Nonlinear Systems Theory

Matthew M. Peet Arizona State University

Lecture 02: Nonlinear Systems Theory

Our next goal is to extend LMI's and optimization to nonlinear systems analysis.

Today we will discuss

- 1. Nonlinear Systems Theory
 - 1.1 Existence and Uniqueness
 - 1.2 Contractions and Iterations
 - 1.3 Gronwall-Bellman Inequality
- 2. Stability Theory
 - 2.1 Lyapunov Stability
 - 2.2 Lyapunov's Direct Method
 - 2.3 A Collection of Converse Lyapunov Results

The purpose of this lecture is to show that Lyapunov stability can be solved **Exactly** via optimization of polynomials.

Ordinary Nonlinear Differential Equations

Computing Stability and Domain of Attraction

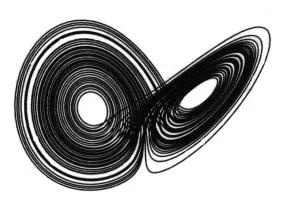
Consider: A System of Nonlinear Ordinary Differential Equations

$$\dot{x}(t) = f(x(t))$$

Problem: Stability Given a specific polynomial $f : \mathbb{R}^n \to \mathbb{R}^n$, find the largest $X \subset \mathbb{R}^n$ such that for any $x(0) \in X$, $\lim_{t\to\infty} x(t) = 0$.

Nonlinear Dynamical Systems

Long-Range Weather Forecasting and the Lorentz Attractor



A model of atmospheric convection analyzed by E.N. Lorenz, Journal of Atmospheric Sciences, 1963.

$$\dot{x} = \sigma(y - x)$$
 $\dot{y} = rx - y - xz$ $\dot{z} = xy - bz$

Stability and Periodic Orbits

The Poincaré-Bendixson Theorem and van der Pol Oscillator

An oscillating circuit model:

$$\dot{y} = -x - (x^2 - 1)y$$
$$\dot{x} = y$$

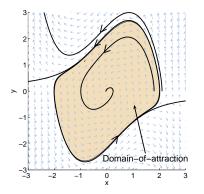


Figure : The van der Pol oscillator in reverse

Theorem 1 (Poincaré-Bendixson).

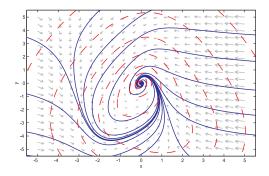
Invariant sets in \mathbb{R}^2 always contain a limit cycle or fixed point.

Stability of Ordinary Differential Equations

Consider

$$\dot{x}(t) = f(x(t))$$

with $x(0) \in \mathbb{R}^n$.



Theorem 2 (Lyapunov Stability).

Suppose there exists a continuous V and $\alpha,\beta,\gamma>0$ where

$$\beta \|x\|^2 \le V(x) \le \alpha \|x\|^2$$
$$-\nabla V(x)^T f(x) \ge \gamma \|x\|^2$$

for all $x \in X$. Then any sub-level set of V in X is a Domain of Attraction.

Mathematical Preliminaries

Cauchy Problem

The first question people ask is the Cauchy problem: **Autonomous System:**

Definition 3.

The system $\dot{x}(t) = f(x(t))$ is said to satisfy the Cauchy problem if there exists a continuous function $x : [0, t_f] \to \mathbb{R}^n$ such that \dot{x} is defined and $\dot{x}(t) = f(x(t))$ for all $t \in [0, t_f]$

If f is continuous, the solution must be continuously differentiable. **Controlled Systems:**

- For a controlled system, we have $\dot{x}(t) = f(x(t), u(t))$.
- At this point u is undefined, so for the Cauchy problem, we take $\dot{x}(t)=f(t,x(t))$
- In this lecture, we consider the autonomous system.
 - Including t complicates the analysis.
 - However, results are almost all the same.

Existence of Solutions

There exist many systems for which no solution exists or for which a solution only exists over a finite time interval.

Even for something as simple as

$$\dot{x}(t) = x(t)^2$$
 $x(0) = x_0$

has the solution

$$x(t) = \frac{x_0}{1 - x_0 t}$$

which clearly has escape time

$$t_e = \frac{1}{x_0}$$

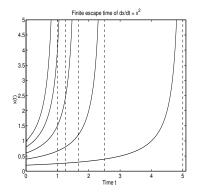


Figure : Simulation of $\dot{x} = x^2$ for several x(0)

Non-Uniqueness

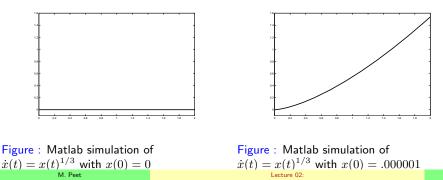
A classical example of a system without a unique solution is

$$\dot{x}(t) = x(t)^{1/3}$$
 $x(0) = 0$

For the given initial condition, it is easy to verify that

$$x(t) = 0$$
 and $x(t) = \left(\frac{2t}{3}\right)^{3/2}$

both satisfy the differential equation.



Non-Uniqueness

Another Example of a system with several solutions is given by

$$\dot{x}(t) = \sqrt{x(t)} \qquad \qquad x(0) = 0$$

For the given initial condition, it is easy to verify that for any C,

$$x(t) = \begin{cases} \frac{(t-C)^2}{4} & t > C\\ 0 & t \le C \end{cases}$$

satisfies the differential equation.

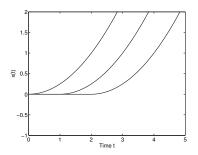
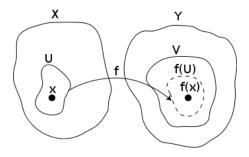


Figure : Several solutions of $\dot{x} = \sqrt{x}$

Customary Notions of Continuity

Definition 4.

For normed linear spaces X, Y, a function $f : X \to Y$ is said to be **continuous** at the point $x_0 \subset X$ if for any $\epsilon > 0$, there exists a $\delta > 0$ such that $||x - x_0|| < \delta$ implies $||f(x) - f(x_0)|| < \epsilon$.



Customary Notions of Continuity

Definition 5.

For normed linear spaces X, Y, a function $f : A \subset X \to Y$ is said to be **continuous on** $B \subset A$ if it is continuous for any point $x_0 \in B$. A function is said to be simply **continuous** if B = A.

Definition 6.

For normed linear spaces X, Y, a function $f : A \subset X \to Y$ is said to be **uniformly continuous on** $B \subset A$ if for any $\epsilon > 0$, there exists a $\delta > 0$ such that for any points $x, y \in B$, $||x - y|| < \delta$ implies $||f(x) - f(y)|| < \epsilon$. A function is said to be simply **uniformly continuous** if B = A.

Lipschitz Continuity

A Quantitative Notion of Continuity

Definition 7.

We say the function f is $\mbox{Lipschitz continuous}$ on X if there exists some L>0 such that

 $\|f(x) - f(y)\| \le L \|x - y\| \qquad \text{for any } x, y \in X.$

The constant L is referred to as the Lipschitz constant for f on X.

Definition 8.

We say the function f is **Locally Lipschitz continuous** on X if for every $x \in X$, there exists a neighborhood, B of x such that f is Lipschitz continuous on B.

Definition 9.

We say the function f is **globally Lipschitz** if it is Lipschitz continuous on its entire domain.

It turns out that smoothness of the vector field is the critical factor.

- Not a **Necessary** condition, however.
- The Lipschitz constant, *L*, allows us to quantify the *roughness* of the vector field.

Existence and Uniqueness

Theorem 10 (Simple).

Suppose $x_0 \in \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}^n$ and there exist L, r such that for any $x, y \in B(x_0, r)$, $\|f(x) - f(y)\| \le L \|x - y\|$ and $\|f(x)\| \le c$. Let $b < \min\{\frac{1}{L}, \frac{r}{c}\}$. Then there exists a unique differentiable map $x \in C[0, b]$, such that $x(0) = x_0$, $x(t) \in B(x_0, r)$ and $\dot{x}(t) = f(x(t))$.

Because the approach to its proof is so powerful, it is worth presenting the proof of the existence theorem.

Contraction Mapping Theorem

Theorem 11 (Contraction Mapping Principle).

Let $(X,\|\cdot\|)$ be a complete normed space and let $P:X\to X.$ Suppose there exists a $\rho<1$ such that

$$||Px - Py|| \le \rho ||x - y||$$
 for all $x, y \in X$.

Then there is a unique $x^* \in X$ such that $Px^* = x^*$. Furthermore for $y \in X$, define the sequence $\{x_i\}$ as $x_1 = y$ and $x_i = Px_{i-1}$ for i > 2. Then $\lim_{i\to\infty} x_i = x^*$.

Some Observations:

- Proof: Show that $P^k y$ is a Cauchy sequence for any $y \in X$.
- For a differentiable function P, P is a contraction if and only if $\|\dot{P}\| < 1$.
- In our case, X is the space of solutions. The contraction is

$$(Px)(t) = x_0 + \int_0^t f(x(s))ds$$

Contraction Mapping Theorem

This contraction derives from the fundamental theorem of calculus.

Theorem 12 (Fundamental Theorem of Calculus).

Suppose $x \in C$ and $f: M \times \mathbb{R}^n \to \mathbb{R}^n$ is continuous and $M = [0, t_f] \subset \mathbb{R}$. Then the following are equivalent.

• x is differentiable at any $t \in M$ and

$$\dot{x}(t) = f(x(t))$$
 at all $t \in M$ (1)
 $x(0) = x_0$ (2)

$$x(t) = x_0 + \int_0^t f(x(s)) ds \quad \text{ for all } t \in M$$

Existence and Uniqueness

First recall what we are trying to prove:

Theorem 13 (Simple).

Suppose $x_0 \in \mathbb{R}^n$, $f : \mathbb{R}^n \to \mathbb{R}^n$ and there exist L, r such that for any $x, y \in B(x_0, r)$, $\|f(x) - f(y)\| \le L \|x - y\|$

and $||f(x)|| \le c$. Let $b < \min\{\frac{1}{L}, \frac{r}{c}\}$. Then there exists a unique differentiable map $x \in C[0, b]$, such that $x(0) = x_0$, $x(t) \in B(x_0, r)$ and $\dot{x}(t) = f(x(t))$.

We will show that

$$(Px)(t) = x_0 + \int_0^t f(x(s))ds$$

is a contraction.

Proof of Existence Theorem

Proof.

For given x_0 , define the space $\mathcal{B} = \{x \in \mathcal{C}[0, b] : x(0) = x_0, x(t) \in B(x_0, r)\}$ with norm $\sup_{t \in [0, b]} ||x(t)||$ which is complete. Define the map P as

$$Px(t) = x_0 + \int_0^t f(x(s))ds$$

We first show that P maps \mathcal{B} to \mathcal{B} . Suppose $x \in \mathcal{B}$. To show $Px \in \mathcal{B}$, we first show that Px a continuous function of t.

$$\|Px(t_2) - Px(t_1)\| = \|\int_{t_1}^{t_2} f(x(s))ds\| \le \int_{t_1}^{t_2} \|f(x(s))\|ds \le c(t_2 - t_1)$$

Thus Px is continuous. Clearly $Px(0) = x_0$. Now we show $x(t) \in B(x_0, r)$.

$$\sup_{t \in [0,b]} \|Px(t) - x_0\| = \sup_{t \in [0,b]} \|\int_0^t f(x(s))ds$$
$$\leq \int_0^b \|f(x(s))\|ds$$
$$\leq bc < r$$

Proof of Existence Theorem

Proof.

Now we have shown that $P: \mathcal{B} \to \mathcal{B}$. To prove existence and uniqueness, we show that Φ is a contraction.

$$Px - Py \| = \sup_{t \in [0,b]} \| \int_0^t f(x(s)) - f(y(s)) ds \|$$

$$\leq \sup_{t \in [0,b]} (\int_0^t \| f(x(s)) - f(y(s)) \| ds) \leq \int_0^b \| f(x(s)) - f(y(s)) \| ds$$

$$\leq L \int_0^b \| x(s) - y(s) \| ds \leq Lb \| x - y \|$$

Thus, since Lb < 1, the map is a contraction with a unique fixed point $x \in \mathcal{B}$ such that ℓ^t

$$x(t) = x_0 + \int_0^t f(x(s))ds$$

By the fundamental theorem of calculus, this means that x is a differentiable function such that for $t \in [0, b]$

$$\dot{x} = f(x(t))$$

Make it so

This proof is particularly important because it provides a way of actually **constructing** the solution.

Picard-Lindelöf Iteration:

- From the proof, unique solution of $Px^* = x^*$ is a solution of $\dot{x}^* = f(x^*)$, where $(Px)(t) = x_0 + \int_0^t f(x(s)) ds$
- From the contraction mapping theorem, the solution $Px^*=x^*$ can be found as $x^*=\lim_{k\to\infty}P^kz$ for any $z\in B$

Note that this existence theorem only guarantees existence on the interval

$$t \in \left[0, \frac{1}{L}\right]$$
 or $t \in \left[0, \frac{r}{c}\right]$

Where

- r is the size of the neighborhood near x_0
- L is a Lipschitz constant for f in the neighborhood of x_0
- c is a bound for f in the neighborhood of x_0

Note further that this theorem only gives a solution for a particular initial condition \boldsymbol{x}_0

• It does not imply existence of the Solution Map

However, convergence of the solution map can also be proven.

Illustration of Picard Iteration

This is a plot of Picard iterations for the solution map of $\dot{x} = -x^3$. z(t,x) = 0; Pz(t,x) = x; $P^2z(t,x) = x - tx^3;$ $P^3z(t,x) = x - tx^3 + 3t^2x^5 - 3t^3x^7 + t^4x^9$

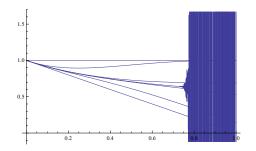


Figure : The solution for $x_0 = 1$

Convergence is only guaranteed on interval $t \in [0, .333]$.

M. Peet

Theorem 14 (Extension Theorem).

For a given set W and r, define the set $W_r := \{x : ||x - y|| \le r, y \in W\}$. Suppose that there exists a domain D and K > 0 such that $||f(t,x) - f(t,y)|| \le K ||x - y||$ for all $x, y \in D \subset \mathbb{R}^n$ and t > 0. Suppose there exists a compact set W and r > 0 such that $W_r \subset D$. Furthermore suppose that it has been proven that for $x_0 \in W$, any solution to

$$\dot{x}(t) = f(t, x), \quad x(0) = x_0$$

must lie entirely in W. Then, for $x_0 \in W$, there exists a unique solution x with $x(0) = x_0$ such that x lies entirely in W.

Illustration of Extended Picard Iteration

Picard iteration can also be used with the extension theorem

• Final time of previous Picard iterate is used to seed next Picard iterate.

Definition 15.

Suppose that the solution map ϕ exists on $t \in [0, \infty]$ and $\|\phi(t, x)\| \leq K \|x\|$ for any $x \in B_r$. Suppose that f has Lipschitz factor L on B_{4Kr} and is bounded on B_{4Kr} with bound Q. Given $T < \min\{\frac{2Kr}{Q}, \frac{1}{L}\}$, let z = 0 and define

$$G_0^k(t,x) := (P^k z)(t,x)$$

and for i > 0, define the functions G_i recursively as

$$G_{i+1}^k(t,x) := (P^k z)(t,G_i^k(T,x)).$$

Define the concatenation of the G_i^k as

$$G^k(t,x):=G^k_i(t-iT,x) \quad \forall \quad t\in [iT,iT+T] \quad \text{and} \ i=1,\cdots,\infty.$$

Illustration of Extended Picard Iteration

We take the previous approximation to the solution map and extend it.

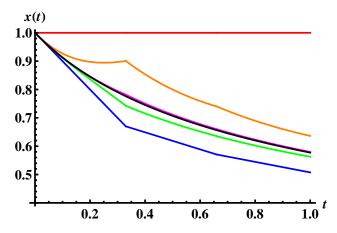


Figure : The Solution map ϕ and the functions G_i^k for k = 1, 2, 3, 4, 5 and i = 1, 2, 3 for the system $\dot{x}(t) = -x(t)^3$. The interval of convergence of the Picard Iteration is $T = \frac{1}{3}$.

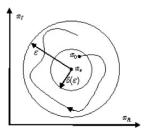
Stability Definitions

Whenever you are trying to prove stability, Please define your notion of stability!

We denote the set of bounded continuous functions by $\overline{C} := \{x \in C : \|x(t)\| \le r, r \ge 0\}$ with norm $\|x\| = \sup_t \|x(t)\|$.

Definition 16.

The system is **locally Lyapunov stable** on D where D contains an open neighborhood of the origin if it defines a unique map $\Phi: D \to \overline{C}$ which is continuous at the origin.



The system is locally Lyapunov stable on D if for any $\epsilon > 0$, there exists a $\delta(\epsilon)$ such that for $||x(0)|| \le \delta(\epsilon)$, $x(0) \subset D$ we have $||x(t)|| \le \epsilon$ for all $t \ge 0$

Stability Definitions

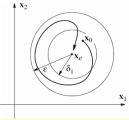
Definition 17.

The system is **globally Lyapunov stable** if it defines a unique map $\Phi : \mathbb{R}^n \to \overline{C}$ which is continuous at the origin.

We define the subspace of bounded continuous functions which tend to the origin by $G := \{x \in \overline{C} : \lim_{t \to \infty} x(t) = 0\}$ with norm $\|x\| = \sup_t \|x(t)\|$.

Definition 18.

The system is **locally asymptotically stable** on D where D contains an open neighborhood of the origin if it defines a map $\Phi: D \to G$ which is continuous at the origin.



Definition 19.

The system is globally asymptotically stable if it defines a map $\Phi : \mathbb{R}^n \to G$ which is continuous at the origin.

Definition 20.

The system is locally exponentially stable on D if it defines a map $\Phi:D\to G$ where

$$|(\Phi x)(t)|| \le K e^{-\gamma t} ||x||$$

for some positive constants $K, \gamma > 0$ and any $x \in D$.

Definition 21.

The system is globally exponentially stable if it defines a map $\Phi:\mathbb{R}^n\to G$ where

$$\|(\Phi x)(t)\| \le K e^{-\gamma t} \|x\|$$

for some positive constants $K, \gamma > 0$ and any $x \in \mathbb{R}^n$.

Lyapunov Theorem

$$\dot{x} = f(x), \qquad f(0) = 0$$

Theorem 22.

Let $V: D \rightarrow R$ be a continuously differentiable function such that

$$V(0) = 0$$

$$V(x) > 0 \quad \text{for } x \in D, \ x \neq 0$$

$$\nabla V(x)^T f(x) \le 0 \quad \text{for } x \in D.$$

- Then $\dot{x} = f(x)$ is well-posed and locally Lyapunov stable on the largest sublevel set of V contained in D.
- Furthermore, if $\nabla V(x) < 0$ for $x \in D$, $x \neq 0$, then $\dot{x} = f(x)$ is locally asymptotically stable on the largest sublevel set of V contained in D.

Lyapunov Theorem

Sublevel Set: For a given Lyapunov function V and positive constant γ , we denote the set $V_{\gamma} = \{x : V(x) \leq \gamma\}$.

Proof.

Existence: Denote the largest bounded sublevel set of V contained in the interior of D by V_{γ^*} . Because $\dot{V}(x(t)) = \nabla V(x(t))^T f(x(t)) \leq 0$ is continuous, if $x(0) \in V_{\gamma^*}$, then $x(t) \in V_{\gamma^*}$ for all $t \geq 0$. Therefore since f is continuous and V_{γ^*} is compact, by the extension theorem, there is a unique solution for any initial condition $x(0) \in V_{\gamma^*}$. **Lyapunov Stability:** Given any $\epsilon' > 0$, choose e < e' with $B(\epsilon) \subset V_{\gamma^*}$, choose γ_i such that $V_{\gamma_i} \subset B(\epsilon)$. Now, choose $\delta > 0$ such that $B(\delta) \subset V_{\gamma_i}$. Then $B(\delta) \subset V_{\gamma_i} \subset B(\epsilon)$ and hence if $x(0) \in B(\delta)$, we have $x(0) \in V_{\gamma_i} \subset B(\epsilon) \subset B(\epsilon')$. **Asymptotic Stability:**

- V monotone decreasing implies $\lim_{t\to} V(x(t)) = 0$.
- V(x) = 0 implies x = 0.
- Proof omitted.

Theorem 23.

Suppose there exists a continuously differentiable function V and constants $c_1, c_2, c_3 >$ and radius r > 0 such that the following holds for all $x \in B(r)$.

 $c_1 \|x\|^p \le V(x) \le c_2 \|x\|^p$ $\nabla V(x)^T f(x) \le -c_3 \|x\|^p$

Then $\dot{x} = f(x)$ is exponentially stable on any ball contained in the largest sublevel set contained in B(r).

Exponential Stability allows a quantitative prediction of system behavior.

The Gronwall-Bellman Inequality

Exponential Stability

Lemma 24 (Gronwall-Bellman).

Let λ be continuous and μ be continuous and nonnegative. Let y be continuous and satisfy for $t \leq b$,

$$y(t) \le \lambda(t) + \int_{a}^{t} \mu(s)y(s)ds.$$

Then

$$y(t) \le \lambda(t) + \int_{a}^{t} \lambda(s)\mu(s) \exp\left[\int_{s}^{t} \mu(\tau)d\tau\right] ds$$

If λ and μ are constants, then

 $y(t) \le \lambda e^{\mu t}.$

For $\lambda(t) = y(0)$, the condition can be differentiated to obtain $\dot{y}(t) \leq \mu(t)y(t).$

Lyapunov Theorem

Exponential Stability

Proof.

We begin by noting that we already satisfy the conditions for existence, uniqueness and asymptotic stability and that $x(t) \in B(r)$. For simplicity, we take p = 2. Now, observe that

$$\dot{V}(x(t)) \le -c_3 \|x(t)\|^2 \le -\frac{c_3}{c_2} V(x(t))$$

Which implies by the **Gronwall-Bellman** inequality $(\mu = \frac{-c_3}{c_2}, \lambda = V(x(0)))$ that

$$V(x(t)) \le V(x(0))e^{-\frac{c_3}{c_2}t}.$$

Hence

$$\|x(t)\|^2 \le \frac{1}{c_1} V(x(t)) \le \frac{1}{c_1} e^{-\frac{c_3}{c_2}t} V(x(0)) \le \frac{c_2}{c_1} e^{-\frac{c_3}{c_2}t} \|x(0)\|^2.$$

Lyapunov Theorem

Invariance

Sometimes, we want to prove convergence to a set. Recall

$$V_{\gamma} = \{x \,, \, V(x) \le \gamma\}$$

Definition 25.

A set, X, is **Positively Invariant** if $x(0) \in X$ implies $x(t) \in X$ for all $t \ge 0$.

Theorem 26.

Suppose that there exists some continuously differentiable function V such that

V(x) > 0 for $x \in D, x \neq 0$ $\nabla V(x)^T f(x) \le 0$ for $x \in D$.

for all $x \in D$. Then for any γ such that the level set $X = \{x : V(x) = \gamma\} \subset D$, we have that V_{γ} is positively invariant. Furthermore, if $\nabla V(x)^T f(x) \leq 0$ for $x \in D$, then for any δ such that $X \subset V_{\delta} \subset D$, we have that any trajectory starting in V_{δ} will approach the sublevel set V_{γ} . In fact, stable systems always have Lyapunov functions.

Suppose that there exists a continuously differentiable function function, called the solution map, g(x,s) such that

$$\frac{\partial}{\partial s}g(x,s)=f(g(x,s))\qquad \text{and}\qquad g(x,0)=x$$

is satisfied.

Converse Form 1:

$$V(x) = \int_0^{\delta} g(s, x)^T g(s, x) ds$$

Converse Form 1:

$$V(x) = \int_0^\delta g(s, x)^T g(s, x) ds$$

For a linear system, $g(s, x) = e^{As}x$.

• This recalls the proof of feasibility of the Lyapunov inequality

$$A^T P + PA < 0$$

• The solution was given by

$$x^T P x = \int_0^\infty x^T e^{A^T s} e^{As} x ds = \int_0^\infty g(s, x)^T g(s, x) ds$$

Theorem 27.

Suppose that there exist K and λ such that g satisfies

 $||g(x,t)|| \le K ||g(x,0)||e^{-\lambda t}$

Then there exists a function V and constants c_1 , c_2 , and c_3 such that V satisfies

$$c_1 \|x\|^2 \le V(x) \le c_2 \|x\|^2$$

 $\nabla V(x)^T f(x) \le -c_3 \|x\|^2$

Proof.

There are 3 parts to the proof, of which 2 are relatively minor. But part 3 is tricky.

The main hurdle is to choose $\delta > 0$ sufficiently large

Part 1: Show that $V(x) \leq c_2 ||x||^2$. Then

$$V(x) = \int_0^\delta ||g(s,x)||^2 ds$$

$$\leq K^2 ||g(x,0)||^2 \int_0^\delta e^{-2\lambda s} ds$$

$$= ||x||^2 \frac{K^2}{2\lambda} (1 - e^{-2\lambda\delta}) = c_2 ||x||^2$$

where $c_2 = \frac{K^2}{2\lambda}(1 - e^{-2\lambda\delta})$. This part holds for any $\delta > 0$.

Proof.

Part 2: Show that $V(x) \ge c_1 ||x||^2$. Lipschitz continuity of f implies $||f(x)|| \le L ||x||$. By the fundamental identity

$$\|x(t)\| \le \|x(0)\| + \int_0^t \|f(x(s))\| ds \le \|x(0)\| + \int_0^t L\|x(s)\| ds$$

Hence by the Gronwall-Bellman inequality

$$||x(0)||e^{-Lt} \le ||x(t)|| \le ||x(0)||e^{Lt}$$

Thus we have that $\|g(x,t)\|^2 \ge \|x\|^2 e^{-Lt}$. This implies

$$V(x) = \int_0^\delta ||g(s,x)||^2 ds \ge ||x||^2 \int_0^\delta e^{-2Ls} ds$$
$$= ||x||^2 \frac{1}{2L} (1 - e^{-2L\delta}) = c_1 ||x||^2$$

where $c_1 = \frac{1}{2L}(1 - e^{-2L\delta})$. This part also holds for any $\delta > 0$.

Proof, Part 3.

Part 3: Show that $\nabla V(x)^T f(x) \leq -c_3 ||x||^2$.

This requires differentiating the solution map with respect to initial conditions. We first prove the identity

$$g_t(t,x) = -g_x(t,x)f(x)$$

We start with a modified version of the fundamental identity

$$g(t,x) = g(0,x) + \int_0^t f(g(s,x))ds = g(0,x) + \int_{-t}^0 f(g(s+t,x))ds$$

By the Leibnitz rule for the differentiation of integrals, we find

$$g_t(t,x) = f(g(0,x)) + \int_{-t}^0 \nabla f(g(s+t,x))^T g_s(s+t,x) ds$$

= $f(x) + \int_0^t \nabla f(g(s,x))^T g_s(s,x) ds$

Also, we have

$$g_x(t,x) = I + \int_0^t \nabla f(g(s,x))^T g_x(s,x) ds$$

M. Peet

Lecture 02:

Proof, Part 3.

Now

$$\begin{split} g_t(t,x) &- g_x(t,x) f(x) \\ &= x + \int_0^t \nabla f(g(s,x))^T g_s(s,x) ds + f(x) + \int_0^t \nabla f(g(s,x))^T g_x(s,x) f(x) ds \\ &= \int_0^t \nabla f(g(s,x))^T \left(g_s(s,x) - g_x(s,x) f(x) \right) ds \end{split}$$

By, e.g., Gronwall-Bellman, this implies

$$g_t(t,x) - g_x(t,x)f(x) = 0.$$

We conclude that

$$g_t(t,x) = g_x(t,x)f(x)$$

Which is interesting.

Proof, Part 3.

With this identity in hand, we proceed:

$$\nabla V(x)^T f(x) = \left(\nabla_x \int_0^{\delta} g(s, x)^T g(s, x) ds \right)^T f(x)$$

= $2 \int_0^{\delta} g(s, x)^T g_x(s, x) f(x) ds$
= $2 \int_0^{\delta} g(s, x)^T g_s(s, x) ds = \int_0^{\delta} \frac{d}{ds} ||g(s, x)||^2 ds$
= $||g(\delta, x)||^2 - ||g(0, x)||^2$
 $\leq K^2 ||x||^2 e^{-2\lambda\delta} - ||x||^2$
= $- (1 - K^2 e^{-2\lambda\delta}) ||x||^2$

Thus the third inequality is satisfied for $c_3 = 1 - K^2 e^{-2\lambda\delta}$. However, this constant is only positive if

$$\delta > \frac{\log K}{\lambda}.$$

The Lyapunov function inherits many properties of the solution map and hence the vector field.

$$V(x) = \int_0^{\delta} g(s, x)^T g(s, x) ds \qquad g(t, x) = g(0, x) + \int_0^t f(g(s, x)) ds$$

Massera: Let $D^{\alpha} = \prod_{i} \frac{\partial^{\alpha_{i}}}{\partial x_{i}^{\alpha_{i}}}$.

• $D^{\alpha}V(x)$ is continuous if $D^{\alpha}f(x)$ is continuous.

Formally, this means

Theorem 28 (Massera).

Consider the system defined by $\dot{x} = f(x)$ where $D^{\alpha} f \in \mathcal{C}(\mathbb{R}^n)$ for any $\|\alpha\|_1 \leq s$. Suppose that there exist constants $\mu, \delta, r > 0$ such that

 $\|(Ax_0)(t)\|_2 \le \mu \|x_0\|_2 e^{-\delta t}$

for all $t \ge 0$ and $||x_0||_2 \le r$. Then there exists a function $V : \mathbb{R}^n \to \mathbb{R}$ and constants $\alpha, \beta, \gamma > 0$ such that

$$\alpha \|x\|_2^2 \le V(x) \le \beta \|x\|_2^2$$
$$\nabla V(x)^T f(x) \le -\gamma \|x\|_2^2$$

for all $||x||_2 \leq r$. Furthermore, $D^{\alpha}V \in \mathcal{C}(\mathbb{R}^n)$ for any α with $||\alpha||_1 \leq s$.

Finding $L = \sup_x \|D^{\alpha}V\|$

Given a Lipschitz bound for f, lets find a Lipschitz constant for V?

$$V(x) = \int_0^\delta g(s,x)^T g(s,x) ds \qquad g(t,x) = x + \int_0^t f(g(s,x)) ds$$

We first need a Lipschitz bound for the solution map:

$$L_g = \sup_{x} \|\nabla_x g(s, x)\|$$

From the identity

$$g_x(t,x) = I + \int_0^t \nabla f(g(s,x))g_x(s,x)ds$$

we get

$$||g_x(t,x)|| \le 1 + \int_0^t L||g_x(s,x)||ds$$

which implies by **Gronwall-Bellman** that $||g_x(t,x)|| \le e^{Lt}$

Finding $L = \sup_x \|D^{\alpha}V\|$ Faà di Bruno's formula

What about a bound for $||D^{\alpha}V(x)||$?

$$D^{\alpha}g(t,x) = \int_0^t D^{\alpha}f(g(s,x))g_x(s,x)ds$$

Faà di Bruno's formula: For scalar functions

$$\frac{d^n}{dx^n}f(g(y)) = \sum_{\pi \in \Pi} f^{(|\pi|)}(g(y)) \cdot \prod_{B \in \pi} g^{(|B|)}(x).$$

where Π is the set of partitions of $\{1, \ldots, n\}$, and $|\cdot|$ denotes cardinality. We can generalize Faà di Bruno's formula to functions $f : \mathbb{R}^n \to \mathbb{R}^n$ and $g : \mathbb{R}^n \to \mathbb{R}^n$.

The combinatorial notation allows us to keep track of terms.

A Generalized Chain Rule

Definition 29.

Let Ω_r^i denote the set of partitions of $(1, \ldots, r)$ into *i* non-empty subsets.

Lemma 30 (Generalized Chain Rule).

Suppose $f : \mathbb{R}^n \to \mathbb{R}$ and $z : \mathbb{R}^n \to \mathbb{R}^n$ are *r*-times continuously differentiable. Let $\alpha \in \mathbb{N}^n$ with $|\alpha|_1 = r$. Let $\{a_i\} \in Z^r$ be any decomposition of α so that $\alpha = \sum_{i=1}^r a_i$.

$$D_x^{\alpha} f(z(x)) = \sum_{i=1}^r \sum_{j_1=1}^n \cdots \sum_{j_i=1}^n \frac{\partial^i}{\partial x_{j_1} \cdots \partial x_{j_i}} f(z(x)) \times \sum_{\beta \in \Omega_r^i} \prod_{k=1}^i D^{\sum_{l \in \beta_k} a_l} z_{j_k}(x)$$

A Quantitative Massera-style Converse Lyapunov Result

We can use the generalized chain rule to get the following.

Theorem 31.

- Suppose that $\|D^{\beta}f\|_{\infty} \leq L$ for $\|\beta\|_{\infty} \leq r$
- Suppose $\dot{x} = f(x)$ satisfies $||x(t)|| \le k ||x(0)||e^{-\lambda t}$ for $||x(0)|| \le 1$.

Then there exists a function V such that

- V is exponentially decreasing on $||x|| \leq 1$.
- $D^{\alpha}V$ is continuous on $\|x\| \leq 1$ for $\|\alpha\|_{\infty} \leq r$ with upper bound

$$\max_{\alpha|_1 < r} \|D^{\alpha}V(x)\| \le c_1 2^r \left(B(r) \frac{L}{\lambda} e^{c_2 \frac{L}{\lambda}}\right)^{er}$$

for some $c_1(k,n)$ and $c_2(k,n)$.

- Also a bound on the continuity of the solution map.
- B(r) is the Ball number.

Theorem 32 (Approximation).

- Suppose f is bounded on compact X.
- Suppose that $D^{\alpha}V$ is continuous for $\|\alpha\|_{\infty} \leq 3$.

Then for any $\delta > 0$, there exists a polynomial, p, such that for $x \in X$,

 $\|V(x) - p(x)\| \le \delta \|x\|^2 \quad \text{ and } \quad \left\|\nabla (V(x) - p(x))^T f(x)\right\| \le \delta \|x\|^2$

• Polynomials can approximate differentiable functions arbitrarily well in Sobolev norms with a quadratic upper bound on the error.

Polynomial Lyapunov Functions

A Converse Lyapunov Result

Consider the system

$$\dot{x}(t) = f(x(t))$$

Theorem 33.

- Suppose $\dot{x}(t) = f(x(t))$ is exponentially stable for $||x(0)|| \le r$.
- Suppose $D^{\alpha}f$ is continuous for $\|\alpha\|_{\infty} \leq 3$.

Then there exists a Lyapunov function $V:\mathbb{R}^n\to\mathbb{R}$ such that

- V is exponentially decreasing on $||x|| \leq r$.
- V is a polynomial.

Implications:

• Using polynomials is not conservative.

Question:

- What is the degree of the Lyapunov function
 - How many coefficients do we need to optimize?

Degree Bounds in Approximation Theory

This result uses the Bernstein polynomials to give a degree bound as a function of the error bound.

Theorem 34.

• Suppose $V: \mathbb{R}^n \to \mathbb{R}^n$ has Lipschitz constant L on the unit ball.

 $||V(x) - V(y)||_2 < L||x - y||_2$

Then for any $\epsilon > 0$, there exists a **polynomial**, p, which satisfies

$$\sup_{\|x\| \le 1} \|p(x) - V(x)\|_2 < \epsilon$$

where

$$\textit{legree}(p) \leq \frac{n}{4^2} \left(\frac{L}{\epsilon}\right)^2$$

To find a bound on L, we can use a bound on $D^{\alpha}V$.

A Bound on the Complexity of Lyapunov Functions

Theorem 35.

- Suppose $||x(t)|| \le K ||x(0)|| e^{-\lambda t}$ for $||x(0)|| \le r$.
- Suppose f is polynomial and $\|\nabla f(x)\| \le L$ on $\|x\| \le r$.

Then there exists a polynomial $V \in \Sigma_s$ such that

- V is exponentially decreasing on $||x|| \leq r$.
- The degree of V is less than

$$degree(V) \le 2q^{2(Nk-1)} \cong 2q^{2c_1\frac{L}{\lambda}}$$

where q is the degree of the vector field, f.

$$V(x) = \int_0^\delta G_k(x,s)^T G_k(x,s)$$

• G_k is an extended Picard iteration.

• k is the number of Picard iterations and N is the number of extensions. Note that the Lyapunov function is a square of polynomials.

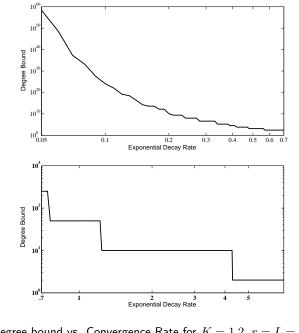


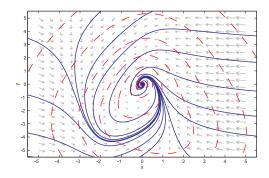
Figure : Degree bound vs. Convergence Rate for K = 1.2, r = L = 1, and q = 5

Returning to the Lyapunov Stability Conditions

Consider

$$\dot{x}(t) = f(x(t))$$

with $x(0) \in \mathbb{R}^n$.



Theorem 36 (Lyapunov Stability).

Suppose there exists a continuous V and $\alpha,\beta,\gamma>0$ where

$$\beta \|x\|^2 \le V(x) \le \alpha \|x\|^2$$
$$-\nabla V(x)^T f(x) \ge \gamma \|x\|^2$$

for all $x \in X$. Then any sub-level set of V in X is a Domain of Attraction.

The Stability Problem is Convex

Convex Optimization of Functions: Variables $V \in C[\mathbb{R}^n]$ and $\gamma \in \mathbb{R}$

 $\begin{array}{l} \max_{V,\gamma} \ \gamma\\ \text{subject to}\\ V(x) - x^T x \geq 0 \quad \forall x\\ \nabla V(x)^T f(x) + \gamma x^T x \leq 0 \quad \forall x \end{array}$

Moreover, since we can assume V is polynomial with bounded degree, the problem is *finite-dimensional*.

Convex Optimization of Polynomials: Variables $c \in \mathbb{R}^n$ and $\gamma \in \mathbb{R}$

 $\begin{array}{l} \max\limits_{\boldsymbol{c},\gamma} \ \gamma \\ \text{subject to} \\ & \boldsymbol{c}^T Z(x) - x^T x \geq 0 \quad \forall x \\ & \boldsymbol{c}^T \nabla Z(x) f(x) + \gamma x^T x \leq 0 \quad \forall x \end{array}$

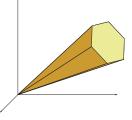
• Z(x) is a fixed vector of monomial bases.

Can we solve optimization of polynomials?

Problem:

$$\max \ b^T x$$

subject to $A_0(y) + \sum_i^n x_i A_i(y) \succeq 0 \quad \forall y$



The A_i are matrices of polynomials in y. e.g. Using multi-index notation,

$$A_i(y) = \sum_{\alpha} A_{i,\alpha} \ y^{\alpha}$$

Computationally Intractable

The problem: "Is $p(x) \ge 0$ for all $x \in \mathbb{R}^n$?" (i.e. " $p \in \mathbb{R}^+[x]$?") is NP-hard.

Conclusions

Nonlinear Systems are relatively well-understood.

Well-Posed

- Existence and Uniqueness guaranteed if vector field and its gradient are bounded.
 - Contraction Mapping Principle
- The dependence of the solution map on the initial conditions
 - Properties are inherited from the vector field via Gronwall-Bellman

Lyapunov Stability

- Lyapunov's conditions are necessary and sufficient for stability.
 - Problem is to find a Lyapunov function.
- Converse forms provide insight.
 - Capture the inherent energy stored in an initial condition
- We can assume the Lyapunov function is polynomial of bounded degree.
 - Degree may be very large.
 - We need to be able to optimize the cone of positive polynomial functions.