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Lecture 2: Systems Defined by Differential Equations



Introduction

In this Lecture, you will learn:

How to use differential equations to define a System.
e |dentify the inputs and outputs
e Model the dynamics

> Newton’s Laws
> Voltage Laws

e Put in First-Order (State-Space) Form

Later, we'll discuss linearization and the Laplace transform.
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Lets Start with an Example

Cruise Control

Plant:
e Input: Throttle Position, 6..
e Output: Real Velocity, v,.

e Dynamics: A simple proportional
gain (no dynamics).

v, =106,

The gain factor is 10mph/°
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Cruise Control
Open Loop Control

First lets start with open loop control

Desired
Speed

Actuator: Throttle

Controller:

e Input: Desired Velocity, vg.

Control
System

Gas

e Output: Throttle, 6..

Y

Engine —
Speed

Because the plant is simple, we will use a simple controller based on our
understanding of the plant.
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Cruise Control
Closed Loop Control

Now lets try using closed loop control

Control Engine

i Syst
P e

Y
Y

Actuator: Throttle
Sensor: Real Velocity
Controller:

e Input: Error in Velocity, e, = v, — vgq.

e Output: Throttle, 6.
Our controller is static and uses no knowledge of the plant. It simply amplifies
the error signal by a factor k. Any positive value of k will work.

O =—k-e,=—k (v, —vq)
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Closed Loop vs. Open Loop

: Two relations:

1
v, = 10 - 0, and 0. = Evd

we have

1
Vyp = 10Evd = W)y

So there is no error in the open-loop control

: We also have two relations:
v, =10 -6, and 0. = —k (vr — vq)

Combining these, we get vy, = —10 - k(vy — vg).
Solving for velocity, v,., we get for k = 10,

10 - k 100

T 10-£04T 101

Vd = .99’Ud.
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Impact of Error and Disturbances

Comparison:
e Open Loop: No final error

e Closed Loop: Small final error

» Error can be made arbitrarily by letting kK — oo, which makes

_10-k
T 1410k

Ur V4 — Ud.
» Error can be eliminated entirely using a dynamic controller.

Question: What happens when things aren't perfect?
Problems:

e Modeling Error: Suppose our model is off by 10%, so that
v, =11-6,
e Disturbance: An Incline, g will cause a decrease in throttle power of .5/°.

Ab, =—.5-1q4
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Impact of Error and Disturbances
Open Loop

Let vg = 50mph, ig = —1°.
Recalculate for the open loop case:

Incline

Control
System

;O 11 — 5

vp = 11(0, — .5+ iq)
1

He:TOUdZE)

we have
v, = 11(5 + .5) = 60.5mph

Which is NOT ACCEPTABLE!!!
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Impact of Error and Disturbances
Closed Loop

Recalculate for the closed loop case:
¢ Real Plant with Disturbance: v, =11 (0. — .5 i4)
e Controller: 0, = —k (v, —vq) = —k(v, — 50)

Combine expressions and solve for v,.!1!
vy = 11(—kv, + 50k + .5) = —11kv, + 11-50 -k + 5.5

Solving for v, yields

. 11k + .1150_ 110.11
"T14+11k T 111

50 = .991 % 50 = 49.6mph

Better than without disturbance!!!!

Note: Solving for v, is called Closing the Loop. We will be doing this a lot in
the section on block diagrams.
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A Brief Review of Modeling

The previous model of an engine was a static model.
In this class, all models will be either

e static.

e differential equations.

The modeling of physical systems using differential
equations was introduced by Newton in 1684.

o | expect you to know how to derive Differential
Equation models.

e Our treatment will be brief.

The first differential equation model was for a point
mass.
Newton's Second Law:

d2

@x(t) =F/m
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Review: Modeling

Differential Equations

The motion of dynamical systems can usually be specified using ordinary
differential equations. e.g.

dx
= (1) = F(a(t),u(t))

Where
e This is a first-order differential equation
e u(t) is the input
e y(t) is the output
e x is a state variable.
» position, heading, velocity, etc.
e f, g are possibly nonlinear functions.

Note: Often, the equation is higher order.
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Review: Equations of Motion

Linear Equations

, our equations of motion will be linear. e.g.
z = ax(t)

where
e @ is a constant scalar.
e in this case f(z) = ax.
Linear equations are preferable because
e The motion of linear systems is much easier to visualize.

e Stability of linear systems is easy to determine
» & = ax is stable if a < 0 and unstable if a > 0.
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Review: Equations of Motion
Higher Orders or Multiple Variables

Most often, the dynamics will either
Be coupled with another variable:
T =ax+ bz

Z=cx+dz

where
e The motion of z affects the motion of y and vice-versa.

Be higher order:
T =ax+bx

where
e Commonly obtained from Newton's Second law.

F =ma
or, in other words
&= F/m.
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Dynamic Model: Suspension System
Mass-Spring Model

We wish to study the motion of the vehicle subject to disturbances.

e Model the car as a solid mass
o Control the vertical motion of the car (z(t))

P <I—> x(¥)

M = fin)

li
B

(@)
Inputs: Force, f(t).
Outputs: Displacement, y(t) = z(t).

Definition 1.

A system with one input and one output is single-input, single-output (SISO).
A system with more than one input or more than one output is multi-input
multi-output (MIMO)
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Dynamic Model: Suspension System
Mass-Spring Model

Plant Dynamics: Equations of Motion

e Spring Force: Opposes motion in x with spring constant K.
Fy(t) = —Kux(t)
e Damper Force: Opposes motion in & with damping coefficient f,
Fa(t) = —fui(t)
e Newton's Second Law:
mi(t) = Fo(t) + Fa(t) + f(t)

System Model:

#(1) =~ () — a0 + (1)
(1) = (1)
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Standard Forms

Frequency Domain
Once we have our dynamic model
K 1
i(t) = ——ux(t) — &m(t) +—f(t) Differential Equations
m m m

y(t) = x(¢) Output Equation

This model can be expressed in two standard forms
e Transfer Function
e State-Space

We will discuss these in more depth soon. For now:

Apply the Laplace Transform to both equations and solve for

the output.
K f 1 . . .
Ya(s) = ——a(s) = °° = Differential Equat
s x(s) mx(s) msx(s) + mf(s) ifferential Equations
y(s) = z(s) Output Equation
which yields
1
y(s) = (s)

_m52+fvs+Ku
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Suspension System with Wheel Dynamics
More Detailed Model

Now, we add the dynamics of the wheel. m

c

ﬁ

There are two outputs: J_
Outputs: X,
T .

e Vehicle Position, x1
e Wheel Position, x2

Our input is the position of the surface
of the road.
Inputs: %

e Road Surface, u
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SuspensionSimulation.mp4
Media File (video/mp4)


Suspension Model

This time we write the dynamics of both the wheel and the car.

L
(

1

Car Dynamics: Equations of Motion

e Spring 1 Force on Car: Fyy .(t) = —K1(z1(t) — x2(t))
o Damper Force on Car: Fy.(t) = —c(21(t) — $2(t))
e Newton's Second Law:

Moy (t) = Fao(t) + Faelt)
= —Ki(z1(t) = 22(1)) = c(d1(t) — 22(1))
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Suspension Model

— I
1
7T

Wheel Dynamics: Equations of Motion
e Spring 1 Force on Wheel: Fy1 ,,(t) = K1(x1(t) — x2(1))
e Spring 2 Force on Wheel: Fyo ,,(t) = —Ka(z2(t) — u(t))
o Damper Force on Wheel: Fy,,(t) = c(&1(t) — @2(t))
e Newton's Second Law:

Mauia(t) = Futw(t) + Feouw(t) + Fau(t)
= Ki(z1(t) — 22(t) — Ko(2(t) — ul?))) + c(dn(t) — #2(t))
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Equations of Motion

Combining the dynamics, we get the coupled system dynamics.

L
ixz
Y1

mita(t) = K (1 (8) — 22(6)) — Ka(a(t) — u(t)) + clia(6) — 2(0)
meiy(t) = —Ki(z1(t) — w2(t)) — c(21(t) — 22())

o= [ 230

This is quite complicated.

e To simplify, we would like to use a Standard Form.
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Other Sources of Models

Angular Momentum
Newton’s Second Law Applied to Rigid Bodies

The rate of change of angular

momentum is given by g g ;
§ MiZIa:Ié f:irl.'i".—ﬂl
.l_—r|I|’
..wu
| Mrymrrd]

e « = 0 is the angular acceleration in
inertial coordinates.

e [ is the moment of inertia, which

varies by object. Y Oi
e M, are the moments applied to the 7
body. R
T ::T:‘_,. lldluv-P..n.
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Other Sources of Models

Voltage Laws

Kirchhoff’s Current Law (KCL):
Current is conserved at each junction

> ig=0

Kirchhoff’s Voltage Law (KVL): Net
Voltage change around any loop is zero.

o v' °
> N
P’ .d 3 .c

Vi R

These are combined with standard voltage laws such as voltage drop across a
resister, inductor and capacitor:

Vi(t) = Ri(t) —ir(t) = = VL(t)
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Review: Equations of Motion
State-Space

is a way of writing first order differential equation using matrices.
We write
i = Af

where T is a vector and A € R™*™ is a square matrix.

Example:
T —1 0 1 il
— | X2 | = 2 0 0 o
dt | 0 —1 1] |as

Is equivalent to writing the three differential equations

T, = —x1+ 23
i,‘g = 2371
T3 = —X9 + T3

Writing equations in state-space has many advantages
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Review: Equations of Motion
Multiple Variables and State-Space

Consider the system

T =ax+ by
y=cx+dy

When we have multiple coupled equations, the best option is:

dlz| _|a b] |z
dt ly| |c df |y
Which is easily expressed as

where
e X is a vector.
e A is a matrix.
The equation describes the motion of the vector.
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Standard Forms: State-Space Form

Definition 2.

State-Space Form is a convenient way of representing multivariate or linear
MIMO systems using 4 matrices.

#(t) = Az(t) + Bu(t)
y(t) = Cz(t) + Du(t)
e w is the vector of Inputs.
e y is the vector of Outputs.
e z is the State.
u € R™, y € RP, and x € R™ can be vectors of any dimension. However, the
matrices must be the right size:
A e R B e R™™™
C e RP*® D e RPX™
e u € R™ means u is a real vector of length n.

e C € RP*™ means C' is a matrix with p rows and n columns.
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Review: Equations of Motion
Reducing Higher Order Dynamics

When we have higher order dynamics,
T(t) = ax(t) + baz(t) + u(t)
y(t) = (t) + u(t)

we can still use state-space form by
e Introducing new variables.

e Define a new variable for every Higher Order Term (HOT) except for the
the highest.
> eg. Letxy =z, xo =2 and z3 = .
e Add a new first order differential equation for each new variable.
> eg. j,‘l = T2 and j,‘z = I3
e Then put in state-space form.
Finally we have for our example

&1(t) = w2(t)
Eo(t) = w3(t)
i‘g(t) = aZL’Q(t) + bl‘l(t) + u(t)

M. Peet Lecture 2: Control Systems 26 / 30



Review: Equations of Motion
Reducing Higher Order Dynamics
Using our first-order equations:
i1 (t) = z2(t); Ba(t) = w3(t)
3(t) = awa(t) + b1 (t) + u(t) y(t) = z1(t) +u(t)

We construct the matrix representation:

d gl 0 1 0 xr1 0
=2 H = [0 ; 1] H 0+ H s
T3 b a 0Of |z3 1
yt)=[1 0 0] |zz| (t)+ [1] u(t)
T3
So that
0 1 0 0
A=|0 0 1 B= |0
b a 0 1]
C= [1 0 O} D= [1]
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Constructing State-Space Systems: Suspension System

Recall the dynamics:

My (t) = Ki(21(t) — 22(t)) — Ka(w2(t) — u(t)) + c(@1(t) — d2(2))
meiin(t) = —Ki(z1(t) — 22(t)) — c(@1(t) — L2(t

o= [ 220

Define the new variables z;

zZ1 =21 Zgzjil zZ3 = T2 2’4:3'32
Which yields the following set of equations: y(t) [28]
21 (t) = Zg(t)
Zo(t) = —%(zl(t) — z3(t)) — mic(@(t) — 2z4(1))
Z3(t) = 24(t)
£4(1) = 2110 = 20(0) — 2 (a(0) — u(0) + ~— (z2(0) — 24()
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Constructing State-Space Systems

0 1 0 0
g1 _KE e Ky e || 8
z me me me me z
di || @=1 0" 0 0 (I O HOR S I K10
2 B (B fe) 5] e e
- £1
10 0 0]z 0
=g o 5 o) [2] @+ o] ue
24
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Summary

What have we learned today?

A Static Model of Cruise-Control
e Simple static model and Control
e Open Loop Control
e Closed Loop Control
e Benefits of Feedback
Dynamic Models
e Including Inputs and Outputs
e Using Newton's Laws
e MIMO and SISO systems
o Other sources of models (Kirchhoff's Laws)
State-Space

e State-Space Form
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