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Abstract: Any suitably well-posed PDE in two spatial dimensions can be represented as a
Partial Integral Equation (PIE) – with system dynamics parameterized using Partial Integral
(PI) operators. Furthermore, L2-gain analysis of PDEs with a PIE representation can be posed
as a linear operator inequality, which can be solved using convex optimization. In this paper,
these results are used to derive a convex-optimization-based test for constructing anH∞-optimal
estimator for 2D PDEs. In particular, a PIE representation is first derived for arbitrary well-
posed 2D PDEs with sensor measurements along boundaries of the domain. An associated
Luenberger-type estimator is then parameterized using a PI operator L as the observer gain.
Next, it is shown that an upper bound on the H∞-norm of the error dynamics for the estimator
can be minimized by solving a linear operator inequality on PI operator variables. Finally,
an analytical formula for inversion of a sub-class of 2D PI operators is derived and used to
reconstruct the Luenberger gain L. Results are implemented in the PIETOOLS software suite
– applying the methodology and simulating the estimator for an unstable 2D heat equation.
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1. INTRODUCTION

Partial Differential Equations (PDEs) are frequently used
to model physical systems, relating the temporal evolution
of an internal state variable to its spatial distribution. For
example, to model the density u(t, x, y) of an exponentially
growing population on a 2D domain (x, y) ∈ [0, 1]2, we can
use the following PDE (see e.g. Holmes et al. (1994))

ut(t) = uxx(t) + uyy(t) + ru(t) + w(t), (1)

z(t) =
∫ 1

0

∫ 1

0
u(t, x, y)dxdy,

wherein r is a parameter determining the population
growth, w(t) is an external disturbance, z(t) denotes the
total population size, and where the evolution of the state
is further constrained by boundary conditions such as

u(t, 0, y) = ux(t, 1, y) = u(t, x, 0) = uy(t, x, 1) = 0. (2)

For state feedback control of such systems, we require real-
time knowledge of the distributed internal state u(t). How-
ever, in practice, direct measurement of the distributed
state would require a prohibitive number of sensors. To
alleviate the sensing burden, therefore, we commonly make
a smaller number of observations – typically on the bound-
ary of the domain. For example, in the population model,
we might only measure the population density on the up-
per boundaries (x = 1, y = 1), yielding observed outputs

q1(t, y) = u(t, 1, y) and q2(t, x) = u(t, x, 1). (3)

The role of an estimator, then, is to reconstruct the dis-
tributed state in the full domain from these limited obser-
vations. Unfortunately, designing an estimator is compli-
cated by the infinite-dimensional nature of the system.

For comparison, consider a linear Ordinary Differential
Equation (ODE), with a finite-dimensional state u(t)∈Rn,
sensed output q(t)∈Rm, and regulated output z(t)∈Rp, as
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u̇(t) = Au(t) +Bw(t), z(t) = Cu(t) +Dw(t),

q(t) = Cqu(t) +Dqw(t).

The most common approach for estimating the state, u(t),
is to construct a Luenberger-type observer, with state
estimate û(t) and parameterized by a gain matrix L as

˙̂u(t) = Aû(t) +Bw(t) + L(Cqû(t)− q(t)), ẑ(t) = Cû(t),

where ẑ(t) is the output estimate. Then, a matrix L which
minimizes supw ̸=0 ∥ẑ − z∥L2

/∥w∥L2
(the H∞-norm) may

be found by solving the Linear Matrix Inequality (LMI)

min
γ>0,P,W

γ,
[−γI −D C
(·)∗ −γI −PB∗ −WDq

(·)∗ (·)∗ (·)∗ + PA+WCq

]
⪯ 0,

s.t. P ≻ 0,

and setting L = P−1W (see e.g. Duan and Yu (2013)).

However, consider now a 2D PDE such as in (1) with state
u(t, x, y). Given observed outputs q(t) = (q1(t),q2(t)) as
in (3), it is relatively simple to define an equivalent of the
Luenberger-type estimator for ODEs, where we have

ût(t) = ûxx(t) + ûyy(t) + rû(t) + w(t) + L(q̂(t)− q(t)),

q̂1(t, y) = û(t, 1, y), q̂2(t, x) = û(t, x, 1),

with regulated output estimate ẑ(t) =
∫ 1

0

∫ 1

0
û(t, x, y)dxdy.

However, finding an observer gain L that minimizes the
H∞-norm of the map from w to ẑ − z is complicated
by the fact that the state and sensed outputs are now
infinite-dimensional, requiring us to parameterize infinite-
dimensional operators and optimize performance of PDEs.

To avoid these challenges with estimator synthesis of
PDE systems, a common approach is to project the PDE
state onto a finite-dimensional subspace and synthesiz-
ing an estimator based on this finite-dimensional (ODE)
approximation. Recent applications of this approach in-
clude: 1D systems with observer delay in Lhachemi and
Prieur (2022), 1D stochastic systems in Wang and Fridman



(2024), and 2D Navier-Stokes equations in Zayats et al.
(2021), each deriving LMI conditions for verifying stability
of the resulting error dynamics. However, parameteriz-
ing an estimator only by a finite-dimensional operator (a
matrix) necessarily introduces conservatism. In addition,
properties such as optimality of the estimator for the ODE
do not a priori guarantee optimality or even convergence of
the estimator for the PDE (see e.g. Zuazua (2005)), requir-
ing conditions for convergence to be proven a posteriori.

Estimator synthesis of PDEs is also frequently performed
using the backstepping method, in which a Luenberger-
type estimator is parameterized by a multiplier operator,
and convergence of the estimator is ensured by mapping
the resulting error dynamics to a stable target system.
Using this approach, estimators can be designed for a
variety of PDEs, including e.g. 1D hyperbolic systems as
in Yu et al. (2020) and PDEs in multiple spatial variables
as in Jadachowski et al. (2015). However, the backstepping
method also does not offer any guarantee of optimality of
the obtained estimators, and introduces conservatism by
parameterizing observer gains only by multiplier opera-
tors. In addition, each estimator is constructed only for a
narrow class of systems – and extending the approach to
new systems may require significant expertise.

In this paper we present an alternative, LMI-based method
for constructing Luenberger-type estimators for 2nd order,
2D PDEs. In particular, we focus on systems of the form

ut(t) =
∑2

i,j=0 Aij∂
i
x∂

j
yu(t) +Bw(t), u(t) ∈ X,

z(t) =
∑2

i,j=0

∫
[0,1]2

[Cij ]∂
i
x∂

j
yu(t) +Dw(t),

where the set X ⊆ Ln
2 [[0, 1]

2] is constrained by suitable
linear boundary conditions. The value of the state is
assumed to be observed along the boundary of the domain,
yielding a sensed output along e.g. the boundary y = 1 as

q(t, x) =
∑1

i,j=0 Fij(x)∂
i
x∂

j
yu(t, x, 1) +Gw(t).

Similar outputs on other boundaries are allowed as well.
An estimator for the resulting system will then be con-
structed by adopting an approach similar to that pre-
sented for 1D PDEs with finite-dimensional sensed outputs
q(t) ∈ Rm in Das et al. (2019). In that paper, the 1D
PDE was first converted to an equivalent Partial Integral
Equation (PIE), expressing the dynamics of the system in
terms of an associated fundamental state v(t) as

T vt(t) = Av(t) + Bw(t), z(t) = Cv(t) +Dw(t),

q(t) = Cqv(t) +Dqw(t),

where now the parameters (T , A, etc.) are all Partial
Integral (PI) operators. Given this PIE representation of
the system, the authors then proposed parameterizing a
Luenberger-type estimator by a PI operator L as

T v̂t(t) = Av̂(t) + Bw(t) + L(Cqv̂ − q(t)), ẑ(t) = Cv̂(t).
Finally, the authors showed that if there exist PI operators
P and W that solve the linear operator inequality

min
γ>0,P,W

γ,
−γI −D C
(·)∗ −γI −[B∗P +D∗qW∗]T
(·)∗ (·)∗ (·)∗ + T ∗[PA+WCq]

 ⪯ 0,

s.t. P ≻ 0, (4)

then, using the estimator gain L = P−1W, the H∞-norm
of the associated map from w to ẑ−z is upper-bounded by
γ. This linear operator inequality can be efficiently solved
using convex optimization methods with the PIETOOLS
software suite (Shivakumar et al. (2021)).

Unfortunately, when using the approach presented in Das
et al. (2019) to synthesize estimators for systems of 2D
PDEs, we encounter several challenges. In particular,
although it has been shown how a PIE representation
can be constructed for a broad class of 2D PDEs with
finite-dimensional inputs (see Jagt and Peet (2022)), a
similar representation has not been derived for infinite-
dimensional output signals, such as the sensed outputs
q(t) ∈ Lm

2 [0, 1]. Furthermore, since the sensed outputs
q(t) are not finite-dimensional, this also requires a more
complicated parameterization of the gain L : Lm

2 [0, 1] →
Ln
2 [[0, 1]

2] and hence the variable W in (4). Finally, al-
though a Luenberger-type estimator for the 2D PIE repre-
sentation may again be synthesized by solving the operator
inequality in (4), computing the associated estimator gain
L = P−1W requires inverting the operator P – posing the
challenge of computing the inverse of PI operators in 2D.

In the remainder of this paper, we address each of these
challenges. First, in Subsec. 3.1, an equivalent PIE rep-
resentation is derived for a broad class of 2D PDEs with
infinite-dimensional (sensed) outputs. In Subsec. 3.2, W
in (4) is then parameterized, and it is shown how optimal
estimator synthesis for the PIE can be performed by solv-
ing the operator inequality. Finally, in Sec. 4, an explicit
expression is derived for the inverse of a certain class of 2D
PI operators, and the operator inequality in (4) is posed as
an LMI. In Sec. 5, the methodology is implemented via the
software suite PIETOOLS, and illustrated for an unstable
heat equation using numerical simulation.

2. PRELIMINARIES

2.1 Notation

For a given domain Ω ⊂ R2, let Ln
2 [Ω] denote the set of

Rn-valued square-integrable functions on Ω, where we omit
the domain when clear from context. Define Wn

2 [[0, 1]
2] as

a Sobolev subspace of Ln
2 [[0, 1]

2], where

Wn
2 [[0, 1]

2]=
{
v
∣∣ ∂α1

x ∂α2
y v∈Ln

2 [[0, 1]
2], ∀α∈N2 :α1, α2≤ 2

}
.

For v ∈ Wn
2 [[0, 1]

2], denote the Dirac delta operators

(∆0
xv)(y) := v(0, y) and (∆1

yv)(x) := v(x, 1).

For a function N ∈ Lm×n
2 [[0, 1]2], define an associated

multiplier operator M[N ] : Rn → Lm
2 [[0, 1]2] and integral

operator ∫[0,1]2 [N ] : Ln
2 [[0, 1]

2] → Rm by

(M[N ]v)(x, y) := N(x, y)v, ∀v ∈ Rn,

(∫[0,1]2 [N ]v) :=
∫ 1

0

∫ 1

0
N(θ, η)v(θ, η)dηdθ, ∀v ∈ Ln

2 [[0, 1]
2].

2.2 Algebras of PI Operators on 2D Functions

Partial Integral (PI) operators are bounded, linear oper-
ators, parameterized by square-integrable functions. We
briefly recall the definition and properties of a class of
such operators on L2[[0, 1]

2] here, referring to Jagt and
Peet (2022) and the references therein for more details
and proofs.

Definition 1. (2D PI Operators, Π2D). For given param-

eters R :=
[

R00 R01 R02
R10 R11 R12
R20 R21 R22

]
with R00 ∈ Lm×n

2 [[0, 1]2], Rij ∈
Lm×n
2 [[0, 1]4], and Ri0, R0j ∈ Lm×n

2 [[0, 1]3] for i, j ∈
{1, 2}, define an associated operator Π[R] : Ln

2 [[0, 1]
2] →

Lm
2 [[0, 1]2] such that, for any v ∈ Ln

2 [[0, 1]
2],



(Π[R]v)(x, y) := R00(x, y)v(x, y)

+

∫ x

0

R10(x, y, θ)v(θ, y) dθ +

∫ 1

x

R20(x, y, θ)v(θ, y) dθ

+

∫ y

0

R01(x, y, η)v(x, η) dη +

∫ 1

y

R02(x, y, η)v(x, η) dη

+

∫ y

0

(∫ x

0

R11(x,y,θ,η)v(θ,η)dθ+

∫ 1

x

R21(x,y,θ,η)v(θ,η)dθ

)
dη

+

∫ 1

y

(∫ x

0

R12(x,y,θ,η)v(θ,η)dθ+

∫ 1

x

R22(x,y,θ,η)v(θ,η)dθ

)
dη.

We refer to an operator R = Π[R] of this form as a 2D PI
operator, writing R ∈ Πm×n

2D .

The structure of 2D PI operators will also be used to
represent maps between Lm

2 [[0, 1]2] and Rn1 × Ln2
2 [0, 1].

For example, for Q :=
[

Q0 Q1 Q2
0 0 0
0 0 0

]
and R :=

[
0 0 0

R0 R1 R2
R0 R1 R2

]
with Q0, R0 ∈ Lm×n

2 [[0, 1]2] and Qi, Ri ∈ Lm×n
2 [[0, 1]3],

the associated PI operators Π[Q] : Ln
2 [0, 1] → Lm

2 [[0, 1]2]
and Π[R] : Ln

2 [[0, 1]
2] → Lm

2 [0, 1] take the form(
Π[Q]u

)
(x, y) = Q0(x, y)u(x) ∀u ∈ Ln

2 [0, 1],

+

∫ x

0

Q1(x, y, θ)u(θ)dθ +

∫ 1

x

Q2(x, y, θ)u(θ)dθ,(
Π[R]v

)
(x) =

∫ 1

0

[
R0(x, η)v(x, η) ∀v ∈ Ln

2 [[0, 1]
2],

+

∫ x

0

R1(x, θ, η)v(θ, η)dθ +

∫ 1

x

R2(x, θ, η)v(θ, η)dθ

]
dη.

Write Π[Q] ∈ Πm×n
2D←1D and Π[R] ∈ Πm×n

1D←2D. Similarly, for

K ∈ Lm×n
2 [[0, 1]2], let Π

[
K 0 0
0 0 0
0 0 0

]
= M[K] and Π

[
0 0 0
0 K K
0 K K

]
=

∫[0,1]2 [K] , writing M[K] ∈ Πm×n
2D←0 and ∫[0,1]2 [K] : Πm×n

0←2D.

In Jagt and Peet (2022), it was shown that the sum Q+R,
composition QR, and adjoint Q∗ of 2D PI operators Q,R
of suitable dimensions are PI operators as well, presenting
explicit parameter maps defining each operation. These
operations have also been implemented in the PIETOOLS
software suite (Shivakumar et al. (2021)), allowing the
sum, composition, and adjoint of PI operator objects Q,R
to be readily computed as Q+R, Q*R and Q’, respectively.

2.3 A PIE Representation of 2D Input-Output PDEs

A Partial Integral Equation (PIE) is a linear differential
equation, parameterized by PI operators, defining the
dynamics of a state v(t) ∈ Lnu

2 . For a system with
finite-dimensional disturbance w(t) ∈ Rnw and (regulated)
output z(t) ∈ Rnz , a PIE on v(t) takes the form

T vt(t) = Av(t) + Bw(t), z(t) = Cv(t) +Dw(t), (5)

where the parameters (T , A, etc.) are PI operators.

Definition 2. (Solution to the PIE). For a given input w
and initial value v0 ∈ Lnu

2 , (v, z) is a solution to the PIE
defined by {T ,A,B, C,D} if v is Frechét differentiable,
v(0) = v0, and for all t ≥ 0, (v(t), z(t), w(t)) satisfies (5).

It has previously been shown how a PIE representation can
be constructed for a broad class of linear 2D PDEs with
finite-dimensional inputs and outputs w, z. In this paper,
we focus on 2nd order, coupled, 2D PDEs of the form

ut(t) =
∑2

i,j=0M[Aij ]∂
i
x∂

j
yu(t) +M[B]w(t), u(t) ∈ X,

z(t) =
∑2

i,j=0 ∫[0,1]2 [Cij ]∂
i
x∂

j
yu(t) +M[D]w(t), (6)

parameterized by matrix-valued functions[
Aij B
Cij D

]
∈
[
Lnu×nu
∞ [[0, 1]2] Lnu×nw

2 [[0, 1]2]
Lnz×nu
2 [[0, 1]2] Rnz×nw

]
,

and where the domain X ⊆ Wnu
2 [[0, 1]2] of the state u(t)

is defined by a set of suitable linear boundary conditions.
These boundary conditions may be expressed in terms of
all admissible derivatives of the state along the boundary
of the domain, collecting these derivatives using the oper-

ator Λbf :=
[

Λ1
Λ2
Λ3

]
: Lnu

2 [[0, 1]2] → R16nu ×L8nu
2 [0, 1], where

Λ1 :=

∆1

∆1∂x
∆1∂y
∆1∂x∂y

, Λ2 :=

[
∆2∂

2
x

∆2∂
2
x∂y

]
, Λ3 :=

[
∆3∂

2
y

∆3∂x∂
2
y

]
, (7)

with ∆1 :=

[
∆3∆

0
y

∆3∆
1
y

]
, ∆2 :=

[
∆0

y

∆1
y

]
, ∆3 :=

[
∆0

x

∆1
x

]
.

A general class of linear boundary conditions can then be
parameterized by a matrix E ∈ R8nu×24nu as

u(t) ∈ X :=
{
u ∈ Wnu

2 [[0, 1]2]
∣∣ M[E]Λbfu = 0

}
. (8)

Most common boundary conditions can be represented
in this format, expressing e.g. the conditions in (2) as
u(0, 0) = ux(1, 0) = uy(0, 1) = uxy(1, 1) = 0, uxx(·, 0) =
uxxy(·, 1) = 0 and uyy(0, ·) = uxyy(1, ·) = 0. Although, to
reduce notation, disturbances in the boundary conditions
will not be allowed here, such disturbances can be included
using the approach presented in Jagt and Peet (2022).

For any u(t) ∈ X, we define the associated fundamental
state as v(t) := ∂2

x∂
2
yu(t) ∈ Lnu

2 – free of any boundary
conditions and continuity constraints. The following result
from Jagt and Peet (2022) (Lem. 14) shows that if the
boundary conditions are suitably well-defined, then we
can define associated PI operators {T , . . . ,D} such that
u(t) = T v(t), and u(t) solves the PDE (6) if and only if
v(t) solves the PIE (5). The formulae for computing these
PI operators have been incorporated into the PIETOOLS
software suite, allowing a linear 1D or 2D PDE system to
be declared as a structure PDE, and the associated PIE rep-
resentation to be computed by calling PIE=convert(PDE).

Lemma 3. Let {Aij , B,Cij , D,E} define a well-posed PDE
as in (6) and (8), and define associated PI operators
{T ,A,B, C,D} as in Lem. 14 in Jagt and Peet (2022). Then

u = T ∂2
x∂

2
yu, ∀u ∈ X and v = ∂2

x∂
2
y T v, ∀v ∈ Lnu

2 .

Moreover, for any w(t) ∈ Rnw and t ≥ 0, (u(t), z(t))
satisfies the PDE (6) if and only if (∂2

x∂
2
yu(t), z(t)) satisfies

the PIE (5), and (v(t), z(t)) satisfies the PIE (5) if and only
if (T v(t), z(t)) satisfies the PDE (6).

2.4 A Linear PI Inequality (LPI) for L2-Gain Analysis

Linear PI Inequalities (LPIs) are convex optimization pro-
grams involving linear operator inequalities on PI operator
variables. In the next section, we will use the following
LPI for L2-gain analysis of 2D PDEs, presented in Lem. 8
in Jagt and Peet (2022), to derive a similar LPI for H∞-
optimal estimator synthesis.

Lemma 4. Let γ > 0, and suppose there exists a PI
operator P ∈ Πnu×nu

2D such that P = P∗ ≻ 0 and[−γI D C
D∗ −γI B∗PT
C∗ T ∗PB A∗PT + T ∗PA

]
⪯ 0.

Then, for any w ∈ Lnw
2 [0,∞), if (w, z) satisfies the PIE (5)

with v(0) = 0, then z ∈ Lnz
2 [0,∞) and ∥z∥L2

≤ γ∥w∥L2
.



3. AN H∞-OPTIMAL ESTIMATOR FOR 2D PDES

In this section, we provide the main technical result of
this paper, proposing an LPI for H∞-optimal estimator
synthesis for a class of 2D PDEs as in (6). Suppose that
we have three observed output signals, q1(t) ∈ Rnq1 ,
q2(t) ∈ L

nq2
2 [0, 1], and q3(t) ∈ L

nq3
2 [0, 1], defined by

q(t) :=

[
q1(t)
q2(t)
q3(t)

]
=

[
M[C1]Λ1

M[C2]Λ2

M[C3]Λ3

]
u(t) +

[
M[D1]
M[D2]
M[D3]

]
w(t), (9)

where[
C1 C2 C3

D1 D2 D3

]
∈

[
Rnq1

×16nu L
nq2×4nu

2 [0, 1] L
nq3×4nu

2 [0, 1]

Rnq1×nw L
nq2×nw

2 [0, 1] L
nq3×nw

2 [0, 1]

]
,

and where the operators Λ1,Λ2,Λ3 are as in (7), evaluating
admissible derivatives of the state along the boundary.

Definition 5. (Solution to the PDE). For a given input
signal w and initial state u0 ∈ X, (u, z,q) is a solution
to the PDE defined by {Aij , B,Cij , D,Ck, Dk, E} if u
is Frechét differentiable, u(0) = u0, and for all t ≥ 0,
(u(t), z(t),q(t)) satisfies (6) and (9).

Now, to construct an estimator for the PDE with the
proposed sensed output, first note that by Lem. 3 the
system dynamics can be equivalently represented in terms
of the fundamental state v(t) = ∂2

x∂
2
yu(t), as the PIE (5).

Invoking the identity u = T v, the output signals can be
represented in terms of this fundamental state as

q(t) = Cqv(t) +Dqw(t), (10)

where we define the operators

Cq :=

[
C1
C2
C3

]
=

[
M[C1] ◦ Λ1 ◦ T
M[C2] ◦ Λ2 ◦ T
M[C2] ◦ Λ2 ◦ T

]
, Dq :=

[
M[D1]
M[D2]
M[D3]

]
. (11)

Then, a Luenberger-type estimator for the PIE (5) can be
parameterized by a PI operator L as

T v̂t(t) =Av̂(t) + L(Cqv̂(t)− q(t)), ẑ(t) = Cv̂(t), (12)

returning an estimate of the PDE state u(t) = T v(t) as
û(t) = T v̂(t). The goal, then, is to choose the gain L
such as to minimize the H∞-norm of the resulting error
dynamics, i.e. to solve the optimization program

min
L,γ

γ s.t. ∥ẑ − z∥L2
≤ γ∥w∥L2

, ∀w ∈ L2[0,∞) \ {0}.

The following result shows that a solution to this program
can be computed by solving an LPI.

Theorem 6. For given Gpde := {Aij , B,Cij , D,Ck, Dk, E},
define PI operators {T ,A,B, C,D} as in Lem. 3, and let
{Cq,Dq} be as in (11). For any γ > 0, suppose there exist

P ∈ Πnu×nu

2D and W ∈ Π
nu×nq1

2D←0 ×Π
nu×nq2+nq3

2D←1D such that

P = P∗≻ 0,

−γI −D C
(·)∗ −γI −[B∗P +D∗qW∗]T
(·)∗ (·)∗ (·)∗ + T ∗[PA+WCq]

 ⪯ 0,

(13)

and let L = P−1W. If (u, z,q) is a solution to the PDE
defined by Gpde for some disturbance w ∈ Lnw

2 [0,∞)
and initial state u0 ∈ X, and (v̂, ẑ) is a solution to the
PIE (12) with input q and initial state v̂0 = ∂2

x∂
2
yu0, then

ẑ − z ∈ Lnz
2 [0,∞) and ∥ẑ − z∥L2 ≤ γ∥w∥L2 .

To prove this result, in Subsec. 3.1, it is first proven that
the operator Cq in (10) is indeed a PI operator, thus
yielding a PIE representation of the considered PDE. In
Subsec. 3.2, it is then shown how an estimator for this PIE
can be synthesized by solving the proposed LPI.

3.1 Representation of Infinite-Dimensional PDE Outputs

Consider the sensed output q(t) in (10), expressed in terms
of the fundamental state v(t) using operators {Cq,Dq}
as in (11). In order to show that an estimator based on
q(t) can be computed by solving the LPI (13), in this
subsection, it is first shown that the operators {Cq,Dq} in
this LPI are indeed PI operators.

To begin, consider e.g. the first element of the composition
Λ2 ◦ T in (11), given by ∆0

y∂
2
x ◦ T . It has previously been

shown that the composition of suitable differential and PI
operators can again be expressed as PI operators, so that
in particular, we can explicitly define Rkℓ ∈ Πnu×nu

2D such
that ∂k

x∂
ℓ
y ◦ T = Rkℓ, for every 0 ≤ k, ℓ ≤ 2 (see also the

extended version of this paper, Jagt and Peet (2024)). By
definition of the operators Λi in (7), then, it follows that

Λ1T =

∆1T
∆1R10

∆1R01

∆1R11

, Λ2T =

[
∆2R20

∆2R21

]
, Λ3T =

[
∆3R02

∆3R12

]
, (14)

where the Dirac operators ∆1, ∆2, and ∆3 are as in (7).
To show that also the compositions ∆i ◦ Rkℓ can be
expressed as PI operators, note that e.g. evaluating the
partial integral

∫ x

0
R(x, y, θ)v(θ, y)dθ at x = 1, the result

is a full integral
∫ 1

0
R(1, y, θ)v(θ, y)dθ. Prop. 7 extends this

idea for more general Dirac and 2D PI operators.

Proposition 7. For i, j ∈ {1, 2}, letRi0, R0j ∈ Lm×n
2 [[0, 1]3]

andRij ∈ Lm×n
2 [[0, 1]4], and define Fkj , Gℓi ∈ Lm×n

2 [[0, 1]3]
and Fk0, Gℓ0, Hkℓ ∈ Lm×n

2 [[0, 1]2] for k, ℓ ∈ {0, 1} by

Fk0(y, θ) :=R(2−k)0(k, y, θ), Fkj(y, θ, η) :=R(2−k)j(k, y, θ, η),

Gℓ0(x,η) := R0(2−ℓ)(x, ℓ, η), Gℓi(x,θ,η) :=Ri(2−ℓ)(x, ℓ, θ, η),

and Hkℓ(θ, η) :=Fk(2−ℓ)(ℓ, θ, η), for x, y, θ, η ∈ [0, 1]. Then

∆k
x ◦ Π

[
0 0 0

R10 R11 R12
R20 R21 R22

]
= Π

[
0 0 0

Fk0 Fk1 Fk2
Fk0 Fk1 Fk2

]
∈ Πm×n

1D←2D,

∆ℓ
y ◦ Π

[
0 R01 R02
0 R11 R12
0 R21 R22

]
= Π

[
0 Gℓ0 Gℓ0
0 Gℓ1 Gℓ1
0 Gℓ2 Gℓ2

]
∈ Πm×n

1D←2D,

∆k
x ◦∆ℓ

yΠ
[

0 0 0
0 R11 R12
0 R21 R22

]
= ∫[0,1]2 [Hkℓ] ∈ Πm×n

0←2D.

Proof. The proof follows using the fact that, evaluating

e.g.
(
Π
[

0 0 0
R10 R11 R12
R20 R21 R22

]
v
)
(x, y) at x = 0, the integral terms∫ x

0
[R1j ] vanish, leaving only full integral terms

∫ 1

0
[R2j ] as(

∆0
xΠ

[
0 0 0

R10 R11 R12
R20 R21 R22

]
v
)
(y) =

∫ 1

0

[
R20(0, y, θ)v(θ, y)

+

∫ y

0

R21(0, y, θ, η)v(θ, η)dη+

∫ 1

y

R22(0, y, θ, η)v(θ, η)dη
]
dθ

=
(
Π
[

0 0 0
R20(0,.) R21(0,.) R22(0,.)

R20(0,.) R21(0,.) R22(0,.)

]
v
)
(y) =

(
Π
[

0 0 0
F00 F01 F02
F00 F01 F02

]
v
)
(y).

A full proof is provided in the extended version of the
paper, Jagt and Peet (2024).

By Prop. 7, the compositions ∆i◦Rkℓ in (14) can again be
expressed as PI operators if the operators Rkℓ := ∂k

x∂
ℓ
y ◦T

for 0 ≤ k, ℓ ≤ 2 have suitable structures. As shown in
the extended version of this paper (Jagt and Peet (2024),
Lem. 7), the operators Rkℓ indeed satisfy the conditions of
Prop. 7, and thus the compositions Λi◦T and consequently
M[Ci] ◦ Λi ◦ T can be expressed as 2D PI operators, for
each i ∈ {1, 2, 3}. It follows that the operator Cq in (11)
is in fact a PI operator, thus yielding an equivalent PIE
representation of the PDE with sensed outputs as follows.



Lemma 8. For given Gpde := {Aij , B,Cij , D,Ck, Dk, E},
define associated PI operators Gpie := {T ,A,B,

[ C
Cq

]
,
[ D

Dq

]
}

as in Lem. 3 and in (11). Then, for any input w, (u, z,q)
is a solution to the PDE defined by Gpde with initial state
u0 ∈ X if and only if (v, [ z

q ]) with v = ∂2
x∂

2
yu is a solution

to the PIE defined by Gpie with initial state v0 = ∂2
x∂

2
yu0.

Proof. Fix an arbitrary input w. Then, by Lem 3, (u, z,q)
is a solution to the PDE defined by Gpde with initial state
u0 ∈ X if and only if (v, z) is a solution to the PIE defined
by {T ,A,B, C,D} with initial state v0 = ∂2

x∂
2
yu0, and q(t)

satisfies (9) with u(t) = T v(t). Here, by definition of the
operators {Cq,Dq}, q(t) satisfies (9) with u(t) = T v(t)
if and only if q(t) satisfies (10), and hence (v, [ z

q ]) is a
solution to the PIE defined by Gpie.

3.2 An LPI for Optimal Estimation of PIEs

Having derived a PIE representation of the 2D PDE (6),
consider now a Luenberger-type estimator for this PIE as
in (12), parameterized by a PI operator L = (L1,L2,L3) :

Π
nu×nq1

2D←0 × Π
nu×nq2

2D←1D × Π
nu×nq3

2D←1D. Then, for any solution
(v, z) and (v̂, ẑ) to the PIEs (5) and (12), respectively, the
errors e(t) := v̂(t)−v(t) and z̃(t) := ẑ(t)−z(t) will satisfy

T et(t) = Ãe(t) + B̃w(t), z̃(t) = C̃e(t) + D̃w(t), (15)

where we define the PI operators

Ã := A+ LCq, B̃ := −
(
B + LDq

)
, C̃ := C, D̃ := −D.

The H∞-optimal estimator synthesis problem, then, is to

find an operator L that minimizes the L2-gain supw ̸=0
∥z̃∥L2

∥w∥L2

from disturbances w to the error z̃. To solve this problem,
note that the challenge of verifying an upper bound γ on
the L2-gain of a PIE has already been posed as an LPI in
Lem. 4, yielding the following corollary.

Corollary 9. Let γ > 0, and suppose there exist P ∈
Πnu×nu

2D and W ∈ Π
nu×nq1

2D←0 × Π
nu×nq2+nq3

2D←1D that satisfy
the LPI (13) in Thm. 6. Then, for any w ∈ Lnw

2 [0,∞), if
(w, z̃) satisfies the PIE (15) with L = P−1W and e(0) = 0,
then z̃ ∈ Lnz

2 [0,∞) and ∥z̃∥L2 ≤ γ∥w∥L2 .

Proof. Let the conditions of the corollary be satisfied for
some γ, P andW, and let L := P−1W. Then, by definition
of the operators {Ã, B̃, C̃, D̃} defining the PIE (15),

[B∗P +D∗qW∗] = −B̃∗P and [PA+WCq] = PÃ.

By Lem. 4, the result follows.

Cor. 9 proves that, if the LPI (13) is feasible for some
(γ,P,W), then, using the estimator defined by (12) with

gain operator L := P−1W, the H∞-norm supw ̸=0
∥ẑ−z∥L2

∥w∥L2

of the associated error dynamics is upper-bounded by γ.
Using this result, we finally prove Thm. 6

Proof. [Proof of Thm. 6] Suppose that the conditions of
the theorem are satisfied. Fix arbitrary w ∈ Lnw

2 [0,∞)
and u0 ∈ X, and let (u, z,q) be an associated solution to
the PDE defined by parameters Gpde. Then, by Lem 8,
(v, [ z

q ]) with v = ∂2
x∂

2
yu is a solution to the PIE defined

by {T ,A,B,
[ C

Cq

]
,
[ D

Dq

]
}, with v0 = ∂2

x∂
2
yu0. Let (v̂, ẑ) be

a solution to the PIE (12) with input q(t) and initial state
v̂0 = ∂2

x∂
2
yu0, and define e = v̂ − v and z̃ = ẑ − z. Then,

e(0) = 0, and (w(t), z̃(t)) satisfies (15) for t ≥ 0. By Cor. 9
it follows that z̃ ∈ Lnz

2 [0,∞) and ∥z̃∥L2 ≤ γ∥w∥L2 .

4. ESTIMATOR SYNTHESIS USING AN LMI

Having shown how an H∞-optimal estimator for 2D PDEs
can be synthesized by solving the LPI (13), in this section,
we show how this LPI can be numerically solved by param-
eterizing the PI operator variables P and W by matrices.
In particular, for some p, r,m ∈ N, fix Z1 ∈ Πp×nu

2D ,

Z2 ∈ Πr×nu+nz+nw

2D , and Z3 ∈ Π
m×nq1

2D←0 ×Π
m×nq2

+nq3

2D←1D to
be defined by monomials of degrees at most d1, d2, d3 ∈ N,
in the variables x, y, θ, η ∈ [0, 1]. Then, parameterizing

P = Z∗1M[P ]Z1, Q = Z∗2M[Q]Z2, and W = M[W ]Z3,

by matrices P ∈ Rp×p, Q ∈ Rr×r, and W ∈ Rnu×m, it
can be shown that P ⪰ 0 and Q ⪯ 0 imply P ⪰ 0 and
Q ⪯ 0, respectively (see e.g. Jagt and Peet (2022)). In this
manner, the LPI conditions in Thm. 6 can be enforced as
LMI conditions, allowing an H∞-optimal estimator for a
2D PDE to be synthesized as in Algorithm 1.

Algorithm 1: H∞-Optimal Estimator Synthesis

Data: PDE Gpde, PI operators Z1,Z2,Z3, scalar ϵ>0.
1. Compute {T ,A,B, C,D, Cq,Dq} as per Thm. 6;
2. Solve the semidefinite program

min
γ>0,P,Q,W

γ

P ⪰ 0,

Q ⪯ 0,

−γI −D C
(·)∗ −γI −[B∗P +D∗qW∗]T
(·)∗ (·)∗ (·)∗ + T ∗[PA+WCq]

 = Q,

(16)

where P = Z∗1M[P ]Z1 + ϵM[Inu ], Q = Z∗2M[Q]Z2 and
W = M[W ]Z3;
3. Compute the Luenberger gain L = P−1W;

Note that, since the operator P in Algorithm 1 is bounded,
linear, and coercive, the inverse P−1 in L = P−1W is
well-defined. In order to actually compute this inverse, we
recall that an explicit expression for the operator inverse
has already been derived in Miao et al. (2019) for a class
of separable 1D PI operators, taking the form (Rv)(x) =

R0(x)v(x)+Z(x)T
∫ 1

0
HZ(θ)v(θ)dθ. The following propo-

sition replicates this result for separable 2D PI operators,
taking the form R = M[R0] + M[ZT ]H ∫[0,1]2 [Z].

Proposition 10. For p, n ∈ N, let R0 ∈ Ln×n
2 [[0, 1]2] be

invertible, and let R1(x, y, θ, η) = Z(x, y)THZ(θ, η) for

some Z ∈ Lp×n
2 [[0, 1]2] and H ∈ Rp×p. Let Q0 := R−10 and

Q1(x, y, θ, η) := Q0(x, y)
TZ(x, y)T ĤZ(θ, η)Q0(θ, η),

for x, y, θ, η ∈ [0, 1], where Ĥ = −H(Ip +KH)−1 ∈ Rp×p

with K :=
∫ 1

0

∫ 1

0
Z(ν, µ)Q0(ν, µ)Z(ν, µ)T dµdν ∈ Rp×p. If

R :=
[

R0 0 0

0 R1 R1
0 R1 R1

]
and Q :=

[
Q0 0 0

0 Q1 Q1
0 Q1 Q1

]
, then

Π[Q] ◦ Π[R] = Π[R] ◦ Π[Q] = M[In].

Proof. The result follows by the composition rules of 2D
PI operators. A full proof is given in the extended version
of this paper, Jagt and Peet (2024).

Using Prop. 10, the inverse of the operator P = Z∗1M[P ]Z1

in Alg. 1 can be computed analytically if the operator Z1

is chosen to have a suitable, separable structure. Although
such a restriction necessarily introduces conservatism, the
fact that both P andW in (16) may be defined by (partial)
integral operators still allows significantly more freedom
than parameterizing the Luenberger gain by merely a
multiplier operator, as is commonly done in practice.



5. A NUMERICAL EXAMPLE

The presented methodology for estimator synthesis of 2D
PDEs has been fully incorporated into the PIETOOLS
software suite (see Shivakumar et al. (2021)). Using this
software, an H∞-optimal estimator for a PDE can be
synthesized by first declaring the PDE as a structure
PDE with the user interface, converting it to a PIE using
PIE=convert(PDE), and finally solving the LMI (16) as
[Lop,gam]=lpisolve(PIE,‘estimator’), returning ob-
jects Lop and gam representing the optimal gain L and
associated minimal value of γ > 0, respectively.

In this section, the PIETOOLS software is used to con-
struct an optimal estimator for an unstable 2D heat equa-
tion, with sensing along the upper boundary of the do-
main. Performance of the estimator is tested by simulating
the error e(t) in the fundamental state v(t), based on the
PIE (15). We refer to the extended version of the paper
(Jagt and Peet (2024)) for more information on the applied
simulation scheme.

5.1 Estimator for a 2D Reaction-Diffusion Equation

Consider the following 2D reaction-diffusion equation,

ut(t) = uxx(t) + uyy(t) + ru(t) + (x2 − 1)(y2 − 1)w(t),

z(t) =
∫ 1

0

∫ 1

0
u(t, x, y)dxdy,

q1(t) = u(t, 1, ·) + η1(t), q2(t) = u(t, ·, 1) + η2(t),

u(t, 0, ·) = ux(t, 1, ·) ≡ 0, u(t, ·, 0) = uy(t, ·, 1) ≡ 0,

where u(t) ∈ L2[[0, 1]
2], w(t), z(t), η1(t), η2(t) ∈ R, and

q(t) =
[

q1(t)

q2(t)

]
∈ L2

2[0, 1]. Using PIETOOLS, we construct
an associated PIE representation and synthesize an esti-
mator for parameter values r = 4 and r = 8, for which
the system is stable and unstable, respectively. Solving
the LMI (16), we obtain gain operators L = P−1W that
achieve bounds on the H∞-norm of the associated error
dynamics as γ = 0.0476 (r = 4) and γ = 0.1403 (r = 8).

The error dynamics corresponding to the obtained estima-
tors were simulated with disturbance w(t) = 5e−t/2 sin(πt)
and initial state u(0, x, y) = 5((x − 1)4 − 1) sin(0.5πy),
starting with an initial estimate û(0) = 0. Sensor noise
η1(t) and η2(t) at each time step was generated from
a Gaussian distribution with mean 0 and variance 0.04.
Fig. 1 shows the norm of the error in the PDE state and
output for t ∈ [0, 5], as well as the value of the disturbance.
Both for the stable and unstable PDE, the errors in the
state and output estimates rapidly converge to zero.

6. CONCLUSION

In this paper, a new convex-optimization-based method
was presented for estimator synthesis of linear, 2nd order,
2D PDEs with state observations along the boundary. To
this end, it was proved that any sufficiently well-posed such
PDE can be equivalently represented as a PIE, specifically
proving that the value of the state u along the boundary
can be expressed in terms of a PI operator acting on the
fundamental state ∂2

x∂
2
yu. Parameterizing a Luenberger-

type estimator for the PIE by a PI operator, it was then
shown that a value of this operator with guaranteed bound
on the H∞-norm of the estimator error dynamics can
be computed by solving an LPI, which in turn could
be solved as an LMI. The proposed methodology has
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Fig. 1. Error in the estimates of the PDE state u(t) and the output
z(t) for the PDE in Subsec. 5.1 with r ∈ {4, 8}, for the initial error
u(0, x, y)− û(0, x, y) = 5((x− 1)4 − 1) sin(0.5πy) and disturbance
w(t) = 5e−t/2 sin(πt). The estimators correspond to bounds on the
H∞-norm of γ = 0.0476 (r = 4) and γ = 0.1403 (r = 8).

been incorporated in the PIETOOLS software suite, and
applied to construct an estimator for an unstable heat
equation, using simulation to show convergence of the
estimated state to the true value.
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