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Abstract— In this paper, we consider the problem of
H∞-optimal estimation for linear multi-delay systems with
sensor noise and delayed output using recently proposed
fundamental-state framework. We propose an extended Lu-
enberger observer which can corrects both the estimate of
present state and the history of the state. Our synthesis
condition is defined as a Linear Operator Inequality (LOI)
using the Partial Integral Equation (PIE) formulation of
time-delay systems and is implemented using the PIETOOLS
Matlab toolbox for manipulation of Partial Integral (PI)
operators. Numerical examples show that synthesis condition
we propose produces an estimator with provable H∞ gain
bound which is optimal to at least 4 decimal places as measure
using comparison with Padé-based discretization.

I. Introduction

Time-delay system are often represented using Delay
Differential Equations (DDEs). Alternative representa-
tions include Partial Differential Equations (PDE) cou-
pled with Ordinary Differential Equations (ODEs) [1].
Asymptotic algorithms for stability analysis and control
synthesis of time-delay systems based on the use of
Lyapunov-Krosovikii (L-K) functionals include the work
of [2], [3], and [4]. Many such results are based on direct
construction of L-K functionals combined with the use
of efficient bounding techniques - See [2], [3], and [5].
Algorithms based on the use of SOS include [6] and [4].

The problem of estimator design for time-delay sys-
tems has been considered in such works as [7], [8], and
[10]. Most recently, the H∞-optimal estimator design
problem for multi-delay systems was addressed using
the SOS-operator framework in [9] - with remarkably
accurate results. Unfortunately, however, none of these
works consider the effect of sensor noise in designing the
estimator. In practical implementations, of course, sensor
noise is significant and inevitable - due to e.g. 60Hz noise,
mechanical vibrations or quantization of the measured
variable. Failure to accurately account for sensor noise
can lead to chattering effects or even system failure.

Motivated by these observations, this paper investi-
gates the estimator design problem for the following
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system,

ẋ(t) = A0x(t) +

K∑
i=1

Aix(t− τi) +B1w(t)

y(t) = C20x(t) +

K∑
i=1

C2ix(t− τi) +D2w(t)

z(t) = C10x(t) +

K∑
i=1

C1ix(t− τi) +D1w(t), (1)

where x(t) ∈ Rn is the state, w(t) ∈ Rr is an external
disturbance input, y(t) ∈ Rq is the measured output,
z(t) ∈ Rp is the regulated output. The delays τi > 0 for
i ∈ [1, . . . ,K] are ordered by increasing magnitude and
A0, Ai, B1, C10, C1i, C20, C2i, D1, D2 are constant matri-
ces with appropriate dimensions.
Our goal is to design an optimal estimator which uses

the measured output y(t) to construct an estimate of x(t)
and z(t) while minimizing γ := supw∈L2

∥ze∥L2

∥w∥L2
where

ze(t) = ẑ(t)− z(t) is the difference between the real z(t)
and its estimate ẑ(t).
The following approach is taken in this work. Firstly,

we propose an operator-valued extension of a well-known
LMI for H∞-optimal estimator design. This formulation
is valid for a general class of Distributed-Parameter Sys-
tems (DPS) represented using Partial Integral Equations.
Next, we construct an equivalent PIE representation of
Equation (1), applying the new fundamental-state-space
framework presented in [11] to time delay systems. This
new state-space model embeds the boundary condition
into the system dynamics - simplifying the analysis
and synthesis process. Next, a generalized PI (Partial
Intergral) operator-valued version of LMI formulation
for estimator design of system (1) is obtained. Finally,
by means of SOS-based PIETOOLS proposed in [12], the
results of numerical implementation are given.

A. Notation
Shorthand notation used throughout this paper in-

cludes the Hilbert spaces Lm
2 [X] := L2(X;Rm) of square

integrable functions from X to Rm and Wm
2 [X] :=

W 1,2(X;Rm) = H1(X;Rm) = {x : x, ẋ ∈ Lm
2 [X]}. We

use Lm
2 ,W

m
2 when domains are clear from context. We

also use the extensions Wn×m
2 [X] := W 1,2(X;Rn×m)

for matrix-valued functions. An operator P : Z → Z is
positive on a subset X of Hilbert space Z if ⟨x,Px⟩Z ≥ 0
for all x ∈ X. P is coercive on X if ⟨x,Px⟩Z ≥ ϵ∥x∥2Z
for some ϵ > 0 for all x ∈ X. I denotes the identity



matrix. 0n×m ∈ Rn×m is the matrix of zeros matrix
with shorthand 0n := 0n×n. The symmetric completion
of a function of matrices or operators is denoted by ∗. If
P1 and P2 are two linear operators then

(
P1

)∗ stands
for the adjoint of P1 and P1P2 represents composition
of those operators in shown order.

II. Optimal Estimator design for
Distributed-Parameter Systems

Consider a general class of distributed-parameter sys-
tem (DPS) given as

T ẋf (t) = Axf (t) + Bω(t)
z(t) = C1xf (t) +D1ω(t)

y(t) = C2xf (t) +D2ω(t) (2)

where T : Xf → Z, A : Xf → Z, B : R → Z, C1 : Xf →
R, C2 : Xf → R, D1 : R → R and D2 : R → R.
Consider an estimator with the following dynamics.

T ˙̂xf (t) = Ax̂f (t) + L(C2x̂f (t)− y(t)) (3)
ẑ(t) = C1x̂f (t)

where L : R → Z. Define ef (t) = x̂f (t) − xf (t). The
closed-loop error dynamics are now

T ėf (t) = (A+ LC2)ef (t)− (B + LD2)ω(t)

ze(t) = C1ef (t)−D1ω(t) (4)

where ef (0) = 0. The following result can be found in [4].
Theorem 1: Suppose P is a bounded, self-adjoint,

coercive linear operator P : X → X. Then P−1 exists;
is bounded; is self-adjoint; P−1 : X → X; and P−1 is
coercive.
We now give a Linear Operator Inequality (LOI) for
optimal estimation of the abstract DPS.

Theorem 2: Suppose there exists a scalar γ > 0
and bounded linear operators P : Z → Z satisfying
Theorem 1 and Z : R → Z such that−γI −DT

1 −(PB + ZD2)
∗T

−D1 −γI C1
(⋆)∗ (C1)∗ (PA+ ZC2)∗T + T ∗(PA+ ZC2)

 < 0

(5)
Then P−1 is a bounded linear operator. If L = P−1Z,
any solution of Eqn. (2)-(4) satisfies ∥ze∥L2 ≤ γ∥ω∥L2 .

Proof: Define the storage functional V (ef ) =
⟨T ef ,PT ef ⟩Z ≥ δ ∥ef∥2 which holds for some δ > 0
since P is coercive. Define Z = PL. Then

V̇ (ef )− γ∥ω∥2 − γ∥υe∥2 + ⟨υe, ze⟩Z + ⟨ze, υe⟩Z
= ⟨T ef , (PA+ ZC2)ef ⟩Z + ⟨(PA+ ZC2)ef , T ef ⟩Z
− ⟨T ef , (PB + ZD2)w⟩Z − ⟨(PB + ZD2)w, T ef ⟩Z
− γ∥ω∥2 − γ∥υe∥2 + ⟨υe, C1ef ⟩+ ⟨C1ef , υe⟩
− ⟨υe, D1ω⟩ − ⟨D1ω, υe⟩ ,

where υe(t) = 1
γ ze(t). If Eqn. (5) is satisfied, then

V̇ (ef ) < γ∥ω∥2 − 1

γ
∥ze∥2.

Integration of this inequality with t yields

V (ef (t))−V (ef (0))+
1

γ

∫ t

0

∥ze(s)∥2 ds ≤ γ

∫ t

0

∥w(s)∥2 ds

As V (ef (0)) = 0 and V (ef (t)) ≥ 0, if we let t→ ∞, we
see ∥ze∥L2 ≤ γ∥ω∥L2 .

III. Coupled Plant and Estimator Dynamics in
PDE-ODE form

In this section, we give an equivalent PDE-ODE
representation of the plant (1). Based on the PDE-ODE
representation of the plant, we construct an estimator
in PDE-ODE form.

A. Plant Dynamics in PDE-ODE form
First, we give an equivalent PDE-ODE representation

of Eqn. (1), which expresses Eqn. (1) in a form without
delay but defined on t and s. Note that in [9], the
history of states in the delay channels was represented
as ϕi(t, s) := x(t+s) for s ∈ [−τi, 0] and the domain of s
varied from channel to channel. In this paper, however,
we use a uniformly defined domain

ϕi(t, s) := x(t+ τis), s ∈ [−1, 0]. (6)

and ϕi(t, s) ∈ Ln
2 [−1, 0]. Using the scaling approach, the

history of state x(t) in different delay channels can be
rewritten as ϕi(t, s) - all within the same range s ∈ [−1, 0]
- thereby simplifying the analysis and notation.
Applying the fundamental theorem of calculus, we

have

ϕi(t, s) = x(t)−
∫ 0

s

ϕis(t, s)ds

ϕit(t, s) =
1

τi
ϕis(t, s).

Define

ϕ(t, s) =
[
ϕT1 (t, s), ϕ

T
2 (t, s), · · · , ϕTK(t, s)

]T
, (7)

and

xp(t) =

[
x(t)
ϕ(t, s)

]
=

[
x(t)

Ĩx(t)−
∫ 0

s
ϕs(t, s)ds

]
.

We represent the system dynamics (1) in PDE-ODE
form as

ẋp(t) =

[
(A0 +

∑
iAi)x(t) +

∫ 0

−1
Ãϕs(t, s)ds

Hϕs(t, s)

]
+

[
Bw(t)

0

]
z(t) = (C10 +

∑
i

C1i)x(t)− C̃1

∫ 0

−1

ϕs(t, s)ds+D1w(t)

y(t) = (C20 +
∑
i

C2i)x(t)− C̃2

∫ 0

−1

ϕs(t, s)ds+D2w(t),

(8)



where
Ĩ = [In, In, · · · , In︸ ︷︷ ︸]T

K

H =


1
τ1
I 0 · · · 0

0 1
τ2
I · · · 0

...
... · · ·

...
0 0 · · · 1

τK
I


Ã =

[
A1 A2 · · · AK

]
C̃1 =

[
C11 C12 · · · C1K

]
C̃2 =

[
C21 C22 · · · C2K

]
. (9)

Lemma 3: Suppose w, x, y, and z satisfy Eqn. (1).
Then if Ĩ , Ã, C̃1, C̃2 are as defined in Eqn. (9) and ϕ is
as defined in Eqn. (7), then w, x, y, and z also satisfy
Eqn. (8).

B. Estimator Dynamics in PDE-ODE form
For Eqn.(8), we construct the estimator dynamics as

˙̂xp(t) =

[
(A0 +

∑
i Ai)x̂(t) +

∫ 0

−1
Ãϕ̂s(t, s)ds

Hϕ̂s(t, s)

]
+

[
L1ye(t)

L2(s)ye(t)

]
ẑ(t) = (C10 +

∑
i

C1i)x̂(t)− C̃1

∫ 0

−1

ϕ̂s(t, s)ds

ŷ(t) = (C20 +
∑
i

C2i)x̂(t)− C̃2

∫ 0

−1

ϕ̂s(t, s)ds. (10)

where

x̂p(t) =

[
x̂(t)

Ĩ x̂(t)−
∫ 0

s
ϕ̂s(t, s)ds

]
ϕ̂(t, s) = {ϕ̂1(t, s), ϕ̂2(t, s), · · · , ϕ̂K(t, s)}
ye(t) = ŷ(t)− y(t)

and x̂(t) ∈ Rn as the estimate of state x(t), ϕ̂(t) ∈ LnK
2

as the estimate of state ϕ(t), ŷ(t) ∈ Rq as the estimate
of y(t).
In [9], the estimator was designed using both the

current and history of output y(t) of the real system,
and the sensor noise was not considered. Note that aside
from sensor noise and output delay, our new estimator
has a simpler structure with only the current output
information plugging in, and thus is easier implemented.

Lemma 4: Suppose the conditions of Lemma 3 are
satisfied, and w, x, y, z, ϕ, x̂, ŷ, ẑ and ϕ̂ satisfy Eqn. (8)
coupled with Eqn. (10). Then w, x, y, z, x̂, ŷ, ẑ and ϕ̂
also satisfy coupled Eqn. (1) coupled with Eqn. (10).

IV. Coupled Plant and Estimator Dynamics in PIE
To apply Theorem 2 to the case of multiple-delay

systems (specifically to system (1)) in this section, we
express the equivalent PDE-ODE form Eqn.(8) of system
(1) in the abstract form (2) and the estimator Eqn. (10)
in the abstract form (3), where all the infinitesimal
generators are in the form of PI operators.

Firstly, we define the inner-product space
Zm,n:={Rm× Ln

2 [−1, 0]}, and the inner product
on Zm,n as〈[

y
ψ

]
,

[
x
ϕ

]〉
Zm,n

= yTx+

∫ 0

−1

ψ(s)Tϕ(s)ds.

and we give the definition of a PI operator as follows,
Definition 5: A Partial Integral (PI) operator

P
[

P, Q1
Q2,

{
Ri

}] : Zm,n → Zp,q is parameterized
by a matrix P ∈ Rp,m and matrix-valued
functions Q1 ∈ W p×n

2 [−1, 0], Q2 ∈ W q×m
2 [−1, 0],

R0 ∈W q×n
2 [−1, 0], R1, R2 ∈W q×n

2

[
[−1, 0]× [−1, 0]

]
as(

P
[

P, Q1
Q2,

{
Ri

}] [x
ϕ

])
(s) := (11)

Px+
∫ 0

−1
Q1(s)ϕ(s)ds

(QT
2 (s)x+R0(s)ϕ(s) +

∫ s

−1
R1(s, θ)ϕ(θ)dθ

+
∫ 0

s
R2(s, θ)ϕ(θ)dθ)

 .
Now we represent multi-delay system into the DPS

format using PI operators. Define the fundamental state
of system (8) as

xf (t, s) =

[
x(t)

ϕs(t, s)

]
∈ Xf ,

and correspondingly, define the fundamental state of
system (10) as

x̂f (t, s) =

[
x̂(t)

ϕ̂s(t, s)

]
∈ Xf .

where Xf = Zn,nK .
We represent the infinitesimal generators T : Zn,nK →

Zn,nK , A : Zn,nK → Zn,nK , B : Rr → Zn,nK , C1 :
Zn,nK → Rp, C2 : Zn,nK → Rq, and L : Rq → Zn,nK in
PI operator format as follows

T := P
[
In, 0

Ĩ,
{
0, 0,−InK

}]
A := P

[
A0 +

∑
i Ai, −Ã

0, {H, 0, 0}

]
B := P

[
B, 0
0, {0}

]
C1 := P

[
C10 +

∑
i C1i, −C̃1

0, {0}

]
C2 := P

[
C20 +

∑
i C2i, −C̃2

0, {0}

]
D2 := P

[
D2, 0
0, {0}

]
L := P

[
L1, 0
L2, {0}

]
(12)

Now let us now turn to the other operators used in
Theorem 2. We define P to have the structure P :=
P
[

P, Q1
Q2,

{
Ri

}] and we parameterize the decision operator
variable Z as

Z : = P
[
Z1, 0
Z2, {0}

]
, (13)

which gives L the structure as defined in Eqn. (12) if
L = P−1Z.



V. Inverting the Operator and Constructing Estimator
Gains

Because the observer gains are of the form L = P−1Z,
we need an expression for P

[
P, Q

QT ,
{
Ri

}]−1. Unfortunately,
it still is an open problem how to get an analytic
form for this inverse. So we compromise here by letting
P := P

[
P, Q

QT , {R0, R1, R1}

]
. The inverse of the slightly more

structured operator P
[

P, Q

QT , {R0, R1, R1}

]
has previously been

utilized in [4], [9] and has a known analytic inverse.
The following lemma presents an analytical expression

for the inverse of the operator P
[

P, Q

QT , {R0, R1, R1}

]
.

Lemma 6: Suppose that Q(s) = HZ(s) and
R1(s, θ) = Z(s)TΓZ(θ) where Z(s) is the column base
function with degree d and P := P

[
P, Q

QT , {R0, R1, R1}

]
is a

coercive and self-adjoint operator where P : X → X.
Then we get P−1 := P

[
P̂ , Q̂

Q̂T ,
{
R̂0, R̂1, R̂1

}] where

P̂ =
(
I − ĤKHT

)
P−1, Q̂(s) = ĤZ(s)R0(s)

−1

R̂0(s) = R0(s)
−1, R̂1(s, θ) = R̂T

0 (s)Z(s)
T Γ̂Z(θ)R̂0(θ),

if we define

K =

∫ 0

−1

Z(s)R0(s)
−1Z(s)T ds

Ĥ = P−1H
(
KHTP−1H − I −KΓ

)−1

Γ̂ = −(ĤTH + Γ)(I +KΓ)−1

and P−1 is self-adjoint where P−1 : X → X, and
P−1Px = PP−1x = x for any x ∈ Zm,n.

Proof: See [14] for a proof.
Armed with this inverse, we construct the observer

gains as in Lemma 7.
Lemma 7: If L = P−1Z where P := P

[
P, Q

QT ,
{
R0, R̂1, R1

}]
and P−1 is defined as in Lemma 6 and Z is as in Eqn. (13)
where Z2(s) is a polynomial representated as Z2(s) =
ZT (s)W , then we get L as in Eqn. (12), where

L1 = P̂Z1 + ĤTW

L2(s) = X(s)
(
ĤTZ1 +W + Γ̂TW

)
if we define

X(s) = Ŝ(s)Z(s)T ,

T =

∫ 0

−1

Z(s)Ŝ(s)Z(s)T ds.

Proof: The proof follows from the formula for
composition of operators P−1 and Z - see Appendix
for the formula for the composition operation.

VI. Theorem 2 applied to Multi-delay systems
In this section, we apply the conditions of Theorem 2

to multi-delay systems and obtain an LOI for optimal
observer synthesis.

Theorem 8: Suppose there exists positive scalar γ,
matrix P ∈ Rn×n, functions Q ∈ Wn×nK

2 [−1, 0], R0 ∈
WnK×nK

2 [−1, 0], R1 ∈ WnK×nK
2

[
[−1, 0]× [−1, 0]

]
, ma-

trix Z1 ∈ Rn×q, functions Z2 ∈WnK×q
2 [−1, 0] such that

the operator P := P
[

P, Q

QT ,
{
R0, R̂1, R1

}] satisfies Theorem 1,

and the operator P := P
[

P, Q

QT ,
{
R0, R̂1, R1

}] and Z :=

P
[
Z1, 0
Z2, {0}

]
satisfy

−γI −DT
1 −(PB + ZD2)

∗T
−D1 −γI C1
(⋆)∗ (C1)∗ (PA+ ZC2)∗T + T ∗(PA+ ZC2)

 < 0

(14)

where the operators A,B, C1, C2, T ,D2 are all defined
as Eqn.(12). Then if L = P−1Z, L has the form
L = P

[
L1, 0
L2, {0}

]
, Furthermore, for any w ∈ L2, if ze(t) =

ẑ(t)− z(t), where z(t) and ẑ(t) satisfy Eqn. (1) coupled
with Eqn. (10), then ze satisfies ∥ze∥L2 ≤ γ∥ω∥L2 .

Proof: From Theorem 1, P−1 exists and is bounded
coercive operator. From Lemma 6, we can get P−1 :=

P
[

P̂ , Q̂

Q̂T ,
{
R̂0, R̂1, R̂1

}]. Then from Lemma 7, we get L =

P
[
L1, 0
L2, {0}

]
, which has the same structure used to obtain

the estimator form defined in Eqn. (10).
For any solution of Eqn. (8) coupled with Eqn. (10),

define ze(t) = ẑ(t) − z(t), e(t) = x̂(t) − x(t), and
ϕes(t, s) = ϕ̂s(t, s) − ϕs(t, s). Then if the operators
A,B, C1, C2, T ,D2 are defined as Eqn.(12), Eqn. (4) is
satisfied with ef (t) :=

[
e(t)

ϕes(t, s)

]
. From Theorem 2, we

get that for any w ∈ L2 and any solution of Eqn. (8)
coupled with Eqn. (10) we have ∥ze∥L2

≤ γ∥ω∥L2
.

Then from Lemma 4, we get for any w ∈ L2 and any
solution of Eqn. (1) coupled with Eqn. (10), we have
that ∥ze∥L2 ≤ γ∥ω∥L2 .

VII. Numerical Implementation

We implement our algorithm in Matlab using the
PIETOOLS toolbox. This toolbox is available online
for validation or download from Code Ocean [12]. The
corresponding optimization problem is to minimize γ
which satisfies the conditions in Theorem 8 and the
corresponding almost complete MATLAB code is as
follows,

» pvar s th gam;
» opvar T A B C1 C2 D1 D2;
» T=· · · ; A=· · · ; B=· · · ; C1=· · · ; C2=· · · ;
» D1=· · · ; D2=· · · ; X=[−1, 0];
» prog=sosprogram([s,th],gam);
» [prog, P] = sos_posopvar(prog, [nx1,nx2],X,s,th,

degree,options1);
» [prog, Z] = sos_opvar(prog,[nx1 ny;nx2 0],X,s,;

theta,degree);
» E=(P*A+Z*C2)’*T+T’*(P*A+Z*C2);
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Fig. 1. Error and state dynamics to a step disturbance for E1

» Dop=[-gam*eye(nw) -D1’ -(P*B+Z*D)’*T;
» -D1 -gam*eye(nz) C1;
» -T’*(P*B+Z*D2) C1’ E ];
» [prog, De1] = sos_posopvar(prog, [nw+nz+nx1 ,nx2],

X,s,theta,degree,options2);
» [prog, De2] = sos_posopvar(prog, [nw+nz+nx1 ,nx2],

X,s,theta,degree,options3);
» prog = sosopeq(prog,Dop+De1+De2);
» prog = sossetobj(prog, gam);
» prog = sosslove(prog);

For simulation, a fixed-step forward-difference-based dis-
cretization method is used, with a different set of states
representing each delay channel. In the simulation results
given below, 100 spatial discretization points are used for
each delay channel.

We now apply the observer synthesis algorithm to
several problems. In each case, the results are compared
to an H∞ optimal estimator designed for a discretized
model obtained using a 10th order Padé approximation
of the delay terms.

a) Example 1: Consider the following system,

ẋ(t) =

[
−10 10
0 1

]
x(t) +

[
1 1
1 1

]
x(t− 0.3)

+

[
1 0
0 1

]
w(t)

z(t) =

[
1.2 0
0 1.2

]
x(t) +

[
1 0
0 1

]
w(t)

y(t) =
[
0 10

]
x(t) +

[
0 2

]
w(t)

using Padé method and Thm. 8 (d = 2) gives us
the same H∞ norm of the optimal estimator out to 4
significant figures - γmin = 1.191. Figure 1 displays the
step disturbance w(t) and error in states e(t) = x̂(t)−x(t)
under the estimator we design. The real L2 gain on the
effect of the step disturbance to the error in regulated
output under the estimator we design is γreal = 0.9502.
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Fig. 2. Error dynamics to a sinc disturbance for E2

b) Example 2: Consider an example slightly
changed from [15].

ẋ(t) =

[
0 3
−4 −5

]
x(t) +

[
−0.1 0
0.2 −0.2

]
x(t− 0.3)

+

[
0 0.1

−0.2 −0.3

]
x(t− 0.5) +

[
−0.4545 0

0 0.9090

]
w(t)

y(t) =
[
0 100

]
x(t) +

[
0 10

]
x(t− 0.3)

+
[
0 2

]
x(t− 0.5) +

[
1 1

]
w(t)

z(t) =
[
0 100

]
x(t)

For comparison, we use a Padé approximation to get
an estimator with estimated H∞ disturbance rejection
bound of 0.9592. Applying Theorem 8, our proposed
algorithm obtains an H∞ disturbance rejection bound
of γmin = 0.9629 for d = 2 and γmin = 0.9592 for d = 4.
The latter one for d = 4 is exactly the value as using
Padé to 4 significant figures. When the observer gains
are set as obtained for d = 4, a MATLAB simulation is
shown in Fig. 2. This figure displays the sinc disturbance
w(t) and error in states e(t) = x̂(t) − x(t). The real L2

gain on the effect of the sinc disturbance to the error in
regulated output is γreal = 0.5792.

c) Example 3: To test the computation load of our
method, we consider the following unstable n-D system
with K delays, a single disturbance w(t) and a single
regulated z(t) and a single sensed output y(t).

ẋ(t) = −
K∑
i=1

x(t− i/K)

K
+ 1w(t)

z(t) = y(t) = 1Tx(t) + 1Tw(t)

The computational complexity is approximately a func-
tion of the product of the number of delays and number
of states. Table I lists the detailed computation time
as CPU sec on a Intel i7-5960X processor omitting
preprocessing and postprocessing times.

VIII. Conclusion
We have investigated the problem of H∞-optimal

estimation problem of systems with multiple delays



TABLE I

PPPPPPK
n

1 2 3 4 6
1 0.3610 0.4630 8.488 1.887 16.50
2 0.4380 1.573 11.94 77.94 950.8
3 0.9000 10.14 167.0 913.9 9827
4 1.331 82.92 912.6 4263 24030
6 12.10 967.2 9650 23980 N/A

and sensor noise. The commonly used delay-system
equation is revalued into the fundamental-state-space
representation and a convex optimization condition for
the estimation synthesis problem in the form of a (Linear
Operator Inequality) LOI is given. The effectiveness and
non-conservative nature of our method has been verified
using numerical simulation.
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Appendix
Details on the PIETOOLS toolbox can be found

in [12] -including formulae for the addition, composition,

concatenation and adjoint of PI operators. Thus in this
section, we will only recall formulae used directly in the
analysis - namely composition and parameterization of
positive PI operators P

[
P, Q

QT ,
{
Ri

}] on Zn,nK using positive
matrices.

A. Enforcing Positivity of the operator

This lemma gives a map from positive matrices to
positive PI operators.
Lemma 9: For any functions Z1 : [a, b] → Rd1×n, Z2 :[

[a, b]× [a, b]
]
→ Rd2×n, suppose there exists a matrix

T ≥ 0 and g(s) ≥ 0 for any s ∈ [a, b] such that

P = T11

∫ b

a

g(s)ds

Q(η) = g(η)T12Z1(η) +

∫ b

η

g(s)T13Z2(s, η)ds

+

∫ η

a

g(s)T14Z2(s, η)ds

R1(s, η) = g(s)Z1(s)
TT23Z2(s, η) + g(η)Z2(η, s)

TT42Z1(η)

+

∫ b

s

g(θ)Z2(θ, s)
TT33Z2(θ, η)dθ

+

∫ s

η

g(θ)Z2(θ, s)
TT43Z2(θ, η)dθ

+

∫ η

a

g(θ)Z2(θ, s)
TT44Z2(θ, η)dθ

R2(s, η) = g(s)Z1(s)
TT32Z2(s, η) + g(η)Z2(η, s)

TT24Z1(η)

+

∫ b

η

g(θ)Z2(θ, s)
TT33Z2(θ, η)dθ

+

∫ η

s

g(θ)Z2(θ, s)
TT34Z2(θ, η)dθ

+

∫ s

a

g(θ)Z2(θ, s)
TT44Z2(θ, η)dθ

R0(s) = g(s)Z1(s)
TT22Z1(s)

where

T =


T11 T12 T13 T14
T21 T22 T23 T24
T31 T32 T33 T34
T41 T42 T43 T44

 ,
then the operator P

[
P, Q

QT ,
{
Ri

}] as defined in Eqn. 11

satisfies
〈[
x
ϕ

]
,P

[
P, Q

QT ,
{
Ri

}] [x
ϕ

]〉
Zm,n

≥ 0 for all
[
x
ϕ

]
∈

Zm,n.
Proof: Please see [13] for the proof. Specially, when

we set Ti4 = Ti3, T4i = T3i for i = 1, 2 and T44 = T43 =
T34 = T33 in Lemma 9, we get R1(s, θ) = R2(s, θ), which
turns P

[
P, Q

QT , {R0, R1, R1}

]
as

P
[
x
ϕ

]
(s) :=

[
Px+

∫ 0

−1
Q(θ)ϕ(θ)dθ

Q(s)Tx+R0(s)ϕ(s) +
∫ 0

−1
R1(s, θ)ϕ(θ)dθ

]
.

(15)



B. Composition
This Lemma gives a formula for composition of 2 PI

operators.
Lemma 10: For any matrices A,P ∈ Rm×m and

bounded functions B1, Q1 : [a, b] → Rm×n, B2, Q2 :
[a, b] → Rn×m, C0, R0 : [a, b] → Rn×n, Ci, Ri : [a, b] ×
[a, b] → Rn×n with i ∈ {1, 2}, the following identity
holds.

P
[

A, B1
B2, {Ci}

]
P
[

P, Q1
Q2, {Ri}

]
= P

[
P̂ , Q̂1
Q̂2,

{
R̂i

}]
where

P̂ = AP +

∫ L

0

B1(s)Q2(s)ds,

Q̂1(s) = AQ1(s) +B1(s)R0(s) +

∫ L

s

B1(η)R1(η, s)dη

+

∫ s

0

B1(η)R2(η, s)dη,

Q̂2(s) = B2(s)P + C0(s)Q2(s) +

∫ s

0

C1(s, η)Q2(η)dη

+

∫ L

s

C2(s, η)Q2(η)dη,

R̂0(s) = C0(s)R0(s),

R̂1(s, η) = B2(s)Q1(η) + C0(s)R1(s, η) + C1(s, η)R0(η)

+

∫ η

0

C1(s, θ)R2(θ, η)dθ +
∫ s

η

C1(s, θ)R1(θ, η)dθ

+

∫ L

s

C2(s, θ)R1(θ, η)dθ,

R̂2(s, η) = B2(s)Q1(η) + C0(s)R2(s, η) + C2(s, η)R0(η)

+

∫ s

0

C1(s, θ)R2(θ, η)dθ +
∫ η

s

C2(s, θ)R2(θ, η)dθ

+

∫ L

η

C2(s, θ)R1(θ, η)dθ.


