Systems Analysis and Control

Matthew M. Peet Illinois Institute of Technology

Lecture 23: Drawing The Nyquist Plot

In this Lecture, you will learn:

Review of Nyquist

Drawing the Nyquist Plot

- Using the Bode Plot
- What happens at $r = \infty$
- Poles on the imaginary axis

Phase Margin and Gain Margin

• Reading Stability Margins off the Nyquist Plot

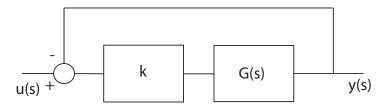
The closed loop is

$$\frac{kG(s)}{1+kG(s)}$$

We want to know when

$$1 + kG(s) = 0$$

Question: Does $\frac{1}{k} + G(s)$ have any zeros in the RHP?



Definition 1.

The **Nyquist Contour**, C_N is a contour which contains the imaginary axis and encloses the right half-place. The Nyquist contour is clockwise.

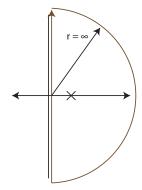
A Clockwise Curve

- Starts at the origin.
- Travels along imaginary axis till $r = \infty$.
- At $r = \infty$, loops around clockwise.
- Returns to the origin along imaginary axis.

We want to know if

$$\frac{1}{k} + G(s)$$

has any zeros in the Nyquist Contour



Review

Contour Mapping Principle

Key Point: For a point on the mapped contour, $s^* = G(s)$,

 $\angle s^* = \angle G(s)$

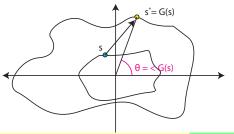
• We measure θ , not phase.

To measure the 360° resets in $\angle G(s)$

- We count the number of $+360^{\circ}$ resets in θ !
- We count the number of times C_G encircles the origin **Clockwise**.

The number of clockwise encirclements of 0 is

• The $\#_{poles} - \#_{zeros}$ in the RHP

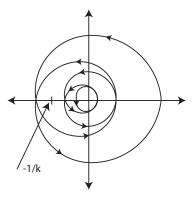


Closed Loop

The number of unstable closed-loop poles is ${\cal N}+{\cal P},$ where

- N is the number of clockwise encirclements of $\frac{-1}{k}$.
- *P* is the number of unstable open-loop poles.

If we get our data from Bode, typically P = 0



How to Plot the Nyquist Curve?

Plotting the Nyquist Diagram

Example

How are we to plot the Nyquist diagram for

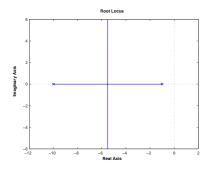
$$G(s) = \frac{1}{(\tau_1 s + 1)(\tau_2 s + 1)}$$

•
$$\tau_1 = 1$$

• $\tau_2 = \frac{1}{10}$

First lets take a look at the root locus.

Obviously stable for any k > 0.

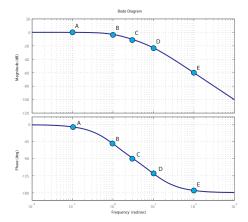


Bode Plot: Lets look at the Frequency Response.

The Bode plot can give us information on $\left|G\right|$ at different frequencies.

Point	ω	$\angle G$	G
Α	.1	0°	1
В	1	-45°	.7
С	3	-90°	.3
D	10	-135°	.07
E	100	-175°	.001

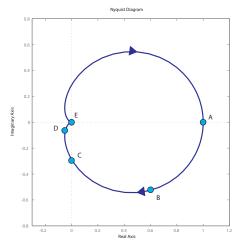
The last two columns give us points on the Nyquist diagram.

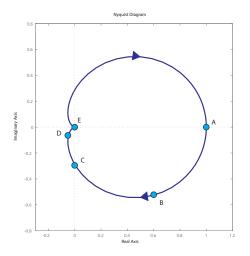


Plot the points from the Bode Diagram.

Point	ω	$\angle G$	G	_
Α	.1	0°	1	-
В	1	-45°	.7	- We get
С	3	-90°	.3	- we get
D	10	-135°	.07	-
E	100	-175°	.001	-

the upper half of the Nyquist diagram from symmetry.





There are no encirclements of $-\frac{1}{k}$.

- Stable for all k > 0.
- We already knew that from Root Locus.

The Nyquist Plot Example 2

$$G(s) = \frac{1}{(s+1)^3}$$

First lets take a look at the root locus.

We expect instability for large k.

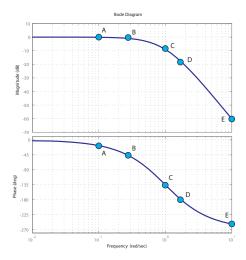


Bode Plot: Lets look at the Frequency Response.

The Bode plot can give us information on |G| at different frequencies.

Point	ω	$\angle G$	G
Α	.1	0°	1
В	.28	-45°	.95
С	1	-135°	.35
D	1.8	-180°	.1
E	10	-260°	.001

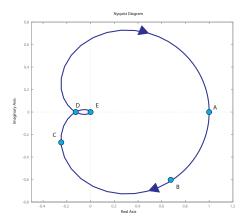
M. Peet

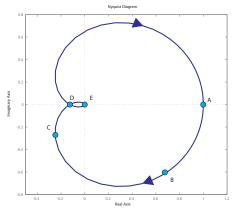


Plot the points from the Bode Diagram.

Point	ω	$\angle G$	G
Α	.1	0°	1
В	.28	-45°	.95
С	1	-135°	.35
D	1.8	-180°	.1
E	10	-260°	.001

Point D is especially important.





Point D: Two CW encirclements when $-\frac{1}{k} < -.1$ (N=2).

- Instability for $-\frac{1}{k} < -.1$
- Stable for k < 10.
- Could have used Routh Table.

Conclusion: We can use the Bode Plot to map the imaginary axis onto the Nyquist Diagram.

Question: What about the other part of the Nyquist contour at $r = \infty$?

Case 1: Strictly Proper.

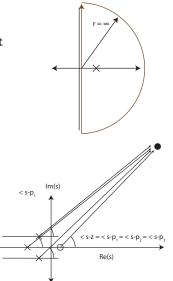
$$\lim_{s \to \infty} |G(s)| = 0$$

What happens at ∞ doesn't matter.

Case 2: Not Strictly Proper.

$$\lim_{s \to \infty} |G(s)| = c$$

Constant Magnitude at ∞ .



Case 2: Not Strictly Proper.

- Angle to all poles and zeros is the same.
- Degree of n(s) and d(s) the same.
 - Number of Poles and Zeros the same.

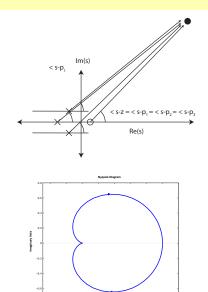
The total angle is

$$\angle G(s) = \sum_{i=1}^{n} \angle (s - z_i) - \sum_{i=1}^{n} \angle (s - p_i)$$
$$= 0$$

The contour map at ∞ has

- Constant magnitude.
- Zero angle.

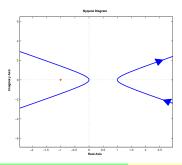
The infinite loop is mapped to a single point! Either (0,0) or (c,0).

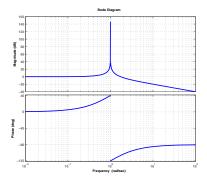


Another Problem: Recall the non-inverted pendulum with PD feedback.

$$G(s) = \frac{s+1}{s^2 + \sqrt{\frac{g}{l}}}$$

Magnitude goes to ∞ at $\omega = \sqrt{\frac{g}{l}}$. **Question** How do we plot the Nyquist Diagram?



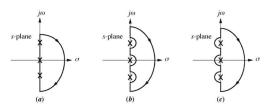


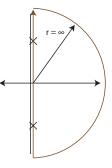
(x,y)

M. Peet

Problem: The Nyquist Contour passes through a pole. Because of the pole, the *argument principle* is invalid.

What to do?





We Modify the Nyquist Contour.

- We detour around the poles.
- Can detour to the right or left.

If we detour to the left, then the poles count as unstable open loop poles.

• P=2

Assume we detour to the right.

• P=0

Look at the detours at small radius.

- Obviously, magnitude $ightarrow\infty$
- Before the Detour, the phase from the pole is

$$-\angle(s-p) = 90^{\circ}$$

• In the middle of the Detour, the phase from the pole is

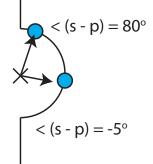
$$-\angle(s-p) = 0^{\circ}$$

• At the end of the Detour, the phase from the pole is

 $-\angle(s-p) = -90^{\circ}$

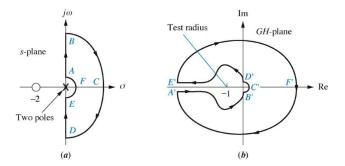
The total phase change through the detour is -180° .

- Corresponds to a CW loop at large radius.
- If there are two or more poles, there is a -180 loop for each pole.



Look at the following example:

$$G(s) = \frac{s+2}{s^2}$$



There are 2 poles at the origin.

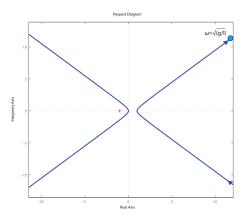
- At $\omega = 0$,
 - $\blacktriangleright \ \angle G(0) = -180^{\circ}$

•
$$|G(0)| = \infty$$

• 2 poles means -360° loop at $\omega = 0$

Lecture 23: Control Systems

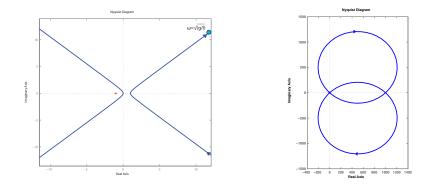
Lets re-examine the pendulum problem with derivative feedback.



Now we can figure out what goes on at ∞ .

• There is a -180° loop at each $\omega = \sqrt{\frac{g}{l}}$.

Conclusion: The loops connect in a non-obvious way!



For $0 < \frac{-1}{k} < 1$, we have N = 1

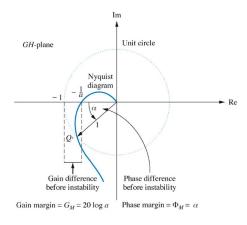
Recall the definitions of Gain Margin.

Definition 2.

The Gain Margin, $K_m = 1/|G(\imath \omega)|$ when $\angle G(\imath \omega) = 180^{\circ}$

Let K_m is the maximum stable gain in closed loop.

- $K_m G(s)$ is unstable in closed loop
- Sometimes expressed in dB
- It is easy to find the maximum stable gain from the Nyquist Plot.
 - Find the point $\frac{-1}{K_m}$ which destabilizes



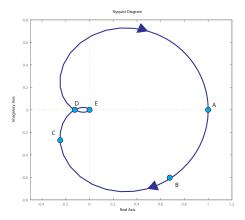
Stability Margins Example

Recall

$$G(s) = \frac{1}{(s+1)^3}$$

Stability: Stable for k < 10.

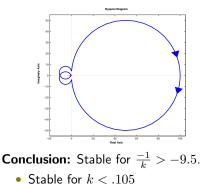
$$K_m = 10$$
 or $20dB$.



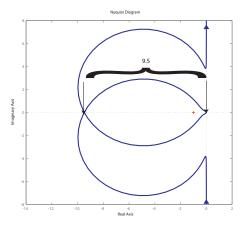
Suspension System with integral feedback

There is a pole at the origin.

• CW loop at ∞ .



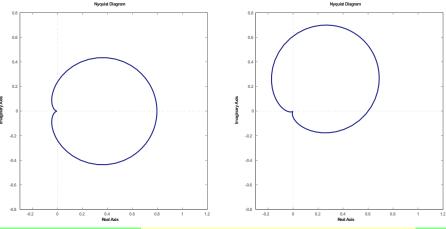
 $K_m = .105$ or -19.5 dB



M. Peet

Question: What is the effect of a phase change on the Nyquist Diagram.

- A shift in phase changes the angle of all points.
- A Rotation about the origin.
- Will we rotate into instability?

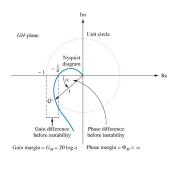


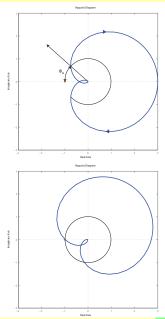
M. Peet

Recall the definitions of Phase Margin.

Definition 3.

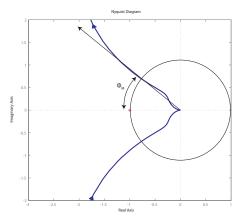
The **Phase Margin**, Φ_M is the uniform phase change required to destabilize the system under unitary feedback.





Example

The Suspension Problem



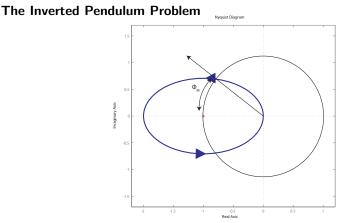
Looking at the intersection with the circle:

• Phase Margin: $\Phi_M \cong 40^\circ$

Gain Margin is infinite.

M. Peet

Example



Even though open-loop is unstable, we can still find the phase margin:

• Phase Margin: $\Phi_M \cong 35^{\circ}$

Gain Margin is technically undefined because open loop is unstable.

• There is a minimum gain, not a maximum.

M. Peet

Lecture 23: Control Systems

What have we learned today?

Review of Nyquist

Drawing the Nyquist Plot

- Using the Bode Plot
- What happens at $r=\infty$
- Poles on the imaginary axis

Phase Margin and Gain Margin

• Reading Stability Margins off the Nyquist Plot

Next Lecture: Controller Design in the Frequency Domain