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Stabilizability

Stabilizability is weaker than controllability

Definition 1.
The pair (A, B) is stabilizable if for any z(0) = z¢, there exists a u(t) such that
x(t) = Tsu satisfies

lim 2(t) =0

t—o0

o Again, no restriction on u(t).
e Weaker than controllability

» Controllability: Can we drive the system to x(Ty) = 07
» Stabilizability: Only need to Approach x = 0.

e Stabilizable if uncontrollable subspace is naturally stable.
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Stabilizability

Consider the system in Controllability Form.
-1 A ] + 3] wo
=[]

j,‘g (t) = AQQ.’BQ (t)

and so, we can solve explicitly

Note that

zo(t) = e22825(0)

Clearly Ao must be Hurwitz if (A, B) is stabilizable.

e Necessary and Sufficient
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PBH Test

Lemma 2.
The pair (A, B) is stabilizable if and only if Ass is Hurwitz.

This is an test for stabilizability, but requires conversion to controllability form.
e A more direct test is the PBH test

Theorem 3.

The pair (A, B) is
« Stabilizable if and only ifrank [\l — A B] =n forall A\ € C*
« Controllable if and only ifrank [\ — A B] =n forall A € C

Note: We need only check the eigenvalues A
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PBH Test

Proof: Controllable if and only if rank [)\I —A B} =nforall A e C

Proof.

We will use proof by contradiction. (=2 = —1). Suppose
rank [)\I —A B] < n.

Thus dim (Im [)\I —A B}) <n

There exists an z such that zT [)J —A B] =0.

Thus \a” = 2T A and zTB =0

Thus 2T A% = AzT A = \227T.

Likewise T A = \egT .

Thus

a"C(A,B)=2"[B AB --- A" 'B]=2"[B AB --- A"!'B]
= [0 0]

Thus dim[ImC(A, B)] < n, which means Not Controllable. (-2 = —1).

We conclude that controllable implies rank [A] — A B] =n.
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PBH Test

Proof.

For the second part, we will also use proof by contradiction. (—1 = —2).
Suppose (A, B) is not controllable. Then there exists an invertible 7" such that

o [An A B
TAT b 11 12 TB = 1
|: 0 A22 ’ 0

Now let X be an eigenvalue of AL, with eigenvector &. AL,& = 2. Thus
.i‘TAQQ = \zT. Let
g
z=TT [9} , then 27 = [9} T
& &
g [N[—A B]=2"T"'[A\T -TAT-'T TB]
T ~ ~ A
0 1 A11 A12 B]_
=|.| TT AT — ST
M { { 0 Ao 0

D e[ [ A [T

Then
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PBH Test

Proof.

TN -4 B]=

A{E]TT—[EH%H B [ ]
[0 A2T]T—[0 2TAx]T 0]

=
=0 z [AI Agp] 0T =0
=0 [M-AL]z 0]T=0

Thus 27 [\ - A B =0.

e Thus rank [)\I —A B] <n

Finally (-1 = —2).

* We conclude that rank [A] — A B| = n implies controllability.
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Single Input Controllability

Definition 4.

A Companion Matrix is any matrix of the form:

0 1 0
A= :
0 1
_aO DR _an—l

A companion matrix has the convenient property that

n—1
det(sI—A) = Zaisi Zao+a18—|—---—|—an_13"‘1 +Sn
=0
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Single Input Controllability

Theorem 5.

Suppose (A, B) is controllable. B € R"*1. Then there exists an invertible T
such that

0 1 0 0

TAT ! = , TB=|*
0 1 0

—ap —Qp—1 1

This is Controllable Canonical Form
e Different from controllability form
e This is useful for reading off transfer functions

G(s)=C(sI —A)"'B+D
which has a denominator
det(sI — A) =ag+ -+ a,_ 15"
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Eigenvalue Assignment
Static Full-State Feedback

The problem of designing a controller
e We have touched on this problem in reachability
» u(t) = BTeATr—p=1,,
» This controller is open-loop

e |t assumes perfect knowledge of system and state.
Problems

e Prone to Errors, Disturbances, Errors in the Model
Solution

e Use continuous measurements of state to generate control
Static Full-State Feedback Assumes:

e We can directly and continuously measure the state x(¢)

e Controller is a static linear function of the measurement

u(t) = Fa(t), F e R™*"
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Eigenvalue Assignment
Static Full-State Feedback

State Equations: u(t) = Fz(t)

z(t) = Ax(t) + Bu(t)
= Ax(t) + BFx(t)

= (A+ BF)z(t)
Stabilization: Find a matrix F' € R"™*" such that
A+ BF
is Hurwitz.
Eigenvalue Assignment: Given {\;,--- ;A\, }, find F € R™*™ such that
A; € eig(A+ BF) fori=1,---,n
is Hurwitz.

Note: A solution to the eigenvalue assignment problem will also solve the
stabilization problem.

Question: Is eigenvalue assignment actually harder?
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Eigenvalue Assignment
Single-Input Case

Theorem 6.

Suppose B € R"*!. Eigenvalues of A+ BF are freely assignable if and only if
(A, B) is controllable.

Proof.
1. There exists a 1" such that
0
A=rar1=|" I B=TB=|:
—ao [_al _anfl] 0
1
2. Define F'= [fy --- fu_1] €RY™. Then
o 0 0
BF = | » A .
{fo i - fn1]]
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Eigenvalue Assignment
Single-Input Case

Proof.
. 0 0
BF=|; .. ;
o Then [fo lin o= f"—lﬂ
L 0 I
A+BF = |:_a0 +f0 [_al +f1 —Qp—1 +fn1:|:|

e This has the characteristic equation
det (sz A+ Bﬁ)) — "t (Fat —an )8 -+ (fo — a0)
e Suppose we want eigenvalues {\1, -+, A\, }. Then define b; as
p(s)=(s— A1) (s — M) :sn+bn_15”71+...+b0

e Choose fz =aq; — b;.

o Now let F = F'T. Then A+ BF = T-Y(A+ BE)T
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Eigenvalue Assignment
Single-Input Case

Proof.

" Then det (sI — (A + BF)) = det (T (31 A+ Bﬁ)) T—l)

= det (sI— (A—FEF))
=(s=A1)--(s—\p)

e Hence A + BF has eigenvalues {A1, -+, A, }.

O]
Suppose we want the eigenvalues {\1,--- ;A\, }.
1. Find theAbZ-
2. Choose f; = a; - b;. R
3. Then use F = [fo fn,l] T.

Conclusion: For Single-Input, controllability implies eigenvalue assignability.
e Requires conversion to controllable canonical form

e Matlab command acker.
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Eigenvalue Assignment
Multiple-Input Case

The multi-input case is harder

Lemma 7.
If (A, B) is controllable, then for any xo # 0, there exists a sequence

{ug, w1, ,un_o} such that span{xg,z1,- -+ ,xp_1} = R™, where

Tpt1 = Az + Buy fork=0,---,n—1

Proof.

For 1 = 2, we again use proof by contradiction. We show (=2 = —1).

e Suppose that for any xg, and any {ug, w1, - ,un—2},
span{zo, - ,T,_1} # R™. Then there exists some y such that y7z; = 0
forany k=0,--- ,n — 1. We can solve explicitly for z:

k—1
B, = Ak(EO I Z Ak_j_lB’LLj
=0
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Eigenvalue Assignment
Multiple-Input Case

Proof.

k—1
T = Akl’o = ZAkijilBUj
=0

e let k=n—1, and zg = Bu,_; for some u,_1. Then for any u
Un—1
up
y 'z, =y [A"'B A"2B ... B] _ =yTC(A,B)u=0
Up—2

e Therefore, image(C(A, B)) # R™. Hence (4, B) is not controllable. This
proves the lemma.

O
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Eigenvalue Assignment
Multiple-Input Case

Lemma 8.

Suppose (A, B) is controllable. Then for any nonzero column, By € R™, of B,
there exists a F; € R™*"™ such that (A + BF, By) is controllable

Proof.
Suppose (A4, B) is controllable. Let g = B; and apply the previous Lemma to
find some input ug, - - - , U9 such that span{zg, - 2,_1} = R™ where
Tpy1 = Az, + Buy,
Let T = [xo xn_l]. Then T is invertible. Let

Fi=luy - UpoT'=UT!

e This implies F;T = U and hence Fiz; = u; fori =0,--- ,n — 1.

e Now expand
Ti+1 = Az + Buy = Az, + BFixy, = [A aF BFl]xk
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Eigenvalue Assignment
Multiple-Input Case

Proof.

Tyl = Axy, + Buy = Az, + BFixy, = [A + BFﬂSL‘k

Which means that z;, = [A + BF;]*z¢. However, since 7o = By, we have

T = [LEQ - xn_l]
[Bl o (A+BF1)”71B1]
— C(A+ BFy, By)

e Since T is invertible, C(A + BF}, By) is full rank and hence
(A+ BF, By) is controllable.
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Eigenvalue Assignment
Multiple-Input Case
Theorem 9.

The eigenvalues of A + BF are freely assignable if and only if (A, B) is
controllable.

Proof.
The “only if" direction is clear. Suppose (A, B) is controllable and we want
eigenvalues {\1,--- , A\, }. Let B; be the first column of B.

e By Lemma, there exists a F; such that (A + BFy, By) is controllable.

e By other Lemma, since the (A + BFjy, By) is controllable, the eigenvalues
of (A+ BF}, By) are assignable. This we can find a F5 such that
A+ BF; + B F5 has eigenvalues {1, -+, A\, }.

e Choose F' = F; + {};2] Then

Fy

A+BF:A+[Bl Bg] |:F1+ |:0

” = A+ BF, + B I,
has the eigenvalues {\1,--- , A\, }.
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Eigenvalue Assignment
Multiple-Input Case

Theorem 10.

The eigenvalues of A + BF are freely assignable if and only if (A, B) is
controllable.

Note that the proof was not very constructive: Need to find F} and F5... 2
Matlab Commands

e K=acker(A,B,p) for 1-D

e K=place(A,B,p) for n-D. p is the vector of pole locations.
Theorem 11.
If (A, B) is stabilizable, then there exists a F such that A+ BF is Hurwitz.

Proof.
Apply the previous result to the controllability form. O

Conclusion: If (4, B) is stabilizable, then it can be stabilized using only static
state feedback. u(t) = Kx(t).
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