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Combining Trajectory Data With Analytical
Lyapunov Functions for Improved
Region of Attraction Estimation
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Abstract—The increasing uptake of inverter based
resources (IBRs) has resulted in many new challenges for
power system operators around the world. The high level
of complexity of IBR generators makes accurate classical
model-based stability analysis a difficult task. This letter
proposes a novel methodology for solving the problem of
estimating the Region of Attraction (ROA) of a nonlinear
system by combining classical model based methods with
modern data driven methods. Our method yields certifiable
inner approximations of the ROA, typical to that of model
based methods, but also harnesses trajectory data to yield
an improved accurate ROA estimation. The method is car-
ried out by using analytical Lyapunov functions, such as
energy functions, in combination with data that is used
to fit a converse Lyapunov function. Our methodology is
independent of the function fitting method used. In this
letter, for implementation purposes, we use Bernstein poly-
nomials to function fit. Several numerical examples of
ROA estimation are provided, including the Single Machine
Infinite Bus (SMIB) system, a three machine system and the
Van-der-Pol system.

Index Terms—Stability of nonlinear systems, Lyapunov
methods.

I. INTRODUCTION

STABILITY analysis is of uttermost importance for the
secure planning and operation of modern power systems.
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Of particular interest is the Transient Angular Stability of a
system, defined as the ability of the system to maintain rotor
angle synchronism following a disturbance and its subsequent
angle excursion [1]. Given a Stable Equilibrium Point (SEP),
the Region of Attraction (ROA), defined as the set of initial
conditions for which the system tends to the SEP, provides
a metric of the strength of angular stability of the system.
Moreover, knowledge of the ROA can be used to provide pro-
tection parameters and limits of operation that maintain the
stability and safety of the system.

For general nonlinear systems, which is the case for gener-
ators connected to the grid, there does not exist an analytical
expression for the ROA. In the absence of an analytical
expression, there is a need for methods that can compute
approximations of the ROA. Classically, methods that approxi-
mate the ROA in power systems rely on precise system models
of generators and line admittances [2], [3]. However, the
increasing penetration of IBRs has resulted in more complex
machine models and more dynamic operating points. For such
complex systems it has become increasingly intractable to use
classical model-based methods to accurately approximate the
ROA [4]. Fortunately, the advent of Wide Area Measurement
Systems (WAMS), gathering high-frequency synchrophasor
data has provided new sets of system data with minimal model
dependency. Some works have already explored the use of
synchrophasors for ROA estimation in the literature.

In [5], data driven ROA estimation is realized through the
application of energy function analysis, using PMU mea-
surements that monitor tie-lines of dynamic power flows.
Authors from [6] propose an alternative method that uses
Global Phase Portraits (GPPs) that contain the singularity
points at infinity, providing bounds on the basins of attrac-
tion of attractor sets. In a similar vein to the data-driven
methods proposed in this letter, authors from [7]–[9] use mea-
surement data from stable trajectories to approximate converse
Maximal Lyapunov Functions (LFs) and hence construct ROA
estimations. Although these methodologies bring new capa-
bilities for high dimensional stability analysis, these methods
do not guarantee an inner approximation of the ROA, unlike
more classical model-based methods. Notable model based
methods include [10] where the stability analysis of power
systems is analyzed by constructing LFs using Sum-of-Squares
(SOS) programming. Since power systems have nonlinear
trigonometric terms, non-automated algebraic reconfiguration
is required to use SOS. Alternatively, the works of [4], [6]
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make analytical approaches that improve upon classical energy
function based methods.

Unfortunately, it is often intractable to compute accurate
ROA estimations of power systems using model based meth-
ods. On the other hand, although data based methods can
provide accurate ROA estimations, they do not yield LFs and
hence cannot certify inner ROA approximations. The goal of
this letter is to bridge the gap between the model and data
based methods to yield accurate inner ROA approximations.

The main contribution of this letter, presented in Thm. 3,
shows how the existence of two functions, V1 and V2, pro-
vides a certifiable inner approximation of the ROA of a given
ODE. Specifically, if V2 is a LF and V1 (not necessarily a LF)
is decreasing along the solution map inside a “donut”-shaped
region, {x ∈ D:γ1 ≤ V1(x) ≤ γ2}, we show that it is possi-
ble to construct an improved ROA estimation, as compared
with the ROA approximation yielded by the LF, V2, alone.
For implementation, we find such a V1 by function fitting a
converse LF using trajectory data.

II. NOTATION

We denote the η > 0 neighborhood of a set S ⊂ R
n as

Bη(S) := {y ∈ R
n : infx∈S ‖x − y‖2 < η}, where ‖ · ‖2

is the Euclidean norm. In the case S = {x} then Bη(x)
becomes a ball of radius η > 0 centered at x ∈ R

n. We
denote the set of all interior points of S ⊂ R

n by S◦. Let
C(�,�) be the set of continuous functions with domain
� ⊂ R

n and image � ⊂ R
m. For α ∈ N

n we denote the
partial derivative Dα := �n

i=1
∂αi

∂x
αi
i

where by convention if

α = [0, .., 0]� we denote Dαf (x) := f (x) for any function f .
We denote the set of i’th continuously differentiable functions
by Ci(�,�) := {f ∈ C(�,�) : Dαf ∈ C(�,�) for all α ∈
N

n such that
∑n

j=1 αj ≤ i}. For V ∈ C1(Rn,R) we denote
∇V := ( ∂V

∂x1
, . . . , ∂V

∂xn
)�. We denote the space of d-degree

polynomials p : � → � by Pd(�,�).

III. STABILITY OF ODES

Consider a dynamical system, represented by a nonlinear
ordinary differential equation (ODE) of the form

ẋ(t) = f (x(t)), x(0) = x0 ∈ R
n, t ∈ [0,∞) (1)

where f : Rn → R
n is the vector field and x0 ∈ R

n is the ini-
tial condition. WLOG throughout this letter we will assume
f (0) = 0 so the origin is an equilibrium point; a linear coordi-
nate transformation can always be used to shift any equilibrium
point to the origin. For simplicity in the following we assume
Eq. (1) is well defined. That is there exists a unique solution
map φf ∈ C1(Rn ×R

+,Rn) that satisfies
δφf (x,t)

δt = f (φf (x, t)),
φf (x, 0) = x and φf (φf (x, t), s) = φf (x, t+s). Sufficient condi-
tions for the existence and uniqueness of a solution map, based
on the smoothness properties of the vector field, can be found
in standard textbooks such as [11]. Given an ODE (1), we
next introduce notions of asymptotic and exponential stability
that are important in showing the existence of the converse LF
given later in Eq (3).

Definition 1: The equilibrium point x = 0 of ODE (1)
is: stable if, for each ε > 0, there exists δ > 0 such that
‖φf (x, t)‖2 < ε for all x ∈ Bδ(0) and t ≥ 0.; asymptoti-
cally stable if it is stable and there exists δ > 0 such that

limt→∞ ‖φf (x, t)‖2 = 0 for all x ∈ Bδ(0).; and exponen-
tially stable if there exists λ,μ > 0 such that ‖φf (x, t)‖2 <

μe−λt‖x‖2 for all x ∈ Bδ(0) and t ≥ 0.

For a given asymptotically stable ODE (1) the main aim of
this letter is to estimate the Region of Attraction (ROA):

ROAf := {x ∈ Rn : lim
t→∞ ‖φf (x, t)‖2 = 0}. (2)

There is no universal method for analytically solving nonlin-
ear ODEs. Thus, over the years, arguably the most commonly
used method to estimate ROAf is Lyapunov’s second method
that indirectly estimates ROAf using Lyapunov Functions
(LFs); functions that are globally non-negative that decrease
along the solution map. The following theorem shows how the
sublevel set of a LF can approximate ROAf . In order to present
the main Lyapunov theorem used in this letter we recall the
definition of an invariant set.

Definition 2: A set S ⊂ R
n is an invariant set of ODE (1)

if for all x ∈ S we have φf (x, t) ∈ S for all t ≥ 0.
Theorem 1 (LaSalle’s Invariance Principle) [11]: Consider

an ODE (1) defined by some vector field f ∈ C1(Rn,Rn).
Suppose there exits V ∈ C1(D,R) and a compact invariant
set S ⊆ D such that

∇V(x)�f (x) ≤ 0 for all x ∈ S.

Let E := {x ∈ S : ∇V(x)�f (x) = 0}. Then for all x ∈ S and
ε > 0 there exists T > 0 such that φf (x, t) ∈ Bε(E).

Furthermore, if 0 ∈ D, V(0) = 0, V(x) > 0 for all x ∈
D/{0} and φf (x, t) ∈ E for all t ≥ 0 iff x = 0 then the
ODE is asymptotically stable. Moreover, if γ > 0 is such that
{x ∈ S : V(x) ≤ γ } ⊆ S then {x ∈ S : V(x) ≤ γ } ⊆ ROAf .

Theorem 1 shows that for a given ODE, if we can find a LF,
then we can construct an inner-approximate of the ROA of the
ODE. However, this theorem does not show that there must
necessarily exists a LF for a given ODE or that the ROA of the
ODE can be exactly characterized by an LF. It has been shown
in [12] that for any locally exponentially stable ODE (1), there
exists a bounded and continuous LF of the form,

V∗
λ,β(x) :=

{
1 − exp

(
−λ

∫ ∞
0 ‖φf (x, t)‖2β

2 dt
)

if x ∈ ROAf

1 otherwise,
(3)

where λ > 0 and β ∈ N. Moreover, for sufficiently large
λ and β, this converse LF, V∗

λ,β , is Lipschitz continuous and
hence differentiable almost everywhere (by Rademacher’s the-
orem). The smoothness properties of this particular converse
LF makes it highly suitable for function fitting. Furthermore,
{x ∈ R

n : V∗
λ,β(x) < 1} = ROAf .

IV. FITTING BERNSTEIN POLYNOMIALS TO CONVERSE

LYAPUNOV FUNCTIONS

Given an ODE (1), in this section we show that by using
an ODE solver to generate trajectory data, Eq. (3) can be used
to construct input-output data of a converse LF. By fitting a
function to this data we can approximate this converse LF in
the hope of constructing an ROA estimation. Specifically, we
fit polynomial functions to the generated input/output data of
the converse LF. Although there are many ways to fit poly-
nomials to data (each having their relative advantages and
disadvantages), in this letter, we have chosen a method based
on Bernstein approximations. As we will see next, Bernstein’s
method for fitting polynomials to data is an optimization free
approach that is guaranteed to converge uniformly.
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A. Bernstein Approximation of Smooth Functions
We now provide a brief description of how Bernstein

polynomials can approximate smooth functions. For a more
in-depth overview of the field we refer to [13]. Now, recall-
ing from Section II that we defined Pd(R

n,R) as the set of
d-degree polynomials we next define the Bernstein operator.

Definition 3: We denote the degree d ∈ N Bernstein oper-
ator by Bd : C(Rn,R) → Pd(R

n,R) and for V ∈ C(Rn,R)

we define BdV ∈ Pd(R
n,R) by

BdV(x) :=
d∑

kn=0

· · ·
d∑

k1=0

V(k1/d, . . . , kn/d)

×
n∏

j=1

(
d

kj

)

x
kj
j (1 − xj)

d−kj . (4)

Given a function V ∈ C(Rn,R), we can calculate the poly-
nomial BdV using Eq. (4) with only knowledge of the values
of V at uniformly gridded points in [0, 1]n. Thus, in order to
calculate BdV it is not necessary to have an analytic expression
of V . We next recall that BdV → V uniformly as d → ∞.
Moreover, although the Bernstein approximation in Eq. (4)
only involves the value of the 0′th differential order of V , if V
is differentiable, then it follows that the derivative of BdV will
also converge to the derivative of V . This is a particularly use-
ful when it comes to approximating converse LFs because we
would also like our approximation to be a LF itself. Thus to
make our approximation, P, have the property that it decreases
along solution trajectories, Ṗ(x) < 0, we ensure the deriva-
tive of P also approximates the derivative of the converse LF,
V̇(x) < 0.

Theorem 2 (Multivariate Uniform Approximation
by Bernstein Polynomials, See [13, Th. 4]): Given
α = (α1, . . . , αn) ⊂ N

n suppose DαV ∈ C(Rn,R) then
it follows

lim
d→∞ sup

x∈[0,1]n
|DαBdV(x) − DαV(x)| = 0. (5)

Theorem 2 shows that Eq. (4) can be used to approximate
functions over [0, 1]n. Note, using the same methodology,
we may also approximate a function, V , over some set
[a, b]n where a < b. In order to do this we first apply a
linear coordinate change mapping [a, b]n to [0, 1]n, defin-
ing Ṽ(x) := V( x1−a1

b1−a1
, . . . , xn−an

bn−an
).We then apply Eq. (4)

to approximate Ṽ(x) over [0, 1]n, yielding BdṼ such that
limd→∞ supx∈[0,1]n |DαBdṼ(x)−DαṼ(x)| = 0 (by Theorem 2).
Finally, we again change the coordinates, mapping [0, 1]n back
to [a, b]n, defining J(x) := BdṼ((b1 − a1)x1 + a1, . . . , (bn −
an)xn + an). It then follows that

lim
d→∞ sup

x∈[a,b]n
|DαJ(x) − DαV(x)|

= lim
d→∞ sup

x∈[0,1]n

∣
∣
∣
∣D

αJ

(
x1 − a1

b1 − a1
, . . . ,

xn − an

bn − an

)

− DαṼ(x)

∣
∣
∣
∣

= lim
d→∞ sup

x∈[0,1]n
|DαBdṼ(x) − DαṼ(x)| = 0. (6)

B. Generating Data From Converse Lyapunov Functions
Converse LFs can be approximated by polynomials using

Eq. (4). However, in order to apply Eq. (4) we must know
the value of the converse LF at uniformly gridded points in

[a, b]n (note approximation over [a, b]n rather than [0, 1]n

can be achieved through linear coordinate transformations, see
Eq. (6)).

Given a set of initial conditions, {xi}1≤i≤N ⊂ [a, b]n, and
a terminal trajectory time T > 0, it is possible to generate
trajectory data Di,j := ‖φf (xi, (j − 1)�t)‖2, where �t > 0
is some small time-step and 1 ≤ j ≤ T+1

�t . This can be
achieved using any ODE solver, for instance, MATLAB’s
ODE45. Of course, in order to use an ODE solver this does
require complete knowledge of the vector field, f . In the case
where the model of the system is unknown it may still be
possible to generate the required trajectory data from exper-
imental data. Through the semi-group property of solution
maps, φf (φf (x, t), s) = φf (x, t + s), knowledge of just a single
trajectory can generate a vast number of data points. Moreover,
interpolation can be used in places where there are gaps in our
data knowledge.

Now, given λ > 0, β ∈ N trajectory data, D ∈ R
N×(K+1), for

sufficiently large K ∈ N, we can approximate the value of the
corresponding converse LF given in Eq. (3) in the following
way

V∗
λ,β(xi) ≈ 1 − e−λW(xi),

where W(xi) ≈
∫ K�t

0
‖φf (xi, t)‖2β

2 dt ≈
K+1∑

j=1

D2β
i,j �t. (7)

V. IMPROVING ROA ESTIMATION WITH APPROXIMATED

CONVERSE LYAPUNOV FUNCTIONS

Given an ODE defined by some vector field f , we have
shown that through applications of Eqs. (4) and (7) that it
is possible to numerically a construct a Bernstein polynomial
approximation, BdV∗

λ,β for some d ∈ N, λ > 0 and β ∈ N, of
the converse LF, V∗

λ,β , given in Eq. (3). Moreover, assuming
that DαV∗

λ,β is continuous, where α ∈ N
n, Theorem 2 can be

used to show that limd→∞ DαBdV∗
λ,β → DαV∗

λ,β uniformly
in [a, b]n (note approximation over [a, b]n rather than [0, 1]n

can be achieved through linear coordinate transformations, see
Eq. (6)).

Ideally, for sufficiently large d ∈ N, λ > 0 and β ∈ N,
our approximation, BdV∗

λ,β , will also be a LF over some set
containing the origin; that is BdV∗

λ,β(0) = 0, BdV∗
λ,β(x) ≥ 0

for all x ∈ �/{0}, and ∇BdV∗
λ,β(x)�f (x) < 0 for all x ∈ �/{0}.

Then Theorem 1 can be used to show that the sublevel set of
BdV∗

λ,β yields an inner approximation of the ROA of the given
ODE.

Unfortunately, despite the fact BdV∗
λ,β tends to V∗

λ,β as
d → ∞ and V∗

λ,β is a LF, BdV∗
λ,β is not necessarily a

LF. To see this we first note that, for a given x0 ∈ [a, b]n

if ∇V∗
λ,β(x0)

�f (x0) < −a, where a > 0, it follows by
Theorem 2 that there exists D ∈ N such that ‖∇BdV∗

λ,β(x0) −
∇V∗

λ,β(x0)‖2 < a
2‖f (x0)‖2

for all d > D. Thus, using the Cauchy
Swarz inequality we have that for all d > D

∇BdV∗
λ,β(x0)

�f (x0)

= ∇BdV∗
λ,β(x0)

�f (x0) − ∇V∗
λ,β(x0)

�f (x0) + ∇V∗
λ,β(x0)

�f (x0)

≤ ‖∇BdV∗
λ,β(x0) − ∇V∗

λ,β(x0)‖2‖f (x0)‖2 − a ≤ −a

2
< 0. (8)

Eq. (8) shows that for sufficiently large d, whenever V∗
λ,β is

strictly decreasing along the solution map we also have that
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BdV∗
λ,β is strictly decreasing along the solution map. However,

at the origin V∗
λ,β is not strictly decreasing along the solution

map, that is ∇V∗
λ,β(0)�f (0) = 0. Because of this fact and the

fact BdV∗
λ,β is continuous, in general for some finite d ∈ N our

approximation will be such that ∇BdV∗
λ,β(x)�f (x) ≥ 0 for all x

in some small neighborhood of the origin. Thus in general, for
finite d ∈ N, it follows that we will have BdV∗

λ,β(x)�f (x) <

0 for all x in some “donut shaped” region, {y ∈ R
n:γ1 ≤

BdV∗
λ,β(y) ≤ γ2} for some γ1 < γ2, as opposed to a sublevel

set {y ∈ R
n:BdV∗(y) ≤ γ2}. By a similar argument, in general,

we do not expect BdV∗
λ,β(0) = 0 for any fixed d ∈ N and thus

in general BdV∗
λ,β is not a LF.

Although, BdV∗
λ,β is not a LF, and therefore cannot cer-

tify the origin is asymptotically stable, we will next show, in
Prop. 1, that functions strictly decreasing along the solution
map inside some “donut shaped” region can still be used to
certify that the solution map must enter some ball of radius
η > 0 around the origin, Bη(0).

Proposition 1: Consider an ODE (1) defined by some vec-
tor field f ∈ C1(Rn,Rn) and compact set D ⊂ R

n. Suppose
V ∈ C1(D,R), γ1 < γ2 and η, ε, a > 0 are such that

• Bε({y ∈ D‘: V(y) ≤ γ1}) ⊂ Bη(0).
• {y ∈ D : V(y) ≤ γ2} ⊂ D◦
• For all x ∈ D/{y ∈ D : V(y) ≤ γ1} we have that

∇V(x)�f (x) < −a < 0. (9)

Then it follows that for any x ∈ {y ∈ D : V(y) ≤ γ2}/Bη(0)

there exists T > 0 such that

φf (x, T) ∈ Bη(0). (10)

Proof: Let S := {y ∈ D : V(y) ≤ γ2} and Ṽ(x) := ρ(V(x))
where ρ is an infinitely smooth function defined by,

ρ(x) :=
{

exp
( −1

(γ1−x)2

)
for x > γ1,

0 otherwise.

Now, it is clear that Ṽ(x) = 0 for all x ∈ {y ∈ D : V(y) ≤ γ1}
and hence ∇Ṽ(x)�f (x) = 0 for all x ∈ {y ∈ D : V(y) ≤ γ1}.
On the other hand, for x ∈ S/D we have that

∇Ṽ(x)�f (x) = 2ρ(V(x))∇V(x)�f (x)

(V(x) − γ1)3
< 0.

Therefore, ∇Ṽ(x)�f (x) ≤ 0 for all x ∈ S. Moreover, since
S ⊂ D◦ and V(φf (x, t)) is strictly decreasing on ∂D it follows
that S is an invariant set. We are now in a position to apply
Thm. 1 for Ṽ .

Let E := {y ∈ D : ∇Ṽ(x)�f (x) = 0}. Clearly from the
definition of ρ it follows that E = {y ∈ D : V(x) ≤ γ1} and
hence Bε(E) ⊂ Bη(0).

Now, for x ∈ S and δ < ε by Thm. 1 there exists T > 0
such that φf (x, T) ∈ Bδ(E) ⊂ Bε(E) ⊂ Bη(0).

In Prop. 1 we have proposed conditions, based on some
function we denote here as V1, that certify that the solution
map of a given ODE must enter some ball, Bη(0). Recall that
V1 can be found by approximating a converse LF by Bernstein
polynomials.

We next show that if there exists a LF, V2, that certifies that
Bη(0) is an asymptotically stable set, then V1 and V2 can be
used together to provide an improved inner approximation of
the ROA of the given ODE.

Theorem 3: Consider an ODE (1) defined by some vector
field f ∈ C1(Rn,Rn) and compact set D ⊂ R

n. Suppose there
exists V1, V2 ∈ C1(D,R), γ1 < γ2 and η, ε, a > 0 are such
that

• Bε({y ∈ D : V(y) ≤ γ1}) ⊂ Bη(0).
• {y ∈ D : V(y) ≤ γ2} ⊂ D◦
• For all x ∈ D/{y ∈ D : V(y) ≤ γ1} we have that

∇V(x)�f (x) < −a < 0. (11)

Moreover, suppose 0 ∈ D and for some γ3 > 0 V2 satisfies
• V2(0) = 0 and V2(x) > 0 for all x ∈ D/{0}.
• ∇V2(x)�f (x) ≤ 0 for all x ∈ D.
• φf (x, t) ∈ {x ∈ D : ∇V2(x)�f (x) = 0} for t ≥ 0 iff x = 0.

• Bη(0) ⊆ {y ∈ D : V2(y) ≤ γ3} ⊆ D◦.
Then {y ∈ D : V1(y) ≤ γ2} ∪ {y ∈ D : V2(y) ≤ γ3} ⊆ ROAf .

Proof: By Theorem 1 it follows that {y ∈ D : V2(y) ≤ γ3} ⊆
ROAf .

If x ∈ {y ∈ D : V1(y) ≤ γ2} then by Prop. 1 there exists
T > 0 such that

z := φf (x, T) ∈ Bη(0) ⊆ {y ∈ D : V2(y) ≤ γ3}. (12)

Since {y ∈ D : V2(y) ≤ γ3} ⊆ ROAf it follows that
limt→∞ ‖φf (z, t)‖2 = 0. Therefore, using the semi-group
properties of solution maps we have that

lim
t→∞ ‖φf (x, t)‖2 = lim

t→∞ ‖φf (φf (x, T), t − T)‖2

= lim
t→∞ ‖φf (z, t − T)‖2 = lim

s→∞ ‖φf (z, s)‖2 = 0,

implying x ∈ ROAf . Because the same argument can be
used for any x ∈ {y ∈ D : V1(y) ≤ γ2} it follows that
{y ∈ D : V1(y) ≤ γ2} ⊆ ROAf .

Since {y ∈ D : V2(y) ≤ γ3} ⊆ ROAf and {y ∈ D : V1(y) ≤
γ2} ⊆ ROAf it follows {y ∈ D : V1(y) ≤ γ2}∪{y ∈ D : V2(y) ≤
γ3} ⊆ ROAf .

Practical Implementation of Theorem 3: Thm. 3 shows how
two functions, V1 and V2, can be used to produce an inner
approximation of the ROA of a given ODE. The function,
V2, is a classical LF (positive semidefinite and decreasing
along trajectories) but provides a poor estimation of the ROA,
{y ∈ D : V2(y) ≤ γ3} ⊆ ROAf . On the other hand, V1 need not
be a classical LF as there is no requirement that V2(0) = 0
or ∇V2(x)�f (x) ≤ 0 near the origin, making the compu-
tational search for a candidate V1 amenable to data based
methods. Whereas, the computational search for a candidate
V2 is redistricted to model based methods (energy functions
or Sum-of-Squares programming).

In this letter we compute a candidate V1 by fitting a
Bernstein polynomial to a converse LF (Section IV). We
compute candidate a V2 using several methods including:
Linearizing the system and then computing a quadratic LF by
solving the resulting Linear Matrix Inequalities (LMIs) (see
Section VI-A); Using energy functions (see Section VI-B);
Using Sum-of-Square (SOS) programming (see Section VI-D).
Now, for a given ODE defined by a vector field f and can-
didate functions, V1 and V2, we next outline how to compute
η, γ1, γ2, γ3 ∈ R from Thm. 3 to estimate ROAf .

Step 1: Compute the largest ROA estimation yielded by the
LF V2 using Thm. 1. This amounts to finding {x ∈ D : V2(x) ≤
γ ∗

3 } ⊆ ROAf where

γ ∗
3 ∈ arg sup

γ∈R
{γ } such that {x ∈ D : V2(x) ≤ γ } ⊆ SV2 ,(13)
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Fig. 1. Our estimations of the ROA of several systems, given by the union of the region contained inside the black (V1) and blue (V2) curves. The
dotted line corresponds to the boundary of the 0-sublevel set of the derivative of V1 along the solution map.

and SV2 := {x ∈ D : V2(x) > 0} ∩ {x ∈ D : ∇V2(x)T f (x) ≤ 0}.
Step 2: Find the largest ball that is certified to be contained

inside the ROA. That is, solve

η∗ ∈ arg sup
η>0

{η} such that Bη(0) ⊆ {x ∈ D : V2(x) ≤ γ ∗
3 }

(14)

Step 3: Find largest sublevel set of V1 contained in Bη(0).
That is, solve

γ ∗
1 ∈ arg sup

γ>0
{γ } such that {x ∈ D : V1(x) < γ } ⊂ Bη(0).

(15)

Step 4: Find the largest “donut shaped” set such that V1 is
decreasing. That is, solve

γ ∗
2 ∈ arg sup

γ∈R
{γ } such that

{x ∈ D : γ ∗
1 ≤ V1(x) ≤ γ } ⊆ {x ∈ D : ∇V1(x)

�f (x) < 0}.
(16)

Opts. (13), (14) (15) and (16) are all set containment problems
that can be solved using Putinar’s Positivstellensatz to formu-
late auxiliary Sum-of-Squares optimization problems (possibly
using algebraic constraints to enforce non-polynomial terms
such as in [10]). Alternatively, for two and three dimensional
systems we can solve these Opts graphically by preforming
bisection on η, γ1, γ2, γ3 ∈ R, plotting and verifying the set
containment’s hold. In the same way we can attempt to approx-
imately solve these Opts for higher dimensional systems by
plotting slices of the state space and graphically certifying the
set containments.

VI. NUMERICAL EXAMPLES

We next present several numerical examples demonstrating
how Thm. 3 can be used to yield accurate ROA approximations
of nonlinear ODEs. For each numerical example we compute
V1 and V2, from Thm. 3, by respectively fitting Bernstein poly-
nomials to the converse LF given in Eq. (3) (using Eqs. (4), (6)
and (7)) and either using an energy function or an analytical
LF (found previously in the literature).

To demonstrate the accuracy of our approximations of the
ROA we will carry out extensive Monte Carlo simulations of
the solution map to estimate the stable and unstable regions
in each figure. Although this Monte Carlo method can esti-
mate the ROA well it does not account for simulation error or
provide a LF and hence cannot provide a certified ROA inner
approximation.

A. Estimating the ROA of the Van der Pol System
Consider the reverse time Van der Pol oscillator defined by

the vector field:

fVDP(x) =
[ −x2

x1 − x2(1 − x2
1)

]

(17)

The following quadratic LF was found in [11]: VVDP(x) =
x�Px, where P =

[
1.5 − 0.5

−0.5 1

]

.

We now fit the converse LF, V∗
λ,β (given in Eq. (3)), for

λ = 3 and β = 1 by a degree 75 Bernstein polynomial over
the set D = [−2, 2]×[−2.7, 2.7]. In Fig. 1(a) we have plotted
our estimation of the ROA achieved using this fitted Bernstein
polynomial as V1 and VVDP as V2 in Thm. 3. The black and
blue curves correspond to the boundaries of {x ∈ D : V1(x) <

0.74} and {x ∈ D : V2(x) < 2.25} respectively.

B. Estimating the ROA of the Single Machine Infinite Bus
(SMIB) System

The SMIB system can be modeled by an ODE (1) with the
following vector field:

fSMIB(x) :=
[

x2

(1/2H)(Pm − E′EB
Xeq

sin(x1 + δep) − Dx2)

]

,

where H = 0.0106s2/rad, Xeq = 0.28pu, Pm = 1pu, EB =
1pu, E′ = 1.21pu, D = 0.03. It is shown in [14] that the
energy of the SMIB system can be expressed as the following
function

VE(x) := −Pmx1 + E′EB

Xeq
(cos(δep) − cos(x1 + δep)) + Hx2

2.

By graphically solving Opt. (13) for V2 = VE and f = fSMIB,
we find γ ∗

3 = 5.722. The boundary of {x ∈ R
n : VE(x) ≤ γ ∗

3 }
is given as the blue curve in Fig. 1(b).

We find a candidate V1 function of Thm. 3 by fitting a
degree 60 Bernstein polynomial to the converse LF, V∗

λ,β
(given in Eq. (3)), for λ = 10 and β = 1 over the set
D = [−0.75π, π ] × [−30, 30].

We have plotted the boundary of {y ∈ D : V1(y) ≤ 0.68}
as the black curve in Fig. 1(b). These sublevel sets are
such that Thm. 3 shows {y ∈ D : V1(y) ≤ 0.68} ∪ {y ∈
D : V2(y) ≤ 5.722} ⊆ ROAfSMIB , providing an inner approxi-
mation of ROAfSMIB . Moreover, we have plotted the boundary
of the set {y ∈ D : ∇V1(y)�fSMIB(y) ≤ 0} as the dotted black
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line. Showing ∇V1(y)�fSMIB(y) may not be negative around a
neighborhood of the origin as expected from Sec. V.

Using both V1 and V2 we have improved the inner approx-
imation of ROAfSMIB as compared to the approximation of
yielded by the energy function, V2, alone.

C. Estimating the ROA of a Two-Machine Versus Infinite
Bus System

Consider the following four dimensional power system
model found in [10], [15] that represents a two-machine ver-
sus infinite bus system which can be modeled by an ODE (1)
with the following vector field:

fTMIB(x) = [
f1(x), f2(x), f3(x), f4(x)

]�
, (18)

where f1(x) = x2, f2(x) = 33.5849 − 1.8868 cos(x1 −
x3) − 5.283 cos(x1) − 16.9811 sin(x1 − x3) −
59.6226 sin(x1) − 1.8868x2, f3(x) = x4 and
f4(x) = 11.3924 sin(x1 − x3) − 1.2658 cos(x1 − x3) −
3.2278 cos(x3) − 1.2658x4 − 99.3671 sin(x3) + 48.481.
The point xSEP := [0.468, 0, 0.463, 0]� ∈ R

4 is a stable
equilibrium point of Eq. 18. Using a change of variables
x̃ = x − xSEP we map the equilibrium point to the origin.

We now fit the converse LF, V∗
λ,β (given in Eq. (3)), for

λ = 1 and β = 1 by a degree 20 Bernstein polynomial over
the set [−2, 2] × [−3, 3] × [−2, 2] × [ − 3, 3]. Fig. 1(c) shows
a slice of the state space when x2 = x4 = 0 depicting the
sublevel set of this Bernstein polynomial along with the ROA
estimation found in [10]. By using Thm. 3 we are able to
certify an improved ROA estimation (the union of the sublevel
sets in Fig. 1(c)).

D. Estimating the ROA of a Three-Machine System
Consider the following four dimensional power system

model found in [16, p. 144] that represents a three-machine
system with machine number 3 as swing bus (reference of the
system) and can be modeled by an ODE (1) with the following
vector field:

f3MS(x) =
⎡

⎢
⎣

x2
− sin(x1) − 0.5 sin(x1 − x3) − 0.4x2

x4
−0.5 sin(x3) − 0.5 sin(x3 − x1) − 0.5x4 + 0.05

⎤

⎥
⎦

(19)

The point xSEP := [0.02001, 0, 0.06003, 0]� ∈ R
4 is a stable

equilibrium point of Eq. (19). Using a change of variables
x̃ = x − xSEP we map the equilibrium point to the origin.
The ROA of this system has previously been estimated using
energy functions in [16]. A more accurate ROA estimation was
found in [10] using Sum-of-Squares to find a LF. We now use
the LF found in [10] as V2 in Thm. 3 and compute a V1 by
fitting a degree 20 Bernstein polynomial to the converse LF,
V∗

λ,β (given in Eq. (3)), for λ = 1 and β = 1 over the set
[−4, 4] × [−0.75, 0.75] × [−4, 4] × [−0.75, 0.75]. Fig. 1(d)
shows a slice of the state space when x2 = x4 = 0 and depicts
the best ROA estimation found in [10] along with a sublevel
set of the resulting fitted Bernstein polynomial. Thm. 3 can

be used to certify the union of these sublevel sets are inside
the ROA, providing an improved ROA estimation.

VII. CONCLUSION

This letter proposes a novel methodology for ROA esti-
mation using an approximated converse Lyapunov function,
derived from trajectory data, together with an analytical
Lyapunov function. The method yields a certifiable inner ROA
estimation. Numerical examples demonstrate that the proposed
method is able to expand ROA approximations found using
analytical Lyapunov functions derived elsewhere in the liter-
ature. This method is not limited to the converse Lyapunov
function fitting technique implemented, Bernstein polynomial
approximations. Function fitting techniques that are better
suited for high dimensional problems will be explored in future
work.
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