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Overview

Our next goal is to extend LMI’s and optimization to nonlinear systems analysis.

Today we will discuss

1. Nonlinear Systems Theory

1.1 Existence and Uniqueness
1.2 Contractions and Iterations
1.3 Gronwall-Bellman Inequality

2. Stability Theory

2.1 Lyapunov Stability
2.2 Lyapunov’s Direct Method
2.3 A Collection of Converse Lyapunov Results

The purpose of this lecture is to show that Lyapunov stability can be solved
Exactly via optimization of polynomials.
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Ordinary Nonlinear Differential Equations
Computing Stability and Domain of Attraction

Consider: A System of Nonlinear Ordinary Differential Equations

ẋ(t) = f (x(t))

Problem: Stability
Given a specific polynomial f : Rn → Rn,
find the largest X ⊂ Rn
such that for any x(0) ∈ X,
limt→∞ x(t) = 0.
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Nonlinear Dynamical Systems
Long-Range Weather Forecasting and the Lorentz Attractor

A model of atmospheric convection analyzed by E.N. Lorenz, Journal of
Atmospheric Sciences, 1963.

ẋ = σ(y − x) ẏ = rx− y − xz ż = xy − bz
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Stability and Periodic Orbits
The Poincaré-Bendixson Theorem and van der Pol Oscillator

An oscillating circuit model:

ẏ = −x− (x2 − 1)y

ẋ = y
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Figure : The van der Pol oscillator in reverse

Theorem 1 (Poincaré-Bendixson).

Invariant sets in R2 always contain a limit cycle or fixed point.
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Stability of Ordinary Differential Equations

Consider

ẋ(t) = f(x(t))

with x(0) ∈ Rn.

Theorem 2 (Lyapunov Stability).

Suppose there exists a continuous V and α, β, γ > 0 where

β‖x‖2 ≤ V (x) ≤ α‖x‖2

−∇V (x)T f(x) ≥ γ‖x‖2

for all x ∈ X. Then any sub-level set of V in X is a Domain of Attraction.
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Mathematical Preliminaries
Cauchy Problem

The first question people ask is the Cauchy problem:
Autonomous System:

Definition 3.

The system ẋ(t) = f(x(t)) is said to satisfy the Cauchy problem if there exists a
continuous function x : [0, tf ]→ Rn such that ẋ is defined and ẋ(t) = f(x(t))
for all t ∈ [0, tf ]

If f is continuous, the solution must be continuously differentiable.
Controlled Systems:

• For a controlled system, we have ẋ(t) = f(x(t), u(t)).

• At this point u is undefined, so for the Cauchy problem, we take
ẋ(t) = f(t, x(t))

• In this lecture, we consider the autonomous system.
I Including t complicates the analysis.
I However, results are almost all the same.
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Ordinary Differential Equations
Existence of Solutions

There exist many systems for which no solution exists or for which a solution
only exists over a finite time interval.

Even for something as simple as

ẋ(t) = x(t)2 x(0) = x0

has the solution

x(t) =
x0

1− x0t

which clearly has escape time

te =
1

x0

1

Nonlinear Control Theory 2006

Lecture 1++, 2006

• Nonlinear Phenomena and Stability theory

◮ Nonlinear phenomena [Khalil Ch 3.1]
◮ existence and uniqueness
◮ finite escape time
◮ peaking

◮ Linear system theory revisited
◮ Second order systems [Khalil Ch 2.4, 2.6]

◮ periodic solutions / limit cycles
◮ Stability theory [Khalil Ch. 4]

◮ Lyapunov Theory revisited
◮ exponential stability
◮ quadratic stability
◮ time-varying systems
◮ invariant sets
◮ center manifold theorem

Existence problems of solutions

Example: The differential equation

dx
dt
= x2, x(0) = x0

has the solution

x(t) = x0

1− x0t
, 0 ≤ t < 1

x0

Finite escape time

t f =
1
x0
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Finite escape time of dx/dt = x2

Uniqueness Problems

Example: The equation ẋ = √x, x(0) = 0 has many solutions:

x(t) =
{
(t− C)2/4 t > C

0 t ≤ C
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Compare with water tank:

Previous problem is like the water-tank problem in backward
time

(Substitute τ = −t in differential equation).

dh/dt = −a
√

h, h : height (water level)

Change to backward-time: “If I see it empty, when was it full?”)

Existence and Uniqueness

Theorem

Let ΩR denote the ball

ΩR = {z; qz− aq ≤ R}

If f is Lipschitz-continuous:

q f (z) − f (y)q ≤ Kqz− yq, for all z, y∈ Ω

then ẋ(t) = f (x(t)), x(0) = a has a unique solution in

0 ≤ t < R/CR,

where CR = maxΩR q f (x)q

see [Khalil Ch. 3]

The peaking phenomenon

Example: Controlled linear system with right-half plane zero

Feedback can change location of poles but not location of zero
(unstable pole-zero cancellation not allowed).

Gcl(s) =
(−s+ 1)ω 2

o
s2 + 2ω os+ω 2

o
(1)

A step response will reveal a transient which grows in amplitude
for faster closed loop poles s = −ω o, see Figure on next slide.

Figure : Simulation of ẋ = x2 for several
x(0)
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Ordinary Differential Equations
Non-Uniqueness

A classical example of a system without a unique solution is

ẋ(t) = x(t)1/3 x(0) = 0

For the given initial condition, it is easy to verify that

x(t) = 0 and x(t) =

(
2t

3

)3/2

both satisfy the differential equation.
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Figure : Matlab simulation of
ẋ(t) = x(t)1/3 with x(0) = 0
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Figure : Matlab simulation of
ẋ(t) = x(t)1/3 with x(0) = .000001
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Ordinary Differential Equations
Non-Uniqueness

Another Example of a system with several solutions is given by

ẋ(t) =
√
x(t) x(0) = 0

For the given initial condition, it is easy
to verify that for any C,

x(t) =

{
(t−C)2

4 t > C

0 t ≤ C

satisfies the differential equation.

1
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• Nonlinear Phenomena and Stability theory

◮ Nonlinear phenomena [Khalil Ch 3.1]
◮ existence and uniqueness
◮ finite escape time
◮ peaking

◮ Linear system theory revisited
◮ Second order systems [Khalil Ch 2.4, 2.6]

◮ periodic solutions / limit cycles
◮ Stability theory [Khalil Ch. 4]

◮ Lyapunov Theory revisited
◮ exponential stability
◮ quadratic stability
◮ time-varying systems
◮ invariant sets
◮ center manifold theorem

Existence problems of solutions

Example: The differential equation

dx
dt
= x2, x(0) = x0

has the solution

x(t) = x0

1− x0t
, 0 ≤ t < 1

x0

Finite escape time

t f =
1
x0
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Uniqueness Problems

Example: The equation ẋ = √x, x(0) = 0 has many solutions:

x(t) =
{
(t− C)2/4 t > C

0 t ≤ C
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Compare with water tank:

Previous problem is like the water-tank problem in backward
time

(Substitute τ = −t in differential equation).

dh/dt = −a
√

h, h : height (water level)

Change to backward-time: “If I see it empty, when was it full?”)

Existence and Uniqueness

Theorem

Let ΩR denote the ball

ΩR = {z; qz− aq ≤ R}

If f is Lipschitz-continuous:

q f (z) − f (y)q ≤ Kqz− yq, for all z, y∈ Ω

then ẋ(t) = f (x(t)), x(0) = a has a unique solution in

0 ≤ t < R/CR,

where CR = maxΩR q f (x)q

see [Khalil Ch. 3]

The peaking phenomenon

Example: Controlled linear system with right-half plane zero

Feedback can change location of poles but not location of zero
(unstable pole-zero cancellation not allowed).

Gcl(s) =
(−s+ 1)ω 2

o
s2 + 2ω os+ω 2

o
(1)

A step response will reveal a transient which grows in amplitude
for faster closed loop poles s = −ω o, see Figure on next slide.

Figure : Several solutions of ẋ =
√
x
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Ordinary Differential Equations
Customary Notions of Continuity

Definition 4.

For normed linear spaces X,Y , a function f : X → Y is said to be continuous
at the point x0 ⊂ X if for any ε > 0, there exists a δ > 0 such that
‖x− x0‖ < δ implies ‖f(x)− f(x0)‖ < ε.
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Ordinary Differential Equations
Customary Notions of Continuity

Definition 5.

For normed linear spaces X,Y , a function f : A ⊂ X → Y is said to be
continuous on B ⊂ A if it is continuous for any point x0 ∈ B. A function is
said to be simply continuous if B = A.

Definition 6.

For normed linear spaces X,Y , a function f : A ⊂ X → Y is said to be
uniformly continuous on B ⊂ A if for any ε > 0, there exists a δ > 0 such
that for any points x, y ∈ B, ‖x− y‖ < δ implies ‖f(x)− f(y)‖ < ε. A
function is said to be simply uniformly continuous if B = A.
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Lipschitz Continuity
A Quantitative Notion of Continuity

Definition 7.

We say the function f is Lipschitz continuous on X if there exists some L > 0
such that

‖f(x)− f(y)‖ ≤ L‖x− y‖ for any x, y ∈ X.

The constant L is referred to as the Lipschitz constant for f on X.

Definition 8.

We say the function f is Locally Lipschitz continuous on X if for every
x ∈ X, there exists a neighborhood, B of x such that f is Lipschitz continuous
on B.

Definition 9.

We say the function f is globally Lipschitz if it is Lipschitz continuous on its
entire domain.
It turns out that smoothness of the vector field is the critical factor.
• Not a Necessary condition, however.
• The Lipschitz constant, L, allows us to quantify the roughness of the

vector field.
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Ordinary Differential Equations
Existence and Uniqueness

Theorem 10 (Simple).

Suppose x0 ∈ Rn, f : Rn → Rn and there exist L, r such that for any
x, y ∈ B(x0, r),

‖f(x)− f(y)‖ ≤ L‖x− y‖

and ‖f(x)‖ ≤ c. Let b < min{ 1
L ,

r
c}. Then there exists a unique differentiable

map x ∈ C[0, b], such that x(0) = x0, x(t) ∈ B(x0, r) and ẋ(t) = f(x(t)).

Because the approach to its proof is so powerful, it is worth presenting the proof
of the existence theorem.
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Ordinary Differential Equations
Contraction Mapping Theorem

Theorem 11 (Contraction Mapping Principle).

Let (X, ‖·‖) be a complete normed space and let P : X → X. Suppose there
exists a ρ < 1 such that

‖Px− Py‖ ≤ ρ‖x− y‖ for all x, y ∈ X.

Then there is a unique x∗ ∈ X such that Px∗ = x∗. Furthermore for y ∈ X,
define the sequence {xi} as x1 = y and xi = Pxi−1 for i > 2. Then
limi→∞ xi = x∗.

Some Observations:

• Proof: Show that P ky is a Cauchy sequence for any y ∈ X.

• For a differentiable function P , P is a contraction if and only if ‖Ṗ‖ < 1.

• In our case, X is the space of solutions. The contraction is

(Px)(t) = x0 +

∫ t

0

f(x(s))ds
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Ordinary Differential Equations
Contraction Mapping Theorem

This contraction derives from the fundamental theorem of calculus.

Theorem 12 (Fundamental Theorem of Calculus).

Suppose x ∈ C and f : M × Rn → Rn is continuous and M = [0, tf ] ⊂ R.
Then the following are equivalent.

• x is differentiable at any t ∈M and

ẋ(t) = f(x(t)) at all t ∈M (1)

x(0) = x0 (2)

•

x(t) = x0 +

∫ t

0

f(x(s))ds for all t ∈M
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Ordinary Differential Equations
Existence and Uniqueness

First recall what we are trying to prove:

Theorem 13 (Simple).

Suppose x0 ∈ Rn, f : Rn → Rn and there exist L, r such that for any
x, y ∈ B(x0, r),

‖f(x)− f(y)‖ ≤ L‖x− y‖

and ‖f(x)‖ ≤ c. Let b < min{ 1
L ,

r
c}. Then there exists a unique differentiable

map x ∈ C[0, b], such that x(0) = x0, x(t) ∈ B(x0, r) and ẋ(t) = f(x(t)).

We will show that

(Px)(t) = x0 +

∫ t

0

f(x(s))ds

is a contraction.
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Proof of Existence Theorem

Proof.

For given x0, define the space B = {x ∈ C[0, b] : x(0) = x0, x(t) ∈ B(x0, r)}
with norm supt∈[0,b]‖x(t)‖ which is complete. Define the map P as

Px(t) = x0 +

∫ t

0

f(x(s))ds

We first show that P maps B to B. Suppose x ∈ B. To show Px ∈ B, we first
show that Px a continuous function of t.

‖Px(t2)− Px(t1)‖ = ‖
∫ t2

t1

f(x(s))ds‖ ≤
∫ t2

t1

‖f(x(s))‖ds ≤ c(t2 − t1)

Thus Px is continuous. Clearly Px(0) = x0. Now we show x(t) ∈ B(x0, r).

sup
t∈[0,b]

‖Px(t)− x0‖ = sup
t∈[0,b]

‖
∫ t

0

f(x(s))ds‖

≤
∫ b

0

‖f(x(s))‖ds

≤ bc < r
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Proof of Existence Theorem

Proof.

Now we have shown that P : B → B. To prove existence and uniqueness, we
show that Φ is a contraction.

‖Px− Py‖ = sup
t∈[0,b]

‖
∫ t

0

f(x(s))− f(y(s))ds‖

≤ sup
t∈[0,b]

(

∫ t

0

‖f(x(s))− f(y(s))‖ds) ≤
∫ b

0

‖f(x(s))− f(y(s))‖ds

≤ L
∫ b

0

‖x(s)− y(s)‖ds ≤ Lb‖x− y‖

Thus, since Lb < 1, the map is a contraction with a unique fixed point x ∈ B
such that

x(t) = x0 +

∫ t

0

f(x(s))ds

By the fundamental theorem of calculus, this means that x is a differentiable
function such that for t ∈ [0, b]

ẋ = f(x(t))
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Picard Iteration
Make it so

This proof is particularly important because it provides a way of actually
constructing the solution.

Picard-Lindelöf Iteration:

• From the proof, unique solution of Px∗ = x∗ is a solution of ẋ∗ = f(x∗),
where

(Px)(t) = x0 +

∫ t

0

f(x(s))ds

• From the contraction mapping theorem, the solution Px∗ = x∗ can be
found as

x∗ = lim
k→∞

P kz for any z ∈ B
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Extension of Existence Theorem

Note that this existence theorem only guarantees existence on the interval

t ∈
[
0,

1

L

]
or t ∈

[
0,
r

c

]

Where

• r is the size of the neighborhood near x0

• L is a Lipschitz constant for f in the neighborhood of x0

• c is a bound for f in the neighborhood of x0

Note further that this theorem only gives a solution for a particular initial
condition x0

• It does not imply existence of the Solution Map

However, convergence of the solution map can also be proven.
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Illustration of Picard Iteration

This is a plot of Picard iterations for the solution map of ẋ = −x3.

z(t, x) = 0; Pz(t, x) = x; P 2z(t, x) = x− tx3;

P 3z(t, x) = x− tx3 + 3t2x5 − 3t3x7 + t4x9

0.2 0.4 0.6 0.8 1.0

0.5

1.0

1.5

Figure : The solution for x0 = 1

Convergence is only guaranteed on interval t ∈ [0, .333].
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Extension of Existence Theorem

Theorem 14 (Extension Theorem).

For a given set W and r, define the set Wr := {x : ‖x− y‖ ≤ r, y ∈W}.
Suppose that there exists a domain D and K > 0 such that
‖f(t, x)− f(t, y)‖ ≤ K‖x− y‖ for all x, y ∈ D ⊂ Rn and t > 0. Suppose there
exists a compact set W and r > 0 such that Wr ⊂ D. Furthermore suppose
that it has been proven that for x0 ∈W , any solution to

ẋ(t) = f(t, x), x(0) = x0

must lie entirely in W . Then, for x0 ∈W , there exists a unique solution x with
x(0) = x0 such that x lies entirely in W .
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Illustration of Extended Picard Iteration

Picard iteration can also be used with the extension theorem

• Final time of previous Picard iterate is used to seed next Picard iterate.

Definition 15.

Suppose that the solution map φ exists on t ∈ [0,∞] and ‖φ(t, x)‖ ≤ K‖x‖ for
any x ∈ Br. Suppose that f has Lipschitz factor L on B4Kr and is bounded on
B4Kr with bound Q. Given T < min{ 2Kr

Q , 1
L}, let z = 0 and define

Gk0(t, x) := (P kz)(t, x)

and for i > 0, define the functions Gi recursively as

Gki+1(t, x) := (P kz)(t, Gki (T, x)).

Define the concatenation of the Gki as

Gk(t, x) := Gki (t− iT, x) ∀ t ∈ [iT, iT + T ] and i = 1, · · · ,∞.
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Illustration of Extended Picard Iteration

We take the previous approximation to the solution map and extend it.
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t

0.5

0.6

0.7

0.8

0.9

1.0
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Figure : The Solution map φ and the functions Gki for k = 1, 2, 3, 4, 5 and i = 1, 2, 3
for the system ẋ(t) = −x(t)3. The interval of convergence of the Picard Iteration is
T = 1

3
.

M. Peet Lecture 02: 24 / 56



Stability Definitions

Whenever you are trying to prove stability, Please define your notion of stability!

We denote the set of bounded continuous functions by
C̄ := {x ∈ C : ‖x(t)‖ ≤ r, r ≥ 0} with norm ‖x‖ = supt‖x(t)‖.

Definition 16.

The system is locally Lyapunov stable on D where D contains an open
neighborhood of the origin if it defines a unique map Φ : D → C̄ which is
continuous at the origin.

The system is locally Lyapunov stable
on D if for any ε > 0, there exists a δ(ε)
such that for ‖x(0)‖ ≤ δ(ε), x(0) ⊂ D
we have ‖x(t)‖ ≤ ε for all t ≥ 0

M. Peet Lecture 02: 25 / 56



Stability Definitions

Definition 17.

The system is globally Lyapunov stable if it defines a unique map Φ : Rn → C̄
which is continuous at the origin.

We define the subspace of bounded continuous functions which tend to the
origin by G := {x ∈ C̄ : limt→∞ x(t) = 0} with norm ‖x‖ = supt‖x(t)‖.

Definition 18.

The system is locally asymptotically stable on D where D contains an open
neighborhood of the origin if it defines a map Φ : D → G which is continuous at
the origin.

M. Peet Lecture 02: 26 / 56



Stability Definitions

Definition 19.

The system is globally asymptotically stable if it defines a map Φ : Rn → G
which is continuous at the origin.

Definition 20.

The system is locally exponentially stable on D if it defines a map
Φ : D → G where

‖(Φx)(t)‖ ≤ Ke−γt‖x‖

for some positive constants K, γ > 0 and any x ∈ D.

Definition 21.

The system is globally exponentially stable if it defines a map Φ : Rn → G
where

‖(Φx)(t)‖ ≤ Ke−γt‖x‖

for some positive constants K, γ > 0 and any x ∈ Rn.
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Lyapunov Theorem

ẋ = f(x), f(0) = 0

Theorem 22.

Let V : D → R be a continuously differentiable function such that

V (0) = 0

V (x) > 0 for x ∈ D, x 6= 0

∇V (x)T f(x) ≤ 0 for x ∈ D.

• Then ẋ = f(x) is well-posed and locally Lyapunov stable on the largest
sublevel set of V contained in D.

• Furthermore, if ∇V (x) < 0 for x ∈ D, x 6= 0, then ẋ = f(x) is locally
asymptotically stable on the largest sublevel set of V contained in D.
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Lyapunov Theorem

Sublevel Set: For a given Lyapunov function V and positive constant γ, we
denote the set Vγ = {x : V (x) ≤ γ}.

Proof.

Existence: Denote the largest bounded sublevel set of V contained in the
interior of D by Vγ∗ . Because V̇ (x(t)) = ∇V (x(t))T f(x(t)) ≤ 0 is continuous,
if x(0) ∈ Vγ∗ , then x(t) ∈ Vγ∗ for all t ≥ 0. Therefore since f is continuous and
Vγ∗ is compact, by the extension theorem, there is a unique solution for any
initial condition x(0) ∈ Vγ∗ .
Lyapunov Stability: Given any ε′ > 0, choose e < e′ with B(ε) ⊂ Vγ∗ , choose
γi such that Vγi ⊂ B(ε). Now, choose δ > 0 such that B(δ) ⊂ Vγi . Then
B(δ) ⊂ Vγi ⊂ B(ε) and hence if x(0) ∈ B(δ), we have
x(0) ∈ Vγi ⊂ B(ε) ⊂ B(ε′).
Asymptotic Stability:

• V monotone decreasing implies limt→ V (x(t)) = 0.

• V (x) = 0 implies x = 0.

• Proof omitted.
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Lyapunov Theorem
Exponential Stability

Theorem 23.

Suppose there exists a continuously differentiable function V and constants
c1, c2, c3 > and radius r > 0 such that the following holds for all x ∈ B(r).

c1‖x‖p ≤ V (x) ≤ c2‖x‖p

∇V (x)T f(x) ≤ −c3‖x‖p

Then ẋ = f(x) is exponentially stable on any ball contained in the largest
sublevel set contained in B(r).

Exponential Stability allows a quantitative prediction of system behavior.

M. Peet Lecture 02: 30 / 56



The Gronwall-Bellman Inequality
Exponential Stability

Lemma 24 (Gronwall-Bellman).

Let λ be continuous and µ be continuous and nonnegative. Let y be continuous
and satisfy for t ≤ b,

y(t) ≤ λ(t) +

∫ t

a

µ(s)y(s)ds.

Then

y(t) ≤ λ(t) +

∫ t

a

λ(s)µ(s) exp

[∫ t

s

µ(τ)dτ

]
ds

If λ and µ are constants, then

y(t) ≤ λeµt.

For λ(t) = y(0), the condition can be differentiated to obtain

ẏ(t) ≤ µ(t)y(t).
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Lyapunov Theorem
Exponential Stability

Proof.

We begin by noting that we already satisfy the conditions for existence,
uniqueness and asymptotic stability and that x(t) ∈ B(r).
For simplicity, we take p = 2.
Now, observe that

V̇ (x(t)) ≤ −c3‖x(t)‖2 ≤ −c3
c2
V (x(t))

Which implies by the Gronwall-Bellman inequality (µ = −c3
c2

, λ = V (x(0)))
that

V (x(t)) ≤ V (x(0))e−
c3
c2
t.

Hence

‖x(t)‖2 ≤ 1

c1
V (x(t)) ≤ 1

c1
e−

c3
c2
tV (x(0)) ≤ c2

c1
e−

c3
c2
t‖x(0)‖2.
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Lyapunov Theorem
Invariance

Sometimes, we want to prove convergence to a set. Recall

Vγ = {x , V (x) ≤ γ}

Definition 25.

A set, X, is Positively Invariant if x(0) ∈ X implies x(t) ∈ X for all t ≥ 0.

Theorem 26.

Suppose that there exists some continuously differentiable function V such that

V (x) > 0 for x ∈ D, x 6= 0

∇V (x)T f(x) ≤ 0 for x ∈ D.

for all x ∈ D. Then for any γ such that the level set
X = {x : V (x) = γ} ⊂ D, we have that Vγ is positively invariant.

Furthermore, if ∇V (x)T f(x) ≤ 0 for x ∈ D, then for any δ such that
X ⊂ Vδ ⊂ D, we have that any trajectory starting in Vδ will approach the
sublevel set Vγ .
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Converse Lyapunov Theory

In fact, stable systems always have Lyapunov functions.

Suppose that there exists a continuously differentiable function function, called
the solution map, g(x, s) such that

∂

∂s
g(x, s) = f(g(x, s)) and g(x, 0) = x

is satisfied.

Converse Form 1:

V (x) =

∫ δ

0

g(s, x)T g(s, x)ds
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Converse Lyapunov Theory

Converse Form 1:

V (x) =

∫ δ

0

g(s, x)T g(s, x)ds

For a linear system, g(s, x) = eAsx.

• This recalls the proof of feasibility of the Lyapunov inequality

ATP + PA < 0

• The solution was given by

xTPx =

∫ ∞

0

xT eA
T seAsxds =

∫ ∞

0

g(s, x)T g(s, x)ds
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Converse Lyapunov Theory

Theorem 27.

Suppose that there exist K and λ such that g satisfies

‖g(x, t)‖ ≤ K‖g(x, 0)‖e−λt

Then there exists a function V and constants c1, c2, and c3 such that V satisfies

c1‖x‖2 ≤ V (x) ≤ c2‖x‖2

∇V (x)T f(x) ≤ −c3‖x‖2
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Converse Lyapunov Theory

Proof.

There are 3 parts to the proof, of which 2 are relatively minor. But part 3 is
tricky.
The main hurdle is to choose δ > 0 sufficiently large
Part 1: Show that V (x) ≤ c2‖x‖2. Then

V (x) =

∫ δ

0

‖g(s, x)‖2ds

≤ K2‖g(x, 0)‖2
∫ δ

0

e−2λsds

= ‖x‖2K
2

2λ
(1− e−2λδ) = c2‖x‖2

where c2 = K2

2λ (1− e−2λδ). This part holds for any δ > 0.
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Converse Lyapunov Theory

Proof.

Part 2: Show that V (x) ≥ c1‖x‖2.
Lipschitz continuity of f implies ‖f(x)‖ ≤ L‖x‖. By the fundamental identity

‖x(t)‖ ≤ ‖x(0)‖+

∫ t

0

‖f(x(s))‖ds ≤ ‖x(0)‖+

∫ t

0

L‖x(s)‖ds

Hence by the Gronwall-Bellman inequality

‖x(0)‖e−Lt ≤ ‖x(t)‖ ≤ ‖x(0)‖eLt.

Thus we have that ‖g(x, t)‖2 ≥ ‖x‖2e−Lt. This implies

V (x) =

∫ δ

0

‖g(s, x)‖2ds ≥ ‖x‖2
∫ δ

0

e−2Lsds

= ‖x‖2 1

2L
(1− e−2Lδ) = c1‖x‖2

where c1 = 1
2L (1− e−2Lδ). This part also holds for any δ > 0.
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Converse Lyapunov Theory

Proof, Part 3.

Part 3: Show that ∇V (x)T f(x) ≤ −c3‖x‖2.
This requires differentiating the solution map with respect to initial conditions.
We first prove the identity

gt(t, x) = −gx(t, x)f(x)

We start with a modified version of the fundamental identity

g(t, x) = g(0, x) +

∫ t

0

f(g(s, x))ds = g(0, x) +

∫ 0

−t
f(g(s+ t, x))ds

By the Leibnitz rule for the differentiation of integrals, we find

gt(t, x) = f(g(0, x)) +

∫ 0

−t
∇f(g(s+ t, x))T gs(s+ t, x)ds

= f(x) +

∫ t

0

∇f(g(s, x))T gs(s, x)ds

Also, we have
gx(t, x) = I +

∫ t

0

∇f(g(s, x))T gx(s, x)ds
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Converse Lyapunov Theory

Proof, Part 3.

Now

gt(t, x)− gx(t, x)f(x)

= x+

∫ t

0

∇f(g(s, x))T gs(s, x)ds+ f(x) +

∫ t

0

∇f(g(s, x))T gx(s, x)f(x)ds

=

∫ t

0

∇f(g(s, x))T (gs(s, x)− gx(s, x)f(x)) ds

By, e.g., Gronwall-Bellman, this implies

gt(t, x)− gx(t, x)f(x) = 0.

We conclude that
gt(t, x) = gx(t, x)f(x)

Which is interesting.
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Converse Lyapunov Theory

Proof, Part 3.

With this identity in hand, we proceed:

∇V (x)T f(x) =

(
∇x
∫ δ

0

g(s, x)T g(s, x)ds

)T
f(x)

= 2

∫ δ

0

g(s, x)T gx(s, x)f(x)ds

= 2

∫ δ

0

g(s, x)T gs(s, x)ds =

∫ δ

0

d

ds
‖g(s, x)‖2ds

= ‖g(δ, x)‖2 − ‖g(0, x)‖2

≤ K2‖x‖2e−2λδ − ‖x‖2

= −
(
1−K2e−2λδ

)
‖x‖2

Thus the third inequality is satisfied for c3 = 1−K2e−2λδ. However, this
constant is only positive if

δ >
logK

λ
.
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Massera’s Converse Lyapunov Theory

The Lyapunov function inherits many properties of the solution map and hence
the vector field.

V (x) =

∫ δ

0

g(s, x)T g(s, x)ds g(t, x) = g(0, x) +

∫ t

0

f(g(s, x))ds

Massera: Let Dα =
∏
i
∂αi

∂x
αi
i

.

• DαV (x) is continuous if Dαf(x) is continuous.
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Massera’s Converse Lyapunov Theory

Formally, this means

Theorem 28 (Massera).

Consider the system defined by ẋ = f(x) where Dαf ∈ C(Rn) for any
‖α‖1 ≤ s. Suppose that there exist constants µ, δ, r > 0 such that

‖(Ax0)(t)‖2 ≤ µ‖x0‖2e−δt

for all t ≥ 0 and ‖x0‖2 ≤ r. Then there exists a function V : Rn → R and
constants α, β, γ > 0 such that

α‖x‖22 ≤V (x) ≤ β‖x‖22
∇V (x)T f(x) ≤− γ‖x‖22

for all ‖x‖2 ≤ r. Furthermore, DαV ∈ C(Rn) for any α with ‖α‖1 ≤ s.
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Finding L = supx‖DαV ‖

Given a Lipschitz bound for f , lets find a Lipschitz constant for V ?

V (x) =

∫ δ

0

g(s, x)T g(s, x)ds g(t, x) = x+

∫ t

0

f(g(s, x))ds

We first need a Lipschitz bound for the solution map:

Lg = sup
x
‖∇xg(s, x)‖

From the identity

gx(t, x) = I +

∫ t

0

∇f(g(s, x))gx(s, x)ds

we get

‖gx(t, x)‖ =≤ 1 +

∫ t

0

L‖gx(s, x)‖ds

which implies by Gronwall-Bellman that ‖gx(t, x)‖ ≤ eLt
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Finding L = supx‖DαV ‖
Faà di Bruno’s formula

What about a bound for ‖DαV (x)‖?

Dαg(t, x) =

∫ t

0

Dαf(g(s, x))gx(s, x)ds

Faà di Bruno’s formula: For scalar functions

dn

dxn
f(g(y)) =

∑

π∈Π

f (|π|)(g(y)) ·
∏

B∈π
g(|B|)(x).

where Π is the set of partitions of {1, . . . , n}, and | · | denotes cardinality.

We can generalize Faà di Bruno’s formula to functions f : Rn → Rn and
g : Rn → Rn.

The combinatorial notation allows us to keep track of terms.
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A Generalized Chain Rule

Definition 29.

Let Ωir denote the set of partitions of (1, . . . , r) into i non-empty subsets.

Lemma 30 (Generalized Chain Rule).

Suppose f : Rn → R and z : Rn → Rn are r-times continuously differentiable.
Let α ∈ Nn with |α|1 = r. Let {ai} ∈ Zr be any decomposition of α so that
α =

∑r
i=1 ai.

Dα
xf(z(x)) =

r∑

i=1

n∑

j1=1

· · ·
n∑

ji=1

∂i

∂xj1 · · · ∂xji
f(z(x))×

∑

β∈Ωir

i∏

k=1

D
∑
l∈βk

alzjk(x)
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A Quantitative Massera-style Converse Lyapunov Result

We can use the generalized chain rule to get the following.

Theorem 31.

• Suppose that ‖Dβf‖∞ ≤ L for ‖β‖∞ ≤ r
• Suppose ẋ = f(x) satisfies ‖x(t)‖ ≤ k‖x(0)‖e−λt for ‖x(0)‖ ≤ 1.

Then there exists a function V such that

• V is exponentially decreasing on ‖x‖ ≤ 1.

• DαV is continuous on ‖x‖ ≤ 1 for ‖α‖∞ ≤ r with upper bound

max
|α|1<r

‖DαV (x)‖ ≤ c12r
(
B(r)

L

λ
ec2

L
λ

)er!

for some c1(k, n) and c2(k, n).

• Also a bound on the continuity of the solution map.

• B(r) is the Ball number.
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Approximation Theory for Lyapunov Functions

Theorem 32 (Approximation).

• Suppose f is bounded on compact X.

• Suppose that DαV is continuous for ‖α‖∞ ≤ 3.

Then for any δ > 0, there exists a polynomial, p, such that for x ∈ X,

‖V (x)− p(x)‖ ≤ δ‖x‖2 and
∥∥∇(V (x)− p(x))T f(x)

∥∥ ≤ δ‖x‖2

• Polynomials can approximate differentiable functions arbitrarily well in
Sobolev norms with a quadratic upper bound on the error.
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Polynomial Lyapunov Functions
A Converse Lyapunov Result

Consider the system

ẋ(t) = f(x(t))

Theorem 33.

• Suppose ẋ(t) = f(x(t)) is exponentially stable for ‖x(0)‖ ≤ r.

• Suppose Dαf is continuous for ‖α‖∞ ≤ 3.

Then there exists a Lyapunov function V : Rn → R such that

• V is exponentially decreasing on ‖x‖ ≤ r.

• V is a polynomial.

Implications:

• Using polynomials is not conservative.

Question:
• What is the degree of the Lyapunov function

I How many coefficients do we need to optimize?
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Degree Bounds in Approximation Theory

This result uses the Bernstein polynomials to give a degree bound as a function
of the error bound.

Theorem 34.

• Suppose V : Rn → Rn has Lipschitz constant L on the unit ball.

‖V (x)− V (y)‖2 < L‖x− y‖2

Then for any ε > 0, there exists a polynomial, p, which satisfies

sup
‖x‖≤1

‖p(x)− V (x)‖2 < ε

where

degree(p) ≤ n

42

(
L

ε

)2

To find a bound on L, we can use a bound on DαV .
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A Bound on the Complexity of Lyapunov Functions

Theorem 35.

• Suppose ‖x(t)‖ ≤ K‖x(0)‖e−λt for ‖x(0)‖ ≤ r.

• Suppose f is polynomial and ‖∇f(x)‖ ≤ L on ‖x‖ ≤ r.

Then there exists a polynomial V ∈ Σs such that

• V is exponentially decreasing on ‖x‖ ≤ r.

• The degree of V is less than

degree(V ) ≤ 2q2(Nk−1) ∼= 2q2c1
L
λ

where q is the degree of the vector field, f .

V (x) =

∫ δ

0

Gk(x, s)TGk(x, s)

• Gk is an extended Picard iteration.
• k is the number of Picard iterations and N is the number of extensions.

Note that the Lyapunov function is a square of polynomials.
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Figure : Degree bound vs. Convergence Rate for K = 1.2, r = L = 1, and q = 5
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Returning to the Lyapunov Stability Conditions

Consider

ẋ(t) = f(x(t))

with x(0) ∈ Rn.

Theorem 36 (Lyapunov Stability).

Suppose there exists a continuous V and α, β, γ > 0 where

β‖x‖2 ≤ V (x) ≤ α‖x‖2

−∇V (x)T f(x) ≥ γ‖x‖2

for all x ∈ X. Then any sub-level set of V in X is a Domain of Attraction.

M. Peet Lecture 02: 53 / 56



The Stability Problem is Convex

Convex Optimization of Functions: Variables V ∈ C[Rn] and γ ∈ R

max
V ,γ

γ

subject to

V (x)− xTx ≥ 0 ∀x
∇V (x)T f(x) + γxTx ≤ 0 ∀x

Moreover, since we can assume V is polynomial with bounded degree, the
problem is finite-dimensional.

Convex Optimization of Polynomials: Variables c ∈ Rn and γ ∈ R

max
c,γ

γ

subject to

cTZ(x)− xTx ≥ 0 ∀x
cT∇Z(x)f(x) + γxTx ≤ 0 ∀x

• Z(x) is a fixed vector of monomial bases.
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Can we solve optimization of polynomials?

Problem:

max bTx

subject to A0(y) +
n∑
i

xiAi(y) � 0 ∀y

The Ai are matrices of polynomials in y. e.g. Using multi-index notation,

Ai(y) =
∑
α

Ai,α y
α

Computationally Intractable
The problem: “Is p(x) ≥ 0 for all x ∈ Rn?” (i.e. “p ∈ R+[x]?”) is NP-hard.
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Conclusions

Nonlinear Systems are relatively well-understood.

Well-Posed

• Existence and Uniqueness guaranteed if vector field and its gradient are
bounded.

I Contraction Mapping Principle

• The dependence of the solution map on the initial conditions
I Properties are inherited from the vector field via Gronwall-Bellman

Lyapunov Stability

• Lyapunov’s conditions are necessary and sufficient for stability.
I Problem is to find a Lyapunov function.

• Converse forms provide insight.
I Capture the inherent energy stored in an initial condition

• We can assume the Lyapunov function is polynomial of bounded degree.
I Degree may be very large.
I We need to be able to optimize the cone of positive polynomial functions.
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