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Representation of PDE Systems With Delay and
Stability Analysis Using Convex Optimization

Declan S. Jagt and Matthew M. Peet , Senior Member, IEEE

Abstract—Partial Integral Equations (PIEs) have been
used to represent both systems with delay and systems of
Partial Differential Equations (PDEs) in one or two spatial
dimensions. In this letter, we show that these results can
be combined to obtain a PIE representation of any suitably
well-posed 1D PDE model with constant delay. In particu-
lar, we represent these delayed PDE systems as coupled
systems of 1D and 2D PDEs, obtaining a PIE representation
of both subsystems. Taking the feedback interconnection
of these PIE subsystems, we then obtain a 2D PIE rep-
resentation of the 1D PDE with delay. Next, based on the
PIE representation, we formulate the problem of stability
analysis as convex optimization of positive operators which
can be solved using the PIETOOLS software suite. We apply
the result to PDE examples with delay in the state and
boundary conditions.

Index Terms—Distributed parameter systems, delay
systems, stability of linear systems, LMIs.

I. INTRODUCTION

WE CONSIDER the problem of analysis of coupled
systems of Partial Differential Equations (PDEs). In

both modeling and control of PDE systems, the evolution of
the system often depends on the internal state of the system at
earlier points in time, giving rise to delays in the model. For
example, these delays may be inherent to the dynamics of the
system itself, appearing within the PDE (sub)system, as in the
following wave equation adapted from [1]

utt(t, x) = uxx(t, x) + μut(t, x) − ut(t − τ, x),

u(t, 0) = u(t, 1) = 0.

Alternatively, delay may appear in the Boundary Conditions
(BCs) of the PDE, as in the following wave equation from [2]

utt(t, x) = uxx(t, x),

u(t, 0) = 0, ux(t, 1) = (1 − μ)ut(t, 1) + μut(t − τ, 1).

In each case, the presence of delays naturally complicates
analysis of solution properties such as stability of the system,
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as the state of the system involves not only the current value
of the state u(t), but also the value of u(s) for all s ∈ [t−τ, t].

To verify stability of PDEs with delay, one common
approach involves testing for existence of a positive definite
functional V that decays along solutions to the system – i.e., a
Lyapunov-Krasovskii Functional (LKF) [3]. In particular, for
a delayed PDE with state u(t) and delayed state φ(t) defined
by φ(t, s) := u(t − sτ) for s ∈ [0, 1], stability can be tested by
finding a functional V(u,φ) that satisfies V(0) = 0, V(u,φ) >

0 for (u,φ) �= 0, and V̇(u(t),φ(t)) ≤ 0 along all solutions
to the system. In practice, a candidate LKF V > 0 is usually
fixed a priori, often as some variation on the energy functional
V(u,φ) = ‖u‖2 + ‖φ‖2, and then proven to decay along
solutions to a system of interest. Although stability properties
of a variety of PDEs with delay have been proven this way,
including for heat and wave equations with both time-varying
and constant delay [4], [5], results obtained in this manner are
difficult to extend to other systems. Specifically, a LKF that
certifies stability for one system may not be valid for another,
and identifying a suitable candidate LKF for a given system
requires significant insight.

In order to find LKFs for more general PDEs with delay,
a cone of positive candidate functionals V > 0 is often
parameterized by positive definite matrices P � 0. The
challenge in testing stability then becomes that of enforcing
decay of the functionals, V̇ ≤ 0, as a Linear Matrix Inequality
(LMI), Q � 0, which can be efficiently solved using semidef-
inite programming. Unfortunately, enforcing V̇ ≤ 0 along
solutions to a PDE with delay as an LMI is complicated
by the fact that PDE dynamics are defined by (unbounded)
differential operators, and that solutions are constrained to
satisfy BCs. As such, most prior work in this field focuses
only on specific PDEs with delay, exploiting the structure of
the PDE (parabolic, hyperbolic, elliptic) and the type of BCs
(Dirichlet, Neumann, Robin) to enforce V̇ ≤ 0. For example,
stability tests for heat and wave equations were derived in [1],
posing V̇ ≤ 0 as an LMI using the Wirtinger inequality.
LMIs for stability of linear and semi-linear diffusive PDEs
with delay were similarly derived in [6], [7], [8], as well as
for reaction-diffusion systems with delayed boundary inputs
in [9].

The disadvantage of these approaches, however, is that the
results are again valid only for a restricted class of systems,
and rely on the use of specific inequalities (e.g., Wirtinger,
Jensen, Poincaré) to enforce V̇ ≤ 0. Extending these results
to even slightly different models, then, may require significant
expertise from the user.
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In this letter, we propose an alternative, LMI-based method
for testing stability of a general class of linear PDE systems
with constant delay, by representing them as Partial Integral
Equations (PIEs). A PIE is an alternative representation of
linear ODE-PDE systems, taking the form [10]

T vt(t) = Av(t),

where the operators {T ,A} are Partial Integral (PI) operators.
In [10] and [11], it was shown that the sets of 1D and 2D PI
operators form *-algebras, meaning that the sum, composition,
and adjoint of such PI operators is a PI operator as well.
As such, parameterizing Lyapunov functionals V(v(t)) =
〈T v(t),PT v(t)〉 by PI operators P � 0, the decay condition
V̇(v(t)) ≤ 0 can be enforced as a Linear PI Inequality (LPI)

T ∗PA + A∗PT � 0. (1)

Such LPIs constitute a specific class of linear operator inequal-
ities (introduced for stability analysis of PDEs with delay
in [1]), wherein the operator variable P has the structure
of a PI operator. Since the fundamental state v(t) ∈ L2 in
the PIE representation is not constrained by, e.g., BCs, these
LPI constraints need only be enforced on L2. Parameterizing
positive PI operators P � 0 by positive matrices P � 0,
then, LPIs can be readily tested as LMIs, allowing analysis,
control, and estimation of PDEs to be performed using convex
optimization (see [12] and references therein).

In [13], it was shown that a general class of linear Delay
Differential Equations (DDEs) can be equivalently represented
as PIEs. Similarly, in [14], it was shown that any suitably
well-posed PDE system without delay can also be equivalently
represented as a PIE. However, constructing a PIE represen-
tation for 1D PDE systems with delay is complicated by the
fact that the delayed state φ(t, s, x) = u(t − s, x) in this case
varies in two spatial variables. To address this problem, in
this letter, we decompose the delayed PDE into a feedback
interconnection of a 1D PDE and a 2D transport equation,
where the interconnection signals are infinite-dimensional.
We prove that each of these subsystems can be equivalently
represented as an associated PIE with infinite-dimensional
inputs and outputs, extending prior work on PIE input-output
systems to the case of infinite-dimensional inputs and outputs.
Next, we consider the feedback interconnection of PIEs
with infinite-dimensional inputs and outputs, deriving explicit
expressions for the operators defining the resulting closed-
loop PIE. Finally, paramaterizing a LKF by PI operators, we
establish stability conditions in terms of LPI constraints. These
LPIs are then converted to semidefinite programming problems
using the PIETOOLS software package and tested on several
examples of delayed PDE systems.

II. PROBLEM FORMULATION

A. Notation

For a given domain � ⊂ R
d, let Ln

2[�] and Ln∞[�] denote
the sets of Rn-valued square-integrable and bounded functions
on �, respectively, where we omit the domain when clear from
context. Define intervals �1

0 := [0, 1] and �b
a := [a, b], and

let �1b
0a := �1

0 × �b
a. For k = (k1, k2) ∈ N

2, define Sobolev
subspaces Hn

k1
[�b

a] and Hn
k[�1b

0a] of Ln
2 as

Hn
k1

[�b
a] = {

v | ∂α
x v ∈ Ln

2[�b
a], ∀α ∈ N : α ≤ k1

}
,

Hn
k[�1b

0a] =
{

v | ∂α1
s ∂α2

x v ∈ Ln
2[�1b

0a], ∀[ α1
α2 ] ∈ N

2 : α1≤k1
α2≤k2

}
.

B. Objectives and Approach

In this letter, we propose a framework for testing exponen-
tial stability of linear, 1D, 2nd order PDEs, with delay in the
dynamics. Specifically, we focus on systems of the form

ut(t, x) = A(x)

[
u(t, x)
ux(t, x)
uxx(t, x)

]

+ Ad(x)

[
u(t − τ, x)
ux(t − τ, x)
uxx(t − τ, x)

]

, (2)

u(t) ∈ XB[�b
a], t ≥ 0, x ∈ �b

a,

where A, Ad ∈ Ln×3n∞ [�b
a], and where the PDE domain XB is

constrained by boundary conditions and continuity constraints,
and is defined by a matrix B ∈ R

2n×4n as

XB[�b
a] :=

{
u ∈ Hn

2[�b
a]

∣∣∣∣ B

[ u(a)
u(b)

ux(a)
ux(b)

]
= 0

}
, (3)

where B must be of full row-rank, defining sufficient and
independent boundary conditions (see also [10, Sec. 3.2]).
Because of limited space, in this letter, we will not explicitly
consider cases wherein there is a delayed term in, e.g., the
boundary conditions, or in some ODE coupled to the PDE.
However, the methodology presented in this letter can be
readily adapted to those cases as well, as well as to cases with
multiple delayed signals, and Nth order PDEs. More details
on such generalizations can be found in the extended version
of this letter [15].

In order to test stability of the delayed PDE (2), we will first
derive an equivalent representation of the system as a Partial
Integral Equation (PIE), taking the form

(T wt)(t, s, x) = (Aw)(t, s, x), (s, x) ∈ �1b
0a, (4)

wherein the state w(t) ∈ L2[�b
a]×L2[�1b

0a] is free of boundary
conditions, and where the operators T and A are Partial
Integral (PI) operators, defined as in Block 1. Using these
operators, stability of the PDE can then be tested as follows.

Proposition 1: Let A, Ad ∈ Ln×3n∞ , B ∈ R
2n×4n and τ > 0

define a delayed PDE as in (2). Define PI operators T ,A as
in Block 1. Suppose that there exist constants ε > 0, α ≥ 0,
and a PI operator P such that P = P∗, P � ε2I, and

A∗PT + T ∗PA � −2αT ∗PT . (5)

Finally, let ζ = √‖P‖L. Then, for any solution u to the
PDE (2) with φ(t, s) = u(t − sτ) for s ∈ [0, 1], we have

∥∥∥∥

[
u(t)
φ(t)

]∥∥∥∥
Z

≤ ζ

ε

∥∥∥∥

[
u(0)
φ(0)

]∥∥∥∥
Z

e−αt, ∀t ≥ 0,

where
∥∥[

u(t)
φ(t)

]∥∥2
Z := ‖u(t)‖2

L2
+ ∫ 1

0 ‖φ(t, s)‖2
L2

ds.
In the remainder of this letter, we show how we arrive at

this result, explicitly proving it in Corollary 2. In particular,
to derive this result, we take the following four steps:

1. First, in Section III, we represent the delayed PDE as the
interconnection of a 1D PDE and a 2D PDE.

2. Then, in Sections III-A and III-B, we derive equivalent
1D and 2D PIE representations of the 1D and 2D PDE
subsystems, respectively.

3. Next, in Section IV, we prove that the feedback
interconnection of PIEs can be represented as a PIE as well,
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Block 1 Operators T and A Defining the PIE (4) Associated to the Delayed PDE (2) With Boundary Conditions as in (3)

Define T :=
[
T1 0
T1 T2

]
, A :=

[
A11 + A11,d A12

0 A22

]
, where T1 := PT, A11 := PA, and A11,d := PAd are 3-PI operators (see

Defn. 2), and where for v̂ ∈ L2[�1b
0a],

(T2v̂)(s) := ∫ s
0 (T1v̂(θ))dθ, (A12v̂) := ∫ 1

0 (A11,dv̂(s))ds, (A22v̂)(s) := − 1
τ
(T1v̂(s)),

with parameters

T := {0, T1, T2}
T1(x, θ) := (x − θ)In + T2(x, θ),

T2(x, θ) := −K(x)(BH)−1BQ(x, θ),

K(x) := [
In(x − a)In

]
,

H :=
⎡

⎢
⎣

In0
In(b − a)In
0In
0In

⎤

⎥
⎦, Q(x, θ) :=

⎡

⎢
⎣

0
(b − θ)In
0
In

⎤

⎥
⎦,

A0(x) := A(x)
[

0
0
In

]
,

Ad,0(x) := Ad(x)
[

0
0
In

]
,

A := {A0, A1, A2},
Ad := {Ad,0, Ad,1, Ad,2}, Aj(x, θ) := A(x)

[
Tj(x,θ)

∂xTj(x,θ)

0

]
, Ad,j(x, θ) := Ad(x)

[
Tj(x,θ)

∂xTj(x,θ)

0

]
, j ∈ {1, 2}.

and take the interconnection of the 1D and 2D PIEs to obtain
a PIE representation for the delayed PDE.

4. Finally, in Section V, we provide a Lyapunov functional
based stability test for the PIE representation, allowing us to
test stability of the original delayed PDE.

III. A PIE REPRESENTATION OF DELAYED PDES

In order to test stability of the Delayed PDE (DPDE) (2),
we first represent the system in a format free of explicit delay.
In particular, let φ(t, s) represent u(t−sτ) for s ∈ [0, 1]. Then,
u(t) satisfies the DPDE (2) if and only if (u(t),φ(t)) satisfies

ut(t) = MA

[ u(t)
ux(t)
uxx(t)

]
+ MAd

[
φ(t,1)

φx(t,1)

φxx(t,1)

]
, u(t) ∈ XB, (6)

φt(t) = −(1/τ)φs(t),φ(t) ∈ Yu(t),

where MA denotes the multiplier operator associated to A ∈
L∞[�b

a], and where we define the domain of φ(t) as

Yu :=
{
φ ∈ Hn

(1,2)[�
1b
0a]

∣∣∣φ(0, x) = u(x), φ(s, .) ∈ XB

}
. (7)

We define solutions to the DPDE in terms of this format.
Definition 1 (Solution to the DPDE): For a given initial

state (u0,φ0) ∈ XB × Yu0 , we say that (u,φ) is a solution
to the DPDE defined by {A, Ad, B, τ } if (u,φ) is Frechét
differentiable, (u(0),φ(0)) = (u0,φ0), and for all t ≥ 0,(
u(t),φ(t)

)
satisfies (6).

Although the representation in (6) no longer involves
explicit time-delay, stability analysis is still complicated by

the auxiliary constraints
[

u(t)

φ(t)

]
∈

[
XB

Yu(t)

]
. Therefore, in the fol-

lowing subsections, we will separately consider the dynamics
of u(t) and φ(t), representing these dynamics in an equivalent
format free of auxiliary constraints – as PIEs.

A. A PIE Representation of 1D PDEs

Consider the 1D subsystem of the coupled PDE in (6),

ut(t) = MA

[ u(t)
ux(t)
uxx(t)

]
+ p(t), u(t) ∈ XB, (8)

where now p(t) = MAd

[
φ(t,1)

φx(t,1)

φxx(t,1)

]
∈ Ln

2

[
�b

a

]
is considered to be

an input. In this system, we note that the 2nd-order derivative
v(t) := uxx(t) ∈ Ln

2[�b
a] does not have to satisfy any boundary

conditions or continuity constraints. Accordingly, we refer

to v(t) as the fundamental state associated to the PDE, and
we will derive an equivalent representation of the 1D PDE
subsystem in (8) in terms of this state, as a PIE. To this end,
we first recall the definition of a 3-PI operator.

Definition 2 (3-PI Operators (	3)): For m, n ∈ N, define

Nm×n
3 [�b

a] := Lm×n
2 [�b

a] × Lm×n
2 [�b

a × �b
a] × Lm×n

2 [�b
a × �b

a].

Then, for given parameters R := {R0, R1, R2} ∈ N3, we define
the 3-PI operator R = PR for u ∈ Ln

2[�b
a] as

(
Ru

)
(x) = R0(x)u(x) +

∫ x

a
R1(x, θ)u(θ)dθ +

∫ b

x
R2(x, θ)u(θ)dθ.

We say R ∈ 	3 if R := PR for some R ∈ N3.
Defining 3-PI operators in this manner, it has been shown

that 	3 forms a *-algebra – i.e., is closed under summation,
composition, scalar-multiplication and adjoint with respect to
L2 [14]. Moreover, under mild assumptions on the boundary
conditions B, we can define a continuous, bijective map
T1 : Ln

2 → XB from the fundamental to the PDE state space
as a 3-PI operator, as shown in the following result from [10].

Lemma 1: Let XB be as defined in (3), for some B ∈ R
2n×4n

such that BH ∈ R
2n×2n is invertible with H as in Block 1. If

T1 ∈ 	3 is as defined in Block 1, then,

u = T1(∂
2
x u), ∀u ∈ XB and v = ∂2

x (T1v), ∀v ∈ Ln
2.

Proof: Defining K, H, Q, Tj as in Block 1, and using
Cauchy’s formula for repeated integration, we can show that

u = MK
[

u(a)
ux(a)

] + P{0,T1−T2,0}uxx,
[ u(a)

u(b)
ux(a)
ux(b)

]
= [

u(a)
ux(a)

] + P{0,Q,Q}uxx,∀u ∈ Hn
2[�b

a].

Imposing the boundary conditions in (3), it then follows that
u = (P{0,T1−T2,0} − MK(BH)−1BP{0,Q,Q})uxx = T1uxx. A full
proof is given in [10].

Lemma 1 proves that, given sufficiently well-posed bound-
ary conditions, any u ∈ XB is uniquely defined by its
highest-order partial derivative v = uxx ∈ Ln

2 as u = T1v.
Using the Leibniz integral rule, we can then also express

MA

[ u
ux
uxx

]
= MA

[ T1uxx
∂xT1uxx

uxx

]
= MA

[ P{0,T1,T2}v

P{0,∂xT1,∂xT2}v

P{In,0,0}v

]
= A11v,
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for A11 ∈ 	3 as in Block 1. It follows that u(t) satisfies the
PDE (8) if and only if v(t) = uxx(t) satisfies the PIE

T1vt(t) = A11v(t) + p(t), v(t) ∈ Ln
2[�b

a]. (9)

Lemma 2: Suppose that A ∈ Ln×3n∞ [�b
a] and B ∈ R

2n×4n

satisfies the conditions of Lemma 1. Define operators T1,A1 ∈
	3 as in Block 1. Then, for any given input p(t) ∈ Ln

2[�b
a],

v is a solution to the PIE (9) with initial state v0 ∈ Ln
2[�b

a] if
and only if u = T1v is a solution to the PDE (8) with initial
state u0 = T1v0. Conversely, u is a solution to the PDE (8)
with initial state u0 ∈ XB if and only if v = ∂2

x u is a solution
to the PIE (9) with initial state v0 = ∂2

x u0.
Proof: We refer to [10] for a proof.

B. A PIE Representation of 2D Transport Equations

Consider now the 2D subsystem of the coupled PDE in (6),

φt(t) = −(1/τ)φs(t),φ(t) ∈ YT1v(t), (10)

p(t) = MAd

[
φ(t,1)

φx(t,1)

φxx(t,1)

]
,

wherein we consider v(t) = uxx(t) ∈ Ln
2[�b

a] as an input,
and p(t) ∈ Ln

2[�b
a] as an output. Although a framework

for constructing PIE representations for 2D PDEs has been
developed in [11], in this case, we can significantly simplify this
construction by exploiting the structure of the 2D subsystem.
In particular, by definition of the space Yu(t), any φ(t) ∈ Yu(t)
must satisfy the same boundary conditions as u(t). As such,
we can use the same operator T1 as in Lemma 1 to also express
φ(t) in terms of its associated fundamental state φsxx(t).

Lemma 3: Let Yu be as defined in (7), with the set XB as
defined in (3) for some B ∈ R

2n×4n satisfying the conditions
of Lemma 1. If T1 ∈ 	3 and T2 are as defined in Block 1 and
u ∈ XB, then, for every φ ∈ Yu and every ψ ∈ Ln

2[�1b
0a],

φ = u + T2(∂s∂
2
xφ), and ψ = ∂s∂

2
x (u + T2ψ).

Proof: Fix arbitrary u ∈ XB and φ ∈ Yu. By definition of the
set Yu, we have φ(0) = u and φ(s) ∈ XB for all s ∈ [0, 1]. By
Lemma 1, then, φ(s) = T1(∂

2
xφ(s)) for all s ∈ [0, 1], implying

that also

∂sφ(s) = ∂sT1(∂
2
xφ(s)) = T1(∂s∂

2
xφ(s)).

Invoking the fundamental theorem of calculus, and using the
definition of the operator T2, it follows that

φ(s) = φ(0) +
∫ s

0
∂sφ(θ)dθ

= u +
∫ s

0
T1(∂s∂

2
xφ(θ))dθ = u + (

T2(∂s∂
2
xφ)

)
(s).

Now, fix arbitrary ψ ∈ Ln
2[�1b

0a]. Then, for all s ∈ [0, 1],

∂s∂
2
x

(
u + (T2ψ)(s)

) = ∂2
x ∂s

(∫ s

0
T1

(
ψ(θ)

)
dθ

)
= ∂2

x T1(ψ(s)).

Here, by Lemma 1, ∂2
x T1(ψ(s)) = ψ(s) for all s ∈ [0, 1].

By Lemma 3, φ(t) = T1v(t) + T2ψ(t) with ψ(t) = φsxx(t)
for any φ(t) ∈ YT1v(t). Defining operators {A22,A11,d,A12}
as in Block 1, then, we can show that (φ, v, p) satisfies the
2D PDE (10) if and only if (ψ, v, p) satisfies the 2D PIE

T1vt(t) + T2ψ t(t) = A22ψ(t),ψ(t) ∈ Ln
2[�1b

0a], (11)
p(t) = A11,dv(t) + A12ψ(t).

Lemma 4: Suppose that Ad ∈ Ln×3n∞ [�b
a] and τ > 0, and

that B ∈ R
2n×4n satisfies the conditions of Lemma 1. Define

PI operators {T1, T2,A22,A11,d,A12} as in Block 1. Then, for
any given input v(t) ∈ Ln

2[�b
a], (ψ, p) solves the PIE (11)

with initial state ψ0 ∈ Ln
2[�1b

0a] if and only if φ = T1v + T2ψ
solves the PDE (10) with initial state φ0 = T1v(0) + T2ψ0.
Conversely, (φ, p) solves the PDE (10) with initial state φ0 ∈
YT1v(0) if and only if ψ = ∂s∂

2
xφ solves the PIE (11) with

initial state ψ0 = ∂s∂
2
xφ0.

Proof: Fix arbitrary ψ0 ∈ Ln
2[�1b

0a] and v(t) ∈ Ln
2[�b

a] for
t ≥ 0. Let ψ(t) ∈ L2[�1b

0a] and define φ(t) = T1v(t) + T2ψ(t).
By Lemma 3, φ(t) ∈ YT1v(t). In addition, it is clear that ψ(0) =
ψ0 if and only if φ(0) = T1v(0) + T2ψ0. Moreover, since
T1v(t) does not vary in s ∈ [0, 1],

φs(t) = ∂sT2ψ(t) = ∂s

∫ s

0

(
T1ψ

)
(t, θ)dθ = T1ψ(t) = −τA22ψ(t),

noting that A22 = − 1
τ
T1. It follows that

T1vt(t) + T2ψ t(t) − A22ψ(t) = φt(t) + (1/τ)φs(t). (12)

Furthermore, we note that, for any w ∈ Ln
2[�b

a],

∂x
(
T1w

) = ∂x

∫ x

a
T1(x, θ)w(θ)dθ + ∂x

∫ b

x
T2(x, θ)w(θ)dθ

= T1(x, x)w(x) +
∫ x

a
∂xT1(x, θ)w(θ)dθ

− T2(x, x)w(x) +
∫ b

x
∂xT2(x, θ)w(θ)dθ

=
∫ x

a
∂xT1(x, θ)w(θ)dθ +

∫ b

x
∂xT2(x, θ)w(θ)dθ.

By definition of the operators A11,d and A12, it follows that
(
A11,dv

)
(t, x) + (

A12ψ
)
(t, x)

= Ad(x)

([
I
∂x
∂2
x

](
T1v

)
(t, x) +

∫ 1

0

[
I
∂x
∂2
x

](
T1ψ

)
(t, s, x)ds

)

= Ad(x)

[
I
∂x
∂2
x

]
φ(t, 1, x). (13)

By (12) and (13), we conclude that (ψ(t), p(t)) satisfies the
PIE (11) if and only if (φ(t), p(t)) satisfies the PDE (10).

For the converse result, let φ0 ∈ YT1v(0) and φ(t) ∈ YT1v(t),
and define ψ0 = ∂s∂

2
xφ0 and ψ(t) = ∂s∂

2
xφ(t). By Lemma 3,

φ(t) = T1v(t) + T2ψ(t) and φ0 = T1v(0) + T2ψ0. By the first
implication, it follows that (φ, p) is a solution to the PDE with
initial state φ0 if and only if (ψ, p) is a solution to the PIE
with initial state ψ0.

IV. FEEDBACK INTERCONNECTION OF PIES

Having constructed a PIE representation of both the 1D and
2D subsystems of the PDE (6), we now take the feedback
interconnection of these PIE subsystems to obtain a PIE
representation for the full delayed PDE. This PIE will have
state w(t) = [

v(t)
ψ(t)

] ∈ Z(n,n)[�1b
0a], where we define

Z(n1,n2)[�1b
0a] := Ln1

2 [�b
a] × Ln2

2 [�1b
0a]. (14)

We represent a generalized PIE on such a state space as

Tppt(t) + T wt(t) = Aw(t) + Bp(t), w(t) ∈ Znw[�1b
0a],

q(t) = Cw(t) + Dp(t), (15)
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with input p(t) ∈ Znp and output q(t) ∈ Znq for nw, np, nq ∈
N

2, and where Tp through D are all PI operators. We collect
these PI operators as G := {T , Tp,A,B, C,D}, writing G ∈
	(nv,nq)×(nv,np), or G := {T ,A} ∈ 	nv×nv if np = nq = 0.

Definition 3 (Solution to the PIE): For a given input signal
p and initial state w0 ∈ Znv , we say that (w, q) is a solution
to the PIE defined by G := {T , Tp,A,B, C,D} if w is Frechét
differentiable, w(0) = w0, and for all t ≥ 0, (w(t), q(t), p(t))
satisfies Eqn. (15).

Using the composition and addition rules of PI operators,
we now show that the feedback interconnection of two suitable
PIEs as in (15) can be represented as a PIE as well.

Proposition 2 (Interconnection of PIEs): Let

G1 := {T1, Tp,A1,Bp, Cq,Dqp} ∈ 	(n1,nq)×(n1,np),

G2 := {T2, Tq,A2,Bq, Cp, 0} ∈ 	(n2,np)×(n2,nq),

and define G := {T ,A} ∈ 	nv×nv with nv = n1 + n2 as

T :=
[

T1 TpCp
TqCq T2 + TqDqpCp

]
, A :=

[
A1 BpCp
BqCq A2 + BqDqpCp

]
.

Then,
[ v
ψ

]
solves the PIE defined by G with initial state

[ v0
ψ0

]

if and only if (v, q) and (ψ, p) solve the PIEs defined by
G1 and G2 with initial states v0 and ψ0 and inputs p and q,
respectively, where for all t ≥ 0

p(t) = Cpψ(t), q(t) = Cqv(t) + Dqpp(t). (16)

Proof: Let v(t) ∈ Zn1 and ψ(t) ∈ Zn2 for t ≥ 0. Then, p(t)
and q(t) satisfy the PIEs defined by G2 and G1, respectively,
if and only if they are as in (16). In that case,

T
[

vt(t)
ψ t(t)

]
− A

[
v(t)
ψ(t)

]
=

[
T1vt(t) + TpCpψ t(t)
TqCqvt(t) + T2ψ t(t) + TqDqpCpψ t(t)

]

−
[
A1v(t) + BpCpψ(t)
BqCqv(t) + A2ψ(t) + BqDqpCpψ(t)

]

=
[
Tppt(t) + T1vt(t) − A1v(t) − Bpp(t)
Tqqt(t) + T2ψ t(t) − A2ψ(t) − Bqq(t)

]
.

From this expression, it follows that
[

v(t)
ψ(t)

]
satisfies the PIE

defined by G if and only if v(t) and ψ(t) satisfy the PIEs
defined by G1 and G2, respectively.

Using this result, we finally construct a PIE representation
for the full DPDE in (6).

Corollary 1: Suppose that A, Ad ∈ Ln×3n∞ [�b
a], τ > 0 and

B ∈ R
2n×4n satisfies the conditions of Lemma 1. Define T and

A as in Block 1. Then,
[ v
ψ

]
is a solution to the PIE defined by

{T ,A} with initial state
[ v0
ψ0

]
if and only if

[ u
φ

] = T
[ v
ψ

]
is a

solution to the DPDE defined by {A, Ad, B, τ } with initial state[ u0
φ0

] = T
[ v0
ψ0

]
. Conversely,

[ u
φ

]
is a solution to the DPDE

defined by {A, Ad, B, τ } with initial state
[ u0
φ0

]
if and only if

[ v
ψ

] =
[

∂2
x u

∂s∂2
x φ

]
is a solution to the PIE defined by {T ,A} with

initial state
[ v0
ψ0

] =
[

∂2
x u0

∂s∂2
x φ0

]
.

Proof: By definition of the operators T ,A, and invoking
Proposition 2,

[ v
ψ

]
is a solution to the PIE defined by {T ,A}

if and only if v and ψ are solutions to the PIEs (9) and (11),
respectively. By Lemma 2 and Lemma 4, it follows that

[ v
ψ

]
is

a solution to the PIE defined by {T ,A} if and only if u = T1v
and φ = T1v + T2ψ are solutions to the PDEs (8) and (10),
respectively. Taking the interconnection of these PDEs, we
finally conclude that

[ v
ψ

]
is a solution to the PIE defined by

{T ,A} if and only if
[ u
φ

] = T
[ v
ψ

] =
[

T1 0
T1 T2

][ v
ψ

]
is a solution

to the DPDE (6), defined by {A, Ad, B, τ }. The converse result
follows by similar reasoning.

V. TESTING STABILITY IN THE PIE REPRESENTATION

Having established a bijective map between the solution of
the DPDE (6) and that of an associated PIE, we now show
how this PIE can be used to formulate a convex optimization
problem to test stability of the DPDE. To derive this test, we
use the following inner product on w = [ v

ψ

] ∈ Zn[�],

〈w1, w2〉Z = 〈v1, v2〉L2[�b
a] + 〈

ψ1,ψ2
〉
L2[�1b

0a].

Theorem 1: Let {T ,A} ∈ 	n×n , and suppose that there
exist constants ε > 0, α ≥ 0, and a PI operator P : Zn → Zn

such that P = P∗, P � ε2I, and

A∗PT + T ∗PA � −2αT ∗PT . (17)

Then, any solution w to the PIE defined by {T ,A} satisfies

‖T w(t)‖Z ≤ (ζ/ε)‖T w(0)‖Z e−αt, where ζ := √‖P‖LZ .

Proof: Consider the candidate Lyapunov functional V(w) =
〈T w,PT w〉Z. Since P � ε2I and ‖P‖LZ = ζ 2, this function
is bounded below as V(w) ≥ ε2‖T w‖2

Z, and bounded above as
V(w) ≤ ζ 2‖T w‖2

Z, for all w ∈ Zn. Now, let w be an arbitrary
solution to the PIE defined by {T ,A}. Then, the temporal
derivative of V along w satisfies

V̇(w) = 〈Aw,PT w〉Z + 〈T w,PAw〉Z

= 〈
w,

(
A∗PT + T ∗PA

)
w

〉
Z

≤ −2α〈T w,PT w〉Z = −2αV(w).

Applying the Grönwall-Bellman inequality, it follows that
V(w(t)) ≤ V(w(0))e−2αt, and therefore

‖T w(t)‖2
Z ≤ (ζ/ε)2‖T w(0)‖2

Z e−2αt.

Theorem 1 shows that, for a PIE defined by {T ,A},
feasibility of the Linear PI Inequality (LPI) (17) proves
exponential stability of T w for all solutions w to the PIE.
Using equivalence of the DPDE (6) to the PIE defined in
Corollary 1, we can then test stability of the DPDE as follows.

Corollary 2: Let {A, Ad, B, τ } define a DPDE system, and
let {T ,A} be as in Corollary 1. If there exist ε, ζ > 0, α ≥
0, and P satisfying the conditions of Theorem 1, then any
solution

[ u
φ

]
to the DPDE defined by {A, Ad, B, τ } satisfies
∥∥[

u(t)
φ(t)

]∥∥
Z ≤ (ζ/ε)

∥∥[
u(0)
φ(0)

]∥∥
Ze−αt.

Proof: Let
[ u
φ

]
be a solution to the DPDE defined by

{A, Ad, B, τ }, and let
[ v
ψ

] = [ uxx
φsxx

]
. By Corollary 1,

[ v
ψ

]

solves the PIE defined by {T ,A}, and
[ u
φ

] = T
[ v
ψ

]
. Applying

Theorem 1 with w = [ v
ψ

]
, the result follows.

By Corollary 2, we can finally test stability of the DPDE (6),
by solving the LPI (17). Note that stability is proven in the
norm

∥∥[
u(t)
φ(t)

]∥∥2
Z = ‖u(t)‖2

L2
+ ∫ 1

0 ‖φ(t, s)‖2
L2

ds, bounding both
the PDE state u(t) and its history φ(t, s) = u(t − sτ).

VI. NUMERICAL EXAMPLES

In this section, we provide several numerical examples,
illustrating how stability of different PDE systems with delay
can be numerically tested by verifying feasibility of the LPI
from Theorem 1. In each case, the PIETOOLS software
package [12] is used to declare the delayed system as a
coupled system of (ODEs and) PDEs, convert the system to
an equivalent PIE, and declare and solve the stability LPI.
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TABLE I
MAXIMAL DELAY τLPI FOR WHICH EXPONENTIAL STABILITY OF

SYSTEM (18) WAS VERIFIED USING THEOREM 1 WITH ε = 10−2, α = 0

TABLE II
DECAY RATES α FOR WHICH EXPONENTIAL STABILITY OF SYSTEM (19)

WITH μ = 0.4 WAS VERIFIED USING THEOREM 1 WITH ε = 10−3

A. Heat Equation With Delay in Dynamics

Consider the following PDE with delay from [1], [16]

ut(t, x) = uxx(t, x) + ru(t, x) − u(t − τ, x), x ∈ �π
0 ,

u(t, 0) = u(t, π) = 0. (18)

Modeling the delay as a 2D transport equation, and using
PIETOOLS, we obtain an equivalent PIE representation as

(T vt)(t, x) = v(t, x) + (r − 1)(T v)(t, x) −
∫ 1

0
(T ψ)(t, s, x)ds,

(T vt)(t, x) +
∫ s

0
(T ψ t)(t, ν, x)dν = − 1

τ
(T ψ)(t, s, x),

where v(t, x) = ∂2
x u(t, x), ψ(t, s, x) = ∂s∂

2
xφ(t, s, x), and

(
T v

)
(t, x) :=

∫ x

0
θ [x − 1]v(t, θ)dθ +

∫ π

x
x[θ − 1]v(t, θ)dθ.

For 0 < r < 2, the DPDE (18) is stable if and only if τ <

τ̄ := cos−1(r−1)√
2r−r2

[16]. Performing bisection on the delay τ ,

stability can be numerically verified for delays up to τLPI as
in Table I. For each test, P in the LPI (17) was parameterized
by P ∈ R

27×27 (compare to P ∈ R
5×5 for the LMI in [1]).

B. Wave Equation With Delay in Boundary Conditions

The methodology proposed in this letter can also be adapted
to cases with delay in, e.g., the boundary conditions. For
example, consider the wave equation

utt(t, x) = uxx(t, x) x ∈ �1
0,

u(t, 0) = 0, ux(t, 1) = (1 − μ)ut(t, 1) + μut(t − τ, 1). (19)

As shown in [2], this system is stable independent of delay
if μ < 1

2 , and unstable independent of delay if μ > 1
2 . We

examine the ability of the proposed algorithm to expand upon
this result by determining bounds on the rate of decay for
several values of μ and τ . First, introducing u1(t) = u(t),
u2(t) = ut(t), φj(t, x) = uj(t − τx, 1) and u0(t) = (1 −
μ)u1(t, 1) + μφ1(t, 1), we represent the system as

u̇0(t) = ∂xu1(t, 1)

∂tu1(t, x) = u2(t, x), ∂tu2(t, x) = ∂2
x u1(t, x),

∂tφ1(t, x) = − 1

τ
∂xφ1(t, x), ∂tφ2(t, x) = − 1

τ
∂xφ2(t, x),

u1(t, 0) = 0, u2(t, 0) = 0,

φ1(t, 0) = u1(t, 1),φ2(t, 0) = u2(t, 1),

u0(t) = (1 − μ)u1(t, 1) + μφ1(t, 1),

∂xu1(t, 1) = (1 − μ)u2(t, 1) + μφ2(t, 1),

which can be readily converted to a PIE. Fixing τ = 1, stability
can then be numerically verified for any μ ≤ 0.5−10−3. Next,
fixing μ = 0.4 and bisecting on the value of α, exponential
decay rates can be computed as in Table I. For each test, the
operator P was parameterized by a matrix P ∈ R

73×73.

VII. CONCLUSION

In this letter, an LMI-based method for verifying stability
of coupled, linear, delayed, PDE systems in a single spatial
dimension was presented. In particular, it was shown that
for any suitably well-posed PDE with delay, there exists
an associated PIE with a corresponding bijective map from
solution of the delayed PDE to that of the PIE. The PIE
representation was then used to propose a stability test for
the delayed PDE. This stability test was posed as a linear
operator inequality on PI operator variables (an LPI). Finally,
the PIETOOLS software package was used to convert the LPI
to a semidefinite programming problem, and test stability of
several examples of delayed PDEs. While these results only
apply to fixed delays, an extension to time-varying delays may
be possible using PDE representations such as in [4].
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