LMI Methods in Optimal and Robust Control

Matthew M. Peet Arizona State University

Lecture 19: Hybrid Systems

Hybrid Systems

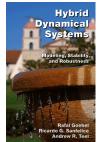
Suggested Text 1: Switching in Systems and Controls by Daniel Liberzon

Highly Recommend: One of the best texts in any field

Suggested Text 2:

Hybrid Dynamical Systems: Modeling, Stability, and Robustness

by R. Goebel; R. G. Sanfelice; A. R. Teel Link: Chapter 1 Available Online Here



What Are Hybrid Systems?

Classes of Hybrid Systems

State-Dependent Switching

$$\dot{x}(t) = \begin{cases} f_i(x(t)) & x(t) \in X_i \end{cases}$$

Systems with Logical States

$$\dot{x}(t) = \begin{cases} f_i(x(t)) & \sigma(t) \in X_i \end{cases}$$

$$\dot{\sigma}(t) = \begin{cases} h(\sigma(t)) & x(t) \notin G \end{cases}$$

and

$$\begin{cases} \sigma_+ = g(\sigma) & x \in G \end{cases}$$

Systems with Resets

$$\dot{x}(t) = \begin{cases} f(x(t)) & x(t) \notin G \end{cases}$$

and

$$\begin{cases} x_+ = g(x) & x \in G \end{cases}$$

Discontinuous Control

What Are Hybrid Systems?

General Definition

Definition 1 (Hybrid System).

A hybrid system H is a tuple:

$$H = (Q, E, D, F, G, R)$$

where

- Q is a finite collection of discrete modes, states or indices.
- $E \subset Q \times Q$ is a collection of edges.
- $D = \{D_q\}_{q \in Q}$ is the collection of Domains associated with the discrete states, where for each $q \in Q$, $D_q \subseteq \mathbb{R}^n$.
- $F = \{f_q\}_{q \in Q}$ is the collection of vector fields associated with the discrete states, where for each $q \in Q$, $f_q : D_q \to \mathbb{R}^n$.
- $G=\{G_e\}_{e\in E}$ is a collection of guard sets, each associated with an edge. where for each $e=(q,q')\in E$, $G_e\subset D_q$
- $R=\{\phi_e\}_{e\in E}$ is a collection of Reset Maps, where for each $e=(q,q')\in E$, $\phi_e:G_e\to D_{q'}.$

State-Dependent Switching

General Form

State-Dependent Switching is typically defined by

- A family of dynamical systems, one for each switching region
- A set of regions, defined by switching surfaces

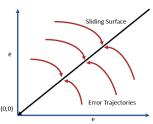
$$\dot{x}(t) = \begin{cases} f_i(x(t)) & x(t) \in D_i \end{cases}$$

In this case, $H=(Q,\emptyset,D,F,\emptyset,\emptyset)$, $Q=\{i\}_{i=1}^k$, $D=\{D_i\}$, $F=\{f_i\}$.

Example:

$$\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{cases} \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, & \text{if } x_1 > x_2 \\ \begin{bmatrix} -1 & 0 \\ 0 & -\lambda \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}, & \text{otherwise.} \end{cases}$$

If $\lambda \in (-1,1)$, the surface $x_1 = x_2$ is stable.



Note: State-Dependent Switching can also be defined by discrete-time dynamics

But this is Rare.

State-Dependent Switching

Gain Scheduling and Logical Switching

Several Operating Points:

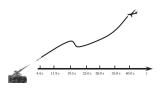
able 11.2	Parameter Values at the Seven Operating Points						
Time (s)	t ₁	t ₂	<i>t</i> ₃	t4	t ₅	t ₆	t7
$a_1(t)$	1.593	1.485	1.269	1.130	0.896	0.559	0.398
$a'_1(t)$	0.285	0.192	0.147	0.118	0.069	0.055	0.043
$a_2(t)$	260.559	266.415	196.737	137.385	129.201	66.338	51.003
$a_3(t)$	185.488	182.532	176.932	160.894	138.591	78.404	53.840
$a_4(t)$	1.506	1.295	1.169	1.130	1.061	0.599	0.421
$a_5(t)$	0.298	0.243	0.217	0.191	0.165	0.105	0.078
$b_1(t)$	1.655	1.502	1.269	1.130	0.896	0.559	0.398
$b'_1(t)$	0.295	0.195	0.147	0.118	0.069	0.055	0.043
$b_2(t)$	39.988	-24.627	-31.452	-41.425	-68.165	-21.448	-9.635
$b_3(t)$	159.974	170.532	182.030	184.093	154.608	89.853	59.587
$b_4(t)$	0.771	0.652	0.680	0.691	0.709	0.360	0.243
$b_5(t)$	0.254	0.191	0.188	0.182	0.162	0.102	0.072

Dynamics:

$$\dot{x}(t) = Ax(t) + Bu(t)$$

$$u(t) = \begin{cases} K_1x(t), & \text{if } |x(t)| \le 1\\ K_2x(t), & \text{if } |x(t)| \in [1, 2]\\ K_3x(t), & \text{otherwise.} \end{cases}$$

In **Gain Scheduling**, the controller switches depending on operating point.



Often used to control nonlinear systems

 Each controller designed for linearized dynamics at a specific operating point.

5 / 18

There can be a large array of gains.

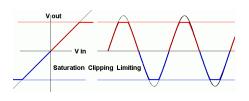
State-Dependent Switching

Input Saturation and Queueing

A common source of state-dependent Switching is *Input Saturation*

Input power is limited:
$$|u(t)| \leq s$$

$$\begin{split} \dot{x}(t) &= Ax(t) + Bu(t) \\ u(t) &= \begin{cases} Kx(t) & |u(t)| \leq s \\ \mathrm{sign}(u)Ks & |u(t)| > s \end{cases} \end{split}$$



Another source of switching in congestion control is due to Queueing

- Packets arrive at rate u(t)
- ullet Packets are processed at constant rate c
- Router can't process packets if queue is empty!

$$\dot{x}(t) = \begin{cases} u(t) - c & x(t) \geq 0 \text{ OR } u(t) - c > 0 \\ 0 & \text{otherwise.} \end{cases}$$

State-Dependent Switching with Reset Maps

The General Form

Recall: H = (Q, E, D, F, G, R). Now, we add in **Guard Sets:** G_e

- A set of surfaces, typically the boundaries of D_i .
- Dynamics are continuous until we encounter a guard set

$$\dot{x}(t) = \Big\{ f_i(x(t)) \quad \text{if } x(t) \in D_i \text{ and } x(t) \not \in G_{\{i,j\}} \text{ for any } j \in \mathcal{S}_{\{i,j\}} \text{ for any } j \in \mathcal{S}_{$$

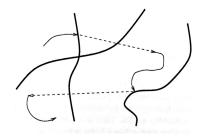
 \bullet For $e=\{i,j\}$, G_e are the points which transition the state from D_i to D_j

Reset Maps: ϕ_e

• If $x(t) \in D_i$ and $x(t) \in G_{i,j}$, we reset x to

$$x_+ = \phi_{\{i,j\}}(x)$$

• Thus $e = \{i, j\}$ implies $\phi_e(x) \in D_j$ for all $x \in D_i \cap G_e$



State-Dependent Switching with Reset Maps

The Bouncing Ball

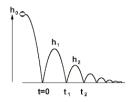
Dynamics are $\ddot{x}=-g$ until we hit the floor...

(**Bouncing Ball**) Define the hybrid system H_B as:

$$H_B = (Q, E, D, F, G, R)$$

where

- $Q = \{1\}$
- $E = \{(1,1)\}$
- $D := \{x \in \mathbb{R}^2 : x_1 \ge 0\}$
- $G := \{x \in \mathbb{R}^2 : x_1 = 0, x_2 \le 0\}$
- $F = {\begin{bmatrix} x_2 \\ -g \end{bmatrix}}$, i.e. $\dot{x}_1 = x_2$ and $\dot{x}_2 = -g$.
- $R = \phi(x) = [0, -cx_2]^T$. Here, c < 1 is the coefficient of restitution.



Zeno Equilibria

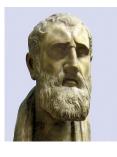
A **Zeno Equilibrium** is a point which is attractive, but is not an equilibrium $(f(x_e) \neq 0)$.

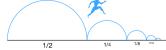
The Bouncing Ball vividly illustrates the concept of a Zeno Equilibrium.

• The floor is **NOT** an equilibrium! At $[x_1, x_2] = [0, 0]$

$$f(0) = \begin{bmatrix} 0 \\ -g \end{bmatrix}$$

Yet clearly the floor is a stable point.





Historical Note: Zeno of Elea (c. 490-430 BC) did not invent hybrid systems.

- Zeno's paradox rather illustrated the need for a concept of limit.
- Mostly irrelevant to Zeno equilibria

Zeno Equilibria without Resets

Sliding Modes

The concept also applies to switching systems without resets

• Sliding Mode control forces trajectories to a desired Manifold

Consider this simple example (Not Sliding Mode):

$$\ddot{x}(t) = \begin{cases} -c\dot{x} - u & x \ge 0 \ (D_1) \\ -c\dot{x} + u & x \le 0 \ (D_2). \end{cases}$$

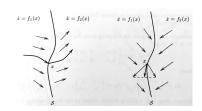


Figure: Illustration of Sliding Mode Control

$$f_1 = \begin{bmatrix} x_2 \\ -cx_2 - u \end{bmatrix}$$
$$f_2 = \begin{bmatrix} x_2 \\ -cx_2 + u \end{bmatrix}$$

The Origin is stable, but is not an equilibrium!

M. Peet

Lecture 19: 10 / 18

Executions of Hybrid Systems: Formal Definition

Definition 2 (Hybrid System Execution).

We say that the tuple

$$\chi = (I, T, p, C)$$

where

- \bullet $I\subseteq\mathbb{N}$ index the time intervals when the trajectory continuously evolves.
- $T = \{T_i\}_{i \in I}$ are the open time intervals when the trajectory continuously evolves: $T_i = (\tau_i, \tau_{i+1}) \subset \mathbb{R}^n_+$ where $T_{i+1} = (\tau_{i+1}, \tau_{i+2})$.
- $p:I\to Q$ maps each interval to a discrete mode.
- $C = \{c_i\}_{i \in I}$ are continuously differentiable functions where $c_i \in C[T_i]$.

is an execution of the hybrid system H=F(Q,E,D,F,G,R) with initial condition (q_0,x_0) if

- 1. $c_1(0) = x_0$ and $p(1) = q_0$.
- 2. $\dot{c}_i(t) = f_{p(i)}(c_i(t))$ for $t \in T_i$ for every $i \in I$.
- 3. $c_i(t) \in D_{p(i)}$ for $t \in T_i$ for every $i \in I$.
- **4.** $c_i(\tau_{i+1}) \in G_{(p(i),p(i+1))}$ for every $i \in I$.
- 5. $c_{i+1}(\tau_{i+1}) = \phi_{(p(i),p(i+1))}(c_i(\tau_i))$ for every $i \in I$.

M. Peet Lecture 19: 11 / 18

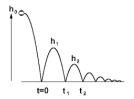
Hybrid Execution: Example

Bouncing Ball

(Bouncing Ball) For an initial condition $x_0=[0,v_0]$, the Hybrid Execution is

$$\chi_B = (I, T, p, C)$$

- $I=1,\cdots,\infty$
- $T_i = [\tau_i, \tau_{i+1}]$ where $\tau_1 = 0$ and $\tau_{i+1} := \tau_i + \frac{2c^{i-1}v_0}{a}$
- $p_i = 1$
- $c_i(t) = c^{i-1}v_0(t-\tau_i) \frac{1}{2}g(t-\tau_i)^2$



Zeno Execution: Formal Definition

Note that an execution does not require $\lim_{i\to\infty} \tau_i = \infty$, so the solution may not be defined for all time.

An execution with infinite transitions in finite time is called Zeno.

Definition 3 (Zeno Execution).

We say an execution $\chi=(I,T,p,C)$ starting from (q_0,x_0) of a hybrid System H=(Q,E,D,F,G,R) is Zeno if

- 1. $I=\mathbb{N}$
- 2. $\lim_{i\to\infty} \tau_i < \infty$

Question: is the bouncing ball a Zeno execution?

$$\tau_i = \sum_{i=1}^{i} \frac{2v_0}{g} c^{i-1}$$

Taking the limit:

$$\lim_{i \to \infty} \tau_i = \frac{2v_0}{g}c + \frac{2v_0}{g}\frac{1}{1-c} < \infty$$

So this is a zeno execution!

Zeno Equilibria: Formal Definition

Definition 4 (Zeno Equilibrium).

A set $z=\{z_q\}_{q\in Q}$ with $z_q\in D_q$ is a Zeno equilibrium of a Hybrid System H=(Q,E,D,F,G,R) if it satisfies

- 1. For each edge $e=(q,q')\in E$, $z_q\in G_e$ and $\phi_e(z_q)=z_{q'}.$
- 2. $f_q(z_q) \neq 0$ for all $q \in Q$.

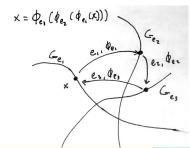
For any $z\in\{z_q\}_{q\in Q}$, where $\{z_q\}_{q\in Q}$ is a Zeno equilibrium of a cyclic hybrid system H_c ,

$$\left(\phi_{i-1}\circ\cdots\circ\phi_0\cdots\phi_i\right)(z)=z$$

For the Bouncing Ball,

$$z = \left\{ \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right\}$$

is a Zeno Equilibrium.



Zeno Behaviour: Simulation

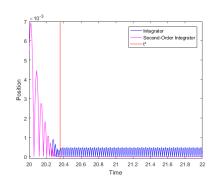
Zeno Executions are **Notoriously** hard to simulate accurately

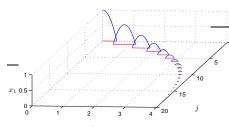
- Simulation relies on numerical integration
- But integration must stop when state encounters guard
- As intervals become smaller, this causes BIG problems

There are Specialized Software tools which handle this problem well.

- HyEQ is freely available and reliable
- Executions may still get stuck at Zeno points.

Link: HyEQ Hybrid System Simulator





Avoiding Zeno with Logical and Hysteresis Switching

Thermostat Control

A Thermostat uses **Memory** to avoid Zeno behaviour.

- The thermostat is binary.
 - ▶ It is either ON u = 1
 - ightharpoonup or OFF u=0
- Controls to set point, say $T = 75^{\circ}$.
- ullet But allows the temperature to vary in a Band $\pm 5^{\circ}$.
 - Avoids Chattering associated with Zeno Executions

Control Logic:

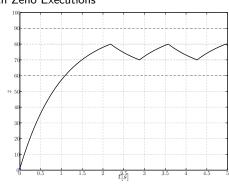
$$>$$
 if u=1 and T>= 80 then

> end

Temperature Dynamics:

$$\dot{T}(t) = c_w(T(t) - T_e) + c_q u(t)$$

- T_e is the external temperature.
- ullet c_w is thermal resistance of the wall
- c_q is the capacity of the HVAC



Thermostat Control: The Hybrid Model

Control Logic:

```
> if u=1 and T>= 80 then
> u=0
> elseif u=0 and T<= 70 then
> u=1
```

(Thermostat Control) For heating, define the hybrid system H_T as:

 $H_T = (Q, E, D, F, G, R)$

where

> end

•
$$Q = \{1, 2\}$$

•
$$E = \{e_1, e_2\}, e_1 = (1, 2), e_2 = (2, 1)$$

•
$$D := \{D_1, D_2\}, D_1 = [70, 80], D_2 = [70, 80]$$

•
$$G := \{G_1, G_2\}, G_{e_1} = \{T : T = 70\}, G_{e_2} = \{T : T = 80\}$$

•
$$F = \{f_1, f_2\}, f_1 = c_w(T(t) - T_e), f_2 = c_w(T(t) - T_e) + c_q$$

• $R = \emptyset$ - No Reset Map.

M. Peet Lecture 19: 17 / 18

The Thermostat Model with heating AND cooling

(Thermostat Control) To include heating and cooling, redefine H_T as:

where

$$H_T = (Q, E, D, F, G, R)$$

•
$$Q = \{1, 2, 3\}$$

•
$$E = \{e_1, e_2\}$$
, $e_1 = (1, 2)$, $e_2 = (2, 1)$, $e_3 = (1, 3)$, $e_4 = (3, 1)$,

•
$$D := \{D_1, D_2, D_3\}, D_1 = D_2 = D_3 = [70, 80].$$

•
$$G := \{G_1, G_2\},\$$

$$G_{e_1} = \{T : T = 70, c_w(T(t) - T_e) < 0\}, \quad G_{e_2} = \{T : T = 80\},$$

 $G_{e_3} = \{T : T = 80, c_w(T(t) - T_e) > 0\}, \quad G_{e_4} = \{T : T = 70, \}$

•
$$F = \{f_1, f_2\},$$

$$f_1 = c_w(T(t) - T_e), \quad f_2 = c_w(T(t) - T_e) + c_q, \quad f_3 = c_w(T(t) - T_e) - c_c.$$

• $R = \emptyset$ - No Reset Map.

Question: How to verify executions don't leave the domain? **Next Lecture:** Stability and Control.

M. Peet Lecture 19: 18 / 18