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Stabilizability

Stabilizability is weaker than controllability

Definition 1.

The pair (A,B) is stabilizable if for any x(0) = x0, there exists a u(t) such that
x(t) = Γtu satisfies

lim
t→∞

x(t) = 0

• Again, no restriction on u(t).

• Weaker than controllability
I Controllability: Can we drive the system to x(Tf ) = 0?
I Stabilizability: Only need to Approach x = 0.

• Stabilizable if uncontrollable subspace is naturally stable.
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Stabilizability

Consider the system in Controllability Form.[
ẋ1(t)
ẋ2(t)

]
=

[
A11 A12

0 A22

] [
x1(t)
x2(t)

]
+

[
B1

0

]
u(t)

x(0) =

[
x1(0)
x2(0)

]
Note that

ẋ2(t) = A22x2(t)

and so, we can solve explicitly

x2(t) = eA22tx2(0)

Clearly A22 must be Hurwitz if (A,B) is stabilizable.

• Necessary and Sufficient
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PBH Test

Lemma 2.

The pair (A,B) is stabilizable if and only if A22 is Hurwitz.

This is an test for stabilizability, but requires conversion to controllability form.

• A more direct test is the PBH test

Theorem 3.

The pair (A,B) is

• Stabilizable if and only if rank
[
λI −A B

]
= n for all λ ∈ C+

• Controllable if and only if rank
[
λI −A B

]
= n for all λ ∈ C

Note: We need only check the eigenvalues λ
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PBH Test

Proof: Controllable if and only if rank
[
λI −A B

]
= n for all λ ∈ C

Proof.

We will use proof by contradiction. (¬2⇒ ¬1). Suppose
rank

[
λI −A B

]
< n.

• Thus dim
(
Im
[
λI −A B

])
< n

• There exists an x such that xT
[
λI −A B

]
= 0.

• Thus λxT = xTA and xTB = 0

• Thus xTA2 = λxTA = λ2xT .

• Likewise xTAk = λkxT .

• Thus

xTC(A,B) = xT
[
B AB · · · An−1B

]
= xT

[
B λB · · · λn−1B

]
=
[
0 · · · 0

]
• Thus dim[ImC(A,B)] < n, which means Not Controllable. (¬2⇒ ¬1).

• We conclude that controllable implies rank
[
λI −A B

]
= n.
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PBH Test

Proof.

For the second part, we will also use proof by contradiction. (¬1⇒ ¬2).
Suppose (A,B) is not controllable. Then there exists an invertible T such that

TAT−1 =

[
Â11 Â12

0 Â22

]
, TB =

[
B̂1

0

]
Now let λ be an eigenvalue of ÂT

22 with eigenvector x̂. ÂT
22x̂ = λx̂. Thus

x̂T Â22 = λx̂T . Let

x = TT

[
0
x̂

]
, then xT =

[
0
x̂

]T
T

Then

xT
[
λI −A B

]
= xTT−1

[
λT − TAT−1T TB

]
=

[
0
x̂

]T
TT−1

[
λT −

[
Â11 Â12

0 Â22

]
T

[
B̂1

0

]]
=

[
λ

[
0
x̂

]T
T −

[
0
x̂

]T [
Â11 Â12

0 Â22

]
T

[
0
x̂

]T [
B̂1

0

]]

=

[
λ

[
0
x̂

]T
T −

[
0
x̂

]T [
Â11 Â12

0 Â22

]
T

[
0
x̂

]T [
B̂1

0

]]
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PBH Test

Proof.

xT
[
λI −A B

]
=

[
λ

[
0
x̂

]T
T −

[
0
x̂

]T [
Â11 Â12

0 Â22

]
T

[
0
x̂

]T [
B̂1

0

]]
=
[[

0 λx̂T
]
T −

[
0 x̂T Â22

]
T 0

]
=
[
0 x̂T

[
λI − Â22

]
0
]
T = 0

=
[
0
[
λI − ÂT

22

]
x̂ 0

]
T = 0

• Thus xT
[
λI −A B

]
= 0.

• Thus rank
[
λI −A B

]
< n.

• Finally (¬1⇒ ¬2).

• We conclude that rank
[
λI −A B

]
= n implies controllability.
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Single Input Controllability

Definition 4.

A Companion Matrix is any matrix of the form:

A =


0 1 0

. . .
. . .

0 1
−a0 · · · −an−1


A companion matrix has the convenient property that

det(sI −A) =

n−1∑
i=0

ais
i = a0 + a1s+ · · ·+ an−1s

n−1 + sn
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Single Input Controllability

Theorem 5.

Suppose (A,B) is controllable. B ∈ Rn×1. Then there exists an invertible T
such that

TAT−1 =


0 1 0

. . .

0 1
−a0 −an−1

 , TB =


0
...
0
1


This is Controllable Canonical Form

• Different from controllability form

• This is useful for reading off transfer functions

G(s) = C(sI −A)−1B +D

which has a denominator

det(sI −A) = a0 + · · ·+ an−1s
n−1
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Eigenvalue Assignment
Static Full-State Feedback

The problem of designing a controller

• We have touched on this problem in reachability
I u(t) = BT eA(Tf−t)T−1zf
I This controller is open-loop

• It assumes perfect knowledge of system and state.

Problems

• Prone to Errors, Disturbances, Errors in the Model

Solution

• Use continuous measurements of state to generate control

Static Full-State Feedback Assumes:

• We can directly and continuously measure the state x(t)

• Controller is a static linear function of the measurement

u(t) = Fx(t), F ∈ Rm×n
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Eigenvalue Assignment
Static Full-State Feedback

State Equations: u(t) = Fx(t)

ẋ(t) = Ax(t) +Bu(t)

= Ax(t) +BFx(t)

= (A+BF )x(t)

Stabilization: Find a matrix F ∈ Rm×n such that

A+BF

is Hurwitz.

Eigenvalue Assignment: Given {λ1, · · · , λn}, find F ∈ Rm×n such that

λi ∈ eig(A+BF ) for i = 1, · · · , n

is Hurwitz.

Note: A solution to the eigenvalue assignment problem will also solve the
stabilization problem.

Question: Is eigenvalue assignment actually harder?
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Eigenvalue Assignment
Single-Input Case

Theorem 6.

Suppose B ∈ Rn×1. Eigenvalues of A+BF are freely assignable if and only if
(A,B) is controllable.

Proof.

1. There exists a T such that

Â = TAT−1 =

[
0 I
−a0

[
−a1 · · · −an−1

]] B̂ = TB =


0
...
0
1


2. Define F̂ =

[
f̂0 · · · f̂n−1

]
∈ R1×n. Then

B̂F̂ =

[
0 0

f̂0
[
f̂1 · · · f̂n−1

]]
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Eigenvalue Assignment
Single-Input Case

Proof.

B̂F̂ =

[
0 0

f̂0
[
f̂1 · · · f̂n−1

]]
• Then

Â+ B̂F̂ =

[
O I

−a0 + f̂0
[
−a1 + f̂1 · · · −an−1 + f̂n−1

]]
• This has the characteristic equation

det
(
sI − (Â+ B̂F̂ )

)
= sn + (f̂n−1 − an−1)sn−1 + · · ·+ (f̂0 − a0)

• Suppose we want eigenvalues {λ1, · · · , λn}. Then define bi as

p(s) = (s− λ1) · · · (s− λn) = sn + bn−1s
n−1 + · · ·+ b0

• Choose f̂i = ai − bi.
• Now let F = F̂ T . Then A+BF = T−1(Â+ B̂F̂ )T
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Eigenvalue Assignment
Single-Input Case

Proof.

• Then
det (sI − (A+BF )) = det

(
T
(
sI − (Â+ B̂F̂ )

)
T−1

)
= det

(
sI − (Â+ B̂F̂ )

)
= (s− λ1) · · · (s− λn)

• Hence A+BF has eigenvalues {λ1, · · · , λn}.

Suppose we want the eigenvalues {λ1, · · · , λn}.
1. Find the bi
2. Choose f̂i = ai − bi.
3. Then use F =

[
f̂0 · · · f̂n−1

]
T .

Conclusion: For Single-Input, controllability implies eigenvalue assignability.
• Requires conversion to controllable canonical form
• Matlab command acker.
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Eigenvalue Assignment
Multiple-Input Case

The multi-input case is harder

Lemma 7.

If (A,B) is controllable, then for any x0 6= 0, there exists a sequence
{u0, u1, · · · , un−2} such that span{x0, x1, · · · , xn−1} = Rn, where

xk+1 = Axk +Buk for k = 0, · · · , n− 1

Proof.

For 1⇒ 2, we again use proof by contradiction. We show (¬2⇒ ¬1).

• Suppose that for any x0, and any {u0, u1, · · · , un−2},
span{x0, · · · , xn−1} 6= Rn. Then there exists some y such that yTxk = 0
for any k = 0, · · · , n− 1. We can solve explicitly for xk:

xk = Akx0 +

k−1∑
j=0

Ak−j−1Buj
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Eigenvalue Assignment
Multiple-Input Case

Proof.

xk = Akx0 +

k−1∑
j=0

Ak−j−1Buj

• Let k = n− 1, and x0 = Bun−1 for some un−1. Then for any u

yTxn−1 = yT
[
An−1B An−2B · · · B

]

un−1
u0
...

un−2

 = yTC(A,B)u = 0

• Therefore, image(C(A,B)) 6= Rn. Hence (A,B) is not controllable. This
proves the lemma.
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Eigenvalue Assignment
Multiple-Input Case

Lemma 8.

Suppose (A,B) is controllable. Then for any nonzero column, B1 ∈ Rn, of B,
there exists a F1 ∈ Rm×n such that (A+BF1, B1) is controllable

Proof.

Suppose (A,B) is controllable. Let x0 = B1 and apply the previous Lemma to
find some input u0, · · · , un−2 such that span{x0, · · ·xn−1} = Rn where

xk+1 = Axk +Buk

Let T =
[
x0 · · · xn−1

]
. Then T is invertible. Let

F1 =
[
u0 · · · un−2

]
T−1 = UT−1

• This implies F1T = U and hence F1xi = ui for i = 0, · · · , n− 1.

• Now expand

xk+1 = Axk +Buk = Axk +BF1xk = [A+BF1]xk
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Eigenvalue Assignment
Multiple-Input Case

Proof.

xk+1 = Axk +Buk = Axk +BF1xk = [A+BF1]xk

Which means that xk = [A+BF1]kx0. However, since x0 = B1, we have

T =
[
x0 · · · xn−1

]
=
[
B1 · · · (A+BF1)n−1B1

]
= C(A+BF1, B1)

• Since T is invertible, C(A+BF1, B1) is full rank and hence
(A+BF1, B1) is controllable.
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Eigenvalue Assignment
Multiple-Input Case

Theorem 9.

The eigenvalues of A+BF are freely assignable if and only if (A,B) is
controllable.

Proof.

The “only if” direction is clear. Suppose (A,B) is controllable and we want
eigenvalues {λ1, · · · , λn}. Let B1 be the first column of B.

• By Lemma, there exists a F1 such that (A+BF1, B1) is controllable.

• By other Lemma, since the (A+BF1, B1) is controllable, the eigenvalues
of (A+BF1, B1) are assignable. This we can find a F2 such that
A+BF1 +B1F2 has eigenvalues {λ1, · · · , λn}.

• Choose F = F1 +

[
F2

0

]
. Then

A+BF = A+
[
B1 B2

] [
F1 +

[
F2

0

]]
= A+BF1 +B1F2

has the eigenvalues {λ1, · · · , λn}.
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Eigenvalue Assignment
Multiple-Input Case

Theorem 10.

The eigenvalues of A+BF are freely assignable if and only if (A,B) is
controllable.

Note that the proof was not very constructive: Need to find F1 and F2... 2

Matlab Commands

• K=acker(A,B,p) for 1-D

• K=place(A,B,p) for n-D. p is the vector of pole locations.

Theorem 11.

If (A,B) is stabilizable, then there exists a F such that A+BF is Hurwitz.

Proof.

Apply the previous result to the controllability form.

Conclusion: If (A,B) is stabilizable, then it can be stabilized using only static
state feedback. u(t) = Kx(t).
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