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Lecture 3: Linearization



Introduction

In this Lecture, you will learn:

How to Linearize a Nonlinear System System.
e Taylor Series Expansion
e Derivatives
e L'hoptial’s rule

e Multiple Inputs/ Multiple States
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Lets Start with an Example

A Simple Pendulum

Consider the rotational dynamics of a pendulum:

M—‘;L sin 6

Mg

Mg sin 0

(b) (€)

The input is a motor-driven moment, 7.

The output is the angle, 6.

The moment of inertia about the pivot point is J.

The only external force is gravity, Mg, applied at the center of mass.
e Force creates a moment about the pivot (See Figure b)):

N:—Mgsin9~é
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A Simple Pendulum

The governing equation is Newton'’s law:

Mg sin 68
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A Simple Pendulum

The Problem

First-order form:

T = T2
. gl T
To = — 27 smxl—i—j
y=x1

Although we have the system in first-order form, it cannot be put in state-space
because of the sinx; term.

Although sin z is nonlinear,
small sections look linear.

e Near z = 0: sinx & x ‘ ana

/
e Near z =7/2: sinz=1 : ———
e Near z = m: sinx &7 —x Eamun >~

We must use these linear approximations very carefully!

M. Peet Lecture 3: Control Systems 5/21



Accuracy of the Small Angle Approximation

The approximation will only be accurate for a narrow band of z.

-1 0.}
e 05 o 05 1 06 08 1 12 14 16 18 2 22 24

Figure: sin(zx) and 2 near 2o = 0 Figure: sin(x) and x near zo = §
Figure: Error near z = 0 Figure: Error near = = 5
e 80% Accuracy: z € [-1.2,1.2] e 80% Accuracy: z € [.9,2.2]
e 95% Accuracy: z € [-.7,.7] e 95% Accuracy: z € [1.25,1.9]
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Linear Approximation

We can use the tangent to approximate a nonlinear function near a point .
The approximation is tangent to the function at the point x.

fl@)Zazx+b

e The slope is given by
d
a= %f(x)‘r:%
e The y-intercept is given by
b= f(xo) — axo

ey

The linear approximation is given by 4

d

@) = f(wo) + —— f(@)lo=a (z = 20)

T =fla)+flax—a)

(a.fla))
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A General Method For Linear Approximation

Problem: Approximate the scalar function f(x) near the point z( using

y(z) =ax+b

Fitil

v =fla)+flayx—a)

(@, fla))

Figure 9.2-1

The Linear Approximation is given by
d
y(@) = f(wo) + —— f(@)]a=so (¥ — z0)
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Linear Approximation

Note: The Linear Approximation is just the first two terms in the Taylor Series
representation.

r—X r—X 2
Q+%f(a:)|m:%%+m
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Example: Pendulum

Return to the dynamics of a pendulum:

i‘lzdiz

Mgl 1
To = — 25] sinxl—i—jT
Yy=x

The nonlinear term is sin z;

e We want to linearize sin .
[ ]

» Depends on what we want to do!
» Options are limited.

Disturbance rejection: xy =0
Balance: xp =7

Tracking: xo =777
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Example: Balance an Inverted Pendulum

Applications: Walking robots. %
An inverted pendulum has x = 7.

e Tangent:

d
a = %f(x)b:wo = cos(m) = —1

e Intersect: 24

b= f(xg) —axg =sin(r) + 7 = 7. e

o f(xg) =sin(m) =0 o

e Finally, for x 2 & o

sin(z) 2 m—=x

This gives the first-order dynamics: New Problem: The constant
&1 = X9 term f]‘g—j’lw doesn't fit in
. Myl Myl n 1 T state-space:
To = X1 — —/——T -
2J 2J J &= Ax + Bu

Yy=1a
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invertedpendulum_erect.mp4
Media File (video/mp4)


Equilibrium Points

Problem: & # 0 when x = 0. We need a new concept

Definition 1.

xo is an Equilibrium Point of & = f(z) if £ = 0 when z = zg. i.e. f(zo) =0

e Nonlinear systems may have equilibrium points.
e Linear (affine) systems only have one equilibrium point.

e In a state-space system, o = 0 is the equilibrium point.

M. Peet Lecture 3: Control Systems 12 /21



A Change of Variables

Consider a New Variable Az = z — xg

For state-space, we need g = 0 to be the equilibrium point.
The nonlinear pendulum has

e Down equilibria: g =0+ 2mnforn=1,---,00
e Up equilibria: zp =71+ 27n forn=1,--- ;00
Our linearized pendulum has one equilibrium at 2y = 7:

T1 = To, igz—(xl—ﬂ)—&-jT, y=x

Problem: For state-space (or any standard form), we require xg = 0.

Solution: Define a new variable Az =z — 2 gy
e Then -
Aj;:ab:a(Ax—g)—l—b:an Hos
e Thus Azg = 0 is the equilibrium!!! jmm / EEEEEEN
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Measuring Displacement from Equilibrium

Pendulum Example

Return to the pendulum.

m

e Equilibrium at zg 1 = 7, 292 = 0.

i‘l = T2
Mgl :
332—2—5(951—#)—&——T ¥
® Let x

Al’lle—ﬂ'

Al‘g = T2

e New Dynamics:

Ai’l = ALCQ
. Mgl 1
Ay = T?Axl + jT

Az is angle from the vertical.
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Measuring Displacement from Equilibrium

Pendulum Example

Now we are ready for state-space.

New Dynamics:

A‘Z.Ul = AZL’Q
. Myl 1
Axg = T;?A.’El + jT

State-Space Form:

vl oA
A= 5=
o=l o D=

Although not for the pendulum, you may sometimes need to linearize functions
of the input and output!

M. Peet

Lecture 3: Control Systems 15 /21



Example: Balance an Inverted Pendulum

Applications: Walking robots.

S
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grizzle_walking_robot.mp4
Media File (video/mp4)


Example: Balance an Inverted Pendulum

Applications: Segway.

S
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segway_homemade.mp4
Media File (video/mp4)


Numerical Example: Using |'Hopital’s rule

Occasionally you will encounter a
system such as

#(t) = —i(t) + ) K

where you want to linearize about the
zero equilibrium.

. _ sin?
The nonlinear term is

* with equilibrium point zg = 0. To linearize this
x
term about xg = 0, use the formula:
f(@) = f(zo) + f'(0)(z — 20)
To do this we must calculate f(z¢) and f'(xo).

0
Lets start with f(zo). Initially, we see that f(0) = 0" which is indeterminate.

To help, we use
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L'hopital’s Rule

Theorem 2 (I’'Hoépital’s Rule).
If g(0) = 0 and h(0) = 0, then

9@ _ . g

250 h(z) | 290 I (z)

2
If we apply this to f(x) = S (T) then
x
2sinx cosx 0
1. = 1 _— = — =
fim f) =l —— =0

which is as expected. Now,

2¢sinzcosx sin’z 2z sinx cos T — sin®

7'ta) = -

x 2 2

As before,
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Example Continued

So once more we apply L'hopital’s rule:

2

2sinz cosx + 2z cos? x — 2z sin® z — 2sinz cos x

lim f/'(z) = lim

z—0 z—0 2z
~ lim (2z(cos? z + — sin” x) _0
z—0 2x 0
Ooops, we must apply I'Hépital’s rule AGAIN:
2 2 a2
lim (2z(cos? x + —sin” x)
x—0 2x

_ 2(cos” —sin®) — 8z coszsinz 2 )
= 5 =5=
Which was a lot of work for such a simple answer (easier way?). We have the
linearized equation of motion:
(t) =—a(t)+1-2(1)+0

Which in standard form is x1 = =, x5 = I, so

.o 1
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Summary

What have we learned today?

How to Linearize a Nonlinear System System.
e Taylor Series Expansion
e Derivatives
e L'hoptial’s rule

e Multiple Inputs/ Multiple States

Next Lecture: Laplace Transform
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