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Abstract— We consider the coupled problems of optimal
thermostat programming and optimal pricing of electricity. Our
framework consists of a single user and a single provider (a
regulated utility). The provider sets prices for the user, who
pays for both total energy consumed ($/kWh, including peak
and off-peak rates) and the peak rate of consumption in a
month (a demand charge) ($/kW). The cost of electricity for
the provider is based on a combination of capacity costs ($/kW)
and fuel costs ($/kWh). In the optimal thermostat programming
problem, the user minimizes the amount paid for electricity
while staying within a pre-defined temperature range. The user
has access to energy storage in the form of thermal capacitance
of the interior structure of the building. The provider sets prices
designed to minimize the total cost of producing electricity
while meeting the needs of the user. To solve the user-problem,
we use a variant of dynamic programming. To solve the
provider-problem, we use a descent algorithm coupled with
our dynamic programming code - yielding optimal on-peak,
off-peak and demand prices. We show that thermal storage
and optimal thermostat programming can reduce electricity
bills using current utility prices from utilities Arizona Public
Service (APS) and Salt River Project (SRP). Moreover, we
obtain optimal utility prices which lead to significant reductions
in the cost of generating electricity and electricity bills.

I. INTRODUCTION

To ensure the reliability of power networks, utility compa-
nies must maintain an uninterrupted balance between power
generation and demand. In some ways this problem is
becoming easier. Partially due to the development of energy-
efficient appliances and new materials for insulation, US
electricity demand has plateaued [1] and is expected to
remain flat (less than 1% growth) for the indefinite future
(see Fig. 1(a)). The result is reduced reliance on carbon-
producing fossil fuels. However, a new problem has arisen
- partially due to increasing use of intermittent renewable
energy sources such as distributed solar and wind - in that
demand peaks continue to grow. Specifically, as per the US
Energy Information Administration (EIA) [2], the ratio of
peak demand to average demand has increased dramatically
over the last 20 years, setting records of 1.89 in New England
in 2012 and 1.96 in California in 2010 (see Fig. 1(b)).
Because most utilities are required to maintain generating
capacity as determined by peak demand, yet typically only
charge customers for total consumption, there is real concern
about the viability of existing business models. For example,
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due to net metering, a typical residential solar customer
might have negative consumption during the day and pos-
itive consumption during the evening and morning. Such as
customer might pay nothing for electricity while contributing
substantially to the costs incurred by the utility. In response
to this problem, many utilities have sought to halt or reverse
growth of the net-metering framework - a process which has
met with some limited success.

In this paper, we look at pricing strategies for reducing
peak load while retaining the incentives necessary to create
a robust distributed renewable sector. Naturally, utilities have
been studying this problem for some time and with the
widespread adoption of smart-metering (95% in Arizona),
have begun to implement such strategies at scale. Examples
of this include on-peak, off-peak and super-peak pricing -
rate plans wherein the energy price ($/kWh) depends on the
time of day [3]. By charging more during peak hours, utili-
ties encourage conservation or deferred consumption during
hours of peak demand. More aggressive strategies which
have emerged recently include voluntary on-peak demand-
limiting programs wherein customers are rewarded for reduc-
ing consumption when requested to do so by the utility [4].
A yet more aggressive strategy is direct load control [5], [6]
wherein Heating, Ventilating, and Air Conditioning (HVAC)
or other appliances are under the direct control of the
utilities and can be deferred or deactivated at will. Quite
recently, some utilities have introduced demand charges for
residential customers. These charges are not based on energy
consumption, but rather the maximum rate of consumption
($/kW) over a billing period. While such charges more
accurately reflect the cost of generation for the utilities,
in practice the effects of such charges on consumption are
not well-understood - meaning that the magnitude of the
demand charge must be set in an ad-hoc manner (typically
proportional to marginal cost of generation).

An alternative approach to reducing peaks in demand is
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(a) Percent of growth of electricity
demand and its trend-line in the US
from 1950 to 2040. Data from [1].
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1993 to 2012. Data from [2].

Fig. 1. Demand growth and peak-to-average demand of electricity
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to use energy storage. In this scenario, batteries, pumping
and retained heat are used during periods of low demand
to create reservoirs of energy which can then be tapped
during periods of high demand - thus reducing the need to
increase maximum generating capacity. Indeed, the optimal
usage of energy storage in a smart-grid environment with
dynamic pricing has been recently studied in, for exam-
ple, [7]. See [8] for optimal distributed load scheduling
in the presence of network capacity constraints. However,
to date the high marginal costs of storage infrastructure
relative to incentives/marginal cost of additional generating
capacity have limited the widespread use of energy storage
by consumers/utilities [9]. As a cost-free alternative to direct
energy storage, it has been demonstrated experimentally [10],
[11] and in-silico [12], [13] that the interior structure of
buildings and appliances can be exploited as a passive
thermal energy storage system to reduce the peak-load of
the HVAC. A typical strategy - known as pre-cooling - is
to artificially cool the interior thermal mass (e.g., walls and
floor) during periods of low demand. Then, during periods of
high demand, heat absorption by these cool interior structures
supplements or replaces electricity which would otherwise
be consumed by the HVAC. Quantitative assessment of the
effect of pre-cooling on demand peak and electricity bills
has been evaluated in, e.g., [14] and sun2013peak . It is
important to note, however, that ad-hoc strategies such as
pre-cooling are only economical when using differential on-
peak and off-peak pricing or demand charges.

The goal of this paper is two-fold. First, we consider
optimal HVAC usage for a consumer with fixed on-peak,
off-peak and demand charges and model passive thermal
energy storage using the heat equation. For a given range of
acceptable temperatures and using typical data for exterior
temperature, we pose the optimal thermostat programming
problem as a constrained optimization problem and present
a Dynamic Programming (DP) algorithm which is guaranteed
to converge to the solution. This yields the temperature
set-points which minimize the monthly electricity bill for
the consumer. After solving the thermostat programming
problem, we use this solution as a model of user behaviour
in order to quantify the consumer response to changes in
on-peak rates, off-peak rates, and demand charges. We then
apply descent methods to this model in order to determine the
prices which minimize the cost-of-generation for the utility.
In a case study, we show that the optimal prices are NOT
necessarily proportional to the marginal costs of generation
- meaning that current pricing strategies may be inefficient.

Before presenting our results, we note that models for
thermal energy storage do appear in the optimal thermostat
programming literature [4], [14], [15], [16]. Furthermore,
there is an extensive literature on thermostat programming
for HVAC systems for on-peak/off-peak pricing [17], [18],
[19] as well as real-time pricing (prices which are constantly
changing) [20], [21], [16], [22] using Model Predictive Con-
trol. [23] and [24] consider optimal thermostat programming
with passive thermal energy storage and on-peak/off-peak
rates. Perhaps closest to our work, in [14], the authors use

the concept of deep and shallow mass to create a simplified
analogue circuit model of the thermal dynamics of the
structure. By using this model and certain assumptions on
the gains of the circuit elements, [14] derives an analytical
optimal temperature set-point for the demand limiting period
which minimizes the demand peak. This scenario would be
equivalent to minimizing the demand charge while ignoring
on-peak or off-peak rates. Again, referring to [7] and subse-
quent publications, there has been some excellent work on
optimal pricing (albeit without demand charges) for energy
storage using batteries in an unregulated electricity market
using a social welfare model. This paper differs from existing
literature in that it: 1) Considers demand charges (demand
charges are far more effective at reducing demand peaks than
dynamic pricing) 2) Uses a PDE model for thermal storage
(yields a more accurate model of thermal storage) 3) Uses a
regulated model for the utility. Although unregulated utility
models are popular, the fact is that most US utilities remain
regulated.

II. PROBLEM STATEMENT

In this section, we first define a model of the thermo-
dynamics which govern heating and cooling of the interior
structures of a building. We then use this model to pose
the user-level (optimal thermostat programming) problem
in Sections II-B as minimization of a monthly electricity
bill (with on/peak, off-peak and demand charges) subject
to constraints on the interior temperature of the building.
Finally, we use this map of on-peak, off-peak and demand
prices to consumption to define the utility-level problem in
Section II-C as minimizing the cost of producing electricity.

A. A Model for the Building Thermodynamics

To model heat storage in interior walls and floors of a
building, we use the one-dimensional unsteady heat conduc-
tion equation

∂T (t,x)
∂ t

= α
∂ 2T (t,x)

∂x2 , (1)

where T :R+× [0,Lin]→R represents the temperature distri-
bution in the interior walls/floor with nominal width Lin and
where α = kin

ρCp
is the coefficient of thermal diffusivity. Here

kin is the coefficient of thermal conductivity, ρ is the density
and Cp is the specific heat capacity. The wall is coupled to the
interior air temperature using Dirichlet boundary conditions,
i.e., T (t,0) = T (t,Lin) = u(t) for all t ∈ R

+, where u(t)
represents the interior temperature which we assume can be
controlled instantaneously by the thermostat. We model the
heat loss qloss through the exterior walls by the linear heat
sink as

qloss(t,u(t)) :=
Te(t)− u(t)

Re
, (2)

where Te(t) is the outside temperature and Re =
Le

keAe
is the

thermal resistance of the ext. walls, Le is the nominal width
of ext. walls, ke is the coefficient of thermal conductivity and
Ae is the nominal area of the ext. walls. The heat/energy flux
through the surface of the interior wall is modelled as

qin(T (t,x)) := 2Cin
∂T
∂x

(t,0), (3)
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where Cin = kinAin is the thermal capacitance of interior walls
and Ain is the nominal area of interior walls. By conservation
of energy, the power required from the HVAC to maintain
the interior air temperature is

q(t,u(t),T (t,x)) = qloss(u(t),Te(t))+ qin(T (x, t)). (4)

See Fig. 2 for a depiction of the model.
Eqn. (1) is a PDE. For optimization purposes, we dis-

cretize (1) in space, using T (t) ∈R
M to replace T (t,x) ∈R,

with Ti(t) denoting T (t, i∆x), where ∆x := Lin
M+1 . Then

Ṫ (t) = AT (t)+Bu(t), (5)

where

A =
α

∆x2
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∈ R
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By discretizing in time, using Ṫ (t) ≈ (T (t +∆t)−T(t))/∆t
we can rewrite Equation (5) as a difference equation.

T k+1 =







T k+1
1
...

T k+1
M






= f (T k,uk)=







f1(T k,uk)
...

fM(T k,uk)






= (I +A∆ t)T k +B∆t uk

(6)

for k = 0, · · · ,N f −1, where now we have T k = T (k ∆t) and
uk = u(k ∆t).

Fig. 2. A schematic view of our thermal mass model

B. User-Level Problem: Optimal Thermostat Programming

In this section, we define the problem of optimal thermo-
stat programming. We first divide each day into three periods:
off-peak hours from 12 AM to ton with electricity price
poff ($/kWh); on-peak hours beginning at ton and ending at
toff > ton with electricity price pon ($/kWh); and off-peak
hours from toff to 12 AM with electricity price poff ($/kWh).
In addition to the on-peak and off-peak charges, we consider
a monthly charge which is proportional to the maximum rate
of consumption during the peak hours. The proportionality
constant is called the demand price pd ($/kW ). Given prices
pon, poff and pd , the total cost of consumption (daily elec-
tricity bill) is divided as

Jt(u,T1, pon, poff, pd) = Je(u,T1, pon, poff)+ Jd(u,T1, pd),
(7)

where Je is the energy cost, Jd is the demand cost and

u := [u0, · · · ,uN f −1] ∈R
N f .

The energy cost is

Je(u,T1, pon, poff)

=

(

poff ∑
k∈Soff

g(k,uk,T
k

1 )+ pon ∑
k∈Son

g(k,uk,T
k

1 )

)

∆t, (8)

where k ∈ Son if k∆t ∈ [ton, to f f ] and k ∈ Soff otherwise. That
is, Son and Soff correspond to the set of on-peak and off-peak
sampling times, respectively. The function g is a discretized
version of q (Eqn. (4)):

g(k,uk,T
k

1 ) :=
Te(k ∆t)− u(k ∆t)

Re
+ 2Cin

T (k ∆t,∆x)− u(k ∆t)
∆x

=
T k

e − uk

Re
+ 2Cin

T k
1 − uk

∆x
. (9)

This is the power consumed by the HVAC, where T k
e denotes

the external temperature at time-step k. If demand charges
are calculated monthly, the demand cost Jd for a single day is

Jd(u,T1, pd) :=
pd

30
max
k∈Son

g(k,uk,T
k

1 ). (10)

We now define the optimal thermostat programming prob-
lem at the user-level as minimization of the total cost of
consumption Jt as defined in (7), subject to the building ther-
modynamics (Eqn. (6)) and interior temperature constraints
(T (t) ∈ [Tmin,Tmax]).

J∗(pon, poff, pd) = min
uk,γ∈R,T k∈RM

Je(u,T1, pon, poff)+
pd

30
γ

subject to g(k,uk,T
k

1 )≤ γ for k ∈ Son

T k+1 = f (T k,uk) for k ∈ Son ∪Soff

Tmin ≤ uk ≤ Tmax for k ∈ Son ∪Soff

T 0 = [Tinit(∆x), · · · ,Tinit(M ∆x)]T , (11)

where Tmin and Tmax are the acceptable bounds on the interior
temperature. Note that this optimization problem depends
implicitly on exterior temperature through the time-varying
function g.

C. Utility-Level Optimization Problem

We define the utility-level optimization problem as min-
imization of the cost of generating electricity such that
generation is equal to consumption, and revenue is equal
to cost of generation. Let s(t) be the amount of electricity
produced as a function of time and sk = s(k∆t). First, we
consider a linear model of the production cost (adopted from
Arizona Public Utility SRP) as

a ∑
k∈Son∪Soff

sk + b max
k∈Son

sk,

where a($/kWh) is the marginal cost of producing the
next kW h of energy and b($/kW) is the marginal cost of
installing the next kW of production capacity. Values of the
coefficients a and b for SRP can be found in e.g., [25]. Now
define u∗(pon, poff, pd) and T ∗(pon, poff, pd) to be minimizing
arguments to the user-level problem defined in (11). Then the
constraint that production equals consumption implies sk =
g(k,u∗k(pon, poff, pd),T ∗k

1 (pon, poff, pd)). We now define the
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utility-level optimization problem as minimization of the cost
of electricity production subject to equality of production and
consumption.

c∗ := min
pon,poff,pd∈R

a ∑
k∈Son∪Soff

sk + b max
k∈Son

sk (12)

subject to sk = g(k,u∗k(pon, poff, pd),T
∗k

1 (pon, poff, pd)),

a ∑
k∈Son∪Soff

sk + b max
k∈Son

sk = Jt(u∗(pon, poff, pd),

T ∗
1 (pon, poff, pd), pon, poff, pd),

where the last two lines constrain that costs equal revenue
(recall Jt is revenue from the users as defined in (7)).

III. SOLVING USER- AND UTILITY-LEVEL PROBLEMS

First, we solve the optimal thermostat programming prob-
lem using a variant of dynamic programming. This yields
consumption as a function of prices pon, poff, pd . Next, we
embed this implicit function in a descent algorithm in order
to find prices which minimize the Utility-level optimization
problem as formulated in (12). We start by defining a cost-to-
go function, Vk. Given γ ∈R

+, at the final time N f ∆t = 24,
we have

VN f (x) :=
pd

30
γ. (13)

Here for simplicity, we use x = T ∈ R
M to represent the

discretized temperature distribution in the wall. Define prices
p j = poff if j ∈ Soff and p j = poff otherwise. Then, we
construct the cost-to-go function inductively as

V j−1(x) := min
u∈Wγ, j−1(x)

(

p j−1 g( j− 1,u,x1)∆t +V j( f (x,u))
)

, (14)

where Wγ, j(x) is the set of allowable inputs at time j and
state x:

Wγ, j(x) :=
{

{u ∈ R : Tmin ≤ u ≤ Tmax,g( j− 1,u,x1)≤ γ} j ∈ Son

{u ∈ R : Tmin ≤ u ≤ Tmax} j ∈ Soff
.

Now we present the main result.
Theorem 1: Given γ ∈ R

+, suppose that Vi satisfies (13)
and (14). Then V0(T 0) = J∗, where

J∗(pon, poff, pd) = min
uk,T k∈RM

Je(u,T1, pon, poff)+
pd

30
γ

subject to g(k,uk,T
k

1 )≤ γ for k ∈ Son

T k+1 = f (T k,uk) for k ∈ Son ∪Soff

Tmin ≤ uk ≤ Tmax for k ∈ Son ∪Soff

T 0 = [Tinit(∆x), · · · ,Tinit(M ∆x)]T . (15)

To prove Theorem 1, we require the following definitions.
Definition 1: Given poff, pon, pd ,γ ∈ R

+, N f ∈ N
+, and

toff, ton,∆t ∈ R
+ such that ton

∆t ,
toff
∆t ∈ N, define the cost-to-go

functions

Q j : RN f − j ×R
N f − j+1 →R for j = 0, · · · ,N f as

Q j(x,y, pon, poff) :=










































































poff ∑
k∈Soff

k/∈{0,··· , j−1}

g(k,xk,yk)+ pon ∑
k∈Son

g(k,xk,yk)









∆t if 0 ≤ j < Non






pon ∑

k∈Son
k/∈{Non,··· , j−1}

g(k,xk,yk)+ poff ∑
k∈Soff

k/∈{0,··· ,Non−1}

g(k,xk,yk)






∆t if Non ≤ j < Noff

poff ∑
k∈{ j,··· ,N f −1}

g(k,xk,yk)∆t if Noff ≤ j < N f

pd

30
γ if j = N f ,

(16)
where g is defined as in (9), and Non := ton

∆t and Noff := toff
∆t are

the time-steps corresponding to start and end of the on-peak
hours.

Note that from (8), it is clear that Q0 = Je +
pd

30
γ .

Definition 2: Given γ,Tmin,Tmax ∈ R and N f ,M ∈ N
+, de-

fine the set

U j(x) := {(u j, · · · ,uN f −1) ∈ R
N f − j :

g(k,uk,T
k

1 )≤ γ for all k ∈ Son,

T j = x and T k+1 = f (T k,uk) for all k ∈ { j, · · · ,N f − 1},

Tmin ≤ uk ≤ Tmax for all k ∈ Son ∪Soff} (17)

for any x ∈ R
M and for every j ∈ {0, · · · ,N f − 1}, where f

and g are defined as in (6) and (9).

Definition 3: Given N f ,M ∈ N
+, j ∈ {0, · · · ,N f − 1}, let

µ j := [µ j, · · · ,µN f −1]

where µk : RM → R for k = j, · · · ,N f − 1. Consider U j as
defined in (17) and f as defined in (6). If

µ j(w) := [µ j(w),µ j+1(T
j+1) · · · ,µN f −1(T

N f −1)] ∈U j(T
j)

for any w ∈ R
M , where

T k+1 = f (T k,µk(T
k)),T j = w for k = j, · · · ,N f − 2,

then we call µ j an admissible control law for the system

T k+1 = f (T k,µk(T
k)), k = j, · · · ,N f − 1

for any w ∈ R
M .

We now present a proof for Theorem 1.
Proof: Since the cost-to-go function Q0 = Je +

pd

30
γ , if

we show that
min

µ j(T
j)∈U j(T j)

Q j(µ j(T
j),T1, pon, poff) =V j(T

j) (18)

for j = 0, · · · ,N f and for any T j ∈ R
M , where

T1 := [T j, f (T j,µ j(T
j)), · · · , f (T N f −1,µN f −1(T

N f −1))],

then it will follow that J∗ =V0(T 0). For brevity, we denote
µ j(T

j) by µ j, U j(T j) by U j and we drop the last two
arguments of Q j. To show (18), we use induction as follows.
Basis step: If j = N f , then from (13) and (16) we have
VN f (T

N f ) = pd
30 γ .

Induction hypothesis: Suppose
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min
µk∈Uk

Qk(µk,T1) =Vk(T
k)

for any k ∈ {0, · · · ,N f } and for any T k ∈R
M. Then, we need

to prove that
min

µk−1∈Uk−1
Qk−1(µk−1,T1) =Vk−1(T

k−1) (19)

for any T k ∈R
M . Here, we only prove (19) for the case which

Noff < k ≤ N f −1. The proofs for the cases 0 ≤ k ≤ Non and
Non < k ≤ Noff follow the same exact logic.

Assume that Noff < k ≤ N f − 1. Then, from Definition 1

min
µk−1∈Uk−1

Qk−1(µk−1,T1)

= min
µk−1,··· ,µNf −1∈R

poff

(

N f −2

∑
j=k−1

g( j,µ j ,T
j

1 )

)

∆t

= min
µk−1,··· ,µNf −1∈R

poff

(

g(k− 1,µk−1,T
k−1

1 )+

N f −2

∑
j=k

g( j,µ j,T
j

1 )

)

∆t,

(20)
where R := {x ∈R : Tmin ≤ x ≤ Tmax}. From the principle of
optimality [26] it follows that

min
µk−1,··· ,µNf −1∈R

poff

(

g(k− 1,µk−1,T
k−1

1 )+

N f −1

∑
j=k

g( j,µ j,T
j

1 )

)

∆t

= min
µk−1∈R

(

poff g(k− 1,µk−1,T
k−1

1 )∆t

+ min
µk,··· ,µNf −1∈R

poff

N f −1

∑
j=k

g( j,µ j,T
j

1 )

)

∆t, (21)

By combining (20) and (21) we have
min

µk−1∈Uk−1

Qk−1(µk−1,T1)

= min
µk−1∈R

(

poff g(k− 1,µk−1),T
k−1

1 )∆t

+ min
µk,··· ,µNf −1∈R

poff

N f −1

∑
j=k

g( j,µ j,T
j

1 )

)

∆t. (22)

From Definition 1, we can write

min
µk,··· ,µNf −1

poff ∆t
N f −1

∑
j=k

g( j,µ j,T
j

1 ) =min
µk∈Uk

Qk(µk,T1). (23)

Then, by combining (22) and (23) and using the induction
hypothesis it follows that

min
µk−1∈Uk−1

Qk−1(µk−1,T1)

= min
µk−1∈R

(

poff g(k− 1,µk−1,T
k−1

1 )∆t +min
µk∈Uk

Qk(µk,T1)

)

= min
µk−1∈R

(

poff g(k− 1,µk−1,T
k−1

1 )∆t +Vk(T
k)
)

for any T k ∈R
M . By substituting for T k from (6) and using

the definition of V in (14) we have

min
µk−1∈Uk−1

Qk−1(µk−1,T1) = min
µk−1∈R

(

poff g(k− 1,µk−1,T
k−1

1 )∆t

+Vk( f (T k−1,µk−1(T
k−1)))

)

=Vk−1(T
k−1)

for any T k−1 ∈ R
M . By using the same logic it can be

shown that minµk−1∈Uk−1 Qk−1(µk−1,T1) = Vk−1(T k−1) for

any k ∈ {0, · · · ,Noff −1} and for any T k−1 ∈R
M . Therefore,

by induction, (18) is true. Thus, J∗ =V0(T 0).
Using Theorem 1, we propose Algorithm 1 to find so-

lutions to the user-level problem (11) and the utility-level
problem (12).

Algorithm 1: A descent algorithm for computing optimal
electricity prices

Inputs:
External temperature Te, start and end of on-peak hours Non,Noff,
thermal resistance Re, thermal capacitance Cin, initial temperature Tinit
of walls, step-sizes ∆t and ∆x, minimum and maximum interior
temperatures Tmin,Tmax , marginal costs a and b, step-sizes ∆pd and
∆pon on electricity prices, initial prices pd0 and pon0 (pd0 + pon0 < 1),
maximum number of bisection iterations bmax, lower bound γl and
upper bound γu for bisection search, stopping threshold ε .

Initialization:
Set pd = pd0 , pon = pon0 , poff = 1− pd − pon. Set k = 0.
while k ≤ bmax do

Set γ = γu+γl
2 .

if V0 in (14) exists then
Calculate u∗0, · · · ,u

∗
N f −1 as the minimizers of the RHS

of (14). Set γu = γ .
else

Set γl = γ .

Set k = k+1.
Calculate Fold = aG+bgmax as defined in (12). Set Fnew = Fold +2ε .

Main loop:
while Fnew −Fold > ε do

Set Fold = Fnew.
for sd ∈ {−∆pd ,∆pd} do

for son ∈ {−∆pon,∆pon} do
Set pd = pd + sd , pon = pon + son, poff = 1− pd − pon.
Set k = 0.
while k ≤ bmax do

Set γ = γu+γl
2 .

if V0 in (14) exists then
Calculate u∗0, · · · ,u

∗
N f −1 as the minimizers of

the RHS of (14). Set γu = γ .
else

Set γl = γ .

Set k = k+1.
Calculate cost = aG+bgmax as defined in (12).
if cost ≤ Fnew then

Set Fnew = cost. Set u∗ = [u∗0, · · · ,u
∗
N f −1].

Set J∗t = Jt (u∗,T1, pon, poff, pd), Jt defined
in (7)-(10). Set p∗ = cost

J∗t
· [pon, poff, pd ].

Outputs: Optimal prices p∗ and optimal interior temperature u∗.

IV. NUMERICAL EXAMPLES AND ANALYSIS

In this section, we demonstrate convergence of our algo-
rithm for optimal thermostat programming using electricity
prices from APS and temperature data from Phoenix, AZ.
In addition, we study the problem of optimal electricity
pricing using the marginal cost data from SRP. We ran all the
numerical simulations for three consecutive days with time-
step ∆t = 1 hr, space-step ∆x = 0.1 m and with building’s
parameters listed in Table I. We used an external temperature
profile measured for three typical summer days in Phoenix,
Arizona (see Fig. 3). For each day, the on-peak period starts
at Non = 12 PM and ends at Noff = 7 PM. In all scenarios,
we used Tmin = 22◦C and Tmax = 28◦C.
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TABLE I

BUILDING’S PARAMETERS AS DEFINED IN SECTION II-A

Lin(m) α(m2/s) Re(K/W ) Cin(Wm/K)
0.4 8.3×10−7 0.0015 45

TABLE II

ON-PEAK, OFF-PEAK AND DEMAND PRICES, ARIZONA UTILITY APS [27]

on-peak ($ per kWh) off-peak ($ per kWh) demand ($ per kW )
APS 0.089 0.044 13.50

A. Scenario 1: The Effect of Electricity Prices on Peak
Demand and Production Costs

In this scenario, we first consider the optimal thermostat
programming problem (See (11)) using the electricity prices
poff, pon and pd as determined by APS [27] (See Table II).
The results of the dynamic programming algorithm are given
in Table III as total price paid by the user (we also include
the peak demand). For comparison, we have run the same
optimal control problem using the general-purpose optimiza-
tion solver GPOPS [28]. Moreover, we have compared our
result with a typical precooling strategy and a naive strategy
of setting the temperature to Tmax (constant). As can be
seen, our algorithm outperforms the heuristic approaches.
The power consumption and the temperature setting as a
function of time for each strategy can be found in Fig. 4. For
convenience, the on-peak and off-peak intervals are indicated
on the figure. As can be seen, for APS prices and our
building’s parameters, the optimal strategy does not reduce
the peak demand with respect to the precooling strategy.

To examine the impact of changes in electricity prices
on peak demand, we next chose several different prices
corresponding to high, medium and low penalties for peak
electricity demand. Again, in each case, our algorithm is
compared to GPOPS and a precooling strategy. The results
are summarized in Table IV. For each price, the smallest
computed production cost and demand peak are typed in
bold. The power consumption and the temperature settings
as a function of time for the optimal strategy can be found in
Fig. 5. For the optimal strategy, notice that by increasing the
demand penalty, relative to the low-penalty case, the peak
consumption is reduced by 14% and 23% in the medium
and high penalty cases respectively. Furthermore, notice that
by using the optimal strategy and the high demand-limiting
prices, we have reduced the demand peak by 29% with
respect to the constant strategy in Table III. Of course, a
moderate reduction in peak demand at the expense of large
additional energy costs may not be desirable. The question
of optimal distribution of electricity prices is discussed in
Scenario II.
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Fig. 3. External temperature of three typical summer days in Phoenix,
Arizona. Shaded areas correspond to on-peak hours.

TABLE III

ELECTRICITY BILLS AND DEMAND PEAKS USING DIFFERENT

TEMPERATURE SETTING STRATEGIES - ELECTRICITY PRICES FROM APS.

temperature setting Electricity bill ($) demand peak (kW )

Optimal (Theorem 1) 36.58 9.222
GPOPS [28] 37.03 9.155
Pre-cooling 39.81 8.803

Constant 39.42 10.462

TABLE IV

DEMAND PEAKS AND PRODUCTION COSTS FOR VARIOUS PRICES USING

OPTIMAL THERMOSTAT PROGRAMMING, GPOPS AND PRECOOLING.

MARGINAL COSTS ARE FROM SRP: [a,b] = [0.0814 $
kWh ,59.76 $

kW ]

Prices [poff, pon, pd ] Demand-limiting Production cost Demand peak

[0.007,0.010,13.616] high $ 88.712 7.4132 kW

O
pt

im
al

[0.015,0.045,13.573] medium $ 85.793 8.2898 kW

[0.065,0.095,13.473] low $ 86.565 9.6749 kW

Prices [poff, pon, pd ] Demand-limiting Production cost Demand peak

[0.007,0.010,13.616] high $ 84.396 7.9440 kW

G
PO

PS

[0.015,0.045,13.573] medium $ 86.182 9.1486 kW

[0.065,0.095,13.473] low $ 87.382 9.6221 kW

Prices [poff, pon, pd ] Demand-limiting Production cost Demand peak

[0.007,0.010,13.616] high $ 91.064 8.8031 kW
Pr

ec
oo

lin
g

[0.015,0.045,13.573] medium $ 91.064 8.8031 kW

[0.065,0.095,13.473] low $ 91.064 8.8031 kW
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Fig. 4. Utility power consumption and temperature settings for various
programming strategies using APS’s rates.
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Fig. 5. Utility power consumption and optimal temperature settings for
high, medium and low demand penalties. Shaded areas correspond to on-
peak hours.
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B. Scenario 2: Optimal Thermostat Programming with Op-
timal Electricity Prices

In this case, we applied Algorithm 1 to find optimal on-
peak, off-peak and demand prices under the assumption that
the building’s parameters in Table I represent an averaged
user. The marginal production costs a and b are taken as
[a,b] = [0.0814,59.76] as estimated by SRP. The optimal
prices, associated production cost, and associated peak de-
mand are listed in Table V. A typical pricing strategy for SRP
and other utilities is to set prices proportional to marginal
production costs. The production cost associated with this
strategy is also listed in Table V. Notice that the optimal
prices are in fact not proportional to the marginal costs of
generation.

TABLE V

COSTS OF PRODUCTION AND DEMAND PEAKS ASSOCIATED WITH

REGULATED OPTIMAL AND SRP’S ELECTRICITY PRICES. MARGINAL

COSTS FROM SRP: a = 0.0814 $
kWh ,b = 59.76 $

kW

Strategy [poff(
$

kWh ), pon(
$

kWh ), pd (
$

kW )] Production cost Demand peak

Optimal [0.082,0.108,54.004] $ 83.333 8.3008 kW

SRP [0.0572,0.0814,59.76] $ 89.005 7.4661 kW

V. CONCLUSION AND FUTURE WORK

In this work, we proposed a dynamic-programming-based
algorithm for solving the optimal control problem associated
with thermostat programming in the presence of distributed
thermal energy storage in interior structures. We used a
pricing model which is a combination of on-peak, off-peak
and demand charges. Using the solution to this optimal
control problem as a model of behavior, we determined
the optimal prices which minimize production costs for the
utility. We concluded that optimal thermostat programming
can significantly reduce electricity bills and demand peak
by taking advantage of energy storage using thermal mass.
Furthermore, we showed that the typical approach to electric-
ity pricing is suboptimal at reducing production costs. The
results of this paper assume a rational consumer and accurate
models of both the daily temperature and utility production
costs.
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