
Systems Analysis and Control

Matthew M. Peet
Illinois Institute of Technology

Lecture 2: Systems Defined by Differential Equations



Introduction

In this Lecture, you will learn:

How to use differential equations to define a System.

• Identify the inputs and outputs

• Model the dynamics
I Newton’s Laws
I Voltage Laws

• Put in First-Order (State-Space) Form

Later, we’ll discuss linearization and the Laplace transform.

M. Peet Lecture 2: Control Systems 2 / 30



Lets Start with an Example
Cruise Control

Plant:

• Input: Throttle Position, θe.

• Output: Real Velocity, vr.

• Dynamics: A simple proportional
gain (no dynamics).

vr = 10 · θe

The gain factor is 10mph/◦

M. Peet Lecture 2: Control Systems 3 / 30



Cruise Control
Open Loop Control

First lets start with open loop control

Control

System
Speed

Engine
Desired

Speed

Gas

Actuator: Throttle

Controller:

• Input: Desired Velocity, vd.

• Output: Throttle, θe.

Because the plant is simple, we will use a simple controller based on our
understanding of the plant.

θe =
1

10
vd

M. Peet Lecture 2: Control Systems 4 / 30



Cruise Control
Closed Loop Control

Now lets try using closed loop control

Control

System
Speed

Engine
Desired

Speed

Gas-

Actuator: Throttle

Sensor: Real Velocity

Controller:
• Input: Error in Velocity, ev = vr − vd.
• Output: Throttle, θe.

Our controller is static and uses no knowledge of the plant. It simply amplifies
the error signal by a factor k. Any positive value of k will work.

θe = −k · ev = −k · (vr − vd)

M. Peet Lecture 2: Control Systems 5 / 30



Closed Loop vs. Open Loop

Open Loop: Two relations:

vr = 10 · θe and θe =
1

10
vd

we have

vr = 10
1

10
vd = vd

So there is no error in the open-loop control

Closed Loop: We also have two relations:

vr = 10 · θe and θe = −k (vr − vd)

Combining these, we get vr = −10 · k(vr − vd).
Solving for velocity, vr, we get for k = 10,

vr =
10 · k

1 + 10 · k
vd =

100

101
vd = .99vd.

M. Peet Lecture 2: Control Systems 6 / 30



Impact of Error and Disturbances

Comparison:

• Open Loop: No final error

• Closed Loop: Small final error
I Error can be made arbitrarily by letting k →∞, which makes

vr =
10 · k

1 + 10 · k vd → vd.

I Error can be eliminated entirely using a dynamic controller.

Question: What happens when things aren’t perfect?
Problems:

• Modeling Error: Suppose our model is off by 10%, so that

vr = 11 · θe

• Disturbance: An Incline, id will cause a decrease in throttle power of .5/◦.

∆θe = −.5 · id

M. Peet Lecture 2: Control Systems 7 / 30



Impact of Error and Disturbances
Open Loop

Let vd = 50mph, id = −1◦.
Recalculate for the open loop case:

Control

System

Incline

.5

11
θ
e

v
d

v
r

vr = 11(θe − .5 · id)

θe =
1

10
vd = 5

we have
vr = 11(5 + .5) = 60.5mph

Which is NOT ACCEPTABLE!!!.

M. Peet Lecture 2: Control Systems 8 / 30



Impact of Error and Disturbances
Closed Loop

Recalculate for the closed loop case:

• Real Plant with Disturbance: vr = 11 · (θe − .5 · id)

• Controller: θe = −k (vr − vd) = −k(vr − 50)

Combine expressions and solve for vr!!!

vr = 11(−kvr + 50k + .5) = −11kvr + 11 · 50 · k + 5.5

Solving for vr yields

vr =
11k + .11

1 + 11k
50 =

110.11

111
50 = .991 ∗ 50 = 49.6mph

Better than without disturbance!!!!

Note: Solving for vr is called Closing the Loop. We will be doing this a lot in
the section on block diagrams.

M. Peet Lecture 2: Control Systems 9 / 30



A Brief Review of Modeling

The previous model of an engine was a static model.
In this class, all models will be either

• static.

• differential equations.

The modeling of physical systems using differential
equations was introduced by Newton in 1684.

• I expect you to know how to derive Differential
Equation models.

• Our treatment will be brief.

The first differential equation model was for a point
mass.
Newton’s Second Law:

d2

dt2
x(t) = F/m

x(t)
F(t)

m

M. Peet Lecture 2: Control Systems 10 / 30



Review: Modeling
Differential Equations

The motion of dynamical systems can usually be specified using ordinary
differential equations. e.g.

dx

dt
(t) = f(x(t), u(t))

y(t) = g(x(t), u(t))

Where

• This is a first-order differential equation

• u(t) is the input

• y(t) is the output

• x is a state variable.
I position, heading, velocity, etc.

• f , g are possibly nonlinear functions.

Note: Often, the equation is higher order.

M. Peet Lecture 2: Control Systems 11 / 30



Review: Equations of Motion
Linear Equations

Usually, our equations of motion will be linear. e.g.

ẋ = ax(t)

where

• a is a constant scalar.

• in this case f(x) = ax.

Linear equations are preferable because

• The motion of linear systems is much easier to visualize.

• Stability of linear systems is easy to determine
I ẋ = ax is stable if a < 0 and unstable if a ≥ 0.

M. Peet Lecture 2: Control Systems 12 / 30



Review: Equations of Motion
Higher Orders or Multiple Variables

Most often, the dynamics will either
Be coupled with another variable:

ẋ = ax+ bz

ż = cx+ dz

where

• The motion of x affects the motion of y and vice-versa.

Be higher order:

ẍ = aẋ+ bx

where

• Commonly obtained from Newton’s Second law.

F = ma
or, in other words

ẍ = F/m.

M. Peet Lecture 2: Control Systems 13 / 30



Dynamic Model: Suspension System
Mass-Spring Model

We wish to study the motion of the vehicle subject to disturbances.

• Model the car as a solid mass

• Control the vertical motion of the car (x(t))

Inputs: Force, f(t).
Outputs: Displacement, y(t) = x(t).

Definition 1.

A system with one input and one output is single-input, single-output (SISO).
A system with more than one input or more than one output is multi-input
multi-output (MIMO)

M. Peet Lecture 2: Control Systems 14 / 30



Dynamic Model: Suspension System
Mass-Spring Model

Plant Dynamics: Equations of Motion

• Spring Force: Opposes motion in x with spring constant K.

Fs(t) = −Kx(t)

• Damper Force: Opposes motion in ẋ with damping coefficient fv

Fd(t) = −fvẋ(t)

• Newton’s Second Law:

mẍ(t) = Fs(t) + Fd(t) + f(t)

System Model:

ẍ(t) = −K
m
x(t)− fv

m
ẋ(t) +

1

m
f(t)

y(t) = x(t)

M. Peet Lecture 2: Control Systems 15 / 30



Standard Forms
Frequency Domain

Once we have our dynamic model

ẍ(t) = −K
m
x(t)− fv

m
ẋ(t) +

1

m
f(t) Differential Equations

y(t) = x(t) Output Equation

This model can be expressed in two standard forms
• Transfer Function
• State-Space

We will discuss these in more depth soon. For now:

Transfer Function: Apply the Laplace Transform to both equations and solve for
the output.

s2x(s) = −K
m
x(s)− fv

m
sx(s) +

1

m
f(s) Differential Equations

y(s) = x(s) Output Equation

which yields

y(s) =
1

ms2 + fvs+K
u(s)

M. Peet Lecture 2: Control Systems 16 / 30



Suspension System with Wheel Dynamics
More Detailed Model

Now, we add the dynamics of the wheel.

There are two outputs:
Outputs:

• Vehicle Position, x1

• Wheel Position, x2

x
1

x
2

m
c

m
w

u

Our input is the position of the surface
of the road.
Inputs:

• Road Surface, u

M. Peet Lecture 2: Control Systems 17 / 30


SuspensionSimulation.mp4
Media File (video/mp4)



Suspension Model

This time we write the dynamics of both the wheel and the car.

x
1

x
2

m
c

m
w

u

Car Dynamics: Equations of Motion

• Spring 1 Force on Car: Fs1,c(t) = −K1(x1(t)− x2(t))

• Damper Force on Car: Fd,c(t) = −c(ẋ1(t)− ẋ2(t))

• Newton’s Second Law:

mcẍ1(t) = Fs1,c(t) + Fd,c(t)

= −K1(x1(t)− x2(t))− c(ẋ1(t)− ẋ2(t))

M. Peet Lecture 2: Control Systems 18 / 30



Suspension Model

x
1

x
2

m
c

m
w

u

Wheel Dynamics: Equations of Motion

• Spring 1 Force on Wheel: Fs1,w(t) = K1(x1(t)− x2(t))

• Spring 2 Force on Wheel: Fs2,w(t) = −K2(x2(t)− u(t))

• Damper Force on Wheel: Fd,w(t) = c(ẋ1(t)− ẋ2(t))

• Newton’s Second Law:

mwẍ2(t) = Fs1,w(t) + Fs2,w(t) + Fd,w(t)

= K1(x1(t)− x2(t)−K2(x2(t)− u(t))) + c(ẋ1(t)− ẋ2(t))

M. Peet Lecture 2: Control Systems 19 / 30



Equations of Motion

Combining the dynamics, we get the coupled system dynamics.

x
1

x
2

m
c

m
w

u

mwẍ2(t) = K1(x1(t)− x2(t))−K2(x2(t)− u(t)) + c(ẋ1(t)− ẋ2(t))

mcẍ1(t) = −K1(x1(t)− x2(t))− c(ẋ1(t)− ẋ2(t))

y(t) =

[
x1(t)
x2(t)

]
This is quite complicated.

• To simplify, we would like to use a Standard Form.

M. Peet Lecture 2: Control Systems 20 / 30



Other Sources of Models
Angular Momentum

Newton’s Second Law Applied to Rigid Bodies

The rate of change of angular
momentum is given by∑

Mi = Iα = Iθ̈

• α = θ̈ is the angular acceleration in
inertial coordinates.

• I is the moment of inertia, which
varies by object.

• Mi are the moments applied to the
body.

M. Peet Lecture 2: Control Systems 21 / 30



Other Sources of Models
Voltage Laws

Kirchhoff’s Current Law (KCL):
Current is conserved at each junction∑

ik = 0

Kirchhoff’s Voltage Law (KVL): Net
Voltage change around any loop is zero.∑

k

Vk = 0

These are combined with standard voltage laws such as voltage drop across a
resister, inductor and capacitor:

Vr(t) = Rir(t)
d

dt
iL(t) =

1

L
VL(t)

d

dt
Vc(t) =

1

C
ic(t)

M. Peet Lecture 2: Control Systems 22 / 30



Review: Equations of Motion
State-Space

State-Space is a way of writing first order differential equation using matrices.
We write

~̇x = A~x

where ~x is a vector and A ∈ Rn×n is a square matrix.

Example:

d

dt

x1x2
x3

 =

−1 0 1
2 0 0
0 −1 1

x1x2
x3


Is equivalent to writing the three differential equations

ẋ1 = −x1 + x3

ẋ2 = 2x1

ẋ3 = −x2 + x3

Writing equations in state-space has many advantages

M. Peet Lecture 2: Control Systems 23 / 30



Review: Equations of Motion
Multiple Variables and State-Space

Consider the system

ẋ = ax+ by

ẏ = cx+ dy

When we have multiple coupled equations, the best option is: Convert to
State-Space:

d

dt

[
x
y

]
=

[
a b
c d

] [
x
y

]
Which is easily expressed as

ẋ = Ax

where

• x is a vector.

• A is a matrix.

The equation describes the motion of the vector.

M. Peet Lecture 2: Control Systems 24 / 30



Standard Forms: State-Space Form

Definition 2.

State-Space Form is a convenient way of representing multivariate or linear
MIMO systems using 4 matrices.

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t)

• u is the vector of Inputs.

• y is the vector of Outputs.

• x is the State.

u ∈ Rm, y ∈ Rp, and x ∈ Rn can be vectors of any dimension. However, the
matrices must be the right size:

A ∈ Rn×n B ∈ Rn×m

C ∈ Rp×n D ∈ Rp×m

• u ∈ Rn means u is a real vector of length n.
• C ∈ Rp×n means C is a matrix with p rows and n columns.

M. Peet Lecture 2: Control Systems 25 / 30



Review: Equations of Motion
Reducing Higher Order Dynamics

When we have higher order dynamics,
...
x (t) = aẋ(t) + bx(t) + u(t)

y(t) = x(t) + u(t)

we can still use state-space form by
• Introducing new variables.

Procedure:
• Define a new variable for every Higher Order Term (HOT) except for the

the highest.
I e.g. Let x1 = x, x2 = ẋ and x3 = ẍ.

• Add a new first order differential equation for each new variable.
I e.g. ẋ1 = x2 and ẋ2 = x3

• Then put in state-space form.
Finally we have for our example

ẋ1(t) = x2(t)

ẋ2(t) = x3(t)

ẋ3(t) = ax2(t) + bx1(t) + u(t)

M. Peet Lecture 2: Control Systems 26 / 30



Review: Equations of Motion
Reducing Higher Order Dynamics

Using our first-order equations:

ẋ1(t) = x2(t); ẋ2(t) = x3(t)

ẋ3(t) = ax2(t) + bx1(t) + u(t) y(t) = x1(t) + u(t)

We construct the matrix representation:

ẋ(t) =
d

dt

x1x2
x3

 (t) =

0 1 0
0 0 1
b a 0

x1x2
x3

 (t) +

0
0
1

u(t)

y(t) =
[
1 0 0

] x1x2
x3

 (t) +
[
1
]
u(t)

So that

A =

0 1 0
0 0 1
b a 0

 B =

0
0
1


C =

[
1 0 0

]
D =

[
1
]

M. Peet Lecture 2: Control Systems 27 / 30



Constructing State-Space Systems: Suspension System

Recall the dynamics:

mwẍ2(t) = K1(x1(t)− x2(t))−K2(x2(t)− u(t)) + c(ẋ1(t)− ẋ2(t))

mcẍ1(t) = −K1(x1(t)− x2(t))− c(ẋ1(t)− ẋ2(t))

y(t) =

[
x1(t)
x2(t)

]
Define the new variables zi

z1 = x1 z2 = ẋ1 z3 = x2 z4 = ẋ2

Which yields the following set of equations: y(t) =

[
z1(t)
z3(t)

]
,

ż1(t) = z2(t)

ż2(t) = −K1

mc
(z1(t)− z3(t))− c

mc
(z2(t)− z4(t))

ż3(t) = z4(t)

ż4(t) =
K1

mw
(z1(t)− z3(t))− K2

mw
(z3(t)− u(t))) +

c

mw
(z2(t)− z4(t))

M. Peet Lecture 2: Control Systems 28 / 30



Constructing State-Space Systems

ż1(t) = z2(t)

ż2(t) = −K1

mc
z1(t)− c

mc
z2(t) +

K1

mc
z3(t) +

c

mc
z4(t)

ż3(t) = z4(t)

ż4(t) =
K1

mw
z1(t) +

c

mw
z2(t)−

(
K1

mw
+
K2

mw

)
z3(t)− c

mw
z4(t)− K2

mw
u(t)

y(t) =

[
z1(t)
z3(t)

]

d

dt


z1
z2
z3
z4

 (t) =


0 1 0 0
−K1

mc
− c

mc

K1

mc

c
mc

0 0 0 1
K1

mw

c
mw

−
(

K1

mw
+ K2

mw

)
− c

mw



z1
z2
z3
z4

 (t) +


0
0
0
− K2

mw

u(t)

y(t) =

[
1 0 0 0
0 0 1 0

]
z1
z2
z3
z4

 (t) +

[
0
0

]
u(t)

M. Peet Lecture 2: Control Systems 29 / 30



Summary

What have we learned today?

A Static Model of Cruise-Control

• Simple static model and Control

• Open Loop Control

• Closed Loop Control

• Benefits of Feedback

Dynamic Models

• Including Inputs and Outputs

• Using Newton’s Laws

• MIMO and SISO systems

• Other sources of models (Kirchhoff’s Laws)

State-Space

• State-Space Form

M. Peet Lecture 2: Control Systems 30 / 30


	Control Systems

