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Lecture 23: Drawing The Nyquist Plot



Overview

In this Lecture, you will learn:

Review of Nyquist

Drawing the Nyquist Plot

• Using the Bode Plot

• What happens at r =∞
• Poles on the imaginary axis

Phase Margin and Gain Margin

• Reading Stability Margins off the Nyquist Plot
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Review
Systems in Feedback

The closed loop is
kG(s)

1 + kG(s)

We want to know when
1 + kG(s) = 0

Question: Does 1
k +G(s) have any zeros in the RHP?

G(s)k
+

-

y(s)u(s)
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Review
The Nyquist Contour

Definition 1.

The Nyquist Contour, CN is a contour which contains the imaginary axis and
encloses the right half-place. The Nyquist contour is clockwise.

A Clockwise Curve

• Starts at the origin.

• Travels along imaginary axis till r =∞.

• At r =∞, loops around clockwise.

• Returns to the origin along imaginary axis.

We want to know if

1

k
+G(s)

has any zeros in the Nyquist Contour

r = ∞
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Review
Contour Mapping Principle

Key Point: For a point on the mapped contour, s∗ = G(s),

∠s∗ = ∠G(s)

• We measure θ, not phase.

To measure the 360◦ resets in ∠G(s)

• We count the number of +360◦ resets in θ!

• We count the number of times CG encircles the origin Clockwise.

The number of clockwise encirclements
of 0 is

• The #poles −#zeros in the RHP
s

s*= G(s)

θ = < G(s)
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The Nyquist Contour
Closed Loop

The number of unstable closed-loop poles is
N + P , where

• N is the number of clockwise
encirclements of −1k .

• P is the number of unstable open-loop
poles.

If we get our data from Bode, typically P = 0

-1/k

How to Plot the Nyquist Curve?
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Plotting the Nyquist Diagram
Example

How are we to plot the Nyquist diagram for

G(s) =
1

(τ1s+ 1)(τ2s+ 1)

• τ1 = 1
• τ2 = 1

10

First lets take a look at the root locus.

Obviously stable for any k > 0.
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The Nyquist Plot

Bode Plot: Lets look at the Frequency Response.

The Bode plot can give us information
on |G| at different frequencies.

Point ω ∠G |G|
A .1 0◦ 1
B 1 −45◦ .7
C 3 −90◦ .3
D 10 −135◦ .07
E 100 −175◦ .001

The last two columns give us points on
the Nyquist diagram.
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The Nyquist Plot

Plot the points from the Bode Diagram.

Point ω ∠G |G|
A .1 0◦ 1
B 1 −45◦ .7
C 3 −90◦ .3
D 10 −135◦ .07
E 100 −175◦ .001

We get

the upper half of the Nyquist diagram
from symmetry.
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The Nyquist Plot
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There are no encirclements of − 1
k .

• Stable for all k > 0.
• We already knew that from Root Locus.

M. Peet Lecture 23: Control Systems 10 / 30



The Nyquist Plot
Example 2

G(s) =
1

(s+ 1)3

First lets take a look at the root locus.

We expect instability for large k.
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The Nyquist Plot

Bode Plot: Lets look at the Frequency Response.

The Bode plot can give us information
on |G| at different frequencies.

Point ω ∠G |G|
A .1 0◦ 1
B .28 −45◦ .95
C 1 −135◦ .35
D 1.8 −180◦ .1
E 10 −260◦ .001
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The Nyquist Plot

Plot the points from the Bode Diagram.

Point ω ∠G |G|
A .1 0◦ 1
B .28 −45◦ .95
C 1 −135◦ .35
D 1.8 −180◦ .1
E 10 −260◦ .001

Point D is especially important.
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The Nyquist Plot
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Point D: Two CW encirclements when − 1
k < −.1 (N=2).

• Instability for − 1
k < −.1

• Stable for k < 10.

• Could have used Routh Table.
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The Nyquist Plot

Conclusion: We can use the Bode Plot to map the
imaginary axis onto the Nyquist Diagram.

Question: What about the other part of the Nyquist
contour at r =∞?

r = ∞

Case 1: Strictly Proper.

lim
s→∞

|G(s)| = 0

What happens at ∞ doesn’t matter.

Case 2: Not Strictly Proper.

lim
s→∞

|G(s)| = c

Constant Magnitude at ∞.

Im(s)

Re(s)

< s-p
1

< s-z = < s-p
1 
= < s-p

2 
= < s-p

3
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The Nyquist Plot

Case 2: Not Strictly Proper.

• Angle to all poles and zeros is the same.

• Degree of n(s) and d(s) the same.
I Number of Poles and Zeros the same.

The total angle is

∠G(s) =

n∑
i=1

∠(s− zi)−
n∑

i=1

∠(s− pi)

= 0

The contour map at ∞ has

• Constant magnitude.

• Zero angle.

The infinite loop is mapped to a single point!

Either (0, 0) or (c, 0).
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The Nyquist Plot

Another Problem: Recall the non-inverted pendulum
with PD feedback.

G(s) =
s+ 1

s2 +
√

g
l

Magnitude goes to ∞ at ω =
√

g
l .

Question How do we plot the Nyquist
Diagram?
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Matlab can’t help us this time.
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The Nyquist Plot

Problem: The Nyquist Contour passes through a pole.

Because of the pole, the argument principle is invalid.

What to do? r = ∞

We Modify the Nyquist Contour.

• We detour around the poles.
• Can detour to the right or left.

If we detour to the left, then the poles count as unstable open loop poles.

• P=2

Assume we detour to the right.

• P=0
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The Nyquist Plot

Look at the detours at small radius.

• Obviously, magnitude →∞

• Before the Detour, the phase from the pole is

−∠(s− p) = 90◦

• In the middle of the Detour, the phase from the
pole is

−∠(s− p) = 0◦

• At the end of the Detour, the phase from the pole
is

−∠(s− p) = −90◦

< (s - p) = 80o

< (s - p) = -5o

The total phase change through the detour is −180◦.

• Corresponds to a CW loop at large radius.

• If there are two or more poles, there is a -180 loop for each pole.
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The Nyquist Plot

Look at the following example:

G(s) =
s+ 2

s2

There are 2 poles at the origin.
• At ω = 0,

I ∠G(0) = −180◦
I |G(0)| =∞

• 2 poles means −360◦ loop at ω = 0
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The Nyquist Plot

Lets re-examine the pendulum problem with derivative feedback.
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Now we can figure out what goes on at ∞.

• There is a −180◦ loop at each ω =
√

g
l .
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The Nyquist Plot

Conclusion: The loops connect in a non-obvious way!
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For 0 < −1
k < 1, we have N = 1
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Stability Margins

Recall the definitions of Gain Margin.

Definition 2.

The Gain Margin, Km = 1/|G(ıω)|
when ∠G(ıω) = 180◦

Let Km is the maximum stable gain in
closed loop.

• KmG(s) is unstable in closed loop

• Sometimes expressed in dB

It is easy to find the maximum stable
gain from the Nyquist Plot.

• Find the point −1Km
which

destabilizes
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Stability Margins
Example

Recall

G(s) =
1

(s+ 1)3

Stability: Stable for k < 10.

Km = 10 or 20dB.
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Stability Margins
Example

Suspension System with integral feedback

There is a pole at the origin.

• CW loop at ∞.
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Conclusion: Stable for −1k > −9.5.

• Stable for k < .105

Km = .105 or − 19.5dB
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Stability Margins

Question: What is the effect of a phase change on the Nyquist Diagram.

• A shift in phase changes the angle of all points.

• A Rotation about the origin.

• Will we rotate into instability?
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Stability Margins

Recall the definitions of Phase Margin.

Definition 3.

The Phase Margin, ΦM is the uniform
phase change required to destabilize the
system under unitary feedback.
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Stability Margins
Example

The Suspension Problem
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Looking at the intersection with the circle:
• Phase Margin: ΦM

∼= 40◦

Gain Margin is infinite.
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Stability Margins
Example

The Inverted Pendulum Problem
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Even though open-loop is unstable, we can still find the phase margin:

• Phase Margin: ΦM
∼= 35◦

Gain Margin is technically undefined because open loop is unstable.

• There is a minimum gain, not a maximum.
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Summary

What have we learned today?

Review of Nyquist

Drawing the Nyquist Plot

• Using the Bode Plot

• What happens at r =∞
• Poles on the imaginary axis

Phase Margin and Gain Margin

• Reading Stability Margins off the Nyquist Plot

Next Lecture: Controller Design in the Frequency Domain
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