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Introduction

In this Lecture, you will learn:

Coplanar Orbital Maneuvers

• Impulsive Maneuvers
I ∆v

• Single Burn Maneuvers

• Hohmann transfers
I Elliptic
I Circular

Numerical Problem: Suppose we are in a circular parking orbit at an altitude
of 191.34km and we want to raise our altitude to 35,781km. Describe the
required orbital maneuvers (time and ∆v).
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Changing Orbits

Suppose we have designed our ideal orbit.

• We have chosen a, e, i, Ω, ω

• For now, we don’t care about f
I Lambert’s Problem

• Don’t care about efficiency

Question:

• Given an object with position, ~r and velocity ~v.

• How to move the object into a desired orbit?

Unchanged, the object will remain in initial orbit indefinitely.
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Impulsive Orbit Maneuvers

Orbit maneuvers are made through changes in velocity.

• ~r and ~v determine orbital elements.

• For fixed ~r, changes in ~v map to changes in orbital elements.
I Set of achievable orbits is limited.
I Only 3 degrees of freedom.
I Orbit must pass through ~r.
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Impulsive Orbit Maneuvers

Velocity change is caused by thrust.

• For constant thrust, F ,

v(t) = v(0) +
F

m
∆t

• for a desired ∆v, the time needed is

∆t =
m∆v

F

The change in position is

∆~r(t) =
m∆v2

F

• For fixed ∆v, if m
F

is small, the ∆~r is small

• We will assume ∆~r = 0
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The ∆v Maneuver

∆v refers to the difference between the initial and final velocity vectors.

A ∆v maneuver can:

• Raise/lower the apogee/perigee

• A change in inclination

• Escape

• Reduction/Increase in period

• Change in RAAN

• Begin a 2+ maneuver sequence of
burns.

I Creates a Transfer Orbit.

We’ll start by talking about coplanar maneuvers.
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Single Burn Coplanar Maneuvers

Definition 1.

Coplanar Maneuvers are those which do not alter i or Ω.

Example: Simple Tangential Burn
• For maximim efficiency, a burn must occur at 0◦ flight path angle

I ṙ = 0

• Tangential burns can occur at perigee and apogee
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Example: Parking Orbits

Suppose we launch from the surface of the earth.

• This creates an initial elliptic orbit which will re-enter.

• To circularize the orbit, we plan on using a burn at apogee.

Problem: We are given a and e of the initial elliptic orbit. Calculate the ∆v
required at apogee to circularize the orbit.
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Example: Parking Orbits

Solution: At apogee, we have that

ra = a(1 + e)

From the vis-viva equation, we can calculate the velocity at apogee.

va =

√

µ

(

2

ra
− 1

a

)

=

√

µ

a

(

1− e

(1 + e)

)

However, for a circular orbit at the same point, we calculate from vis-viva

vc =

√

µ

ra
=

√

µ

a(1 + e)

Therefore, the ∆v required to circularize the orbit is

∆v = vc − va =

√

µ

a(1 + e)
−
√

µ

a

(

1− e

(1 + e)

)

=
µ

a(1 + e)

(

1−
√
1− e

)

• It is unusual to launch directly into the desired orbit.
• Instead we use the parking orbit while waiting for more complicated orbital
maneuvers.
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Coplanar Two-Impulse Orbit Transfers

Most orbits cannot be achieved using a single burn.

Definition 2.

• The Initial Orbit is the orbit we want to leave.

• The Target Orbit is the orbit we want to achieve.

• The Transfer Orbit is an orbit which intersects both the initial orbit and
target orbit.

Step 1: Design a transfer orbit (a,e,i, etc.).

Step 2: Calculate ~vtr,1 at the point of
intersection with initial orbit.

Step 3: Calculate initial burn to maneuver into
transfer orbit.

∆v1 = ~vtr,1 − ~vinit
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Coplanar Two-Impulse Orbit Transfers

Step 4: Calculate ~vtr,2 at the point of intersection with target orbit.

Step 5: Calculate velocity of the target orbit, ~vfin, at the point of intersection
with transfer orbit.

Step 6: Calculate the final burn to maneuver into target orbit.

∆v2 = ~vfin − ~vtr,2
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Transfer Orbits

There are many orbits which intersect both the initial and target orbits.

However, there are some constraints.

Consider

• Circular initial orbit of radius r2

• Circular target orbit of radius r1

Obviously, the transfer orbit must satisfy

rp =
p

1 + e
≤ r1

and
ra =

p

1− e
≥ r2
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Transfer Orbits in Fixed Time
Lambert’s Problem

Occasionally, we want to arrive at

• A certain point in the target orbit, ~r2

• at a certain time, tf

Finding the necessary transfer orbit is Lambert’s Problem.

Primary Applications are:

• Targeting

• Rendez-vous

We are skipping the section on
Lambert’s problem.
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Transfer Costs

The cost of a transfer orbit can be calculated using kinetic energy arguments

Ecost =
‖∆v1‖2 + ‖∆v2‖2

2

Of course, this doesn’t tell us how good the transfer orbit is.

• The energy difference between 2 orbits must come from somewhere.

∆Emin = − µ

2a2
+

µ

2a1

• The closer Ecost is to Emin, the more efficient the transfer

• More on this effect later
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The Hohmann Transfer

The Hohmann transfer is the energy-optimal two burn maneuver between any
two coaxial elliptic orbits.

• Proposed by Hohmann (1925)
I Why?

• Proven for circular orbits by Lawden (1952)

• Proven for coaxial ellipses by Thompson (1986)
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The Hohmann Transfer

We will first consider the circular case.

Theorem 3 (The Hohmann Conjecture).

The energy-optimal transfer orbit between two circular orbits of radii r1 and r2
is an elliptic orbit with

rp = r1 and ra = r2

This yields the orbital elements of the transfer orbit (a, e) as

a =
r1 + r2

2
and e = 1− rp

a
=

r2 − r1
r2 + r1
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The Hohmann Transfer

To calculate the required ∆v1 and ∆v2, the initial velocity is the velocity of a
circular orbit of radius r1

vinit =

√

µ

r1

The required initial velocity is that of the transfer orbit at perigee. From the
vis-viva equation,

vtrans,p =

√

2µ

r1
− µ

a
=
√

2µ

√

1

r1
− 1

r1 + r2
=

√

2µ
r2

r1(r1 + r2)

So the initial ∆v1 is

∆v1 = vtrans,p − vinit =

√

2µ
r2

r1(r1 + r2)
−
√

µ

r1
=

√

µ

r1

(√

2r2
(r1 + r2)

− 1

)

The velocity of the transfer orbit at apogee is

vtrans,a =

√

2µ

r2
− µ

a
=

√

2µ
r1

r2(r1 + r2)
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The Hohmann Transfer

The required velocity for a circular orbit at apogee is

vfin =

√

µ

r2

So the final ∆v2 is

∆v2 = vfin − vtrans,a =

√

µ

r2
−
√

2µ
r1

r2(r1 + r2)
=

√

µ

r2

(

1−
√

2r1
(r1 + r2)

)

Thus we conclude to raise a circular orbit from radius r1 to radius r2, we use

∆v1 =

√

µ

r1

(√

2r2
(r1 + r2)

− 1

)

∆v2 =

√

µ

r2

(

1−
√

2r1
(r1 + r2)

)
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Hohmann Transfer Illustration
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The Hohmann Transfer
Transfer Time

The Hohmann transfer is optimal

• Only for impulsive transfers
I Continuous Thrust is not considered

• Only for two impulse transfers
I A three impulse transfer can be better
I Bi-elliptics are better

The transfer time is simply half the period of
the orbit. Hence

∆t =
τ

2
= π

√

a3

µ

= π

√

(r1 + r2)3

2µ

The Hohmann transfer is also the Maximum Time 2-impulse Transfer.

• Always a tradeoff between time and efficiency

• Bielliptic Transfers extend this tradeoff.
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Numerical Example

Problem: Suppose we are in a circular parking orbit at an altitude of 191.34km
and we want to raise our altitude to 35,781km. Describe the required orbital
maneuvers (time and ∆v).

Solution: We will use a Hohmann transfer between circular orbits of

r1 = 191.35km+1ER= 1.03ER and r2 = 35781km+1ER = 6.61ER

The initial velocity is

vi =

√

µ

r1
= .985

ER

TU

The transfer ellipse has a = r1+r2
2

= 3.82ER. The velocity at perigee is

vtrans,1 =

√

2µ

r1
− µ

a
= 1.296

ER

TU

Thus the initial ∆v is ∆v1 = 1.296− .985 = .315ER
TU

.
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Numerical Example

The velocity at apogee is

vtrans,1 =

√

2µ

r2
− µ

a
= .202

ER

TU

However, the required velocity for a circular
orbit at radius r2 is

vf =

√

µ

r2
= .389

ER

TU

Thus the final ∆v is ∆v2 = .389− .202 = .182ER
TU

. The second ∆v maneuver
should be made at time

tfin = π

√

a3

µ
= 23.45TU = 5.256hr

The total ∆v budget is .497ER/TU .
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The Elliptic Hohmann Transfer

The Hohmann transfer is also energy optimal for coaxial elliptic orbits.

The only ambiguity is whether to make the initial burn at perigee or apogee.
• Need to check both cases
• Often better to make initial burn at perigee

I Due to Oberth Effect
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Summary

This Lecture you have learned:

Coplanar Orbital Maneuvers

• Impulsive Maneuvers
I ∆v

• Single Burn Maneuvers

• Hohmann transfers
I Elliptic
I Circular

Next Lecture: Oberth Effect, Bi-elliptics, Out-of-plane maneuvers.
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