
LMI Methods in Optimal and Robust Control

Matthew M. Peet
Arizona State University

Lecture 19: Hybrid Systems

Hybrid Systems

Suggested Text 1: Switching in Systems and Controls
by Daniel Liberzon

Highly Recommend: One of the best texts in any field

Suggested Text 2:
Hybrid Dynamical Systems: Modeling, Stability, and Robustness
by R. Goebel; R. G. Sanfelice; A. R. Teel
Link: Chapter 1 Available Online Here

M. Peet Lecture 19: 1 / 18

https://hybrid.soe.ucsc.edu/sites/default/files/preprints/65.pdf

What Are Hybrid Systems?
Classes of Hybrid Systems

State-Dependent Switching

ẋ(t) =
{
fi(x(t)) x(t) ∈ Xi

Systems with Resets

ẋ(t) =
{
f(x(t)) x(t) 6∈ G

and {
x+ = g(x) x ∈ G

Systems with Logical States

ẋ(t) =
{
fi(x(t)) σ(t) ∈ Xi

σ̇(t) =
{
h(σ(t)) x(t) 6∈ G

and {
σ+ = g(σ) x ∈ G

Discontinuous Control

M. Peet Lecture 19: 2 / 18

What Are Hybrid Systems?
General Definition

Definition 1 (Hybrid System).

A hybrid system H is a tuple:

H = (Q,E,D, F,G,R)
where

• Q is a finite collection of discrete modes, states or indices.

• E ⊂ Q×Q is a collection of edges.

• D = {Dq}q∈Q is the collection of Domains associated with the discrete
states, where for each q ∈ Q, Dq ⊆ Rn.

• F = {fq}q∈Q is the collection of vector fields associated with the discrete
states, where for each q ∈ Q, fq : Dq → Rn.

• G = {Ge}e∈E is a collection of guard sets, each associated with an edge.
where for each e = (q, q′) ∈ E, Ge ⊂ Dq

• R = {φe}e∈E is a collection of Reset Maps, where for each e = (q, q′) ∈ E,
φe : Ge → Dq′ .

M. Peet Lecture 19: 3 / 18

State-Dependent Switching
General Form

State-Dependent Switching is typically defined by

• A family of dynamical systems, one for each switching region

• A set of regions, defined by switching surfaces

ẋ(t) =
{
fi(x(t)) x(t) ∈ Di

In this case, H = (Q, ∅, D, F, ∅, ∅), Q = {i}ki=1, D = {Di}, F = {fi}.
Example:

[
ẋ1
ẋ2

]
=





[
0 1

−1 0

][
x1

x2

]
, if x1 > x2

[
−1 0

0 −λ

][
x1

x2

]
, otherwise.

If λ ∈ (−1, 1), the surface x1 = x2 is stable.

Note: State-Dependent Switching can also be defined by discrete-time
dynamics

• But this is Rare.

M. Peet Lecture 19: 4 / 18

State-Dependent Switching
Gain Scheduling and Logical Switching

Several Operating Points:

Dynamics:

ẋ(t) = Ax(t) +Bu(t)

u(t) =





K1x(t), if |x(t)| ≤ 1

K2x(t), if |x(t)| ∈ [1, 2]

K3x(t), otherwise.

There can be a large array of gains.

In Gain Scheduling, the controller
switches depending on operating point.

4.4 s 11.9 s 19.5 s 23.0 s 28.0 s 35.0 s 40.0 s t

Often used to control nonlinear systems

• Each controller designed for
linearized dynamics at a specific
operating point.

M. Peet Lecture 19: 5 / 18

State-Dependent Switching
Input Saturation and Queueing

A common source of state-dependent Switching is Input Saturation

Input power is limited: |u(t)| ≤ s

ẋ(t) = Ax(t) +Bu(t)

u(t) =

{
Kx(t) |u(t)| ≤ s
sign(u)Ks |u(t)| > s

Another source of switching in congestion control is due to Queueing

• Packets arrive at rate u(t)

• Packets are processed at constant rate c

• Router can’t process packets if queue is
empty!

ẋ(t) =

{
u(t)− c x(t) ≥ 0 OR u(t)− c > 0

0 otherwise.

M. Peet Lecture 19: 6 / 18

State-Dependent Switching with Reset Maps
The General Form

Recall: H = (Q,E,D, F,G,R). Now, we add in
Guard Sets: Ge

• A set of surfaces, typically the boundaries of Di.

• Dynamics are continuous until we encounter a guard set

ẋ(t) =
{
fi(x(t)) if x(t) ∈ Di and x(t) 6∈ G{i,j} for any j

• For e = {i, j}, Ge are the points which transition the state from Di to Dj

Reset Maps: φe

• If x(t) ∈ Di and x(t) ∈ Gi,j , we reset x to

x+ = φ{i,j}(x)

• Thus e = {i, j} implies φe(x) ∈ Dj for all
x ∈ Di ∩Ge

M. Peet Lecture 19: 7 / 18

State-Dependent Switching with Reset Maps
The Bouncing Ball

Dynamics are ẍ = −g until we hit the floor...

(Bouncing Ball) Define the hybrid system HB as:

HB = (Q,E,D, F,G,R)

where

• Q = {1}
• E = {(1, 1)}
• D := {x ∈ R2 : x1 ≥ 0}
• G := {x ∈ R2 : x1 = 0, x2 ≤ 0}

• F = {
[
x2
−g

]
}, i.e. ẋ1 = x2 and ẋ2 = −g.

• R = φ(x) = [0,−cx2]T . Here, c < 1 is the
coefficient of restitution.

M. Peet Lecture 19: 8 / 18

Zeno Equilibria

A Zeno Equilibrium is a point which is attractive, but is not an equilibrium
(f(xe) 6= 0).

The Bouncing Ball vividly illustrates the concept of a
Zeno Equilibrium.

• The floor is NOT an equilibrium! At
[x1, x2] = [0, 0]

f(0) =

[
0
−g

]

• Yet clearly the floor is a stable point.

Historical Note: Zeno of Elea (c. 490-430 BC) did not invent hybrid systems.

• Zeno’s paradox rather illustrated the need for a concept of limit.
• Mostly irrelevant to Zeno equilibria

M. Peet Lecture 19: 9 / 18

Zeno Equilibria without Resets
Sliding Modes

The concept also applies to switching systems without resets
• Sliding Mode control forces trajectories to a desired Manifold

Consider this simple example (Not Sliding
Mode):

ẍ(t) =

{
−cẋ− u x ≥ 0 (D1)

−cẋ+ u x ≤ 0 (D2).

Figure: Illustration of Sliding
Mode Control

f1 =

[
x2

−cx2 − u

]

f2 =

[
x2

−cx2 + u

]

The Origin is stable, but is not an equilibrium!

f1(0) =

[
0
−u

]
, f1(0) =

[
0
u

]M. Peet Lecture 19: 10 / 18

Executions of Hybrid Systems : Formal Definition

Definition 2 (Hybrid System Execution).

We say that the tuple
χ = (I, T, p, C)

where

• I ⊆ N index the time intervals when the trajectory continuously evolves.

• T = {Ti}i∈I are the open time intervals when the trajectory continuously
evolves: Ti = (τi, τi+1) ⊂ Rn

+ where Ti+1 = (τi+1, τi+2).

• p : I → Q maps each interval to a discrete mode.

• C = {ci}i∈I are continuously differentiable functions where ci ∈ C[Ti].
is an execution of the hybrid system H = F (Q,E,D, F,G,R) with initial
condition (q0, x0) if

1. c1(0) = x0 and p(1) = q0.

2. ċi(t) = fp(i)(ci(t)) for t ∈ Ti for every i ∈ I.

3. ci(t) ∈ Dp(i) for t ∈ Ti for every i ∈ I.

4. ci(τi+1) ∈ G(p(i),p(i+1)) for every i ∈ I.

5. ci+1(τi+1) = φ(p(i),p(i+1))(ci(τi)) for every i ∈ I.

M. Peet Lecture 19: 11 / 18

Hybrid Execution: Example
Bouncing Ball

(Bouncing Ball) For an initial condition x0 = [0, v0],
the Hybrid Execution is

χB = (I, T, p, C)

• I = 1, · · · ,∞
• Ti = [τi, τi+1] where τ1 = 0 and

τi+1 := τi +
2ci−1v0

g

• pi = 1

• ci(t) = ci−1v0(t− τi)− 1
2g(t− τi)2

M. Peet Lecture 19: 12 / 18

Zeno Execution: Formal Definition

Note that an execution does not require limi→∞ τi =∞, so the solution may
not be defined for all time.

• An execution with infinite transitions in finite time is called Zeno.

Definition 3 (Zeno Execution).

We say an execution χ = (I, T, p, C) starting from (q0, x0) of a hybrid System
H = (Q,E,D, F,G,R) is Zeno if

1. I = N
2. limi→∞ τi <∞

Question: is the bouncing ball a Zeno execution?

τi =

i∑

i=1

2v0
g
ci−1

Taking the limit:

lim
i→∞

τi =
2v0
g
c+

2v0
g

1

1− c <∞

So this is a zeno execution!
M. Peet Lecture 19: 13 / 18

Zeno Equilibria: Formal Definition

Definition 4 (Zeno Equilibrium).

A set z = {zq}q∈Q with zq ∈ Dq is a Zeno equilibrium of a Hybrid System
H = (Q,E,D, F,G,R) if it satisfies

1. For each edge e = (q, q′) ∈ E, zq ∈ Ge and φe(zq) = zq′ .

2. fq(zq) 6= 0 for all q ∈ Q.

For any z ∈ {zq}q∈Q, where {zq}q∈Q is a Zeno equilibrium of a cyclic hybrid
system Hc,

(φi−1 ◦ · · · ◦ φ0 · · ·φi) (z) = z

For the Bouncing Ball,

z =

{[
0
0

]}

is a Zeno Equilibrium.

M. Peet Lecture 19: 14 / 18

Zeno Behaviour: Simulation

Zeno Executions are Notoriously hard
to simulate accurately

• Simulation relies on numerical
integration

• But integration must stop when
state encounters guard

• As intervals become smaller, this
causes BIG problems

There are Specialized Software tools
which handle this problem well.

• HyEQ is freely available and
reliable

• Executions may still get stuck at
Zeno points.

Link: HyEQ Hybrid System Simulator

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−0.5

0

0.5

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−0.5

0

0.5

1

flows [t]

jumps [j]

x1

x1

(a) Height

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
−5

0

5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
−5

0

5

flows [t]

jumps [j]

x2

x2

(b) Velocity

0

5

10

15

200 1 2 3 4
0

0.5

1

x1

t

j

(c) Simulated solution vs. (t, j)

Figure 3: Simulated solution to system in Sec-
tion 3.1.

solution to the bouncing ball system from x0= [1, 0]⊤ and
with TSPAN= [0 10], JSPAN= [0 20], rule= 1, γ = 9.81,
and λ = 0.8 is depicted in Figure 3(a) (height) and Fig-
ure 3(b) (velocity). Both the projection onto t using plot-

flows and onto j using plotjumps are shown. Figure 3(c)
depicts the corresponding hybrid arc for the position state
using plotHybridArc.

3.2 A system with special event detection
Consider the hybrid equation with data

f(x) :=

[
−x2

0

]
, C := {x ∈ R× {−1, 1} | x1 > 0} ∪

{x ∈ R× {−1, 1} | x1 < 0},
g(x) :=

[
−x2

−x2

]
, D := {x ∈ R× {−1, 1} | x1 = 0} .

The trajectories to this system are such that x1 flows accord-
ing to ẋ1 = 1 when x2 = −1 and according to ẋ1 = −1 when
x2 = 1, and, when x1 hits zero, then x1 is reset to 1 or to
−1, respectively. Unfortunately, the jump condition is frag-
ile and numerical errors would prevent from being satisfied.

So that the simulated solution jumps when x1 crosses zero,
a zero-crossing detection algorithm could be used. Figure 4
shows a construction of the jump set that exploits the capa-
bilities of Simulink’s block Hit Crossing, which will not miss
the crossing of x1 by zero and, hence, trigger a jump. A
trajectory for this system from x0= [2, 1] is depicted in Fig-
ure 4(b) (projected onto t and j) with jumps at the correct
instants.

This model simulates a hybrid system.

state

x

jumps

j

jump map g

x xplus

g

flows

t

flow set C

x v

C

flow map f

x xdot

f

Integrator System

f

C

g

D

x

t

j

x�

Double Click

to Initialize

Double Click to

Plot Solutions

Hit

Crossing

(a) HyEQ Simulator with Hit Crossing block.

0 2 4 6 8 10
−1

0

1

2

0 2 4 6 8 10
−1

−0.5

0

0.5

1

flows [t]

flows [t]

x1

x2

(b) Simulated solution with Hit Crossing block.

Figure 4: HyEQ Simulator using zero-crossing de-
tection to detect jumps and a trajectory.

3.3 An interconnected system w/multiple jumps
Consider the synchronization of two impulse-coupled os-

cillators. The timers within each oscillator are modeled as
periodic oscillators with timer state xi, i = 1, 2, evolving
on the unitary interval [0, 1]. When the i-th state reaches
xi = 1, the said state is reset to zero but the state of the
other timer is reset via x+

j = max{1, (1+ε)xj}, where ε > 0
is a constant coefficient. It can be shown that the timers con-
verge to each other asymptotically, for almost every initial
condition [9]. This model has been used in the literature to
model impulse-coupled oscillators in nature (fireflies, crick-
ets, Parkinson’s disease, etc.). Each timer can be modeled

M. Peet Lecture 19: 15 / 18

https://www.mathworks.com/videos/hyeq-a-toolbox-for-simulation-of-hybrid-dynamical-systems-81992.html

Avoiding Zeno with Logical and Hysteresis Switching
Thermostat Control

A Thermostat uses Memory to avoid Zeno behaviour.
• The thermostat is binary.

I It is either ON - u = 1
I or OFF - u = 0

• Controls to set point, say T = 75◦.
• But allows the temperature to vary in a Band ±5◦.

I Avoids Chattering associated with Zeno Executions

Control Logic:
> if u=1 and T>= 80 then

> u=0

> elseif u=0 and T<= 70 then

> u=1

> end

Temperature Dynamics:

Ṫ (t) = cw(T (t)− Te) + cqu(t)

• Te is the external temperature.
• cw is thermal resistance of the wall
• cq is the capacity of the HVAC

INTRODUCTION

hsbook December 16, 2011 6x9

17

if q=1 and z >= 80 then

q = 0

elseif q = 0 and z <= 70 then

q = 1

end

This algorithm implements the following logic: if the heater is “on” and the
temperature is larger than 80, then turn off the heater, while if the heater is
“off” and the temperature is smaller than 70, then turn on the heater. With
this algorithm, the temperature of the system evolves as shown in Figure 1.10,
where parameters z0 = 60 and z∆ = 30 were used.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0
0

10

20

30

40

50

60

70

80

90

100

t[s]

z

Figure 1.10: Temperature control. Evolution of temperature with control algo-
rithm.

The control logic above results in a hybrid system of the form (1.10) with

Fq(z) := −z + z0 + z∆q, Gq(z) :=

(
1− q
z

)
,

C0 := {z : z > 70} , C1 := {z : z < 80} ,
D0 := {z : z ≤ 70} , D1 := {z : z ≥ 80} .

1.4.2 Hybrid automata

Systems with explicit “discrete states” or “logical modes” where, in each logical
mode, different jump maps are specified on different subsets of a jump set, or
where the jumps are modeled by an automaton, can also be molded into the
framework of (1.1). Such systems are usually given by

• a set of modes Q, which is identified here with {1, 2, . . . , qmax};

Copyrighted Material

M. Peet Lecture 19: 16 / 18

Thermostat Control: The Hybrid Model

Control Logic:
> if u=1 and T>= 80 then

> u=0

> elseif u=0 and T<= 70 then

> u=1

> end

(Thermostat Control) For heating, define the hybrid system HT as:

HT = (Q,E,D, F,G,R)
where

• Q = {1, 2}
• E = {e1, e2}, e1 = (1, 2) ,e2 = (2, 1)

• D := {D1, D2}, D1 = [70, 80], D2 = [70, 80]

• G := {G1, G2}, Ge1 = {T : T = 70}, Ge2 = {T : T = 80}
• F = {f1, f2}, f1 = cw(T (t)− Te), f2 = cw(T (t)− Te) + cq.

• R = ∅ - No Reset Map.

M. Peet Lecture 19: 17 / 18

The Thermostat Model with heating AND cooling

(Thermostat Control) To include heating and cooling, redefine HT as:

HT = (Q,E,D, F,G,R)
where

• Q = {1, 2, 3}
• E = {e1, e2}, e1 = (1, 2), e2 = (2, 1), e3 = (1, 3), e4 = (3, 1),

• D := {D1, D2, D3}, D1 = D2 = D3 = [70, 80].

• G := {G1, G2},

Ge1 = {T : T = 70, cw(T (t)− Te) < 0}, Ge2 = {T : T = 80},

Ge3 = {T : T = 80, cw(T (t)− Te) > 0}, Ge4 = {T : T = 70, }
• F = {f1, f2},

f1 = cw(T (t)− Te), f2 = cw(T (t)− Te) + cq, f3 = cw(T (t)− Te)− cc.

• R = ∅ - No Reset Map.

Question: How to verify executions don’t leave the domain?
Next Lecture: Stability and Control.

M. Peet Lecture 19: 18 / 18

