (x^2 - 1)y^2$$
$$\leq 0 \quad \text{for} \quad x^2 \leq 1$$

Level Set:

$$V_{\gamma=1} = \{(x,y) : x^2 + y^2 \le 1\} = B_1$$

So $B_1 = V_{\gamma=1}$ is a Domain of Attraction!

Figure: The van der Pol oscillator in reverse

Recall the Problem of Invariant Manifolds

Finding the Lorentz Attractor

A model of atmospheric convection analyzed by E.N. Lorenz, Journal of Atmospheric Sciences, 1963.

$$\dot{x} = \sigma(y - x)$$
 $\dot{y} = rx - y - xz$ $\dot{z} = xy - bz$

Lyapunov Theorem

Invariance

Sometimes, we want to prove convergence to a set. Recall

$$V_{\gamma} = \{x \,, \, V(x) \le \gamma\}$$

Definition 26.

A set, X, is **Positively Invariant** if $x(0) \in X$ implies $x(t) \in X$ for all $t \ge 0$.

Theorem 27.

Suppose that there exists some continuously differentiable function V such that

$$V(x) > 0$$
 for $x \in D, x \neq 0$
 $\nabla V(x)^T f(x) \le 0$ for $x \in D$.

for all $x \in D$. Then for any γ such that the level set $X = \{x : V(x) = \gamma\} \subset D$, we have that V_{γ} is positively invariant.

Problem Statement 4: Invariant Regions/Manifolds

Given:

- Vector field, f(x), exponent, p
- Ball of radius r, B_r

Find: function V, positive scalars $\alpha, \beta, \delta > 0$, such that

$$\begin{split} V(x) &\geq \alpha (x^T x)^p & \text{ for all } x \ : \ x^T x \geq r^2 \\ V(x) &\leq \beta (x^T x)^p & \text{ for all } x \ : \ x^T x \geq r^2 \\ \nabla V(x)^T f(x) &\leq -\delta V(x) & \text{ for all } x \ : \ x^T x \geq r^2 \end{split}$$

Conclusion: Choose γ such that $B_r \subset V_{\gamma}$. Then

• There exist a T such that $x(t) \in \{x : V(x) \le \gamma\}$ for all $t \ge T$.

Sub-Problem: Given, V, r,

$$\label{eq:relation} \begin{array}{ll} \min_{\gamma} & \gamma & \text{such that} \\ x^T x \geq r^2 & \text{ for all } & x \in \{V(x) \geq \gamma\} \end{array}$$

Problem Statement 5: Controller Synthesis (Local)

Suppose

$$\dot{x}(t) = f(x(t)) + g(x(t))u(t)$$
 $u(t) = k(x(t))$

Given:

• Vector fields, f(x), g(x), exponent, p

Find: functions, k, V, positive scalars $\alpha, \beta, \delta > 0$, such that

$$\begin{split} V(x) &\geq \alpha (x^T x)^p & \text{ for all } x \ : \ x^T x \leq r^2 \\ V(x) &\leq \beta (x^T x)^p & \text{ for all } x \ : \ x^T x \leq r^2 \\ \nabla V(x)^T f(x) + \nabla V(x)^T g(x) k(x) \leq 0 & \text{ for all } x \ : \ x^T x \leq r^2 & \text{ (BILINEAR)} \end{split}$$

Conclusion:

• Controller u(t) = k(x(t)) stabilizes the system for $x(0) \in \{x : V(x) \le \gamma\}$ if $V_{\gamma} \subset B_r$.

Problem Statement 6: **Output** Feedback Controller Synthesis (Global Exponential)

Suppose

$$\begin{split} \dot{x}(t) &= f(x(t)) + g(x(t))u(t) \qquad u(t) = k(y(t)) \\ y(t) &= h(x(t)) \end{split}$$

Given:

• Vector fields, f(x), g(x), h(x) exponent, p

Find: function functions, k, V, positive scalars $\alpha, \beta, \delta > 0$, such that $V(x) \ge \alpha (x^T x)^p$ for all x $V(x) \le \beta (x^T x)^p$ for all x

$$\nabla V(x)^T f(x) + \nabla V(x)^T g(x) k(h(x)) \leq -\delta V(x) \qquad \text{for all } x$$

Conclusion:

• Controller u(t) = k(y(t)) exponentially stabilizes the system for any $x(0) \in \mathbb{R}^n$.

How to Solve these Problems?

General Framework for solving these problems

Convex Optimization of Functions: Variables $V \in C[\mathbb{R}^n]$ and $\gamma \in \mathbb{R}$

 $\begin{array}{l} \max_{V,\gamma} \gamma \\ \text{subject to} \\ V(x) - x^T x \ge 0 \quad \forall x \in X \\ \nabla V(x)^T f(x) + \gamma x^T x < 0 \quad \forall x \in X \end{array}$

Going Forward

- Assume all functions are polynomials or rationals.
- Assume $X := \{x : g_i(x) \ge 0\}$ (Semialgebraic)