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Lecture 17: The PositivStellenSatz and an LMI for Local Stability



Problems with SOS

The problem is that most nonlinear stability problems are local.

® Global stability requires a unique equilibrium.

® Very few nonlinear systems are globally stable.
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Local Positivity
A more interesting question is the question of local positivity.
Question: Is y(z) > 0 for x € X, where X C R™.

Examples:
LINEAR PROGRAMMING

® Matrix Copositivity:
yt My >0 forally >0
¢ Integer Programming (Upper bounds)

min y
v > fily)
forallye {—1,1}"andi=1,--- ,k

y=0

Function to maximize: f(x,y)=6*x+ 5"y
Optimum LP solution (x, y) = (2.4,3.4)
Pareto optima: (0, 4), (2, 3), (3,2), (4, 1)
Optimum ILP solution (x, y) = {4, 1)

® Local Lyapunov Stability

V() > ||z? for all ||z|| <1 All these sets are
vV (2)T f(z) <0 for all ||z < 1 Semialgebraic.
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Positivity on Which Sets?

Semialgebraic Sets (Defined by Polynomial Inequalities)
How are these sets represented???

Definition 1.
A set X C R"™ is Semialgebraic if it can be represented using polynomial
equality and inequality constraints.

0 i=1,....k

0 j=1,....m

If there are only equality constraints, the set is Algebraic.

Note: A semialgebraic set can also include # and <.

Discrete Values The Ball of Radius 1
{(-1,1}"={yeR" : y2 —1=0} {z:||lz]| <1} ={2: 12"z >0}

The representation of a set is NOT UNIQUE.
® Some representations are better than others...
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Other Interesting Sets

Poisson’s Equation (Courtesy of James Forbes)

Consider the dynamics of the rotation matrix on SO(3)

® Gives the orientation in the Body-fixed frame for a body rotating with
angular velocity w.

0 —Ws W
C = — w3 0 —W1 C
—W9 W1 0
C, Oy Cs
where C = |Cy Cs Cg| € R3*3 which satisfies CTC = I and det C = 1.
Cr Cs Cy
Define
Ci1 Cy C3
S = 04 05 06 . det(C’) = ].7 CTC =1
Cr Cs Cy

So we would like a Lyapunov function V' (C) which satisfies

vV ()T f(C) <0 for all C such that C € S
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Recall the SOS Conditions

Proposition 1.

Suppose: p(z) = Z4(z)TQZ4(z) for some Q > 0. Then p(z) > 0 for all
z e R”
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SOS Positivity on a Subset

Recall the S-Procedure
Corollary 2 (S-Procedure).

2TFz>0forall z€ S :={x € R* : TGz > 0} if there exists a scalar 7 > 0
such that F — 7G = 0.

This works because
e r>0and z2TGz>0forall ze S
e Hence 727Gz >0 forall z€ S
If "> 7@, then
2TF2> 127Gz forall z e R"

>0 forall z€ S
Now Consider
Proposition 2.

Suppose T(x) is SOS (> 0Vzx). If f(z) — 7(x)g(x) is SOS (> 0Vx), then
f(z) >0 forall x€S:={z : g(x) >0}
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Summary of SOS Positivity on a set

The Main Idea

Proposition 3.

Suppose s;(x) are SOS and t; are polynomials (not necessarily positive). If

f(z) = so(x) + Z si(z)gi(x) + th(m)hj(x)

then fl@)>0 forall z €S :={x : g;(x) >0, hy(z) =0}
This works because

® si(x) >0forallze S

® gi(x) >0forall z€ S

® hi(x)=0forall z€ S

Question: Is it Necessary and Sufficient???
Answer: Yes, but only if we represent S in the right way.

® The Dark Art of the Positivstellensatz!
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How to Represent a Set?7?

A Problem of Representation and Inference

Consider how to represent a semialgebraic set:
Example: A representation of the interval S = [a, b].

® A first order representation:
{reR:2—a>0,b—2 >0}
® A quadratic representation:
{reR: (x—a)(b—1z) >0}
® We can add arbitrary polynomials which are PSD on X to the
representation.
{zreR: (x—a)b—2z)>0,2—a>0}
{reR: (@®+1)(z— a)(b— x) >0}
{zeR: (z—a)(b—2) 20, (2*+1)(z—a)(b—2) 20, (x — a)(b—z) > 0}
There are infinite ways to represent the same set
® Some Work well and others Don't!
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A Problem of Representation and Inference

Computer-Based Logic and Reasoning

Why are all these representations valid?

® We are adding redundant constraints to the set. | ol (1.
®z—a>0and b—1x >0 for x € [a,b] implies ‘f{ '
(z—a)(b—=) >0. B
.\\‘\"/I 3
e 22+ 1is SOS, so is obviously positive on z € [a,b]. HEPRR _

How are we creating these redundant constraints? ' ’

® Logical Inference
® Using existing polynomials which are positive on X
to create new ones.
Note: If f(z) >0 forz € S

® So f is positive on S if and only if it is a valid constraint...
Big Question:

e Can ANY polynomial which is positive on [a, b] be constructed this way?
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The Cone of Inference

Definition 3.

Given a semialgebraic set S, a function f is called a valid inequality on S if

f(z)>0 forallz € §

Question: How to construct valid inequalities?

¢ Closed under addition: If f; and f are valid, then h(z) = f1(z) + fo(x) is
valid

® Closed under multiplication: If fi and f are valid, then h(z) = fi(z) f2(z)
is valid

2

e Contains all Squares: h(x) = g(x)? is valid for ANY polynomial g.

A set of inferences constructed in such a manner is called a cone.
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The Cone of Inference

Definition 4.

The set of polynomials C' C R[z] is called a Cone if
°® f1 €C and fo € C implies f1 + f3 € C.
e fi €C and fy € C implies fifa € C.
e > cC.
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The Cone of Inference

The set of inferences is a cone

Definition 5.
For any set, S, the cone C(S) is the set of polynomials PSD on S

C(S):={f eR[z] : f(x) >0 forall z €S}

The big question: how to test f € C(5)??7

Corollary 6.
f(z) >0 for all x € S if and only if f € C(S5)
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The Monoid

Suppose S is a semialgebraic set and define its monoid.

Definition 7.

For given polynomials {f;} C R[z], we define monoid({f;}) as the set of all
products of the f;

monoid({fi}) == {h € R[z Hf - f2(z), a € NF}
® 1 € monoid({f;})

® monoid({f;}) is a subset of the cone defined by the f;.

® The monoid does not include arbitrary sums of squares
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The Cone of Inference

If we combine monoid({f;}) with X, we get cone({f;}).

Definition 8.
For given polynomials {f;} C R[z], we define cone({f;}) as

cone({f;}) ={h eR[z]: h= Z $igi, g; € monoid({f;}), s; € Xs}

Si={zeR": fi(x) >0,i=1--- k}

cone({fi}) € C(S) is an approximation to C(.5).
® The key is that it is possible to test whether f € cone({f;}) C C(S)!!!

> Sort of... (need a degree bound)
» Use e.g. SOSTOOLS
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More on Inference

Corollary 9.
h € cone({f;}) C C(S) if and only if there exist s;,r;j,--- € X such that

h(z) = s0 + Zsifi 4 ijfifj + Z Tijefifife + -
i i#j i#£jFk

Note we must include all possible combinations of the f;

® A finite number of variables s;,7;;.

® s;,1;5 € Xg is an SDP constraint.

® The equality constraint acts on the coefficients of f,s;, ;.
This gives a sufficient condition for h(x) > 0 for all z € S.

® Can be tested using, e.g. SOSTOOLS
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Numerical Example

Example: To show that h(z) = 5z — 922 + 522 — x* is PSD on the interval
[0,1] ={z € R™ : 2(1 —x) > 0}, we use fi(z) = 2(1 — x). This yields the
constraint

h(z) = so(z) + (1 — x)s1(x)

We find so(z) = 0, s1(z) = (2 — 2)? + 1 so that
5r—92% +50° — 2 =0+ (2 —2)* + Dz(1 — 2)
Which is a certificate of non-negativity of h on S = [0, 1]

Note: the original representation of S matters:

® If we had used S={z € R : >0, 1 —x > 0}, then we would have had 4
SOS variables

h(z) = so(x) + xs1(z) + (1 — x)s2(x) + (1 — z)s3(x)

The complexity can be decreased through judicious choice of representation.
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Stengle's Positivstellensatz

We have two big questions
® How close an approximation is cone({f;}) C C(S) to C(S)?
» Cannot always be exact since not every positive polynomial is SOS.

® Can we reduce the complexity?
Both these questions are answered by Positivstellensatz Results. Recall

S:={zeR": fi(z)>0,i=1--- k}

Theorem 10 (Stengle’s Positivstellensatz).

S =0 if and only if —1 € cone({f;}). Thatis, S = () if and only if there exist
84,Tij, -+ € Mg such that

—1=s0+ Zsifi + Zﬁjfifj + Z rijkfifife 4
i i#] 1#j#k

Note that this is not exactly what we were asking.
® We would prefer to know whether h € cone({f:})
e Difference is important for reasons of convexity.
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Stengle's Positivstellensatz
Lets Cut to the Chase

Problem: We want to know whether f(z) > 0 for all x € {z : g;(z) > 0}.

Corollary 11 (Stengle’s Positivstellensatz).

such that

Flsoa+) aigi+Y 499+ >, Gijk9igigk + -
i i#£] Cavkaly
=1+s0+ Z Sigi + Zrijgigj + Z Tijk9gigigk +
i i#J i#j#k

We have to include all possible combinations of the g;!!!!
® But assumes Nothing about the g;
® The worst-case scenario
e Also bilinear in s; and f (Can't search for both)

We can do better if we choose our g; more carefully!
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Stengle's Weak Positivstellensatz

Non-Negativity: Considers whether f(x) > 0 for all z € {x : g;(x) > 0}.

Corollary 12 (Stengle's Positivstellensatz).

and q € N such that

flsa+ ZQ191 + ) 9i0 T D, Gikgigigk + -

i#] i£j#k
= F24 4 g+ Z‘Slgl A Zr”glg] + Z Tijk9ig5 9k + -
i i#£] i#j#k

Lyapunov Functions are NOT strictly positive!
® The only P-Satz to deal with functions not Strictly Positive.
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Schmudgen'’s Positivstellensatz

If the set S is closed, bounded, then the problem can be simplified.

Theorem 13 (Schmiidgen’s Positivstellesatz).

Suppose that S = {z : g;(x) > 0, h;(x) = 0} is compact. If f(x) > 0 for all
x € S, then there exist s;,r;j,--- € ¥ and t; € R[x] such that

=1+ Zt h + So + Zszgz + Zrugzg] + Z Tijk9i959k + -
i#j i#j#k

Note that Schmudgen's Positivstellensatz is essentially the same as Stengle’s
except for a single term.

® Now we can include both f and s;,r;; as variables.
® Reduces the number of variables substantially.

The complexity is still high (Lots of SOS multipliers).
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Putinar's Positivstellensatz

If the semialgebraic set is P-Compact, then we can improve the situation further.

Definition 14.

We say that f; € R[z] for i = 1,...,nk define a P-compact set Ky, if there
exist h € Rlz] and s; € ¥ for i = 0,...,ngk such that the level set
{z € R : h(x) > 0} is compact and such that the following holds.

nK

hz) =) si(z)fi(z) € 2,

=1

The condition that a region be P-compact may be difficult to verify. However,
some important special cases include:

® Any region K such that all the f; are linear.

® Any region K defined by f; such that there exists some i for which the
level set {z : f;(z) > 0} is compact.
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Putinar's Positivstellensatz

P-Compact is not hard to satisfy.

Corollary 15.

Any compact set can be made P-compact by inclusion of a redundant constraint
of the form fi(x) = 8 — xTx for sufficiently large 3.

Thus P-Compact is a property of the representation and not the set.

Example: The interval [a,b].
® Not Obviously P-Compact:

{reR:2°-a®>>0,b—2>0}

® P-Compact:
{reR: (x—a)(b—1z) >0}
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Putinar's Positivstellensatz

If S is P-Compact, Putinar's Positivstellensatz dramatically reduces the
complexity

Theorem 16 (Putinar’s Positivstellesatz).

Suppose that S = {x : g;(x) >0, h;(x) = 0} is P-Compact. If f(x) > 0 for all
x € S, then there exist s; € X5 and t; € R[z] such that

f=s0 +Zsigi+ztjhj
i J

A single multiplier for each constraint.
® We are back to the original condition
® A Good representation of the set is P-compact
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Return to Lyapunov Stability

We can now recast the search for a Lyapunov function.

Theorem 17.

Suppose there exists a polynomial v, a constant ¢ > 0, and sum-of-squares polynomials
S0, Si, to, ti such that

'U(x)*z i(@)pi(s) — so(s) —ex’x =0
—Vou(z Ztl pi(s) — to(x )—exTﬂc:O

Then the system is exponentially stable on any Y~ := {z : v(z) < v} where Y, C X.

Note: Find the largest Y, via bisection.
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Local Stability Analysis

Van-der-Pol Oscillator

Procedure:
1. Use Bisection to find the largest ball on which you can find a Lyapunov
function.
2. Use Bisection to find the largest level set of that Lyapunov function on
which you can find a Lyapunov function.

3
3 2 El o 1 2 3
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Local Stability Analysis

First, Find the Lyapunov function

SOSTOOLS Code: Find a Local Lyapunov Function
> pvar X y

mu=1; r=2.8;

g=1—(x*+y°);
f=[—y;—mux(1—x%)*xy+x);
prog=sosprogram([x y]);

Z2=monomials([x y],0:2);

Z4=monomials([x y],0:4);
[prog,V]=sossosvar(prog,Z2) ;

V =V+.0001* (x* +y%);
prog=soseq(prog,subs(V, [x, y]’,[0, 0]°));
nablaV=[diff (V,x);diff (V,y)];
[prog,s]=sossosvar(prog,Z2) ;
prog=sosineq(prog,-nablaV’*f-s*g);
prog=sossolve(prog) ;

Vn=sosgetsol(prog,V)

vV V VVVV VYV VVVYVVYV

This finds a Lyapunov function which is decreasing on the ball of radius /2.8

® |yapunov function is of degree 4.
M. Peet Lecture 17: 26 / 30



Local Stability Analysis

Next find the largest level set which is contained in the ball of radius v/2.8.

pvar x y
gamma=6.6;

Vg=gamma-Vn;
g=r1r— (X +y%);
prog=sosprogram([x y]);
Z2=monomials([x y],0:2); |
[prog,sl=sossosvar(prog,Z2);
prog=sosineq(prog,g-s*Vg) ;
prog=sossolve(prog) ; 5

V VV V V V V V.YV

In this case, the maximum ~ is 6.6

® Estimate of the DOA will increase with degree of the variables.
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Making Sense of Positivity Constraints

fV(:c) —g(z)-s(z) >0 YV

means .
V(z) < —g(z) - s(z) <0
when g(x) > 0 (since s(x) > 0 and g(z) > 0 on z € X).
® but [|z]|* < 7 implies g(x) > 0
® hence V(z) <0 forallx € B 5

Likewise
ga) —s(x) - (y=V(x)) 20 V&

means

g(x) = s(x) - (y = V(x)) 20
whenever V(z) <.

® So g(x) > 0 whenever z € V,

But g(x) > 0 means ||z|| < /r
So if x € V,, then g(x) > 0 and hence |z|| < \/r.
SoV, C B
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An Example of Global Stability Analysis
SOSTOOLS Code: Globally Stabilizing Controller

prog=sosprogram([wl w2 w3]);
Z=monomials([wl w2 w3],1:2);

[prog,V]=sossosvar(prog,Z);

V =V+.0001* (wi? + w2* + w3*);
prog=soseq(prog,subs(V, [wl; w2; w3],[0; O;
01));
> nablaV=[diff (V,wl);diff(V,w2);diff(V,w3)];
> prog=sosineq(prog,-nablaV’*f-4.0%V);
> prog=sossolve(prog) ;
> Vn=sosgetsol(prog,V)

> pvar wl w2 w3 Jiwr = (Jo — J3)wows + uy
. im poet ot Tty = (o = T +
> ul=-ki*wl;u2=-k2%w2; u3=-k3+u3; Jaws = (J1 = Ja)wiws + ug
> £f=[J2—7J3)/J1*w2%*w3+ul; up = —kw

> (J3—17J1)/J2*% w3 xwl + u2; Uy = —kows

> (J1—17J2)/33 xwl*xw2+u3|;

N ug = —kgo.)g

>

>

>

>

This is feasible and proves exponential stability with decay rate v =4
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An Example of Globally Stabilizing Controller Synthesis

SOSTOOLS Code: Globally Stabilizing Controller

V = x12 4 x22 + x3?;

prog=soseq(prog,subs(V, [x1, x2, x3]’, [0,
0, 017));

> nablaV=[diff (V,x1);diff(V,x2);diff(V,x3)];
> prog=sosineq(prog,-(nablaV’*f));

> prog=sossolve(prog) ;

> kln=sosgetsol(prog,kl)

> k2n=sosgetsol(prog,k2)

> pvar x1 x2 x3 (et 22 23]) 1= —x1 + To — X3
> prog=sosprogram([x1 x2 x3]); .

> §4=§10nom§a1§( [x1 x2 x3],0:3); 3_62 = s Tt
> Z2=monomials([x1 x2 x3],0:3); Ty = —x1 + Uz

> [prog,kl]=sospolyvar (prog,Z4);

> [prog,k2]=sospolyvar (prog,Z4);

> ul=k1l; u2=k2; Find uy (t) = k1 (x(t)),
> f=[-x1+x2-x3;-x1*x3-x2+ul;-x1+u2]; ug(t) = ka(z(t))

>

>
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