LMI Methods in Optimal and Robust Control

Matthew M. Peet
Arizona State University
Thanks to S. Lall and P. Parrilo for guidance and supporting material

Lecture 17: The PositivStellenSatz and an LMI for Local Stability

Problems with SOS

The problem is that most nonlinear stability problems are local.

- Global stability requires a unique equilibrium.
- Very few nonlinear systems are globally stable.

Figure: The Lorentz Attractor

Figure: The van der Pol oscillator in reverse

Local Positivity

A more interesting question is the question of local positivity.
Question: Is $y(x) \geq 0$ for $x \in X$, where $X \subset \mathbb{R}^{n}$.

Examples:

- Matrix Copositivity:

$$
y^{T} M y \geq 0 \quad \text { for all } y \geq 0
$$

- Integer Programming (Upper bounds)
$\min \gamma$
$\gamma \geq f_{i}(y)$
for all $y \in\{-1,1\}^{n}$ and $i=1, \cdots, k$
- Local Lyapunov Stability

$$
\begin{aligned}
V(x) \geq\|x\|^{2} & \text { for all }\|x\| \leq 1 \\
\nabla V(x)^{T} f(x) \leq 0 & \text { for all }\|x\| \leq 1
\end{aligned}
$$

All these sets are Semialgebraic.

Positivity on Which Sets?

Semialgebraic Sets (Defined by Polynomial Inequalities)

How are these sets represented???

Definition 1.

A set $X \subset \mathbb{R}^{n}$ is Semialgebraic if it can be represented using polynomial equality and inequality constraints.

$$
X:=\left\{x: \begin{array}{ll}
p_{i}(x) \geq 0 & i=1, \ldots, k \\
q_{j}(x)=0 & j=1, \ldots, m
\end{array}\right\}
$$

If there are only equality constraints, the set is Algebraic.
Note: A semialgebraic set can also include \neq and $<$.

Discrete Values
$\{-1,1\}^{n}=\left\{y \in \mathbb{R}^{n}: y_{i}^{2}-1=0\right\}$

The Ball of Radius 1

$$
\{x:\|x\| \leq 1\}=\left\{x: 1-x^{T} x \geq 0\right\}
$$

The representation of a set is NOT UNIQUE.

- Some representations are better than others...

Other Interesting Sets

Poisson's Equation (Courtesy of James Forbes)

Consider the dynamics of the rotation matrix on SO (3)

- Gives the orientation in the Body-fixed frame for a body rotating with angular velocity ω.

$$
\dot{C}=-\left[\begin{array}{ccc}
0 & -\omega_{3} & \omega_{2} \\
\omega_{3} & 0 & -\omega_{1} \\
-\omega_{2} & \omega_{1} & 0
\end{array}\right] C
$$

where $C=\left[\begin{array}{lll}C_{1} & C_{2} & C_{3} \\ C_{4} & C_{5} & C_{6} \\ C_{7} & C_{8} & C_{9}\end{array}\right] \in \mathbb{R}^{3 \times 3}$ which satisfies $C^{T} C=I$ and $\operatorname{det} C=1$.
Define

$$
S:=\left\{\left[\begin{array}{lll}
C_{1} & C_{2} & C_{3} \\
C_{4} & C_{5} & C_{6} \\
C_{7} & C_{8} & C_{9}
\end{array}\right]: \operatorname{det}(C)=1, C^{T} C=I\right\}
$$

So we would like a Lyapunov function $V(C)$ which satisfies

$$
\nabla V(C)^{T} f(C) \leq 0 \quad \text { for all } C \text { such that } C \in S
$$

Recall the SOS Conditions

Proposition 1.

Suppose: $p(x)=Z_{d}(x)^{T} Q Z_{d}(x)$ for some $Q>0$. Then $p(x) \geq 0$ for all $x \in \mathbb{R}^{n}$

SOS Positivity on a Subset

Recall the S-Procedure

Corollary 2 (S-Procedure).

$z^{T} F z \geq 0$ for all $z \in S:=\left\{x \in \mathbb{R}^{n}: x^{T} G x \geq 0\right\}$ if there exists a scalar $\tau \geq 0$ such that $F-\tau G \succeq 0$.

This works because

- $\tau \geq 0$ and $z^{T} G z \geq 0$ for all $z \in S$
- Hence $\tau z^{T} G z \geq 0$ for all $z \in S$

If $F \geq \tau G$, then

$$
\begin{aligned}
z^{T} F z & \geq \tau z^{T} G z \quad \text { for all } z \in \mathbb{R}^{n} \\
& \geq 0 \quad \text { for all } z \in S
\end{aligned}
$$

Now Consider Polynomials

Proposition 2.

Suppose $\tau(x)$ is SOS $(\geq 0 \forall x)$. If $f(x)-\tau(x) g(x)$ is $\operatorname{SOS}(\geq 0 \forall x)$, then

$$
f(x) \geq 0 \quad \text { for all } x \in S:=\{x: g(x) \geq 0\}
$$

Summary of SOS Positivity on a set

The Main Idea

Proposition 3.

Suppose $s_{i}(x)$ are SOS and t_{i} are polynomials (not necessarily positive). If

$$
f(x)=s_{0}(x)+\sum_{i} s_{i}(x) g_{i}(x)+\sum_{j} t_{j}(x) h_{j}(x)
$$

then

$$
f(x) \geq 0 \quad \text { for all } \quad x \in S:=\left\{x: g_{i}(x) \geq 0, h_{i}(x)=0\right\}
$$

This works because

- $s_{i}(x) \geq 0$ for all $z \in S$
- $g_{i}(x) \geq 0$ for all $z \in S$
- $h_{i}(x)=0$ for all $z \in S$

Question: Is it Necessary and Sufficient???
Answer: Yes, but only if we represent S in the right way.

- The Dark Art of the Positivstellensatz!

How to Represent a Set???

A Problem of Representation and Inference
Consider how to represent a semialgebraic set:
Example: A representation of the interval $S=[a, b]$.

- A first order representation:

$$
\{x \in \mathbb{R}: x-a \geq 0, b-x \geq 0\}
$$

- A quadratic representation:

$$
\{x \in \mathbb{R}:(x-a)(b-x) \geq 0\}
$$

- We can add arbitrary polynomials which are PSD on X to the representation.

$$
\begin{aligned}
& \{x \in \mathbb{R}:(x-a)(b-x) \geq 0, x-a \geq 0\} \\
& \left\{x \in \mathbb{R}:\left(x^{2}+1\right)(x-a)(b-x) \geq 0\right\} \\
& \left\{x \in \mathbb{R}:(x-a)(b-x) \geq 0,\left(x^{2}+1\right)(x-a)(b-x) \geq 0,(x-a)(b-x) \geq 0\right\}
\end{aligned}
$$

There are infinite ways to represent the same set

- Some Work well and others Don't!

A Problem of Representation and Inference

Computer-Based Logic and Reasoning

Why are all these representations valid?

- We are adding redundant constraints to the set.
- $x-a \geq 0$ and $b-x \geq 0$ for $x \in[a, b]$ implies

$$
(x-a)(b-x) \geq 0
$$

- $x^{2}+1$ is SOS, so is obviously positive on $x \in[a, b]$. How are we creating these redundant constraints?

- Logical Inference
- Using existing polynomials which are positive on X to create new ones.

Note: If $f(x) \geq 0$ for $x \in S$

- So f is positive on S if and only if it is a valid constraint...

Big Question:

- Can ANY polynomial which is positive on $[a, b]$ be constructed this way?

The Cone of Inference

Definition 3.

Given a semialgebraic set S, a function f is called a valid inequality on S if

$$
f(x) \geq 0 \quad \text { for all } x \in S
$$

Question: How to construct valid inequalities?

- Closed under addition: If f_{1} and f_{2} are valid, then $h(x)=f_{1}(x)+f_{2}(x)$ is valid
- Closed under multiplication: If f_{1} and f_{2} are valid, then $h(x)=f_{1}(x) f_{2}(x)$ is valid
- Contains all Squares: $h(x)=g(x)^{2}$ is valid for ANY polynomial g.

A set of inferences constructed in such a manner is called a cone.

The Cone of Inference

Definition 4.

The set of polynomials $C \subset \mathbb{R}[x]$ is called a Cone if

- $f_{1} \in C$ and $f_{2} \in C$ implies $f_{1}+f_{2} \in C$.
- $f_{1} \in C$ and $f_{2} \in C$ implies $f_{1} f_{2} \in C$.
- $\Sigma_{s} \subset C$.

Note: this is NOT the same definition as in optimization.

The Cone of Inference

The set of inferences is a cone

Definition 5.

For any set, S, the cone $C(S)$ is the set of polynomials PSD on S

$$
C(S):=\{f \in \mathbb{R}[x]: f(x) \geq 0 \text { for all } x \in S\}
$$

The big question: how to test $f \in C(S)$???

Corollary 6.

$f(x) \geq 0$ for all $x \in S$ if and only if $f \in C(S)$

The Monoid

Suppose S is a semialgebraic set and define its monoid.

Definition 7.

For given polynomials $\left\{f_{i}\right\} \subset \mathbb{R}[x]$, we define $\operatorname{monoid}\left(\left\{f_{i}\right\}\right)$ as the set of all products of the f_{i}

$$
\operatorname{monoid}\left(\left\{f_{i}\right\}\right):=\left\{h \in \mathbb{R}[x]: h(x)=\prod f_{1}^{a_{1}}(x) f_{2}^{a_{k}}(x) \cdots f_{k}^{a_{2}}(x), a \in \mathbb{N}^{k}\right\}
$$

- $1 \in \operatorname{monoid}\left(\left\{f_{i}\right\}\right)$
- $\operatorname{monoid}\left(\left\{f_{i}\right\}\right)$ is a subset of the cone defined by the f_{i}.
- The monoid does not include arbitrary sums of squares

The Cone of Inference

If we combine monoid $\left(\left\{f_{i}\right\}\right)$ with Σ_{s}, we get cone $\left(\left\{f_{i}\right\}\right)$.

Definition 8.

For given polynomials $\left\{f_{i}\right\} \subset \mathbb{R}[x]$, we define cone $\left(\left\{f_{i}\right\}\right)$ as

$$
\operatorname{cone}\left(\left\{f_{i}\right\}\right):=\left\{h \in \mathbb{R}[x]: h=\sum s_{i} g_{i}, g_{i} \in \operatorname{monoid}\left(\left\{f_{i}\right\}\right), s_{i} \in \Sigma_{s}\right\}
$$

If

$$
S:=\left\{x \in \mathbb{R}^{n}: f_{i}(x) \geq 0, i=1 \cdots, k\right\}
$$

cone $\left(\left\{f_{i}\right\}\right) \subset C(S)$ is an approximation to $C(S)$.

- The key is that it is possible to test whether $f \in \operatorname{cone}\left(\left\{f_{i}\right\}\right) \subset C(S)!!!$
- Sort of... (need a degree bound)
- Use e.g. SOSTOOLS

More on Inference

Corollary 9.

$h \in \operatorname{cone}\left(\left\{f_{i}\right\}\right) \subset C(S)$ if and only if there exist $s_{i}, r_{i j}, \cdots \in \Sigma_{s}$ such that

$$
h(x)=s_{0}+\sum_{i} s_{i} f_{i}+\sum_{i \neq j} r_{i j} f_{i} f_{j}+\sum_{i \neq j \neq k} r_{i j k} f_{i} f_{j} f_{k}+\cdots
$$

Note we must include all possible combinations of the f_{i}

- A finite number of variables $s_{i}, r_{i j}$.
- $s_{i}, r_{i j} \in \Sigma_{s}$ is an SDP constraint.
- The equality constraint acts on the coefficients of $f, s_{i}, r_{i j}$.

This gives a sufficient condition for $h(x) \geq 0$ for all $x \in S$.

- Can be tested using, e.g. SOSTOOLS

Numerical Example

Example: To show that $h(x)=5 x-9 x^{2}+5 x^{3}-x^{4}$ is PSD on the interval $[0,1]=\left\{x \in \mathbb{R}^{n}: x(1-x) \geq 0\right\}$, we use $f_{1}(x)=x(1-x)$. This yields the constraint

$$
h(x)=s_{0}(x)+x(1-x) s_{1}(x)
$$

We find $s_{0}(x)=0, s_{1}(x)=(2-x)^{2}+1$ so that

$$
5 x-9 x^{2}+5 x^{3}-x^{4}=0+\left((2-x)^{2}+1\right) x(1-x)
$$

Which is a certificate of non-negativity of h on $S=[0,1]$
Note: the original representation of S matters:

- If we had used $S=\{x \in \mathbb{R}: x \geq 0,1-x \geq 0\}$, then we would have had 4 SOS variables

$$
h(x)=s_{0}(x)+x s_{1}(x)+(1-x) s_{2}(x)+x(1-x) s_{3}(x)
$$

The complexity can be decreased through judicious choice of representation.

Stengle's Positivstellensatz

We have two big questions

- How close an approximation is cone $\left(\left\{f_{i}\right\}\right) \subset C(S)$ to $C(S)$?
- Cannot always be exact since not every positive polynomial is SOS.
- Can we reduce the complexity?

Both these questions are answered by Positivstellensatz Results. Recall

$$
S:=\left\{x \in \mathbb{R}^{n}: f_{i}(x) \geq 0, i=1 \cdots, k\right\}
$$

Theorem 10 (Stengle's Positivstellensatz).

$S=\emptyset$ if and only if $-1 \in \operatorname{cone}\left(\left\{f_{i}\right\}\right)$. That is, $S=\emptyset$ if and only if there exist $s_{i}, r_{i j}, \cdots \in \Sigma_{s}$ such that

$$
-1=s_{0}+\sum_{i} s_{i} f_{i}+\sum_{i \neq j} r_{i j} f_{i} f_{j}+\sum_{i \neq j \neq k} r_{i j k} f_{i} f_{j} f_{k}+\cdots
$$

Note that this is not exactly what we were asking.

- We would prefer to know whether $h \in \operatorname{cone}\left(\left\{f_{i}\right\}\right)$
- Difference is important for reasons of convexity.

Stengle's Positivstellensatz

Lets Cut to the Chase

Problem: We want to know whether $f(x)>0$ for all $x \in\left\{x: g_{i}(x) \geq 0\right\}$.

Corollary 11 (Stengle's Positivstellensatz).

$f(x)>0$ for all $x \in\left\{x: g_{i}(x) \geq 0\right\}$ if and only if there exist $s_{i}, q_{i j}, r_{i j}, \cdots \in \Sigma_{s}$ such that

$$
\begin{aligned}
& f\left(s_{-1}+\sum_{i} q_{i} g_{i}+\sum_{i \neq j} q_{i j} g_{i} g_{j}+\sum_{i \neq j \neq k} q_{i j k} g_{i} g_{j} g_{k}+\cdots\right) \\
& \quad=1+s_{0}+\sum_{i} s_{i} g_{i}+\sum_{i \neq j} r_{i j} g_{i} g_{j}+\sum_{i \neq j \neq k} r_{i j k} g_{i} g_{j} g_{k}+\cdots
\end{aligned}
$$

We have to include all possible combinations of the $g_{i}!!!!$

- But assumes Nothing about the g_{i}
- The worst-case scenario
- Also bilinear in s_{i} and f (Can't search for both)

We can do better if we choose our g_{i} more carefully!

Stengle's Weak Positivstellensatz

Non-Negativity: Considers whether $f(x) \geq 0$ for all $x \in\left\{x: g_{i}(x) \geq 0\right\}$.

Corollary 12 (Stengle's Positivstellensatz).

$f(x) \geq 0$ for all $x \in\left\{x: g_{i}(x) \geq 0\right\}$ if and only if there exist $s_{i}, q_{i j}, r_{i j}, \cdots \in \Sigma_{s}$ and $q \in \mathbb{N}$ such that

$$
\begin{aligned}
f\left(s_{-1}+\sum_{i} q_{i} g_{i}+\sum_{i \neq j} q_{i j} g_{i} g_{j}+\sum_{i \neq j \neq k} q_{i j k} g_{i} g_{j} g_{k}+\cdots\right) \\
=f^{2 q}+s_{0}+\sum_{i} s_{i} g_{i}+\sum_{i \neq j} r_{i j} g_{i} g_{j}+\sum_{i \neq j \neq k} r_{i j k} g_{i} g_{j} g_{k}+\cdots
\end{aligned}
$$

Lyapunov Functions are NOT strictly positive!

- The only P-Satz to deal with functions not Strictly Positive.

Schmudgen's Positivstellensatz

If the set S is closed, bounded, then the problem can be simplified.

Theorem 13 (Schmüdgen's Positivstellesatz).

Suppose that $S=\left\{x: g_{i}(x) \geq 0, h_{i}(x)=0\right\}$ is compact. If $f(x)>0$ for all $x \in S$, then there exist $s_{i}, r_{i j}, \cdots \in \Sigma_{s}$ and $t_{i} \in \mathbb{R}[x]$ such that

$$
f=1+\sum_{j} t_{j} h_{j}+s_{0}+\sum_{i} s_{i} g_{i}+\sum_{i \neq j} r_{i j} g_{i} g_{j}+\sum_{i \neq j \neq k} r_{i j k} g_{i} g_{j} g_{k}+\cdots
$$

Note that Schmudgen's Positivstellensatz is essentially the same as Stengle's except for a single term.

- Now we can include both f and $s_{i}, r_{i j}$ as variables.
- Reduces the number of variables substantially.

The complexity is still high (Lots of SOS multipliers).

Putinar's Positivstellensatz

If the semialgebraic set is P-Compact, then we can improve the situation further.

Definition 14.

We say that $f_{i} \in \mathbb{R}[x]$ for $i=1, \ldots, n_{K}$ define a P-compact set K_{f}, if there exist $h \in \mathbb{R}[x]$ and $s_{i} \in \Sigma_{s}$ for $i=0, \ldots, n_{K}$ such that the level set $\left\{x \in \mathbb{R}^{n}: h(x) \geq 0\right\}$ is compact and such that the following holds.

$$
h(x)-\sum_{i=1}^{n_{K}} s_{i}(x) f_{i}(x) \in \Sigma_{s}
$$

The condition that a region be P-compact may be difficult to verify. However, some important special cases include:

- Any region K_{f} such that all the f_{i} are linear.
- Any region K_{f} defined by f_{i} such that there exists some i for which the level set $\left\{x: f_{i}(x) \geq 0\right\}$ is compact.

Putinar's Positivstellensatz

P-Compact is not hard to satisfy.

Corollary 15.

Any compact set can be made P-compact by inclusion of a redundant constraint of the form $f_{i}(x)=\beta-x^{T} x$ for sufficiently large β.

Thus P-Compact is a property of the representation and not the set.
Example: The interval $[a, b]$.

- Not Obviously P-Compact:

$$
\left\{x \in \mathbb{R}: x^{2}-a^{2} \geq 0, b-x \geq 0\right\}
$$

- P-Compact:

$$
\{x \in \mathbb{R}:(x-a)(b-x) \geq 0\}
$$

Putinar's Positivstellensatz

If S is P -Compact, Putinar's Positivstellensatz dramatically reduces the complexity

Theorem 16 (Putinar's Positivstellesatz).

Suppose that $S=\left\{x: g_{i}(x) \geq 0, h_{i}(x)=0\right\}$ is P-Compact. If $f(x)>0$ for all $x \in S$, then there exist $s_{i} \in \Sigma_{s}$ and $t_{i} \in \mathbb{R}[x]$ such that

$$
f=s_{0}+\sum_{i} s_{i} g_{i}+\sum_{j} t_{j} h_{j}
$$

A single multiplier for each constraint.

- We are back to the original condition
- A Good representation of the set is P-compact

Return to Lyapunov Stability

We can now recast the search for a Lyapunov function.

Let
$X:=\left\{x: p_{i}(x) \geq 0 \quad i=1, \ldots, k\right\}$

Theorem 17.

Suppose there exists a polynomial v, a constant $\epsilon>0$, and sum-of-squares polynomials $s_{0}, s_{i}, t_{0}, t_{i}$ such that

$$
\begin{array}{r}
v(x)-\sum_{i} s_{i}(x) p_{i}(s)-s_{0}(s)-\epsilon x^{T} x=0 \\
-\nabla v(x)^{T} f(x)-\sum_{i} t_{i}(x) p_{i}(s)-t_{0}(x)-\epsilon x^{T} x=0
\end{array}
$$

Then the system is exponentially stable on any $Y_{\gamma}:=\{x: v(x) \leq \gamma\}$ where $Y_{\gamma} \subset X$.
Note: Find the largest Y_{γ} via bisection.

Local Stability Analysis

Van-der-Pol Oscillator

$$
\begin{aligned}
& \dot{x}(t)=-y(t) \\
& \dot{y}(t)=-\mu\left(1-x(t)^{2}\right) y(t)+x(t)
\end{aligned}
$$

Procedure:

1. Use Bisection to find the largest ball on which you can find a Lyapunov function.
2. Use Bisection to find the largest level set of that Lyapunov function on which you can find a Lyapunov function. Repeat

Local Stability Analysis

First, Find the Lyapunov function

SOSTOOLS Code: Find a Local Lyapunov Function

$>$ pvar x y
$>\mathrm{mu}=1 ; \mathrm{r}=2.8$;
$>\mathrm{g}=\mathrm{r}-\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)$;
$>\mathrm{f}=\left[-\mathrm{y} ;-\mathrm{mu} *\left(1-\mathrm{x}^{2}\right) * \mathrm{y}+\mathrm{x}\right]$;
> prog=sosprogram([x y$])$;
> Z2=monomials([x y],0:2);
> Z4=monomials([x y],0:4);
> [prog, V]=sossosvar(prog,Z2);
$>\mathrm{V}=\mathrm{V}+.0001 *\left(\mathrm{x}^{4}+\mathrm{y}^{4}\right)$;
> prog=soseq(prog,subs(V,[x, y]',[0, 0]'));
> nablaV=[diff(V,x);diff(V,y)];
> [prog,s]=sossosvar(prog,Z2);
> prog=sosineq(prog,-nablaV'*f-s*g);
> prog=sossolve(prog);
> Vn=sosgetsol(prog,V)
This finds a Lyapunov function which is decreasing on the ball of radius $\sqrt{2.8}$

- Lyapunov function is of degree 4.

Local Stability Analysis

Next find the largest level set which is contained in the ball of radius $\sqrt{2.8}$.
$>$ pvar x y
$>$ gamma=6.6;
> Vg=gamma-Vn;
$>\mathrm{g}=\mathrm{r}-\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)$;
> prog=sosprogram([x y]);
> Z2=monomials([x y],0:2);
> [prog,s]=sossosvar(prog,Z2);
> prog=sosineq(prog,g-s*Vg);
> prog=sossolve(prog);

In this case, the maximum γ is 6.6

- Estimate of the DOA will increase with degree of the variables.

Making Sense of Positivity Constraints

$$
-\dot{V}(x)-g(x) \cdot s(x) \geq 0 \quad \forall x
$$

means

$$
\dot{V}(x) \leq-g(x) \cdot s(x) \leq 0
$$

when $g(x) \geq 0$ (since $s(x) \geq 0$ and $g(x) \geq 0$ on $x \in X$).

- but $\|x\|^{2} \leq r$ implies $g(x) \geq 0$
- hence $\dot{V}(x) \leq 0$ for all $x \in B_{\sqrt{r}}$

Likewise

$$
g(x)-s(x) \cdot(\gamma-V(x)) \geq 0 \quad \forall x
$$

means

$$
g(x) \geq s(x) \cdot(\gamma-V(x)) \geq 0
$$

whenever $V(x) \leq \gamma$.

- So $g(x) \geq 0$ whenever $x \in V_{\gamma}$
- But $g(x) \geq 0$ means $\|x\| \leq \sqrt{r}$
- So if $x \in V_{\gamma}$, then $g(x) \geq 0$ and hence $\|x\| \leq \sqrt{r}$.
- So $V_{\gamma} \subset B_{\sqrt{r}}$

An Example of Global Stability Analysis

SOSTOOLS Code: Globally Stabilizing Controller
$>$ pvar w1 w2 w3
$>\mathrm{J} 1=2 ; \mathrm{J} 2=1 ; \mathrm{J} 3=1$;
$>\mathrm{k} 1=1 ; \mathrm{k} 2=1 ; \mathrm{k} 3=1$;
$>\mathrm{u} 1=-\mathrm{k} 1 * \mathrm{w} 1 ; \mathrm{u} 2=-\mathrm{k} 2 * \mathrm{w} 2 ; \mathrm{u} 3=-\mathrm{k} 3 * \mathrm{w} 3$;
$>\mathrm{f}=[(\mathrm{J} 2-\mathrm{J} 3) / \mathrm{J} 1 * \mathrm{w} 2 * \mathrm{w} 3+\mathrm{u} 1$;

$$
\begin{aligned}
J_{1} \dot{\omega}_{1} & =\left(J_{2}-J_{3}\right) \omega_{2} \omega_{3}+u_{1} \\
J_{2} \dot{\omega}_{2} & =\left(J_{3}-J_{1}\right) \omega_{3} \omega_{1}+u_{2} \\
J_{3} \dot{\omega}_{3} & =\left(J_{1}-J_{2}\right) \omega_{1} \omega_{2}+u_{3} \\
u_{1} & =-k_{1} \omega_{1} \\
u_{2} & =-k_{2} \omega_{2} \\
u_{3} & =-k_{3} \omega_{3}
\end{aligned}
$$

$>(\mathrm{J} 3-\mathrm{J} 1) / \mathrm{J} 2 * \mathrm{w} 3 * \mathrm{w} 1+\mathrm{u} 2$;
$>(\mathrm{J} 1-\mathrm{J} 2) / \mathrm{J} 3 * \mathrm{w} 1 * \mathrm{w} 2+\mathrm{u} 3]$;
$>\operatorname{prog}=$ sosprogram([w1 w2 w3]);
> $\mathrm{Z}=$ monomials([w1 w2 w3],1:2);
> [prog, V]=sossosvar (prog, Z) ;
$>\mathrm{V}=\mathrm{V}+.0001 *\left(\mathrm{w} 1^{4}+\mathrm{w} 2^{4}+\mathrm{w} 3^{4}\right)$;
> prog=soseq(prog, subs(V,[w1; w2; w3], [0; 0;
0])) ;
> nablaV=[diff(V,w1); diff(V,w2) ; diff(V,w3)];
$>$ prog=sosineq(prog,-nablaV'*f-4.0*V);
> prog=sossolve(prog);
> Vn=sosgetsol (prog, V)
This is feasible and proves exponential stability with decay rate $\gamma=4$

An Example of Globally Stabilizing Controller Synthesis

SOSTOOLS Code: Globally Stabilizing Controller
> pvar x1 x2 x3
> prog=sosprogram([x1 x2 x3]);
> Z4=monomials([x1 x2 x3],0:3);
> Z2=monomials([x1 x2 x3],0:3);

$$
\begin{aligned}
& \dot{x}_{1}=-x_{1}+x_{2}-x_{3} \\
& \dot{x}_{2}=-x_{1} x_{3}-x_{2}+u_{1} \\
& \dot{x}_{3}=-x_{1}+u_{2}
\end{aligned}
$$

> [prog,k1]=sospolyvar (prog,Z4);
> [prog,k2]=sospolyvar(prog,Z4);
> u1=k1; u2=k2;
Find $u_{1}(t)=k_{1}(x(t))$,
> $\mathrm{f}=[-\mathrm{x} 1+\mathrm{x} 2-\mathrm{x} 3 ;-\mathrm{x} 1 * \mathrm{x} 3-\mathrm{x} 2+\mathrm{u} 1 ;-\mathrm{x} 1+\mathrm{u} 2]$;
$u_{2}(t)=k_{2}(x(t))$
$>\mathrm{V}=\mathrm{x} 1^{2}+\mathrm{x} 2^{2}+\mathrm{x} 3^{2}$;
> prog=soseq(prog,subs(V,[x1, x2, x3]',[0,
$0,0]$));
> nablaV=[diff(V,x1);diff(V,x2);diff(V,x3)];
> prog=sosineq(prog,-(nablaV'*f));
> prog=sossolve(prog);
> k1n=sosgetsol(prog,k1)
> k2n=sosgetsol(prog,k2)

