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Hybrid Systems

Suggested Text 1: Switching in Systems and Controls

by Daniel Liberzon -

Switching in

Highly Recommend: One of the best texts in any field Systems and Control

Suggested Text 2:

Hybrid Dynamical Systems: Modeling, Stability, and Robustness
by R. Goebel; R. G. Sanfelice; A. R. Teel

Link:
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https://hybrid.soe.ucsc.edu/sites/default/files/preprints/65.pdf

What Are Hybrid Systems?

Classes of Hybrid Systems

State-Dependent Switching

it) = { file(®)) 2(t) € X,

Systems with Logical States

it) = { file(®) o) € X,
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Systems with Resets

i(t) = {f(()) =(t) ¢ G

and
{x+ =g(x) ze€d

Discontinuous Control
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What Are Hybrid Systems?

General Definition

Definition 1 (Hybrid System).
A hybrid system H is a tuple:
H: (Q7E7D7F7G7R)
where
e () is a finite collection of discrete modes, states or indices.
e £ C @ X Q@ is a collection of edges.
e D ={Dg}4eq is the collection of Domains associated with the discrete
states, where for each ¢ € Q, D, C R".
o F ={fy}qeq is the collection of vector fields associated with the discrete
states, where for each ¢ € Q, f, : Dy — R".
o G ={G.}eck is a collection of guard sets, each associated with an edge.
where for each e = (¢,¢') € E, G. C D,

R = {¢c}eck is a collection of Reset Maps, where for each e = (¢,¢’) € E,
(be : Ge — Dq/.
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State-Dependent Switching

General Form

State-Dependent Switching is typically defined by
e A family of dynamical systems, one for each switching region
e A set of regions, defined by switching surfaces

i(t) = {file®) () € D,
In this case, H = (Q,0, D, F,0,0), Q = {i}s_,, D ={D;}, F = {f}.

Example:
m _Jrt o e : \
Ta|

-1

[ 01 lxll , otherwise. \

0 -2 T2

Error Trajectories

Sliding Surface

s if 1 > 2o

If A\ € (—=1,1), the surface z; = x5 is stable. o) _
Note: State-Dependent Switching can also be defined by discrete-time
dynamics

e But this is Rare.
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State-Dependent Switching
Gain Scheduling and Logical Switching
Several Operating Points:

Table 11.2  Parameter Values at the Seven Operating Points

Time (s) t t t3 ta t5 to t7

ay(t) 1.593 1.485 1.269 1.130 0.896 0.559 0.398
a% (03] 0.285 0.192 0.147 0.118 0.069 0.055 0.043
ax(t) 260.559 | 266.415 | 196.737 | 137.385 | 129.201 66.338 | 51.003
az(t) 185.488 | 182.532 | 176.932 | 160.894 | 138.591 78.404 | 53.840
ag(t) 1.506 1.295 1.169 1.130 1.061 0599 0.421
as(t) 0.298 0.243 0217 0.191 0.165 0.105 0.078
by(t) 1.655 1.502 1.269 1.130 0.896 0559 0398
b'I (@ 0.295 0.195 0.147 0.118 0.069 0.055 0.043
by(t) 39.988 | —24.627 | —31.452 | —41.425 | —68.165 | —21.448 | —9.635
byt 159.974 | 170.532 | 182.030 | 184.093 | 154.608 89.853 | 59.587
by(t) 0771 0.652 0.680 0.691 0.709 0.360 0.243
bs(t) 0.254 0191 0.188 0.182 0.162 0.102 0.072

Dynamics:

z(t) = Az(t) + Bu(t)

Kyz(t), if |z(t)| <1
Kox(t), if |z(t)] €1,2]
Ksx(t), otherwise.

u(t) =

There can be a large array of gains.
M. Peet

In Gain Scheduling, the controller
switches depending on operating point.

el L el L L
i 445 1195 1955 230s 2M0s 3505 4005

Often used to control nonlinear systems

e Each controller designed for
linearized dynamics at a specific
operating point.
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State-Dependent Switching

Input Saturation and Queueing

A common source of state-dependent Switching is

Input power is limited: |u(t)] < s viout
z(t) = Azx(t) + Bu(t) " W
t KI(t) |u(t)| S S Saturation cuM
u =
sign(u)Ks |u(t)] > s

Another source of switching in congestion control is due to

o Packets arrive at rate u(t)

e Packets are processed at constant rate ¢ . /QHHLLH Hli [H
e Router can't process packets if queue is :. / = / yx fl
empty! ] H%H/ H%J
(1) = {u(t) —c¢ z(t) >0 OR u(t)—c>0
0 otherwise.
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State-Dependent Switching with Reset Maps

The General Form

Recall: H = (Q,E,D,F,G,R). Now, we add in
Guard Sets: G,

e A set of surfaces, typically the boundaries of D;.

e Dynamics are continuous until we encounter a guard set

i(t) = {fi(x(t)) if 2(t) € D; and a(t) & Gy, 5y for any j

e For e = {i,j}, G. are the points which transition the state from D, to D,
Reset Maps: ¢,
o If 2(t) € D; and z(t) € G, ;, we reset x to
T+ = @iy (T)

e Thus e = {1,j} implies ¢.(x) € D, for all
reD,NG,
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State-Dependent Switching with Reset Maps

The Bouncing Ball

Dynamics are & = —g until we hit the floor...

(Bouncing Ball) Define the hybrid system Hp as:

HB = (Q7E7DaFaGaR)

where
- Q={1)
o E={(1,1)}

e D:={reR?:1 >0}
G:={xcR%:2; =0, 2o <0}

F= {[f‘ﬂ },ie. i1 = x5 and @5 = —g.

R = ¢(z) = [0, —cx2]T. Here, ¢ < 1is the
coefficient of restitution.
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Zeno Equilibria

A Zeno Equilibrium is a point which is attractive, but is not an equilibrium
(f(ze) # 0).
The Bouncing Ball vividly illustrates the concept of a
Zeno Equilibrium.

e The floor is NOT an equilibrium! At
[Ihl‘g] = [070]

Y
1/2 114 " ve

Historical Note: Zeno of Elea (c. 490-430 BC) did not invent hybrid systems.

e Zeno's paradox rather illustrated the need for a concept of limit.

e Mostly irrelevant to Zeno equilibria
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Zeno Equilibria without Resets
Sliding Modes

The concept also applies to switching systems without resets
e Sliding Mode control forces trajectories to a desired Manifold

Consider this simple example (Not Sliding
Mode):

o )t —u x>0(D)
2(t) {—ca':+u x <0 (D).

Figure: lllustration of Sliding
Mode Control

T
fr= {—cx;— u}

T
f2= {—caj;—&— u}

The Origin is stable, but is not an equilibrium!
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Executions of Hybrid Systems : Formal Definition

Definition 2 (Hybrid System Execution).

We say that the tuple
’ P = (I,T,p,C)

where
e | C N index the time intervals when the trajectory continuously evolves.

o T ={T,};cr are the open time intervals when the trajectory continuously

evolves: T; = (73, Ti+1) C R} where T 1 = (Tiy1, Tit2).

e p: I — @ maps each interval to a discrete mode.

o C ={c¢;}icr are continuously differentiable functions where ¢; € C[T;].
is an execution of the hybrid system H = F(Q, E, D, F, G, R) with initial
condition (qo, xo) if
¢1(0) = xo and p(1) = qo.
¢i(t) = fp@iy(ci(t)) for t € T; for every i € I.
ci(t) € Dy for t € T; for every i € I.
ci(Tix1) € Gp(i),p(i+1)) for every i € I.

Ci+1(Ti+1) = Gp(i)p(i+1)) (Ci(T3)) for every i € I.

@ o= @Y =
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Hybrid Execution: Example

Bouncing Ball

(Bouncing Ball) For an initial condition zy = [0, v,

the Hybrid Execution is

XB = (IaT7pvc)

eI=1,---,00
o T; = [r4,Tit1] where 71 =0 and
. 2¢t " Lyg
Titl =Tt T

e pi=1
. _ -1 N _ 1 _ )2
Cz(t) =cC UO(t Tz) QQ(t Tz)

M. Peet
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Zeno Execution: Formal Definition

Note that an execution does not require lim;_,, 7, = 00, so the solution may
not be defined for all time.
e An execution with infinite transitions in finite time is called Zeno.

Definition 3 (Zeno Execution).
We say an execution x = (I, T, p, C) starting from (qo, o) of a hybrid System
H=(Q,E,D,F,G,R) is Zeno if

1. I=N

2. lim; oo 7 < 00

Question: is the bouncing ball a Zeno execution?

i

Z 2vg ;_
T = 7C7' 1

i=1 9

Taking the limit:
2 2 1
lim T = ﬂC—|— ﬂ
i—o0 g g 1—c

< o0

So this is a zeno execution!
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Zeno Equilibria: Formal Definition

Definition 4 (Zeno Equilibrium).
A set z = {24 }qeq With z4 € D, is a Zeno equilibrium of a Hybrid System
H=(Q,E,D,F,G,R) if it satisfies

1. For each edge e = (¢,¢') € E, z4 € G and ¢e(z4) = 24

2. fq(zq) #0 for all g € Q.

For any z € {z4}4ecq, where {z;}4c0 is a Zeno equilibrium of a cyclic hybrid
system H.,

(¢i_r0---0dy- i) (2) = 2

For the Bouncing Ball, L= ¢h (4, (¢,09))

is a Zeno Equilibrium.
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Zeno Behaviour: Simulation

Zeno Executions are Notoriously hard
to simulate accurately

e Simulation relies on numerical
integration

e But integration must stop when
state encounters guard

e As intervals become smaller, this
causes BIG problems

There are Specialized Software tools
which handle this problem well.

e HyEQ is freely available and
reliable

e Executions may still get stuck at
Zeno points.

Link:

M. Peet
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https://www.mathworks.com/videos/hyeq-a-toolbox-for-simulation-of-hybrid-dynamical-systems-81992.html

Avoiding Zeno with Logical and Hysteresis Switching

Thermostat Control

A Thermostat uses Memory to avoid Zeno behaviour.
e The thermostat is binary.
> It is either ON - u =1
» or OFF-u=0
e Controls to set point, say T' = 75°.
e But allows the temperature to vary in a Band £5°.
» Avoids Chattering associated with Zeno Executions

Control Logic:

> if u=1 and T>= 80 then

> u=0

> elseif u=0 and T<= 70 then
> u=1

> end

Temperature Dynamics:
T(t) = cw(T(t) — Te) + cqu(t)
e T, is the external temperature.
e ¢, is thermal resistance of the wall
e cq4 is the capacity of the HVAC
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Thermostat Control: The Hybrid Model

Control Logic:

> if u=1 and T>= 80 then
u=0

elseif u=0 and T<= 70 then
u=1

end

vV V V VvV

(Thermostat Control) For heating, define the hybrid system Hr as:
HT - (QaE7D7F7GaR)

where
° Q= {132}
L E:{Gl,eg}, 61:(1 2) 2(2 1)
o D :={Dy, D5}, D; = [70,80], Dy = [70, 80

o G:={G1,Ga}, G, ={T:T = 70}, Ge, ={T:T =280}
F={f,fo}, fi =co(T(t) = Te), fo = cu(T() = Tc) + cq.
e R=( - No Reset Map.
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The Thermostat Model with heating AND cooling

(Thermostat Control) To include heating and cooling, redefine Hr as:

HT == (QaEvaFvaR)
where

e Q=1{1,2,3}

o E={ej,ea}, e1=(1,2), ea=1(2,1), e3 = (1,3), eq = (3,1),
e D:={Dy,Dy,D3}, D1 = Dy = D3 =[70,80].

o G :={G1,G2},

Go, = {T:T =70,c0(T(t) —T.) <0}, Go, ={T:T =80},

Goy = {T:T =80,c0(T(t) ~T,) >0}, Go,={T:T=70,}
F={f1, f2},
fr=co(T(t)=Te), fo=cw(T(t)=Te)+cq fs=cu(T(t)—Te)—ce.

e R=( - No Reset Map.

Question: How to verify executions don't leave the domain?
Next Lecture: Stability and Control.
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