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The Dual Problem of Polynomial Programming

Polynomial Programming (NOT CONVEX): n decision variables

min
x∈Rn

f(x)

gi(x) ≥ 0

• f and gi must be convex for the problem to be convex.

Optimization of Polynomials IS Convex: Lifting to a higher-dimensional
space

max
g,γ

γ

f(x)− γ = g(x) for all x ∈ Rn

g(x) ≥ 0 for all x ∈ {x ∈ Rn : h(x) ≥ 0}
• The decision variables are functions (e.g. g)

I Infinite Dimensional Contraints: One constraint for every value of x.

• But how to parameterize functions????
• How to enforce an infinite number of constraints???
• Advantage: Problem is convex, even if f, g, h are not convex.
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Lecture 02
SOS and Global Stability Analysis

The Dual Problem of Polynomial Programming

• Hopefully you know what convexity is.

• Parameterize functions as polynomials.

• feasibility of a point x is easy to show.

• Infeasibility of a constraint requires a certificate

For Polynomial Programming

• feasibility of a point x is easy to show.

• Infeasibility of a constraint requires a certificate

For Optimization of Polynomials

• infeasibility is easy to show (give a counterexample).

• Feasibility of a function requires a certificate



Optimization of Polynomials:
Some Examples: Matrix Copositivity

Stability of Systems with Positive States: Not all states can be negative...

• Cell Populations/Concentrations

• Volume/Mass/Length

We want:

V (x) = xTPx ≥ 0 for all x ≥ 0

V̇ (x) = xT (ATP + PA)x ≤ 0 for all x ≥ 0

Formulation:

• Matrix Copositivity (An NP-hard Problem)

Verify:

xTPx ≥ 0 for all x ≥ 0

Implementation: sosdemo4p.m
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Optimization of Polynomials:
Some Examples: Robust Control

Recall: Systems with Uncertainty

ẋ(t) = A(δ)x(t) +B1(δ)w(t) +B2(δ)u(t)

y(t) = C(δ)x(t) +D12(δ)u(t) +D11(δ)w(t)

Theorem 1.

There exists an F (δ) such that ‖S(P (δ),K(0, 0, 0, F (δ)))‖H∞ ≤ γ for all
δ ∈∆ if there exist Y > 0 and Z(δ) such that

[
YA(δ)T + A(δ)Y + Z(δ)TB2(δ)T + B2(δ)Z(δ) ∗T ∗T

B1(δ)T −γI ∗T
C1(δ)Y +D12(δ)Z(δ) D11(δ) −γI

]
< 0 for all δ ∈∆

Then F (δ) = Z(δ)Y −1.
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The Structured Singular Value, µ

Definition 2.

Given system M ∈ L(L2) and set ∆ as above, we define the Structured
Singular Value of (M,∆) as

µ(M,∆) =
1

inf ∆∈∆
I−M∆ is singular

‖∆‖

The system
M =

[
A0 M
N Q

]

Lower Bound for µ: µ ≥ γ if there exists a P (δ) such that

P (δ) ≥ 0 for all δ AND

P (δ)(A0x+Mp) + (A0x+Mp)TP (δ) < εI for all x, p, δ such that

(x, p, δ) ∈
{
x, p, δ : p = diag(δi)(Nx+Qp),

∑

i

δ2
i ≤ γ

}

Implementation (Simplified Version): sosdemo5p.m
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Overview

In this lecture, we will show how the LMI framework can be expanded
dramatically to other forms of control problems.

1. Positivity of Polynomials

1.1 Sum-of-Squares

2. Positivity of Polynomials on Semialgebraic sets

2.1 Inference and Cones
2.2 Positivstellensatz

3. Applications

3.1 Nonlinear Analysis
3.2 Robust Analysis and Synthesis
3.3 Global optimization
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Is Optimization of Polynomials Tractable or Intractable?
The Answer lies in Convex Optimization

A Generic Convex Optimization Problem:

max
x

bx

subject to Ax ∈ C

The problem is convex optimization if

• C is a convex cone.

• b and A are affine.

Computational Tractability: Convex Optimization over C is tractable if

• The set membership test for y ∈ C is in P (polynomial-time verifiable).

• The variable x is a finite dimensional vector (e.g. Rn).
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Optimization of Polynomials is Convex
The variables are finite-dimensional (if we bound the degree)

Convex Optimization of Functions: Variables V ∈ C[Rn] and γ ∈ R

max
V ,γ

γ

subject to

V (x)− xTx ≥ 0 ∀x
∇V (x)T f(x) + γxTx ≤ 0 ∀x

V is the decision variable (infinite-dimensional)

• How to make it finite-dimensional???

The set of polynomials is an infinite-dimensional (but Countable) vector space.

• It is Finite Dimensional if we bound the degree

• All finite-dimensional vector spaces are equivalent!

But we need a way to parameterize this space...
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To Begin: How do we Parameterize Polynomials???

A Parametrization consists of a basis and a set of parameters (coordinates)
• We use a Finite Dimensional space of polynomials of degree d or less.

I The monomials are a simple basis for the space of polynomials

Definition 3.

Define Zd(x) to be the vector of monomial bases of degree d or less.

e.g., if x ∈ R2, then the vector of basis functions is

Z2(x1, x2)T =
[
1 x1 x2 x1x2 x2

1 x2
2

]

and
Z4(x1)T =

[
1 x1 x2

1 x3
2 x4

1

]

Linear Representation

• Any polynomial of degree d can be represented with a vector c ∈ Rm

p(x) = cTZd(x)

• c is the vector of parameters (decision variables).

2x2
1 + 6x1x2 + 4x2 + 1 =

[
1 0 4 6 2 0

] [
1 x1 x2 x1x2 x2

1 x2
2

]T

Implementation: Zd=monomials([x1 x2],0:4)
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Optimization of Polynomials is Convex
The variables are finite-dimensional (if we bound the degree)

Convex Optimization of Functions: Variables V ∈ C[Rn] and γ ∈ R

max
V ,γ

γ

subject to

V (x)− xTx ≥ 0 ∀x
∇V (x)T f(x) + γxTx ≤ 0 ∀x

Now use the polynomial parametrization V (x) = cTZ(x)
• Now c is the decision variable.

Convex Optimization of Polynomials: Variables c ∈ Rn and γ ∈ R

max
c,γ

γ

subject to

cTZ(x)− xTx ≥ 0 ∀x
cT∇Z(x)f(x) + γxTx ≤ 0 ∀x

• Z(x) is a fixed vector of monomial bases.
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Can LMIs be used for Optimization of Polynomials???
Optimization of Polynomials is NP-Hard!!!

Problem: Use a finite number of variables:

max bTx

subject to A0(y) +

n∑
i

xiAi(y) � 0 ∀y

The Ai are matrices of polynomials in y. e.g. Using multi-index notation,

Ai(y) =
∑
α

Ai,α y
α

The FEASIBLITY TEST is Computationally Intractable
The problem: “Is p(x) ≥ 0 for all x ∈ Rn?” (i.e. “p ∈ R+[x]?”) is NP-hard.
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How Hard is it to Determine Positivity of a Polynomial???
Certificates

Definition 4.

A Polynomial, f , is called Positive SemiDefinite (PSD) if

f(x) ≥ 0 for all x ∈ Rn

The Primary Problem: How to enforce the constraint f(x) ≥ 0 for all x?

Easy Proof: Certificate of Infeasibility

• A Proof that f is NOT PSD.

• i.e. To show that
f(x) ≥ 0 for all x ∈ Rn

is FALSE, we need only find a point x with f(x) < 0.

Complicated Proof: It is much harder to identify a Certificate of Feasibility

• A Proof that f is PSD.
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Global Positivity Certificates (Proofs and Counterexamples)

Question: How does one prove that f(x) is positive semidefinite?

What Kind of Functions do we Know are PSD?

• Any squared function is positive.

• The sum of squared forms is PSD

• The product of squared forms is PSD

• The ratio of squared forms is PSD

So V (x) ≥ 0 for all x ∈ Rn if

V (x) =
∏

k

∑
i fik(x)2

∑
j hjk(x)2

But is any PSD polynomial the sum, product, or ratio of squared polynomials?

• An old Question....
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Sum-of-Squares
Hilbert’s 17th Problem

Definition 5.

A polynomial, p(x) ∈ R[x] is a Sum-of-Squares (SOS), denoted p ∈ Σs if
there exist polynomials gi(x) ∈ R[x] such that

p(x) =

k∑

i

gi(x)2.

David Hilbert created a famous list of 23 then-unsolved mathematical problems
in 1900.

• Only 10 have been fully resolved.

• The 17th problem has been resolved.

“Given a multivariate polynomial that takes only non-negative values
over the reals, can it be represented as a sum of squares of rational
functions?” -D. Hilbert, 1900
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Sum-of-Squares
Hilbert’s 17th Problem

Hilbert’s 17th was resolved in the affirmative by E. Artin in 1927.

• Any PSD polynomial is the sum, product and ratio of squared polynomials.

• If p(x) ≥ 0 for all x ∈ Rn, then

p(x) =
g(x)

h(x)

where g, h ∈ Σs.

• If p is positive definite, then we can assume h(x) = (
∑
i x

2
i )
d for some d.

That is,
(x2

1 + · · ·+ x2
n)dp(x) ∈ Σs

• If we can’t find a SOS representation (certificate) for p(x), we can try
(
∑
i x

2
i )
dp(x) for higher powers of d.

Of course this doesn’t answer the question of how we find SOS representations.
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How to use LMIs to Prove Polynomial Positivity?

Basic Idea: If there exists a Positive Matrix P ≥ 0 such that

V (x) = Zd(x)TPZd(x)

Then V (x) is positive

Why? Positive Matrices (P ≥ 0) have square roots!

P = QTQ
Hence

V (x) = Zd(x)TQTQZd(x) = (QZd(x))T (QZd(x))

= h(x)Th(x) ≥ 0

Conclusion:
V (x) ≥ 0 for all x ∈ Rn

if there exists a P ≥ 0 such that

V (x) = Zd(x)TPZd(x)

• Such a function is called Sum-of-Squares (SOS), denoted V ∈ Σs.
• This is an LMI! Equality constraints relate the coefficients of V (decision

variables) to the elements of P (more decision variables).
M. Peet Lecture 02: SOS and Global Stability Analysis 15 / 101



SOS as an LMI
Conversion between Linear and Quadratic Representation

Let
V (x) = cTZ2d(x)

V is SOS iff there exists a P ≥ 0 such that

V (x) = Zd(x)TPZd(x)

Construct A so that

Zd(x)TPZd(x) = vec(P )AZ2d(x)

V (x) = Zd(x)TPZd(x)
becomes

cTZ2d(x) = vec(P )AZ2d(x)

or
AT vec(P ) = c
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Quadratic Parameterization of Polynomials

Quadratic Representation
• Alternative to Linear Parametrization, a polynomial of degree d can be

represented by a matrix M ∈ Sm as

p(x) = Zd(x)TMZd(x)

• However, now the problem may be under-determined


x2

xy
y2



T 

M1 M2 M3

M2 M4 M5

M3 M5 M6





x2

xy
y2




= M1x
4 + 2M2x

3y + (2M3 +M4)x2y2 + 2M5xy
3 +M6y

4

Thus, there are infinitely many quadratic representations of p. For the
polynomial

f(x) = 4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4,

we can use the alternative solution

4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4

= M1x
4 + 2M2x

3y + (2M3 +M4)x2y2 + 2M5xy
3 +M6y

4
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Polynomial Representation - Quadratic

For the polynomial

f(x) = 4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4,

we require

4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4

= M1x
4 + 2M2x

3y + (2M3 +M4)x2y2 + 2M5xy
3 +M6y

4

Constraint Format:

M1 = 4; 2M2 = 4; 2M3 +M4 = −7; 2M5 = −2; 10 = M6.

An underdetermined system of linear equations (6 variables, 5 equations).

• This yields a family of quadratic representations, parameterized by λ as

4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4 =



x2

xy
y2



T 


4 2 −λ
2 −7 + 2λ −1
−λ −1 10





x2

xy
y2




which holds for any λ ∈ R
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Positive Matrix Representation of SOS
Sufficiency

Quadratic Form:

p(x) = Zd(x)TMZd(x)

Consider the case where the matrix M is positive semidefinite.

Suppose: p(x) = Zd(x)TMZd(x) where M > 0.

• Any positive semidefinite matrix, M ≥ 0 has a square root M = PPT

Hence
p(x) = Zd(x)TMZd(x) = Zd(x)TPPTZd(x).

Which yields

p(x) =
∑

i


∑

j

Pi,jZd,j(x)




2

which makes p ∈ Σs an SOS polynomial.
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Positive Matrix Representation of SOS
Necessity

Moreover: Any SOS polynomial has a quadratic rep. with a PSD matrix.

Suppose: p(x) =
∑
i gi(x)2 is degree 2d (gi are degree d).

• Each gi(x) has a linear representation in the monomials.

gi(x) = cTi Zd(x)

• Hence

p(x) =
∑

i

gi(x)2 =
∑

i

Zd(x)cic
T
i Zd(x) = Zd(x)

(∑

i

cic
T
i

)
Zd(x)

• Each matrix cic
T
i ≥ 0. Hence Q =

∑
i cic

T
i ≥ 0.

• We conclude that if p ∈ Σs, there is a Q ≥ 0 with p(x) = Zd(x)QZd(x).

Lemma 6.

Suppose M is polynomial of degree 2d. M ∈ Σs if and only if there exists some
Q � 0 such that

M(x) = Zd(x)TQZd(x).
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Sum-of-Squares

Thus we can express the search for a SOS certificate of positivity as an LMI.

Take the numerical example

4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4

The question of an SOS representation is equivalent to

Find M =



M1 M2 M3

M2 M4 M5

M3 M5 M6


 ≥ 0 such that

M1 = 4; 2M2 = 4; 2M3 +M4 = −7; 2M5 = −2; M6 = 10.

In fact, this is feasible for

M =




4 2 −6
2 5 −1
−6 −1 10


 =




0 2
2 1
1 −3



[
0 2 1
2 1 −3

]
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Sum-of-Squares

We can use this solution to construct an SOS certificate of positivity.

4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4 =



x2

xy
y2



T 


4 2 −6
2 5 −1
−6 −1 10





x2

xy
y2




=



x2

xy
y2



T 


0 2
2 1
1 −3



[
0 2 1
2 1 −3

]

x2

xy
y2




=

[
2xy + y2

2x2 + xy + 3y2

]T [
2xy + y2

2x2 + xy + 3y2

]

= (2xy + y2)2 + (2x2 + xy + 3y2)2
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Solving Sum-of-Squares using SDP
Quadratic vs. Linear Representation

Quadratic Representation: (Using Matrix M ∈ Rp×p):

p(x) = Zd(x)TMZd(x)

Linear Representation: (Using Vector c ∈ Rq)

q(x) = cTZ2d(x)

To constrain p(x) = q(x), we write [Zd]i = xαi , [Z2d]j = xβj and reformulate

p(x) = Zd(x)TMZd(x) =
∑

i,j

Mi,jx
αi+αj = vec(M)TAZ2d(x)

where A ∈ Rp2×q is defined as

Ai,j =

{
1 if αmod(i,p) + αbicp+1 = βj

0 otherwise

This then implies that

Zd(x)TMZd(x) = vec(M)TAZ2d(x)

Hence if we constrain c = vec(M)TA, this is equivalent to p(x) = q(x)
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Solving Sum-of-Squares using SDP
Quadratic vs. Linear Representation

Summarizing, e.g., for Lyapunov stability, we have variables M > 0, Q > 0 with
the constraint

−vec(M)TA = vec(Q)TAB

Feasibility implies stability since

V (x) = Z(x)TQZ(x) ≥ 0

V̇ (x) = vec(Q)TA∇Z2d(x)

= vec(Q)TABZ2d(x)

= −vec(M)TAZ2d(x)

= −Z(x)TMZ(x) ≥ 0
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Sum-of-Squares
YALMIP SOS Programming

YALMIP has SOS functionality
Link: YALMIP SOS Manual

To test whether
4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4

is a positive polynomial, we use:
> sdpvar x y

> p = 4 ∗ x4 + 4 ∗ x3 ∗ y− 7 ∗ x2 ∗ y2 − 2 ∗ x ∗ y3 + 10 ∗ y4;
> F=[];

> F=[F;sos(p)];

> solvesos(F);

To retrieve the SOS decomposition, we use
> sdisplay(p)

> ans =
> ′1.7960 ∗ x2 − 3.0699 ∗ y2 + 0.6468 ∗ x ∗ y′
> ′ − 0.6961 ∗ x2 − 0.7208 ∗ y2 − 1.4882 ∗ x ∗ y′
> ′0.5383 ∗ x2 + 0.2377 ∗ y2 − 0.3669 ∗ x ∗ y′
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Sum-of-Squares
SOS using SOSTOOLS

In this class, we will use instead SOSTOOLS
Link: SOSTOOLS Website

To test whether
4x4 + 4x3y − 7x2y2 − 2xy3 + 10y4

is a positive polynomial, we use:
> pvar x y

> p = 4 ∗ x4 + 4 ∗ x3 ∗ y− 7 ∗ x2 ∗ y2 − 2 ∗ x ∗ y3 + 10 ∗ y4;
> prog=sosprogram([x y]);

> prog=sosineq(prog,p);

> prog=sossolve(prog);
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SOS Programming:
Numerical Example

This also works for matrix-valued polynomials.

M(y, z) =

[
(y2 + 1)z2 yz

yz y4 + y2 − 2y + 1

]

[
(y2 + 1)z2 yz

yz y4 + y2 − 2y + 1

]
=


z 0
yz 0
0 1
0 y
0 y2


T 

1 0 0 0 1
0 1 1 −1 0
0 1 1 −1 0
0 −1 −1 1 0
1 0 0 0 1



z 0
yz 0
0 1
0 y
0 y2



=


z 0
yz 0
0 1
0 y
0 y2


T [

0 1 1 −1 0
1 0 0 0 1

]T [
0 1 1 −1 0
1 0 0 0 1

]
z 0
yz 0
0 1
0 y
0 y2


=

[
yz 1− y
z y2

]T [
yz 1− y
z y2

]
∈ Σs
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SOS Programming:
Numerical Example

This also works for matrix-valued polynomials.

M(y, z) =

[
(y2 + 1)z2 yz

yz y4 + y2 − 2y + 1

]
SOSTOOLS Code: Matrix Positivity
> pvar x y

> M = [(y2 + 1) ∗ z2 y ∗ z; y ∗ z y4 + y2 − 2 ∗ y + 1];
> prog=sosprogram([y z]);

> prog=sosmatrixineq(prog,M);

> prog=sossolve(prog);

M. Peet Lecture 02: SOS and Global Stability Analysis 28 / 101



An Example of Global Stability Analysis

A controlled model of a jet engine (Derived from
Moore-Greitzer).

ẋ = −y − 3

2
x2 − 1

2
x3

ẏ = 3x− y
SOSTOOLS Code: Global Stability
> pvar x y

> f = [−y− 1.5 ∗ x2 − .5 ∗ x3; 3 ∗ x− y];
> prog=sosprogram([x y]);

> Z=monomials([x,y],0:2);

> [prog,V]=sossosvar(prog,Z);

> V = V + .0001 ∗ (x4 + y4);
> prog=soseq(prog,subs(V,[x; y],[0; 0]));

> nablaV=[diff(V,x);diff(V,y)];

> prog=sosineq(prog,-nablaV’*f);

> prog=sossolve(prog);

> Vn=sosgetsol(prog,V)

Finds a Lyapunov Function of degree 4.
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An Example of Global Stability Analysis

A controlled model of a jet engine (Derived from
Moore-Greitzer).

ẋ = −y − 3

2
x2 − 1

2
x3

ẏ = 3x− y
YALMIP Code: Global Stability
> sdpvar x y

> f = [−y− 1.5 ∗ x2 − .5 ∗ x3; 3 ∗ x− y];
> [V,Vc]=polynomial([x y],4);

> F=[Vc(1)==0];

> F = [F; sos(V− .00001 ∗ (x2 + y2))];
> nablaV=jacobian(V,[x y]);

> F=[F;sos(-nablaV*f)];

> solvesos(F,[],[],[Vc])

Finds a Lyapunov Function of degree 4.

• Going forward, we will use mostly SOSTOOLS

M. Peet Lecture 02: SOS and Global Stability Analysis 30 / 101



SOSOPT and DelayTOOLS

There is a third relatively new Parser called SOSOPT

Link: SOSOPT Website

And I can plug my own mini-toolbox version of SOSTOOLS:

Link: DelayTOOLS Website

• However, I don’t expect you to need this toolbox for this Lecture.
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An Example of Global Stability Analysis

A controlled model of a jet engine (Derived from
Moore-Greitzer).

ẋ = −y − 3

2
x2 − 1

2
x3

ẏ = 3x− y
This is feasible with

V (x) = 4.5819x2 − 1.5786xy + 1.7834y2 − 0.12739x3 + 2.5189x2y − 0.34069xy2

+ 0.61188y3 + 0.47537x4 − 0.052424x3y + 0.44289x2y2 + 0.090723y4
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Summary of the SOS Conditions

Proposition 1.

Suppose: p(x) = Zd(x)TQZd(x) for some Q > 0. Then p(x) ≥ 0 for all
x ∈ Rn

Refinement 1: Suppose Zd(x)TPZd(x)p(x) = Zd(x)TQZd(x) for some
Q,P > 0. Then p(x) ≥ 0 for all x ∈ Rn.

Refinement 2: Suppose (
∑
i x

2
i )
qp(x) = Zd(x)TQZd(x) for some P > 0,

q ∈ N. Then p(x) ≥ 0 for all x ∈ Rn.

Ignore these Refinements

• SOS by itself is sufficient. The refinements are Necessary and Sufficient.

• Almost never necessary in practice...
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Problems with SOS

Unfortunately, a Sum-of-Squares representation is not necessary for positivity.

• Artin included ratios of squares.

Counterexample: The Motzkin Polynomial

M(x, y) = x2y4 + x4y2 + 1− 3x2y2

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1

0

0.2

0.4

0.6

0.8

1

1.2

x

M(x,y,1)

y

However, (x2 + y2 + 1)M(x, y) is a Sum-of-Squares.

(x2 + y2 + 1)M(x, y) = (x2y − y)2 + (xy3 − x)2 + (x2y2 − 1)2

+
1

4
(xy3 − x3y)2 +

3

4
(xy3 + x3y − 2xy)2
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Problems with SOS

The problem is that most nonlinear stability problems are local.

• Global stability requires a unique equilibrium.

• Very few nonlinear systems are globally stable.

Figure: The Lorentz Attractor

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x
y

Domain−of−attraction

Figure: The van der Pol oscillator
in reverse
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Local Positivity

A more interesting question is the question of local positivity.
Question: Is y(x) ≥ 0 for x ∈ X, where X ⊂ Rn.

Examples:

• Matrix Copositivity:

yTMy ≥ 0 for all y ≥ 0

• Integer Programming (Upper bounds)

min γ

γ ≥ fi(y)

for all y ∈ {−1, 1}n and i = 1, · · · , k

• Local Lyapunov Stability

V (x) ≥ ‖x‖2 for all ‖x‖ ≤ 1

∇V (x)T f(x) ≤ 0 for all ‖x‖ ≤ 1

All these sets are
Semialgebraic.
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Positivity on Which Sets?
Semialgebraic Sets (Defined by Polynomial Inequalities)

How are these sets represented???

Definition 7.

A set X ⊂ Rn is Semialgebraic if it can be represented using polynomial
equality and inequality constraints.

X :=

{
x :

pi(x) ≥ 0 i = 1, . . . , k
qj(x) = 0 j = 1, . . . ,m

}

If there are only equality constraints, the set is Algebraic.

Note: A semialgebraic set can also include 6= and <.

Discrete Values

{−1, 1}n = {y ∈ Rn : y2
i − 1 = 0}

The Ball of Radius 1

{x : ‖x‖ ≤ 1} = {x : 1− xTx ≥ 0}

The representation of a set is NOT UNIQUE.

• Some representations are better than others...
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Other Interesting Sets
Poisson’s Equation (Courtesy of James Forbes)

Consider the dynamics of the rotation matrix on SO(3)

• Gives the orientation in the Body-fixed frame for a body rotating with
angular velocity ω.

Ċ = −




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0


C

where C =



C1 C2 C3

C4 C5 C6

C7 C8 C9


 ∈ R3×3 which satisfies CTC = I and detC = 1.

Define

S := {



C1 C2 C3

C4 C5 C6

C7 C8 C9


 : det(C) = 1, CTC = I}

So we would like a Lyapunov function V (C) which satisfies

∇V (C)T f(C) ≤ 0 for all C such that C ∈ S
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Recall the SOS Conditions

Proposition 2.

Suppose: p(x) = Zd(x)TQZd(x) for some Q > 0. Then p(x) ≥ 0 for all
x ∈ Rn

M. Peet Lecture 02: Positivstellensatz Methods 39 / 101



SOS Positivity on a Subset
Recall the S-Procedure

Corollary 8 (S-Procedure).

zTFz ≥ 0 for all z ∈ S := {x ∈ Rn : xTGx ≥ 0} if there exists a scalar τ ≥ 0
such that F − τG � 0.

This works because
• τ ≥ 0 and zTGz ≥ 0 for all z ∈ S
• Hence τzTGz ≥ 0 for all z ∈ S

If F ≥ τG, then

zTFz ≥ τzTGz for all z ∈ Rn

≥ 0 for all z ∈ S
Now Consider Polynomials

Proposition 3.

Suppose τ(x) is SOS (≥ 0 ∀x). If f(x)− τ(x)g(x) is SOS (≥ 0 ∀x), then

f(x) ≥ 0 for all x ∈ S := {x : g(x) ≥ 0}
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Summary of SOS Positivity on a set
The Main Idea

Proposition 4.

Suppose si(x) are SOS and ti are polynomials (not necessarily positive). If

f(x) = s0(x) +
∑

i

si(x)gi(x) +
∑

j

tj(x)hj(x)

then
f(x) ≥ 0 for all x ∈ S := {x : gi(x) ≥ 0, hi(x) = 0}

This works because

• si(x) ≥ 0 for all z ∈ S
• gi(x) ≥ 0 for all z ∈ S
• hi(x) = 0 for all z ∈ S

Question: Is it Necessary and Sufficient???
Answer: Yes, but only if we represent S in the right way.

• The Dark Art of the Positivstellensatz!
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How to Represent a Set???
A Problem of Representation and Inference

Consider how to represent a semialgebraic set:
Example: A representation of the interval S = [a, b].

• A first order representation:

{x ∈ R : x− a ≥ 0, b− x ≥ 0}
• A quadratic representation:

{x ∈ R : (x− a)(b− x) ≥ 0}
• We can add arbitrary polynomials which are PSD on X to the

representation.

{x ∈ R : (x− a)(b− x) ≥ 0, x− a ≥ 0}
{x ∈ R : (x2 + 1)(x− a)(b− x) ≥ 0}
{x ∈ R : (x−a)(b−x) ≥ 0, (x2 + 1)(x−a)(b−x) ≥ 0, (x− a)(b− x) ≥ 0}

There are infinite ways to represent the same set

• Some Work well and others Don’t!
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A Problem of Representation and Inference
Computer-Based Logic and Reasoning

Why are all these representations valid?

• We are adding redundant constraints to the set.

• x− a ≥ 0 and b− x ≥ 0 for x ∈ [a, b] implies

(x− a)(b− x) ≥ 0.

• x2 + 1 is SOS, so is obviously positive on x ∈ [a, b].

How are we creating these redundant constraints?

• Logical Inference

• Using existing polynomials which are positive on X
to create new ones.

Note: If f(x) ≥ 0 for x ∈ S
• So f is positive on S if and only if it is a valid constraint...

Big Question:

• Can ANY polynomial which is positive on [a, b] be constructed this way?
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The Cone of Inference

Definition 9.

Given a semialgebraic set S, a function f is called a valid inequality on S if

f(x) ≥ 0 for all x ∈ S

Question: How to construct valid inequalities?

• Closed under addition: If f1 and f2 are valid, then h(x) = f1(x) + f2(x) is
valid

• Closed under multiplication: If f1 and f2 are valid, then h(x) = f1(x)f2(x)
is valid

• Contains all Squares: h(x) = g(x)2 is valid for ANY polynomial g.

A set of inferences constructed in such a manner is called a cone.
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The Cone of Inference

Definition 10.

The set of polynomials C ⊂ R[x] is called a Cone if

• f1 ∈ C and f2 ∈ C implies f1 + f2 ∈ C.

• f1 ∈ C and f2 ∈ C implies f1f2 ∈ C.

• Σs ⊂ C.

Note: this is NOT the same definition as in optimization.
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The Cone of Inference

The set of inferences is a cone

Definition 11.

For any set, S, the cone C(S) is the set of polynomials PSD on S

C(S) := {f ∈ R[x] : f(x) ≥ 0 for all x ∈ S}

The big question: how to test f ∈ C(S)???

Corollary 12.

f(x) ≥ 0 for all x ∈ S if and only if f ∈ C(S)
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The Monoid

Suppose S is a semialgebraic set and define its monoid.

Definition 13.

For given polynomials {fi} ⊂ R[x], we define monoid({fi}) as the set of all
products of the fi

monoid({fi}) := {h ∈ R[x] : h(x) =
∏

fa11 (x)fak2 (x) · · · fa2k (x), a ∈ Nk}

• 1 ∈ monoid({fi})
• monoid({fi}) is a subset of the cone defined by the fi.

• The monoid does not include arbitrary sums of squares

M. Peet Lecture 02: Positivstellensatz Methods 47 / 101



The Cone of Inference

If we combine monoid({fi}) with Σs, we get cone({fi}).

Definition 14.

For given polynomials {fi} ⊂ R[x], we define cone({fi}) as

cone({fi}) := {h ∈ R[x] : h =
∑

sigi, gi ∈ monoid({fi}), si ∈ Σs}

If
S := {x ∈ Rn : fi(x) ≥ 0, i = 1 · · · , k}

cone({fi}) ⊂ C(S) is an approximation to C(S).

• The key is that it is possible to test whether f ∈ cone({fi}) ⊂ C(S)!!!
I Sort of... (need a degree bound)
I Use e.g. SOSTOOLS
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More on Inference

Corollary 15.

h ∈ cone({fi}) ⊂ C(S) if and only if there exist si, rij , · · · ∈ Σs such that

h(x) = s0 +
∑

i

sifi +
∑

i6=j

rijfifj +
∑

i 6=j 6=k

rijkfifjfk + · · ·

Note we must include all possible combinations of the fi
• A finite number of variables si, rij .

• si, rij ∈ Σs is an SDP constraint.

This gives a sufficient condition for h(x) ≥ 0 for all x ∈ S.

• Can be tested using, e.g. SOSTOOLS
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Numerical Example

Example: Show that h(x) = 5x− 9x2 + 5x3 − x4 is PSD on the interval

[0, 1] = {x ∈ Rn : f1(x) = x(1− x) ≥ 0},

A single inequality f1(x) = x(1− x). The cone cone(f1) only has 2 terms

s0(x) + x(1− x)s1(x)

We find f ∈ cone(f1) using s0(x) = 0, s1(x) = (2− x)2 + 1 so that

h(x) = 5x− 9x2 + 5x3 − x4 = 0 + ((2− x)2 + 1)x(1− x)

Which is a certificate of non-negativity of h on S = [0, 1]

Note: the original representation of S matters:

• If we had used S = {x ∈ R : x ≥ 0, 1− x ≥ 0}, then we would have had 4
SOS variables

h(x) = s0(x) + xs1(x) + (1− x)s2(x) + x(1− x)s3(x)

The complexity can be decreased through judicious choice of representation.
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Stengle’s Positivstellensatz

We have two big questions
• How close an approximation is cone({fi}) ⊂ C(S) to C(S)?

I Cannot always be exact since not every positive polynomial is SOS.

• Can we reduce the complexity?

Both these questions are answered by Positivstellensatz Results. Recall

S := {x ∈ Rn : fi(x) ≥ 0, i = 1 · · · , k}

Theorem 16 (Stengle’s Positivstellensatz).

S = ∅ if and only if −1 ∈ cone({fi}). That is, S = ∅ if and only if there exist
si, rij , · · · ∈ Σs such that

−1 = s0 +
∑

i

sifi +
∑

i 6=j

rijfifj +
∑

i6=j 6=k

rijkfifjfk + · · ·

Note that this is not exactly what we were asking.
• We would prefer to know whether h ∈ cone({fi})
• Difference is important for reasons of convexity.
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Stengle’s Positivstellensatz
Lets Cut to the Chase

Problem: We want to know whether f(x) > 0 for all x ∈ {x : gi(x) ≥ 0}.

Corollary 17 (Stengle’s Positivstellensatz).

f(x) > 0 for all x ∈ {x : gi(x) ≥ 0} if and only if there exist si, qij , rij , · · · ∈ Σs
such that

f


s−1 +

∑

i

qigi +
∑

i 6=j

qijgigj +
∑

i 6=j 6=k

qijkgigjgk + · · ·




= 1 + s0 +
∑

i

sigi +
∑

i 6=j

rijgigj +
∑

i 6=j 6=k

rijkgigjgk + · · ·

We have to include all possible combinations of the gi!!!!
• But assumes Nothing about the gi
• The worst-case scenario
• Also bilinear in si and f (Can’t search for both)

We can do better if we choose our gi more carefully!
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Stengle’s Weak Positivstellensatz

Non-Negativity: Considers whether f(x) ≥ 0 for all x ∈ {x : gi(x) ≥ 0}.

Corollary 18 (Stengle’s Positivstellensatz).

f(x) ≥ 0 for all x ∈ {x : gi(x) ≥ 0} if and only if there exist si, qij , rij , · · · ∈ Σs
and q ∈ N such that

f


s−1 +

∑

i

qigi +
∑

i6=j

qijgigj +
∑

i 6=j 6=k

qijkgigjgk + · · ·




= f2q + s0 +
∑

i

sigi +
∑

i 6=j

rijgigj +
∑

i 6=j 6=k

rijkgigjgk + · · ·

Lyapunov Functions are NOT strictly positive!

• The only P-Satz to deal with functions not Strictly Positive.
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Schmudgen’s Positivstellensatz

If the set S is closed, bounded, then the problem can be simplified.

Theorem 19 (Schmüdgen’s Positivstellesatz).

Suppose that S = {x : gi(x) ≥ 0, hi(x) = 0} is compact. If f(x) > 0 for all
x ∈ S, then there exist si, rij , · · · ∈ Σs and ti ∈ R[x] such that

f = 1 +
∑

j

tjhj + s0 +
∑

i

sigi +
∑

i 6=j

rijgigj +
∑

i 6=j 6=k

rijkgigjgk + · · ·

Note that Schmudgen’s Positivstellensatz is essentially the same as Stengle’s
except for a single term.

• Now we can include both f and si, rij as variables.

• Reduces the number of variables substantially.

The complexity is still high (Lots of SOS multipliers).
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Putinar’s Positivstellensatz

If the semialgebraic set is P-Compact, then we can improve the situation further.

Definition 20 (P-Compact).

We say that fi ∈ R[x] for i = 1, . . . , nK define a P-compact set Kf , if there
exist h ∈ R[x] and si ∈ Σs for i = 0, . . . , nK such that the level set
{x ∈ Rn : h(x) ≥ 0} is compact and such that the following holds.

h(x)−
nK∑

i=1

si(x)fi(x) ∈ Σs

The condition that a region be P-compact may be difficult to verify. However,
some important special cases include:

• Any region Kf such that all the fi are linear.

• Any region Kf defined by fi such that there exists some i for which the
superlevel set {x : fi(x) ≥ 0} is compact.
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Putinar’s Positivstellensatz

P-Compact is not hard to satisfy.

Corollary 21.

Any compact set can be made P-compact by inclusion of a redundant constraint
of the form fi(x) = β − xTx for sufficiently large β.

Thus P-Compact is a property of the representation and not the set.

Example: The interval [a, b].

• Not Obviously P-Compact:

{x ∈ R : x2 − a2 ≥ 0, b− x ≥ 0}

• P-Compact:
{x ∈ R : (x− a)(b− x) ≥ 0}
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Putinar’s Positivstellensatz

If S is P-Compact, Putinar’s Positivstellensatz dramatically reduces the
complexity

Theorem 22 (Putinar’s Positivstellesatz).

Suppose that S = {x : gi(x) ≥ 0, hi(x) = 0} is P-Compact. If f(x) > 0 for all
x ∈ S, then there exist si ∈ Σs and ti ∈ R[x] such that

f = s0 +
∑

i

sigi +
∑

j

tjhj

A single multiplier for each constraint.

• We are back to the original condition

• A Good representation of the set is P-compact
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Return to Lyapunov Stability

We can now recast the search for a Lyapunov function.

Let

X :=

{
x : pi(x) ≥ 0 i = 1, . . . , k

}

Theorem 23.
Suppose there exists a V , an ε > 0, and s0, si, t0, ti ∈ Σs such that

V (x) = s0(x) +
∑
i

si(x)pi(x) + ε xTx

−V̇ (x) = −∇V (x)T f(x) = t0(x) +
∑
i

ti(x)pi(x) + ε xTx

Then the system is exponentially stable on any Yγ := {x : v(x) ≤ γ} where Yγ ⊂ X.

Note: Find the largest Yγ via bisection.
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Local Stability Analysis

Van-der-Pol Oscillator
ẋ(t) = −y(t)

ẏ(t) = −µ(1− x(t)2)y(t) + x(t)

Procedure:

1. Use Bisection to find the largest ball on which you can find a Lyapunov
function.

2. Use Bisection to find the largest level set of that Lyapunov function on
which you can find a Lyapunov function. Repeat
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Local Stability Analysis

First, Find the Lyapunov function
SOSTOOLS Code: Find a Local Lyapunov Function
> pvar x y

> mu=1; r=2.8;

> g = r− (x2 + y2);
> f = [−y;−mu ∗ (1− x2) ∗ y + x];
> prog=sosprogram([x y]);

> Z2=monomials([x y],0:2);

> Z4=monomials([x y],0:4);

> [prog,V]=sossosvar(prog,Z2);

> V = V + .0001 ∗ (x4 + y4);
> prog=soseq(prog,subs(V,[x, y]’,[0, 0]’));

> nablaV=[diff(V,x);diff(V,y)];

> [prog,s]=sossosvar(prog,Z2);

> prog=sosineq(prog,-nablaV’*f-s*g);

> prog=sossolve(prog);

> Vn=sosgetsol(prog,V)

This finds a Lyapunov function which is decreasing on the ball of radius
√

2.8
• Lyapunov function is of degree 4.
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Local Stability Analysis

Next find the largest level set which is contained in the ball of radius
√

2.8.

> pvar x y

> gamma=6.6;

> Vg=gamma-Vn;

> g = r− (x2 + y2);
> prog=sosprogram([x y]);

> Z2=monomials([x y],0:2);

> [prog,s]=sossosvar(prog,Z2);

> prog=sosineq(prog,g-s*Vg);

> prog=sossolve(prog);  
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In this case, the maximum γ is 6.6

• Estimate of the DOA will increase with degree of the variables.
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Making Sense of Positivity Constraints

−V̇ (x)− g(x) · s(x) ≥ 0 ∀x
means

V̇ (x) ≤ −g(x) · s(x) ≤ 0

when g(x) ≥ 0 (since s(x) ≥ 0 and g(x) ≥ 0 on x ∈ X).
• but ‖x‖2 ≤ r implies g(x) ≥ 0
• hence V̇ (x) ≤ 0 for all x ∈ B√r

Likewise
g(x)− s(x) · (γ − V (x)) ≥ 0 ∀x

means
g(x) ≥ s(x) · (γ − V (x)) ≥ 0

whenever V (x) ≤ γ.
• So g(x) ≥ 0 whenever x ∈ Vγ
• But g(x) ≥ 0 means ‖x‖ ≤ √r
• So if x ∈ Vγ , then g(x) ≥ 0 and hence ‖x‖ ≤ √r.
• So Vγ ⊂ B√r
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An Example of Global Stability Analysis

SOSTOOLS Code: Globally Stabilizing Controller
> pvar w1 w2 w3

> J1=2;J2=1;J3=1;

> k1=1;k2=1;k3=1;

> u1=-k1*w1;u2=-k2*w2;u3=-k3*w3;

> f = [(J2− J3)/J1 ∗ w2 ∗ w3 + u1;
> (J3− J1)/J2 ∗ w3 ∗ w1 + u2;
> (J1− J2)/J3 ∗ w1 ∗ w2 + u3];
> prog=sosprogram([w1 w2 w3]);

> Z=monomials([w1 w2 w3],1:2);

> [prog,V]=sossosvar(prog,Z);

> V = V + .0001 ∗ (w14 + w24 + w34);
> prog=soseq(prog,subs(V,[w1; w2; w3],[0; 0;

0]));

> nablaV=[diff(V,w1);diff(V,w2);diff(V,w3)];

> prog=sosineq(prog,-nablaV’*f-4.0*V);

> prog=sossolve(prog);

> Vn=sosgetsol(prog,V)

J1ω̇1 = (J2 − J3)ω2ω3 + u1

J2ω̇2 = (J3 − J1)ω3ω1 + u2

J3ω̇3 = (J1 − J2)ω1ω2 + u3

u1 = −k1ω1

u2 = −k2ω2

u3 = −k3ω3

This is feasible and proves exponential stability with decay rate γ = 4

V (t) ≤ V (0)e−4tM. Peet Lecture 02: Positivstellensatz Methods 63 / 101



An Example of Globally Stabilizing Controller Synthesis

SOSTOOLS Code: Globally Stabilizing Controller
> pvar x1 x2 x3

> prog=sosprogram([x1 x2 x3]);

> Z4=monomials([x1 x2 x3],0:3);

> Z2=monomials([x1 x2 x3],0:3);

> [prog,k1]=sospolyvar(prog,Z4);

> [prog,k2]=sospolyvar(prog,Z4);

> u1=k1; u2=k2;

> f=[-x1+x2-x3;-x1*x3-x2+u1;-x1+u2];

> V = x12 + x22 + x32;
> prog=soseq(prog,subs(V,[x1, x2, x3]’,[0,

0, 0]’));

> nablaV=[diff(V,x1);diff(V,x2);diff(V,x3)];

> prog=sosineq(prog,-(nablaV’*f));

> prog=sossolve(prog);

> k1n=sosgetsol(prog,k1)

> k2n=sosgetsol(prog,k2)

ẋ1 = −x1 + x2 − x3

ẋ2 = −x1x3 − x2 + u1

ẋ3 = −x1 + u2

Find u1(t) = k1(x(t)),
u2(t) = k2(x(t))
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Example of Parametric Uncertainty

Recall The Spring-Mass Example

ÿ(t) + cẏ(t) +
k

m
y(t) =

F (t)

m
Multiplicative Uncertainty

• m ∈ [m−,m+]

• c ∈ [c−, c+]

• k[k−, k+]

State Space Parametric Uncertainty 
One natural type of uncertainty is unknown coefficients in a state 

space model. As a simple example, we will begin with a familiar ide- 
alized mass/spring/damper system. 

- 0- a-' 0 -20, 0 0 - 

0- a-l 0 -wm 0 0 

-k -e 1 0 Wk Wc 

1 0 0 0  0 0  

- k O O O  0 0  
- 0  --E 0 0 0 0 -  

Suppose m,c, and k are fixed but uncertain, with m = m ( l +  wm6,), 
c = .?(I+ ~ ~ 6 ~ ) ~  k = k(1 + Wk6k). Then defining z1 = y and z2 = m@ 
we can write the differential equation in state-space form as 

- 0  

M =  

Ai  0 0 
A2 0- 

0 0 A3 

el-. 
313- 

More generally, the perturbed state-space system 

zk+i = A ( 6 ) a  4- B(6)dk 
e k  = C(6)zk + D(6)dk 

where 6 is a vector of parameters that enter rationally can be written as 
an LFT on a diagonal matrix A made up of the elements of 6, possibly 
repeated. The form of the LFT is ([MorM]) 

(2.5) 

with perturbation W k  = Azk yielding 

P =  dl ,d3 
U1 

In general, for problems of this type it is easy to  obtain realiza- 
tions, but it is difficult t o  insure that they are minimal, except in the 
case where the parameters enter linearly. 

Interconnect ions 
Interconnections of LFTs are again LFTs. This is a fundamental 

property of linear fractional transformations, and is one reason why 
they are so important in linear systems theory. For example, consider 
a situation with three components, each with a LFT uncertainty model. 
The 

Y3 

Note how general uncertainty at the component level becomes 
structured uncertainty at the system level. 

2.4 Properties of LFTs 
One of the features of LFTs is that they can be manipulated much like 
state-space realizations of transfer functions. We can cascade, add, 
invert them and so on. Some examples are given below. 

Operat ions O n  LFTs 
Given two systems with realizations 

define A = [ $ :, 1. Then the cascade system has a realization 

and the addition of G1 and G2 has a realization 

(GI  + G z ) ( A )  = 

Inversion formulas  
Suppose F J ( M ,  A )  is square and well-defined for all desired A and 

Mi1 is nonsingular. Then (Fc(M, A))-' = Ft($f, A )  with & given by 

Suppose that G = Ft(P,Ii') with P ,  P12, and P21 are all square 
and nonsingular. Then we can solve for K and K = Fu( P-',  G ) .  This 
formula is easily verified by writing the equations for the LFT - -  r . l  I;] = P I : ] ,  u = K y  

and solving them to yield 

U = F,,(P-' ,G)y 
K = F,(P- ' ,G)  

3 Structured Singular Value 
3.1 Definitions 
We consider matrices M E CnX" and an underlying block structure A,  
(a  prescribed set of block diagonal matrices) on which everything in the 
sequel depends. In this paper we will only consider the purely complex 
case (i.e. the block structure contains only complex uncertainties). For 
the mixed real and complex case see [YoND]. 

Two nonnegative integers, S and F, represent the number of re- 
peated scalar blocks and the number of full blocks, respectively. 

A = {diag [611k1,.  . . , b s IkS ,A l , .  . . , A F ]  : 6i E C ,  Ai E Cks+ixks+i  I 
(3.7) 
(3.8) B A  = { A  E A : 8 ( A ) <  1) 

For notational convenience all of the repeated scalar blocks appear 
first, and the full blocks are square, but this is easily relaxed. 

1228 

Questions:

• Can we do robust optimal control without the LFT framework??

• Consider static uncertainty?
I Can we do better than Quadratic Stabilization??

General Formulation

ẋ = A(δ)x(t) +B(δ)u(t)

y(t) = C(δ)x(t) +D(δ)u(t)
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Lets Start with Stability with Static Uncertainty
General Formulation

ẋ(t) = A(δ)x(t) +B(δ)u(t)

y(t) = C(δ)x(t) +D(δ)u(t)

Where A,B,C,D are rational (denominators d(δ) > 0 for all δ ∈ ∆)

Theorem 24.

Suppose there exists P (δ)− εI ≥ 0 for all δ ∈ ∆ and such that

A(δ)TP (δ) + P (δ)A(δ) ≤ 0 for all δ ∈ ∆

Then A(δ) is Hurwitz for all δ ∈ ∆.

Theorem 25.

Suppose there exists si, ri ∈ Σs such that P (δ) = s0(δ) +
∑
i si(δ)gi(δ) and

−A(δ)TP (δ)− P (δ)A(δ) = r0(δ) +
∑

i

ri(δ)gi(δ)

Then A(δ) is Hurwitz for all δ ∈ {δ : gi(δ) ≥ 0}.

Proof: Use V (x) = xTP (δ)x.
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Lets Start With Stability

Apply this to The Spring-Mass Example

ÿ(t) = −cẏ(t)− k

m
y(t) =

F (t)

m[
ẋ1

ẋ2

]
=

[
0 1
−c − k

m

]

︸ ︷︷ ︸
A(c,k,m)

[
x1

x2

]
+

[
0
1
m

]
u(t)

Semi-Algebraic Form:
• g1(m) = (m−m−)(m+ −m) ≥ 0
• g2(c) = (c− c−)(c+ − c) ≥ 0
• g3(k) = (k − k−)(k+ − k) ≥ 0

We are searching for a P , si, ri ∈ Σs such that

P (c, k,m) = s0(c, k,m) + s1(c, k,m)gi(m) + s2(c, k,m)g2(c) + s3(c, k,m)g3(k)

such that

−mA(c, k,m)TP (c, k,m)− P (c, k,m)mA(c, k,m)

= m(r0(c, k,m) + r1(c, k,m)gi(m) + r2(c, k,m)g2(c) + r3(c, k,m)g3(k))
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SOSTOOLS does not work with Matrix-Valued Problems
You should instead download SOSMOD

SOSMOD vMAE598 is my personal toolbox and is compatible with the code
presented in these lecture notes.

• May have issues with versions of Matlab 2016a and later. Working to
correct these.

• Folder Must be added to the Matlab PATH

• Also contains example scripts for the code listed in the lecture notes.

Link: SOSMOD for download

• Also on Code Ocean
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SOSTOOLS Code for Robust Stability Analysis

> pvar m c k

> Am=[0 m;-c*m -k];

> mmin=.1;mmax=1;cmin=.1;cmax=1;kmin=.1;kmax=1;

> g1=(mmax-m)(m-mmin);g2=(cmax-c)(c-cmin);g3=(kmax-k)(k-kmin);

> vartable=[m c k];

> prog=sosprogram(vartable);

> [prog,S0]=sosposmatrvar(prog,2,4,vartable);

> [prog,S1]=sosposmatrvar(prog,2,4,vartable);

> [prog,S2]=sosposmatrvar(prog,2,4,vartable);

> [prog,S3]=sosposmatrvar(prog,2,4,vartable);

> P=S0+g1*S1+g2*S2+g3*S3+.00001*eye(2);

> [prog,R1]=sosposmatrvar(prog,2,4,vartable);

> [prog,R2]=sosposmatrvar(prog,2,4,vartable);

> [prog,R3]=sosposmatrvar(prog,2,4,vartable);

> [prog,R4]=sosposmatrvar(prog,2,4,vartable);

> constr=-(Am’*P+P*Am)-m*(R0+R1*g1+R2*g2+R3*g3);

> prog=sosmateq(prog,constr);

> prog=sossolve(prog);

> Pn=sosgetsol(prog,P)
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Now we can do Time-Varying Uncertainty

Time-Varying Formulation:
ẋ(t) = A(δ(t))x(t) +B(δ(t))u(t) δ(t) ∈ ∆1

y(t) = C(δ(t))x(t) +D(δ(t))u(t) δ̇(t) ∈ ∆2

Simple Example: Angle of attack (α)

α̇(t) = −ρ(t)v(t)2cα(α(t),M(t))

2I
α(t)

The time-varying parameters are:
• velocity, v and Mach number, M (M depends on Reynolds #);
• density of air, ρ;
• Also, we sometimes treat α itself as an uncertain parameter.
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Exponential Stability with Time-Varying Uncertainty

ẋ(t) = A(δ(t))x(t)

Theorem 26.

Suppose there exists P (δ)− εI ≥ 0 for all δ ∈ ∆ and such that

A(δ)TP (δ) + P (δ)A(δ) +
∑

i

∂

∂δi
P (δ)δ̇i ≤ 0 for all δ ∈ ∆2, δ̇ ∈ ∆2

Then ẋ(t) = A(δ(t))x(t) is exponentially stable.

Proof: Use V (t, x) = xTP (δ(t))x.

• Treat δi and δ̇i as independent (Usually not conservative).
• If ∆2 = Rn, then requires ∂

∂δi
P (δ) = 0 (Quadratic Stability).

Example: Gain Scheduling Choose Ki based on δ

ẋ(t) =
{

(A(δ) +BKi)x(t) δ ∈ ∆i

No Bound on rate of variation! (∆2 = Rn)• Unless δ depends on x....
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Extension to Optimal Controller Synthesis

We have two cases

• Time-Varying Parametric Uncertainty ẋ(t) = A(δ(t))x(t)

• Static Parametric Uncertainty ẋ(t) = A(δ)x(t)

Most of the LMIs in this course can be adapted to either case using the
Positivstellensatz.

• Need to be careful with TV uncertainty, however.

Popular Uses:
• H2 optimal control with uncertainty

I Makes H2 robust (H∞ is already robust to some extent).
I NOT RIGOROUS when δ(t) is time-varying.

• Robust Kalman Filtering
I The Kalman Filter is not always stable in closed-Loop...
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H2-optimal robust control

Static Formulation
ẋ(t) = A(δ)x(t) +B(δ)u(t)

y(t) = C(δ)x(t) +D(δ)u(t)

H2-optimal State Feedback Synthesis

Theorem 27.

Suppose P̂ (s, δ) = C(δ)(sI −A(δ))−1B(δ). Then the following are equivalent.

1. ‖S(K(δ), P (δ))‖H2
< γ for all δ ∈ ∆..

2. K(δ) = Z(δ)X(δ)−1 for some Z(δ) and X(δ) such that X(δ) > 0 for all
δ ∈ ∆ and

[
A(δ) B2(δ)

] [X(δ)
Z(δ)

]
+
[
X(δ) Z(δ)T

] [A(δ)T

B(δ)T2

]
+B1(δ)B1(δ)T < 0

[
X(δ) (C1(δ)X(δ) +D12(δ)Z(δ))T

C1(δ)X(δ) +D12(δ)Z(δ) W (δ)

]
> 0

TraceW (δ) < γ2

for all δ ∈ ∆.
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The KYP Lemma with Time-Varying Uncertainty

Lemma 28.

Suppose

G(δ(t)) =

[
A(δ(t)) Bδ(t)
Cδ(t) Dδ(t)

]
.

Then ‖G(δ(t))‖L(L2) ≤ γ for all δ(t) with δ(t) ∈ ∆1 and δ̇(t) ∈ ∆2 if there
exists a X(δ) such that X(δ) > 0 for all δ ∈ ∆1 and

[
A(δ)TX(δ) +X(δ)A(δ) +

∑
i βi

∂
∂δi
X(δ) X(δ)B(δ)

B(δ)TX(δ) −γI

]

+
1

γ

[
C(δ)T

D(δ)T

] [
C(δ) D(δ)

]
< 0

for all δ ∈ ∆1 and β ∈ ∆2.

M. Peet Lecture 02: SOS for Robust Stability 74 / 101



The KYP Lemma with Time-Varying Uncertainty

ẋ(t) = A(δ(t))x(t) +B(δ(t))u(t) δ(t) ∈ ∆1

y(t) = C(δ(t))x(t) +D(δ(t))u(t) δ̇(t) ∈ ∆2

Proof.

Let V (x, t) = xTX(δ(t))x. Then

V̇ (x(t), t)− (γ − ε)‖u(t)‖2 +
1

γ
‖y(t)‖2 < 0

=

[
x(t)
u(t)

]T [[
A(δ)TX(δ) +X(δ)A(δ) +

∑
i δ̇i

∂
∂δi
X(δ) X(δ)B(δ)

B(δ)TX(δ) −(γ − ε)I

]

+
1

γ

[
C(δ)T

D(δ)T

] [
C(δ) D(δ)

]
] [
x(t)
u(t)

]

≤ 0
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H∞-optimal robust control with Time-Varying Uncertainty

However, Controller Synthesis is a Problem!

• Schur Complement Still works.

• Duality Doesn’t work.

Lemma 29.

Suppose
G(δ(t)) =

[
A(δ(t)) B(δ(t))
C(δ(t)) D(δ(t))

]
.

Then ‖G(δ(t))‖L(L2) ≤ γ for all δ(t) with δ(t) ∈ ∆1 and δ̇(t) ∈ ∆2 if there
exists a X(δ) such that X(δ) > 0 for all δ ∈ ∆1 and

[
(A(δ) + B2(δ)K(δ))TX(δ) +X(δ)(A(δ) + B2(δ)K(δ)) +

∑
i βi

∂
∂δi

X(δ) ∗T ∗T

B1(δ)TX(δ) −γI ∗T
C1(δ) +D12(δ)K(δ) D11(δ) −γI

]
< 0

for all δ ∈ ∆1 and β ∈ ∆2.

We fall back on iterative methods (Similar to D-K iteration)

• Optimize P , then optimize K.

• rinse and repeat.
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Robust Local Stability
Search for a Parameter-Dependent Lyapunov Function

The Rayleigh Equation:

ÿ − 2ζ(1− αẏ2)ẏ + y = u

Uncertainty:

ζ ∈ [1.8, 2.2]

α ∈ [.8, 1.2]

2 - 3 Mathematical Preliminaries 2001.10.08.01

Example: Raleigh equation

ÿ − 2ζ(1− αẏ2)ẏ + y = u

Define G by

ẋ(t) =

[
2ζ −1
1 0

]
x +

[
−2ζα
0

]
q +

[
1
0

]
u

p(t) =
[
1 0

]
x(t)

y(t) =
[
0 1

]
x(t)

and Q by
q(t) = Q(p(t)) = p(t)3

[
ẋ1(t)
ẋ2(t)

]
=

[
2ζ(1− αx2

1)x1 + x2

x1

]

Find a Lyapunov Function: V (y, ẏ, α, ζ)

V (x1, x2, α, ζ) ≥ .01 ∗ (x2
1 + x2

2) ∀x ∈ Br, α, ζ ∈ ∆

and V (0, 0, α, ζ) = 0 and

∇xV (x1, x2, α, ζ)T f(x1, x2, α, ζ) ≤ 0 ∀x ∈ Br, α, ζ ∈ ∆
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SOSTOOLS Code for Robust Nonlinear Stability Analysis

> pvar x1 x2 z a

> zmin = .8; zmax = 1.2; amin = 1.8; amax = 2.2; g1 = r− (x12 + x22);
> r = .3; g2 = (amax− a)(a− amin); g3 = (zmax− z)(z− zmin);
> f = [2 ∗ z ∗ (1− a ∗ x22) ∗ x2− x1; x1];
> vartable=[x1 x2 a z];

> prog=sosprogram(vartable);

> Z1=monomials(vartable,0:1); Z2=monomials(vartable,0:2);

> Z3=monomials(vartable,0:3);

> [prog,V0]=sossosvar(prog,Z2);

> [prog,r1]=sossosvar(prog,Z1); [prog,r2]=sossosvar(prog,Z1);

> [prog,r3]=sossosvar(prog,Z1);

> V = V0 + .001 ∗ (x12 + x22) + g1 ∗ r1 + g2 ∗ r2 + g3 ∗ r3;
> prog=soseq(prog,subs(V,[x1, x2]’,[0, 0]’));

> nablaV=[diff(V,x1);diff(V,x2)];

> P=S0+g1*S1+g2*S2+g3*S3+.00001*eye(2);

> [prog,s1]=sossosvar(prog,Z2); [prog,s2]=sossosvar(prog,Z2);

> [prog,s3]=sossosvar(prog,Z2);

> prog=sosineq(prog,-nablaV’*f-s1*g1-s2*g2-s3*g3);

> prog=sossolve(prog);
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Integer Programming Example
MAX-CUT

Figure: Division of a set of nodes to maximize the weighted cost of separation

Goal: Assign each node i an index xi = −1 or xj = 1 to maximize overall cost.

• The cost if xi and xj do not share the same index is wij .
• The cost if they share an index is 0

• The weight wi,j are given.
• Thus the total cost is

1

2

∑

i,j

wi,j(1− xixj)
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MAX-CUT

The optimization problem is the integer program:

max
x2
i=1

1

2

∑

i,j

wi,j(1− xixj)

The MAX-CUT problem can be reformulated as

min γ :

γ ≥ max
x2
i=1

1

2

∑

i,j

wi,j(1− xixj) for all x ∈ {x : x2
i = 1}

We can compute a bound on the max cost using the Nullstellensatz

min
pi∈R[x], s0∈Σs

γ :

γ − 1

2

∑

i,j

wi,j(1− xixj) +
∑

i

pi(x)(x2
i − 1) = s0(x)
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MAX-CUT

Consider the MAX-CUT problem with 5 nodes

w12 = w23 = w45 = w15 = .5 and w14 = w24 = w25 = w34 = 0

where wij = wji. The objective function is

f(x) = 2.5− .5x1x2 − .5x2x3 − .5x3x4 − .5x4x5 − .5x1x5

We use SOSTOOLS and bisection on γ to solve

min
pi∈R[x], s0∈Σs

γ :

γ − f(x) +
∑

i

pi(x)(x2
i − 1) = s0(x)

We achieve a least upper bound of γ = 4.
However!

• we don’t know if the optimization problem achieves this objective.

• Even if it did, we could not recover the values of xi ∈ [−1, 1].
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MAX-CUT

1

1

2

3 4

5

Figure: A Proposed Cut

Upper bounds can be used to VERIFY optimality of a cut.
We Propose the Cut

• x1 = x3 = x4 = 1

• x2 = x5 = −1

This cut has objective value

f(x) = 2.5− .5x1x2 − .5x2x3 − .5x3x4 − .5x4x5 − .5x1x5 = 4

Thus verifying that the cut is optimal.
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MAX-CUT code

pvar x1 x2 x3 x4 x5;

vartable = [x1; x2; x3; x4; x5];

prog = sosprogram(vartable);

gamma = 4;

f = 2.5 - .5*x1*x2 - .5*x2*x3 - .5*x3*x4 - .5*x4*x5 - .5*x5*x1;

bc1 = x1^2 - 1 ;

bc2 = x2^2 - 1 ;

bc3 = x3^2 - 1 ;

bc4 = x4^2 - 1 ;

bc5 = x5^2 - 1 ;

for i = 1:5

[prog, p{1+i}] = sospolyvar(prog,Z);

end;

expr = (gamma-f)+p{1}∗bc1+p{2}∗bc2+p{3}∗bc3+p{4}∗bc4+p{5}∗bc5;
prog = sosineq(prog,expr);

prog = sossolve(prog);
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The Structured Singular Value

For the case of structured parametric uncertainty, we define the structured
singular value.

∆ = {∆ = diag(δ1In1, · · · , δsIns : δi ∈ R}

• δi represent unknown parameters.

Definition 30.

Given system M ∈ L(L2) and set ∆ as above, we define the Structured
Singular Value of (M,∆) as

µ(M,∆) =
1

inf ∆∈∆
I−M∆ is singular

‖∆‖

The fundamental inequality we have is ∆γ = {diag(δi), :
∑
i δ

2
i ≤ γ}. We

want to find the largest γ such that I −M∆ is stable for all ∆ ∈∆γ
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The Structured Singular Value, µ

The system

ẋ(t) = A0x(t) +Mp(t), p(t) = ∆(t)q(t),

q(t) = Nx(t) +Qp(t), ∆ ∈∆

is stable if there exists a P (δ) ∈ Σs such that

V̇ = xTP (δ)(A0x+Mp) + (A0x+Mp)TP (δ)x < εxTx

for all x, p, δ such that

(x, p, δ) ∈
{
x, p, δ : p = diag(δi)(Nx+Qp),

∑

i

δ2
i ≤ γ

}

Proposition 5 (Lower Bound for µ).

µ ≥ γ if there exist polynomial h ∈ R[x, p, δ] and si ∈ Σs such that

xTP (δ)(A0x+Mp) + (A0x+Mp)TP (δ)x− εxTx
= −s0(x, p, δ)− (γ −

∑

i

δ2
i )s1(x, p, δ)− (p− diag(δi)(Nx+Qp))h(x, p, δ)
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Variations - Polya’s Formulation

Recall that Hilbert’s 17th was resolved in the affirmative by E. Artin in 1927.
• Any PSD polynomial p is the sum, product and ratio of squared

polynomials.

p(x) =
g(x)

h(x)

where g, h ∈ Σs.
It was later shown by Habricht that if p is strictly positive, then we may assume
h(x) = (

∑
i x

2
i )
d for some d. That is,

(x2
1 + · · ·+ x2

n)dp(x) ∈ Σs

Question: Given properties of p, may we assume a structure for h?

Yes: Polya was able to show that if p(x) has the structure

p(x) = p̃(x2
i , · · · , x2

n),

then we may assume that s is a sum of squared monomials (prima facie SOS).

s(x) =
∑

α∈Nn
(cαx

α)2

where xα =
∏
i x

αi
i .
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Variations - Polya’s Formulation

Consider polynomials on the positive orthant:

X := {x : xi ≥ 0, i = 1, · · · }
Then: f(x1, · · · , xn) > 0 for all x ∈ X iff f(x2

1, · · · , x2
n) ≥ 0 for all x ∈ Rn.

Polya’s result: if f(x1, · · · , xn) > 0 for all x ∈ X, then
(∑

i

x2
i

)dp
f(x2

1, · · · , x2
n) =

∑

α∈Nn
(cαx

α)2

for some dp > 0.
Now making the substitution x2

i → yi and c2α → bα, we have the condition

Theorem 31.

If f(x1, · · · , xn) > 0 for all x ∈ X then there exist bα ≥ 0 and dp ≥ 0 such that
(∑

i

yi

)dp
f(y1, · · · , yn) =

∑

α∈Nn
|α|1≤d+dp

bαy
α

where d is the degree of polynomial f .

M. Peet Lecture 02: Alternatives to SOS 87 / 101



Variations - Polya’s Formulation

Define the Unit Simplex:

∆ := {x ∈ Rn :

n∑

i=1

xi = 1, xi ≥ 0}

Theorem 32 (Polya’s Theorem).

Suppose F is a homogeneous polynomial and F (x) > 0 for all x ∈ ∆. Then for
a sufficiently large d ∈ N,

(x1 + x2 + · · ·+ xn)
d
F (x)

has all its coefficients strictly positive.

The algorithmic nature was noted by Polya himself:

“The theorem gives a systematic process for deciding whether a given
form F is strictly positive for positive x. We multiply repeatedly by∑
x, and, if the form is positive, we shall sooner or later obtain a form

with positive coefficients.” -G. Pólya, 1934
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Variations - Polya’s Formulation

For example, if we have a finite number of operating points Ai, and want to
ensure performance for all combinations of these points.

ẋ(t) = Ax(t) where A ∈
{∑

i

Aiµi : µi ≥ 0,
∑

i

µi = 1

}

This is equivalent to the existence of a polynomial P such that P (µ) > 0 for all
µ ∈ ∆ and such that

A(µ)TP (µ) + P (µ)A(µ) < 0 for all µ ∈ ∆

where A(µ) =
∑

i

Aiµi
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Variations - Polya’s Formulation

A more challenging case is if A(α) is nonlinear in some parameters, α.
Simple Example: Angle of attack (α)

α̇(t) = −ρv
2cα(α,M)

2I
α(t)

The time-varying parameters are:

• velocity, v and Mach number, M (M depends on Reynolds #);
• density of air, ρ;
• Also, we sometimes treat α itself as an uncertain parameter.

Figure: CM vs. α and Re # Figure: CM vs. Mach # and α
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ROLMIP: LMIs with parameters lying in the simplex I

� Parameter-dependent LMIs associated to polytopic systems (parameters lying
in the simplex) as continuous-time stability (A(α)′P (α) + P (α)A(α) < 0),
discrete-time stability (A(α)′P (α)A(α)− P (α) < 0), H2 and H∞ norms
computation, controller synthesis, etc., can be put in the general form

X(α) =
∑

αk11 α
k2
2 · · ·αkNN (Xk1···kN )

where αk11 α
k2
2 · · ·αkNN are monomials and Xk1···kN are matrix-valued coefficients

depending affinely on the decision variables (Lyapunov matrix and possibly some
slack variables).

� How to check the positivity of X(α)? Easy sufficient test: as αk11 α
k2
2 · · ·αkNN

are always non-negative, just impose Xk1···kN > 0 (linear matrix inequality) for
all monomials.

� Problem: How to obtain Xk1···kN systematically, for decision variables
(Lyapunov matrix and slack variables) of arbitrary degrees, possibly with some
Pólya’s relaxations?

M. Peet Lecture 02: Alternatives to SOS 91 / 101



ROLMIP: LMIs with parameters lying in the simplex II

Solution: With ROLMIP your problems are over, because all trick polynomial
manipulations are performed for you and the LMIs are delivered automatically.
For instance, consider the problem of continuous-time robust stability analysis of
a polytopic system with dynamic matrix given by

A(α) = α1A1 + α2A2, Ai ∈ R2×2

where A1 and A2 are given. Considering a Lyapunov matrix of degree g and d
Pólya’s relaxations, we have the code:

N=2;

n=2;

A=rolmipvar({A1,A2},’A(\alpha)’,N,1);

P=rolmipvar(n,n,’P’,’symmetric’,N,g);

LMIs = [polya(A’*P+P*A,d)<=0, polya(P,d)>=0.000001*eye(n)];

optimize(LMIs,[])

� New paper about ROLMIP (version 3.0) to appear in ACM Transactions on
Mathematical Software (TOMS). New stuff: multi-simplex uncertainty and the
treatment of time-varying parameters (continuous- and discrete-time cases).
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Variations - Handelman’s Formulation

Polya was not alone in looking for structure on s.

Recall Schmudgen’s Positivstellensatz.

Theorem 33 (Schmudgen).

Suppose that S = {x : gi(x) ≥ 0} is compact. If f(x) > 0 for all x ∈ S, then
there exist si, rij , · · · ∈ Σs such that

f = s0 +
∑

i

sigi +
∑

i6=j

rijgigj +
∑

i6=j 6=k

rijkgigjgk + · · ·

Suppose that S is a CONVEX polytope

S := {x ∈ Rn : aTi x ≤ bi, i = 1, · · · }

Then we may assume all the si are positive scalars.
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Variations - Handelman’s Formulation

Let S := {x ∈ Rn : aTi ≤ bi}.

Theorem 34 (Handelman).

Suppose that S := {x ∈ Rn : aTi x ≤ bi} is compact and convex with
non-empty interior. If p(x) > 0 for all x ∈ S, then there exist CONSTANTS
si, rij , · · · > 0 such that

p = s0 +
∑

i

sigi +
∑

i 6=j

rijgigj +
∑

i 6=j 6=k

rijkgigjgk + · · ·
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Handelman’s Formulation (LP Implementation)
Example: Consider the hypercube

S := {(x, y) : −1 ≤ x ≤ 1, −1 ≤ y ≤ 1}
Now the polytope is defined by 4 inequalities

g1(x, y) = −x+ 1; g2(x, y) = x+ 1; g3(x, y) = −y + 1; g4(x, y) = y + 1

Which yields the following vector of bases



g1

...
g3g4


 =




−x+ 1
x+ 1
−y + 1
y + 1

x2 − 2x+ 1
x2 + 2x+ 1
y2 − 2y + 1
y2 + 2y + 1
−x2 + 1

xy − x− y + 1
−xy − x+ y + 1
−xy + x− y + 1
−y2 + 1



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Handelman’s Basis (LP Implementation)

First put the function in the linear basis

p(x) = −(y2 + xy + y) + 3 =
[
3 0 −1 −1 0 −1

]




1
x
y
xy
x2

y2




Then convert the Handelman basis to the original basis



g1

...
g3g4


 =




−x+ 1
x+ 1
−y + 1
y + 1

x2 − 2x+ 1
x2 + 2x+ 1
y2 − 2y + 1
y2 + 2y + 1
−x2 + 1

xy − x− y + 1
−xy − x+ y + 1
−xy + x− y + 1
−y2 + 1




=




1 −1
1 1
1 −1
1 1
1 −2 1
1 2 1
1 −2 1
1 2 1
1 −1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1
1 −1







1
x
y
xy
x2

y2



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Handelman’s Basis (LP Implementation)

Now the positivity constraint becomes ci > 0 and

p(x) =



c1
...
c13




T 


g1(x)
...

g3(x)g4(x)


 .

Therefore, substituting the expressions of the previous slide


3
0
−1
−1
0
−1



T

︸ ︷︷ ︸
bT


1
x
y
xy
x2

y2


︸ ︷︷ ︸

p(x)

=

 c1
...

c13


T

︸ ︷︷ ︸
xT



1 −1
1 1
1 −1
1 1
1 −2 1
1 2 1
1 −2 1
1 2 1
1 −1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1
1 −1


︸ ︷︷ ︸

A


1
x
y
xy
x2

y2



︸ ︷︷ ︸
gi···

∏
gi
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Handelman’s Basis (LP Implementation)

Finally, we have that positivity of p can be expressed as the search for ci > 0
such that 

1 −1
1 1
1 −1
1 1
1 −2 1
1 2 1
1 −2 1
1 2 1
1 −1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1
1 −1



T

︸ ︷︷ ︸
AT

 c1...
c13


︸ ︷︷ ︸
x

=


3
0
−1
−1
0
−1


︸ ︷︷ ︸
b

Which is of the form ATx = b in variables x > 0.

Recall: Optimization over the positive orthant is called Linear Programming.
• b is determined by the coefficients of the polynomial, p
• b may itself be a variable if we are searching over positive polynomials.
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Handelman’s Basis (LP Implementation)

For the polynomial

p(x) = −(y2 + xy + y) + 3 =
[
3 0 −1 −1 0 −1

]




1
x
y
xy
x2

y2




The Linear Program is feasible with

x =
[
1 0 0 0 0 0 0 0 0 0 0 1 1

]

This corresponds to the form

p(x) = g3(x)g4(x) + g2(x)g4(x) + g1(x)

= (−y2 + 1) + (−xy + x− y + 1) + (−x+ 1)

= −y2 − xy − y + 3
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Problems with Interior ZEROS!!!
Failure of Handelman

Now consider the polynomial

p(x) = x2 + y2 =
[
0 0 0 0 1 1

] [
1 x y xy x2 y2

]T

Clearly, p(x, y) ≥ 0 for all (x, y) ∈ S. However the LP is NOT feasible.
Consider the point (x, y) = (0, 0). Then p(0, 0) = 0 and

p(0) =




0
0
0
0
1
1




T 


1
x
y
xy
x2

y2




(x,y)=0

=




0
0
0
0
1
1




T 


1
0
0
0
0
0




=



c1
...
c13




T




−x+ 1
x+ 1
−y + 1
y + 1

x2 − 2x+ 1
x2 + 2x+ 1
y2 − 2y + 1
y2 + 2y + 1
−x2 + 1

xy − x− y + 1
−xy − x+ y + 1
−xy + x− y + 1
−y2 + 1




(x,y)=(0,0)

=



c1
...
c13




T




1
1
1
1
1
1
1
1
1
1
1
1
1




Which implies
∑
i ci = 0. Since the ci ≥ 0, this means c = 0 - NOT FEASIBLE!
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Variations - Handelman’s Formulation

Conclusion: For many representations, the strict positivity is necessary.

• Polya’s representation precludes interior-point zeros.

• Handelman’s representation precludes interior-point zeros.

• Bernstein’s representation precludes interior-point zeros.

In each of these cases, we may have zeros at vertices of the set.

• This makes searching for a Lyapunov function impossible.
I Must be positive on a neighborhood of the x = 0 with V (0) = 0.

One Solution: Partition the space so that the zero point is a vertex of each set.
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