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Abstract— In this paper, we present a computationally
tractable convex formulation for the H2-optimal state esti-
mation problem applicable to a general class of linear time-
invariant systems modeled by Ordinary Differntial Equations
(ODEs) coupled with Partial Differential Equations (PDEs),
with one spatial dimension. These convex optimization problems
are derived by using an analysis and control framework called
the“Partial Integral Equation” (PIE) framework, which utilizes
the PIE representation of infinite-dimensional systems. Since
PIEs are parameterized by Partial Integral (PI) operators that
form an algebra, H2-optimal estimation and control problems
for PIEs can be formulated as Linear PI Inequalities (LPIs).
Furthermore, if a PDE admits a PIE representation, then the
stability and H2 performance of the PIE system implies that of
the PDE system. Consequently, the optimal estimator obtained
for a PIE using LPIs provide the same stability and per-
formance when applied to the corresponding original system.
LPI problems can be solved computationally once converted to
semi-definite programming; positive polynomial matrices are
imposed to parameterize a cone of positive PI operators, and
the polynomial positivity constraints are tightened to sum-of-
squares constraints, which can be converted to Linear Matrix
Inequalities and solved by semi-definite programming solvers.
The application of these methods is illustrated by synthesizing
estimators for important subclasses of linear ODE coupled with
PDE systems: time-delay systems and simple standard PDEs.

I. INTRODUCTION

Partial Differential Equations are used to describe the
evolution of some process whose state cannot be represented
using a finite set of values, but which is rather distributed
over a spatial domain. Examples of such processes include
fluid flow [1], [2], vibroaccoustics [3], [4], chemical re-
action networks, and time-delay systems [], among others.
The states in these processes may include velocity profile,
displacement, species concentration, and history. For such
systems, it is often desirable to be able to track the evolution
of the system using sensor measurements – either for the
purpose of feedback control [5], [6], [7], [8], [9], [10] or for
monitoring and fault detection [].

Unlike Ordinary Differential Equations and other such
lumped-parameter systems, however, direct measurement of
the system state of a PDE requires an uncountable number
of sensors – a practical impossibility. Consequently, there
has been significant interest in the development of observers
wherein by tracking a finite set of measurements, we may
infer real-time estimates of the entire distributed state. For
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ODEs, the problem of state estimation has been largely
solved, with special cases including the Luenberger observer,
the Kalman filter, and Linear Matrix Inequalities (LMIs)
for H∞-optimal observers and filters – methods which can
be applied to state-estimation for any linear ODE with
state-space representation. For PDEs, however, the need to
integrate boundary conditions and a distributed system state
precludes the existence of a convenient and universal state-
space representation. This means that most efforts to design
estimators for such systems are ad hoc – requiring significant
modification for even minor changes in the model [11]. As
a result, most approaches to the estimation of the PDE state
entail a reduction of the PDE state to finite dimensions, either
through early or late lumping.

Early-lumping [12], [13], [14] entails reduction of the PDE
to a state-space ODE through discretize via Galerkin pro-
jection, spatial discretization or modal decomposition. Late-
lumping [15], [16], [17], by contrast, formulates synthesis
conditions using the distributed state, but then enforces those
conditions on a finite number of test functions. In both
cases, neither stability or performance of the estimator can
be proven unless the truncation error can be bounded through
some auxiliary, ad-hoc process.

Recently, efforts have been made to synthesize observers
for PDE systems without lumping through the use of a more
convenient state-space representation of PDEs. This method
integrates the PDE evolution equation with the boundary con-
ditions by defining the state as the highest spatial derivative
of the distributed state and parameterizing the evolution of
this state by means of integral operators with polynomial
kernels. This method has the advantage that integration
operators form an algebra of bounded linear operators, which
can be represented using matrices and optimized using LMIs.
The representation of a PDE using such operators is referred
to as a Partial Integral Equation (PIE), and methods for the
construction of PIE representations of a broad class of PDEs
are well-established [18], [19], [20].

Observer designs for PDE systems that admit a PIE rep-
resentation have previously been presented in [21], [22] and
for time-delay systems in [23]. These results parameterize
the observer dynamics using PIEs and pose conditions for
stability and performance bounds as the solution of a convex
optimization problem expressed in terms of partial integral
(PI) operator variables and linear operator inequalities (LPIs),
which can be enforced using recently developed Matlab tool-
boxes such as [24]. These results use a generalization of the
KYP lemma to partial integral equations to ensure stability
and bound the L2-gain of a tracking error to disturbances



such as sensor noise. The problem with such approaches,
however, is that disturbances such as sensor noise are not
typically characterized in terms of energy, but rather in terms
of frequency content and power spectral density – such as is
the case for the well-known Kalman filtering problem.

The goal of this paper, then, is to combine and extend the
results in [21] and [23]. Specifically, this paper integrates
[21] and [23] by considering a broader class of PIEs that
represent PDEs coupled with ODEs. More significantly, this
paper extends these results by formulating the problem of
optimal observer synthesis, which minimizes a bound on
H2 performance. Unlike H∞-optimal observer synthesis,
wherein a proxy for H∞ performance is L2-gain, the main
technical difficulty for H2-optimal estimation is the iden-
tification of a time-domain proxy for H2 performance. To
address this difficulty, we rely on an initial condition to
output L2-gain characterization of the H2 metric as proposed
in [25]. This allows us to extend classical LMIs for H2-
performance to LPI-type conditions to performance bounds
on the error dynamics of the PIE-based observer.

To paper is structured as follows.

II. NOTATION

We denote Lp
2[a, b] the set of Lesbegue square-integrable

functions defined in the spatial domain, a compact interval
[a, b] ⊂ R for real a and b, and evaluated in Rp, with natural
p. Similarly, Lp

2[0,∞) is used for functions defined in the
temporal domain [0,∞) and evaluated in Rp. For brevity,
RLm,p

2 [a, b] denotes the space Rm ×Lp
2[a, b], for natural m,

endowed with the inner-product defined as follows:〈[
x1

x2

]
,

[
y1
y2

]〉
RL2

:= ⟨x1, y1⟩2 + ⟨x2,y2⟩L2
,

where
[
x1

x2

]
,

[
y1
y2

]
∈ RLm,p

2 and two different inner-

products were used: the norm-2 induced inner-product of
Rm, ⟨x1, y1⟩2 = xT

1 y1 and the usual L2 inner-product,∫
[a,b]

x2(θ)
Ty2(θ)dθ. Since these norms make Rm and

Lp
2[a, b] both Hilbert spaces, it follows that RLm,p

2 [a, b] is
also a Hilbert space. Occasionally, we omit the domain and
simply write Lp

2 or RLm,p
2 . We also omit the inner-product

subscripts whenever it is clear from the context and define
the extended space Lp

2e[0,∞) as
Lp
2e[0,∞) = {x : x ∈ Lp

2[0, T ] ∀ T ≥ 0}.
We use the bold font to indicate scalar or vector-valued

functions of the spatial variable, e.g. x(t) ∈ Lp
2[a, b]. For

these functions of time and space, ∂sx denotes ∂x
∂s . Moreover,

for simplicity of notation and in analogy with the usual state
vector in ODE systems, x(t) is used to denote x evaluated
in a given instant of time t .

Furthermore, we use the calligraphic font, e.g. A, to
represent bounded linear operators on Hilbert spaces, e.g.
A ∈ B(X) where X is a Hilbert space with inner product
⟨·, ·⟩X . Finally, for any A ∈ B(X), A∗ denotes the adjoint
operator satisfying ⟨x,Ay⟩X = ⟨A∗x,y⟩X for all x,y ∈ X ,
≻ and ⪰ means positive definiteness and semidefiniteness of

self-adjoint PI operators. The set of 4-PI operators is denoted
ΠΠΠ4, and the cone of positive 4-PI operators, ΠΠΠ+

4 .
In this section, we introduce the notation used in the paper

and we provide the basis the

III. STATE SPACE AND CONVEX OPTIMIZATION: PIS,
PIES, AND LPIS

PI operators is a spetial class of operators that generalize
the algebraic structure of matrices to infinite-dimensional
spaces. On the other hand, PIEs, which are parametrized
by PI operators, generalize the state-space representation to
linear time-invariant systems modeled by PDEs; it do so
by removing continuity and boundary constraints associated
with the PDE representation. Finally, the LPIs generalize
the convex optimization problems of LMIs since its feasable
spaces are the convex cone of positive PI operators.

These three ingredients are combined in this section,
providing the basis for the PIE framework, used in the
control problems addressed by this work. The usefulness of
PIE framework is illustrated in the last section, where state-
estimators are synthesized for PDEs with provable bounds
and without the necessity of tailored discretization schemes.

A. An Algebraic set of Operators

We begin by defining the PI operators that parametrize PIE
systems. After properly defining these operators, we show
how they expand the computationally tractable parametriza-
tion in finite-dimensional systems, given by matrices, to
infinite-dimensional systems; this motivates their use in PDE
systems coupled with ODEs, where the state has both finite
and infinite parts.

Definition 1. We say P = Π
[

P Q1

Q2 {Ri}

]
∈ ΠΠΠ4 ⊂

B(RLm1,n1

2 ,RLm2,n2

2 ) if there exists a matrix P and poly-
nomials Q1, Q2, R0, R1, and R2 such that(
P
[
x
x

])
(s) :=

[
Px+

∫ b

a
Q1(θ)x(θ)dθ

Q2(s)x+Ry(s)

]
,

(Rx) (s)=R0(s)x(s) +

s∫
a

R1(s, θ)x(θ)dθ +

b∫
s

R2(s, θ)x(θ)dθ.

If m1 = m2 and n1 = n2, this set of PI operators
is closed under composition, addition, and adjoint; explicit
formulae for these operations can be obtained in terms of
the polynomial matrices used to parametrize them. [26].

As shown in the definition, the notation Π
[

P Q1

Q2 {Ri}

]
is used to indicate a generic 4-PI operators, a particular
class of bounded linear operators, associated with the ma-
trix P and polynomial parameters Qi, Rj . The associated
dimensions (m1, n1,m2, n2) are inherited from the dimen-
sions of the constant matrix P ∈ Rm2×m1 and polyno-
mial matrices Q1(s) ∈ Rm2×n1 , Q2(s) ∈ Rn2×m1 , and
R0(s), R1(s, θ), R2(s, θ) ∈ Rn2×n1 .

In the case where a dimension is zero, we use ∅ in place
of the associated parameter with zero dimension and may
keep the 4-PI notation. For example, the particular case of



p = q = 0 makes an operator

P = Π
[

P ∅
∅ {∅}

]
: Rm1 → Rm2 ,

a purely multiplicative operator, as used in ODE systems,
where the state has only a finite-dimensional component. For
simplicity, we don’t use the 4-PI notation in this particular
case; we use the matrix representation of multiplier operators
instead. This is always the case for the map from finite-
dimensional inputs to finite-dimensional outputs.

On the other hand, by making m = n = 0, the resultant
operator has the form

Π
[

∅ ∅
∅ {Ri}

]
: Ln1

2 → Ln2
2 ,

which is a particular class of 4-PI operators, called 3-PI, used
in systems of PDEs where the state has only an infinite-
dimensional component. It was shown in [18] that 3-PI
operators form a ∗-algebra, and thus, the set is endowed
with algebraic operations used in matrix algebra: addition,
composition, adjoint, and inverse.

Other particular case used to represent finite dimensional
inputs to state behavior is n1 = 0, giving

Π
[

P ∅
Q2 {∅}

]
: Rm1 → RLm2,n2 .

Finally, to represent state to finite dimensional outputs, we
use

Π
[

P Q1

∅ {∅}

]
: RLm1,n1 → Rm2 .

This generalization, together with the fact that polynomial
matrices are easily stored in computers, allows the numerical
results that have been presented so far using the PIEs
framework: an algebraic mimic of established results in
convex optimization of ODE systems in terms of PI oper-
ators and search for optimal solutions using the developed
computational toolbox.

B. Partial Integral Equations

It has been shown in, e.g. [26], that a large class of coupled
ODE-PDE systems with sensed and regulated outputs, y(t) ∈
Rny , z(t) ∈ Rnz , and in-domain disturbances, w(t) ∈ Rnw ,
may be equivalently represented using a partial integral
equation (PIE) of the form
∂t(T x(t)) = Ax(t) + B1w(t), x(0) = 0 ∈ RL2,

z(t) = C1x(t), y(t) = C2x(t) +D21w(t), (1)
where the solution of the PIE, x(t) ∈ R×L2 yields a solution
to the PDE as T x(t). The PIE state, x(t) combines ODE
state with a spatial derivative of the PDE state and admits
no boundary conditions or continuity contraints. The system
parameters A,B1, C2, et c. are all 4-PI operators.

The solution of this class of PIE is formally defined
as follows, where x ∈ Lp

2e[0,∞) means x(t) ∈ Rp and∫ T

0
∥x(t)∥2 dt if finite for all T ≥ 0.

Definition 2 (PIE solution). Given PI operators T , A, B1,
C1, C2, D21 we say {x, z, y} is a solution to the PIE system
for given initial condition x(0) ∈ RLm,n

2 [a, b] and input
w ∈ Lnw

2e [0,∞), if T x(t) is Frechét differentiable for all
t ∈ [0,∞), and if x(t) ∈ RLm,n

2 [a, b], z ∈ Lnz
2e [0,∞), and

y ∈ L
ny

2e [0,∞) satisfy Eq. (1) for all t ∈ [0,∞).

C. Linear PI Operator Inequalities

As described in Subsection ??, 4-PI operators of the
form given in Defn. 1 constitute a composition algebra of
bounded linear operators and are parameterized by poly-
nomial matrices, which in turn can be parameterized by
the coefficients of those polynomials. In this paper, we
reformulate the problem of H2-optional estimator synthesis
as an optimization problem where the decision variables
are themselves PI operators and are subject to inequality
constraints which are affine in those decision variables –
See, e.g. Eqn. (12) in Thm. 8. Optimization problems in this
form may be solved by using matrices to parameterize the
coefficients of the polynomials which define the PI operator
variables. Inequalities are enforced by using positive matrices
to parameterize positive PI operators, as described in [18].
For convenience, we denote the set of positive 4-PI operators
which admit such a parameterization as Π+

4 .
Thus, affine inequality constraints of the form, e.g.

A∗PT + T ∗PA ≺ 0

can be enforced by using the equality constraint A∗PT +
T ∗PA + ϵI = −Q where Q ∈ Π+

4 and the equality
constraint is enforced by equating the coefficients of the
polynomials which define Q ∈ Π4 and A∗PT + T ∗PA +
ϵI ∈ Π4.

IV. PROBLEM FORMULATION

The purpose of this section is to introduce a suitable
time-domain characterization of the H2 norm and use this
characterization to define the problems of H2 norm bounding
and H2-optimal estimation for systems which admit a PIE
representation.

A. The H2 norm of a PIE

For this subsection, we restrict our consideration to char-
acterization of the H2 norm of a system represented by a
PIE of the form

∂t(T x(t)) = Ax(t) + B1w(t),

z(t) = C1x(t), x(0) = 0, (2)
where x(t) ∈ RL2 is the state, w ∈ L2[0∞) is a disturbance,
and z is the output. Specifically, in Defn. 3, we define the
H2 norm of this system as L2-gain of initial condition to
output of an auxiliary system with no disturbance. While
non-standard, we will see that this characterization of H2

performance is equivalent in a certain sense to the standard
definition of H2 norm.

Definition 3. Consider solutions of the auxiliary PIE

∂t(T x(t)) = Ax(t),

z(t) = C1x(t), x(0) = B1x0. (3)
We define the H2 norm of System (2) (denoted G) as

∥G∥H2
:= sup

z,x satisfy (3)
∥x0∥=1

∥z∥L2

we have that ∥z∥L2
≤ γ.



To see the relationship between the definition of H2 norm
in Definition 3 and the standard definition, recall the usual
state-space representation of an ODE.[

ẋ(t)
z(t)

]
=

[
A B
C 0

] [
x(t)
w(t)

]
∀t ∈ [0,∞) (4)

Then if A is Hurwitz, and we define the transfer function as
Ĝ(s) = C(sI −A)−1B, the standard definition of H2 norm
is given as

∥Ĝ2∥H2
=

1

2π

∫ ∞

−∞
trace (G∗(iω)G(iω)dω)

trace

(
BT

1

∫ ∞

0

eA
T τCT

1 C1e
AτdτB1

)
where we have used the inverse Laplace transform to obtain
the time-domain characterization [27].

Corollary 4. Suppose A is Hurwitz and Ĝ(s) = C(sI −
A)−1B. Consider solutions of the auxiliary ODE

ẋ(t) = Ax(t),

z(t) = Cx(t), x(0) = Bx0, (5)
Then

sup
z satisfies (5)
∥x0∥=1

∥z∥L2
≤ ∥G∥H2

≤ nw sup
z satisfies (5)
∥x0∥=1

∥z∥L2

Proof. Suppose {x, z} satisfy 4 with initial condition x(0) =
Bx0. Then x(t) = eAtBx0 and hence if ∥x0∥ = 1, we have

∥z∥2L2
=

∫ ∞

0

x(τ)TCTCx(τ)dτ

=

∫ ∞

0

xT
0 B

T eA
T τCTCeAτBx0dτ

≤ σ̄

(∫ ∞

0

BT eA
T τCTCeAτBdτ

)
≤ trace

(∫ ∞

0

BT eA
T τCTCeAτBdτ

)
= ∥G∥2H2

.

Furthermore,

∥G∥2H2
= trace

(∫ ∞

0

BT eA
T τCTCeAτBdτ

)
≤ nwσ̄

(∫ ∞

0

BT eA
T τCTCeAτBdτ

)
= nw sup

∥x0∥=1

∫ ∞

0

xT
0 B

T eA
T τCTCeAτBx0dτ

= nw sup
∥x0∥=1

∥z∥2L2
.

Clearly, if the PIE has a single input, the proposed
definition of H2 norm coincides with the typical definition.
Alternatively, in the case of multiple inputs, our time-
domain characterization of H2 norm would coincide with
an alternative definition of H2 norm given by

∥Ĝ2∥H2
=

1

2π

∫ ∞

−∞
σ̄ (G∗(iω)G(iω)dω)

Having defined the H2-norm, we proceed to present the
two main problems of this work: computing optimal upper
bounds on the H2-norm of a PIE and synthesizing an optimal

state-estimator based on the H2-norm. Our approach de-
rives a convex problem; optimal solutions can be ultimately
searched by usual semi-definite programming solvers.

B. H2-Optimal Estimators

Recall that our goal is to design an observer which
provides an estimate of the state of a ODE-PDE with a PIE
representation of the form,
∂t(T x(t)) = Ax(t) + B1w(t), x(0) = 0,

z(t) = C1x(t), y(t) = C2x(t) +D21w(t), (6)
where recall the state of the original ODE-PDE is obtained
from the solution of the PIE as T x(t). The signal y(t) are
measurements of the ODE-PDE and z(t) represents those
parts of the state by which we will measure the performance
of our estimator. Our estimator dynamics are then assumed
to have the Luenberger observer structure

∂t (T x̃(t)) = Ax̃(t) + L (C2x̃(t)− y(t)) ,

x̃(0) = 0, (7)
which mirror the dynamics of the observed system, but
without the disturbance, which is unknown. The term,
C2x̃(t) − y(t), reflects the difference between the predicted
and measured output from the ODE-PDE. This term is
weighted by the observer gain, L : Rny → RL2 which is
taken to be a PI operator. By combining the observer in
Eqn. (7) with the measured output of an ODE-PDE, real-time
estimates of the ODE-PDE state can be obtained as T x̂(t)
and used in conjunction with state-feedback controllers or
fault detection algorithms.

The H2-optimal estimation problem, then, is to choose L
which minimizes the H2-norm of the map from disturbance
w to error in the regulated output, which we define as ez(t) =
C1x̂(t)−z(t). This map can likewise be represented as a PIE
with state e(t) = x̂(t)−x(t), where x̂ satisfies Eqn. (7) and
x satisfies Eqn. (6) so that

∂t (T e(t)) = (A+ LC2)e(t)− (B1 + LD21)w(t),

ez(t) = C1e(t), e(0) = 0. (8)
We see that System (2) is of the form in Eqn. (2) with
A 7→ A + LC2, P 7→ − (B1 + LD21) and C 7→ C1. Thus
we can formulate the H2-optimal synthesis problem using
the auxiliary PIE from Defn. 3
∂t (T e(t)) = (A+ LC2)e(t),

ez(t) = C1e(t), e(0) = − (B1 + LD21)x0. (9)
as

min
L∈Π

sup
z,e satisfy (9)

∥x0∥=1

∥ez∥L2
. (10)

In Section VI, we will reformulate the H2-optimal estimation
problem as an LPI. First, however, we need to address the
problem of how to use LPIs to compute the H2 norm of a
PIE.

V. AN LPI FOR THE H2 NORM

In this section, we show how to use LPIs to compute the
H2 norm of a PIE. We begin by reformulating the following
result from [25].



Theorem 5. Suppose T ,A, C ∈ Π4. Suppose there exists
some P ≻ 0 such that:

trace(B∗PB) < γ2,

A∗PT + T ∗PA+ C∗C ≺ 0. (11)
Then

sup
z,x satisfy (3)

∥x0∥=1

∥z∥L2
< γ

We now use an extension of the Schur complement to ob-
tain an LPI for bounding the H2 norm which will be used for
estimator design in Section VI. This reformulation, however,
requires us to define vertical and horizontal concatenation of
Π4 operators such that the concatenated operator is in Π4

(See Lemmas 39,40 from [26]). This definition separately
concatenates the real and distributed portions of the operator
so that if, e.g. P ∈ L(Rn ×Lm

2 ) and Q ∈ L(Rp ×Lq
2), then[

P 0
0 Q

]
∈ L(Rn+p × Lm+q

2 ).

Lemma 6 (Schur Complement). Suppose P,Q,R ∈ Π4.
Then the following are equivalent.

1)
[
P Q∗

Q R

]
≻ ϵI.

2) R−Q∗P−1Q ≻ ϵI and P ≻ ϵI

Proof. In this proof, there is no rearrangement of rows or
columns. Now, mirroring the standard proof of the Schur
complement, suppose that 1) is true. Then, we have

⟨x,Px⟩ =
〈[

x
0

]
,

[
P Q∗

Q R

] [
x
0

]〉
≥ ϵ ∥x∥2

which implies that P is invertible. Now note that[
P 0
0 R−Q∗P−1Q

]
=

[
I −P−1Q
0 I

]∗ [P Q∗

Q R

] [
I −P−1Q
0 I

]
and hence〈
x, (R−Q∗P−1Q)x

〉
=

〈[
0
x

]
,

[
P 0
0 R−Q∗P−1Q

] [
0
x

]〉
=

〈[
−P−1Qx

x

]
,

[
P Q∗

Q R

] [
−P−1Qx

x

]〉
≥ ϵ

∥∥∥∥[−P−1Qx
x

]∥∥∥∥2 ≥ ϵ ∥x∥2

For the converse, suppose 2) is true. Then[
P Q∗

Q R

]
=

[
I P−1Q
0 I

]∗ [P 0
0 R−Q∗P−1Q

] [
I P−1Q
0 I

]
which implies〈[

x
y

]
,

[
P Q∗

Q R

] [
x
y

]〉
≥ ϵ

∥∥∥∥[I P−1Q
0 I

] [
x
y

]∥∥∥∥2
Now, define

∥∥∥∥∥
[
I P−1Q
0 I

]−1
∥∥∥∥∥
L(RL2)

= δ. Then

∥∥∥∥[I P−1Q
0 I

] [
x
y

]∥∥∥∥2 ≥ δ

∥∥∥∥[xy
]∥∥∥∥2

and hence 〈[
x
y

]
,

[
P Q∗

Q R

] [
x
y

]〉
≥ ϵδ

∥∥∥∥[xy
]∥∥∥∥2

as desired.

Theorem 7. Suppose T ,A, C ∈ Π4. Suppose there exists
some matrix W ≥ 0, a 4-PI operator P ≻ 0, and ϵ > 0
such that: [

−γI C
C∗ T ∗PA+A∗PT

]
≺ −ϵI (12)[

W B∗P
PB P

]
≻ 0 (13)

trace(W ) < γ,

(14)
Then

sup
z,x satisfy (3)

∥x0∥=1

∥z∥L2
< γ

Proof. Suppose γ,P,Z are as stated above. Then, Inequal-
ity (12) combined with Lemma 6 implies

A∗PT + T ∗PA+
1

γ
C∗C ≺ −ϵI

Likewise, Inequality (13) combined with Lemma 6 implies
W − B∗PP−1PB = W − B∗PB > 0.

Now W and B∗PB are matrices and hence trace(B∗PB) <
traceW < γ. Define P̂ = γP so that P = 1

γ P̂ and hence

A∗P̂T + T ∗P̂A+ C∗C ≺ −γϵI trace(B∗P̂B) < γ2

which implies the conditions of Thm 5 are satisfied.

In Section VI, we use this LPI for the H2 norm to
synthesize observers which minimize a bound on the H2

norm of the error dynamics.

VI. AN LPI FOR H2-OPTIMAL ESTIMATOR

In this section, we consider the problem of designing the
estimator gain L ∈ Π4 which minimizes a bound on the
H2 norm of the error dynamics defined in Subsection IV-B.
Specifically, recall these error dynamics are given by

Theorem 8. Suppose there exist ϵ > 0, δ > 0, γ ∈ R, matrix
W , and PI operators P ⪰ ϵI and Z , such that[

−γI C1
C∗
1 T ∗PA+A∗PT + T ∗ZC2 + C∗

2Z∗T

]
⪯ ϵI (15)[

W B∗
1P +DT

21Z∗

PB1 + ZD21 P

]
⪰ 0

trace(W ) < γ,

(16)
Then, the H2-norm of the system in Eq. (8) is upper bounded
by γ. Moreover, from Eq. ??, x̃(t) exponentially approaches
x(t), x̃(t) exponentially approaches x(t), and L = P−1Z .

Proof. Let L = P−1Z . Then[
−γI C1
C∗
1 T ∗P (A+ LC2) + (A+ LC2)∗ PT

]
=

[
−γI C1
C∗
1 T ∗P

(
A+ P−1ZC2

)
+
(
A+ P−1ZC2

)∗
PT

]
=

[
−γI C1
C∗
1 T ∗PA+A∗PT + T ∗ZC2 + C∗

2Z∗T

]
≺ 0



Likewise[
W − (B1 + LD21)

∗ P
−P (B1 + LD21) P

]
=

[
W −

(
B1 + P−1ZD21

)∗ P
−P

(
B1 + P−1ZD21

)
P

]
=

[
W B∗

1P +DT
21Z∗

PB1 + ZD21 P

]
≻ 0

Finally, trace(W ) < γ. Now, by applying Theorem 7, the
above equations imply that γ is an upper bound on the H2-
norm of the PIE system defined by {T , (A + LC2), (B1 +
LD21), C1} as in Eq. 8 and that the error approaches zero
exponentially.

Theorem 8, provides an optimization problem with 4-PI
variables and LPI constraints, Eq. (15). Since Proposition 10
provides a convex constraint by appropriately choosing g(s)
and restricting the polynomial degrees, these constraints are
convex, as well as the objective function γ.

Corollary 9. Given ϵ ≥ 0, if

γ2∗ := min
γ2∈R,P,Z∈ΠΠΠ4,W⪰0+

γ (17)

trace(W ) ≤ γ2,

P − ϵI ∈ ΠΠΠ+
4 ,[

P −(PB1 + ZD21)
−(PB1 + ZD21)

∗ W

]
∈ ΠΠΠ+

4 ,

− (T ∗PA+A∗PT + T ∗ZC2 + C∗
2Z∗T + C∗

1C1) ∈ ΠΠΠ+
4 ,

and {e, e, ez} satisfies the PIE in Eq. (8) for some initial
e0 and e0, we have that ∥ez∥2L2

≤ γ2 ∥x0∥22 and thus, by
definition, the H2 norm of Eq. (8) is upper bounded by γ.

The above SDP may be parsed by PIETOOLS. [24],
resulting in the operators P and Z . The estimator gain is the
4-PI operator L = P−1Z , which optimizes the performance
of the error system Eq. (8), in terms of minimizing the H2

norm in Definition 3. The reconstruction of the gains from
the SDP solution is discussed in the next section.

VII. ESTIMATOR RECONSTRUCTION

The observer designed in the last section thus is a map
L : Rny → RL2[a, b]. In this section, we partition the state
into a finite-dimensional state x1(t) ∈ Rm, and and infinite-

dimensional state x(t) ∈ Ln
2 [a, b], i.e. x(t) =

[
x1(t)
x2(t)

]
. Thus,

the structure of the estimator is parametrized by the matrix
L1 and polynomial matrix L2(s) as:

Ly(t) =
[

L1y(t)
L2(s)y(t)

]
.

Recall the sensed out put has the form y(t) = C2x(t) +
D21w(t) where C2 ∈ Π4 has the form

C2
[
x1(t)
x2(t)

]
= C2,1x1(t) +

∫ b

a

C2,2(θ)x2(θ, t)dθ.

Thus, the correction term added to the estimator dynamics

in Eq.(7) becomes

L

(
C1

2x1(t) +

∫ b

a

C2
2 (θ)x2(θ, t)dθ − y(t)

)

=

 L1

(
C1

2x1(t)− y(t) +
∫ b

a
C2

2 (θ)x2(θ, t)dθ
)

L2(s)
(
C1

2x1(t)− y(t) +
∫ b

a
C2

2 (θ)x2(θ, t)dθ
) ,

(18)
The gains L1 and L2(s) are computed by inverting the

self-adjoint operator P . In PIETOOLS, this inversion is done
by a numerical approximation in general; however, in the
particular case where the integral operators have a separable
kernel (R1 = R2) in Definition 1, an analytical formula
exists. Lemma 17 of [] proves that the inversion can be
approximated arbitrarily well in the general case.

It can be formally proved that a general class of PDEs
allows for an equivalent PIE representation as in Eq. (1) and
the two representations have the same internal stability and
input-output properties (see [18] for linear time-invariant 1D
PDEs with polynomial coefficients, [28] for a broad class of
time delay systems, and [26] for more general time-invariant
PDEs. In the next section, numerical examples of the main
results are presented. The original problem is given in terms
of PDEs that are converted to PIEs.

VIII. NUMERICAL EXAMPLES

This tedious process of constructing the PIE representation
has been automated in the PIETOOLS software package [29],
[30] with a dedicated command line and GUI input formats.
Typically, given a coupled ODE-PDE with sufficient bound-
ary conditions, one can find a PIE representation of the form
Eq. (??) using Cauchy’s rule for repeated integration [18],
[28], [26]. Besides converting PDEs or time-delay systems
to PIEs, PIETOOLS offers convenient Matlab functions to,
declare PI decision variables, add LPI constraints, and solve
the resulting optimization problem.

For the following examples, namely, an unstable reaction-
diffusion PDE and a neutrally-stable Euler-Bernoulli beam,
we obtain a PIE representation of the PDEs and apply the
results from Cor. 9 to find the H2-optimal observers. Uti-
lizing PIETOOLS functions to invert positive PI operators,
we construct the closed-loop observer systems, which are
simulated using first-order backward difference integration
scheme for certain initial conditions and disturbance. For
each example, we also provide a numerical estimate of the
H2-norm of the error (i.e., ∥ez∥L2

for x0 = 1) as observed in
the simulations — i.e., by performing numerical integration
of the simultation output z(t)2 to obtain ∥ez∥L2

.

A. Reaction-diffusion proccess
In this example, we consider the reaction-diffusion PDE

given by

ẋ(t, s) = 3x(t, s) + (s2 + 0.2)∂2
sx(t, s) +

s2 − 2s

2
w(t),

z(t) =

[∫ 1

0
x(t, s)ds
u(t)

]
, y(t) = x(t, 1) + w(t),

x(t, 0) = ∂sx(t, 1) = 0. (19)



Fig. 1: This figure plots the error (e = x̂ − x) in the state
estimate (on the left) and regulated error output (on the right)
of the state observer for the system Eq. (19). The observer is
initialized with zero initial conditions, whereas the PDE state
starts with an initial condition x(0, s) = s and disturbance
w(t) = sin(100t). H2-norm of the observer error system
is 2.2949 (numerical estimate 0.23) where regulated and
observed outputs are as defined in Subsec. VIII-A.

For the above PDE, we use PIETOOLS toolbox to obtain a
PIE representation and then solve the LPI optimization prob-
lems in Cor. 8 and ?? to obtain the gains corresponding to
the H2-optimal estimator. Then, the closed-loop PIE system
is constructed and simulated using the PIESIM module of the
PIETOOLS toolbox in MATLAB to find the estimation error
under disturbance and initial conditions x(0, s) = s2−2s

2 (i.e.,
u0 = 1); we initialize the observer state at zero. In Fig. 1,
we show the response of the error system — i.e., we plot the
error between state-estimate (x̂) and actual state (x), given
by e = x̂−x. Additionally, we also plot the regulated output
of the error system given by ẑ(t)− z(t) =

∫ 1

0
e(t, s)ds.

γ∗ = 2.0526.
Q2(s) = 0.021514∗s10+2.9692∗s9−13.7173∗s8+24.6017∗s7−24.3427∗s6+13.0207∗s5−3.9901∗s4+1.391∗s3+2.2051∗s2−4.8494∗s−0.13152

B. 2D Blasius boundary layer

C. Eurler-Bernoulli beam

Consider an elastic beam distributed over the domain,
fixed boundary at s = 0 and free boundary at s = 1 under
the simplified hypothesis of the Euler-Bernoulli theory [31]:
∂2
t η(s, t) = c∂4

sη(s, t)− 0.5 ∗ s2w(t), s ∈ (0, 1),∀t ∈ [0,∞),

η(0, t) = ∂sη(0, t) = 0,

∂2
sη(1, t) = ∂3

sη(1, t) = 0,

y(t) = ∂tη(t, 1) + w(t),
(20)

where η(s, t) is the vertical displacement field of the beam,
w(t) is a disturbance in terms of acceleration, distributed

Fig. 2: This figure plots the error (e = x̂ − x) in the state
estimate (on the left) and regulated outputs (on the right)
of the state observer for the system Eq. (??). The observer
is initialized with zero initial conditions, whereas the PDE
state starts with zero initial conditions, under disturbance
w(t) = sin(100t), t ≥ 0. H2-norm of the observer error
system is 0.2615(Numerical estimate ?).

Fig. 3: This figure plots the error (e = x̂ − x) in the state
estimate (on the left) and regulated outputs (on the right)
of the state observer for the system Eq. (??). The observer
is initialized with zero initial conditions, whereas the PDE
state starts with zero initial conditions, under disturbance
w(t) = sin(100t)/100t, t ≥ 0. H2-norm of the observer
error system is 0.2615(Numerical estimate ?).



Fig. 4: This figure plots the error (e = x̂ − x) in the state
estimate (on the left) and regulated outputs (on the right)
of the state observer for the system Eq.?. The observer is
initialized with zero initial conditions, whereas the PDE state
starts with zero initial conditions, under disturbance w(t) =
104exp(−t)sin(100t), t ≥ 0. H2-norm of the observer error
system is 0.2615(Numerical estimate ?).

over the domain by the polynomial −0.5 ∗ s2.

ẋ(t, s) =

[
0 −0.1
1 0

]
∂2
sx(t, s) +

[
−0.5s2

0

]
w(t),

η(0, t) = ∂sη(0, t) = 0,

∂2
sη(1, t) = ∂3

sη(1, t) = 0,

y(t) = ∂tη(t, 1) + w(t), (21)

IX. CONCLUSION

In this paper, we solved the H2-optimal estimation and
control problems for PDEs using the PIE framework devel-
oped for the analysis and control of PDE systems. Since
formulating a PDE analysis/control problem using the PIE
representation does not introduce any conservatism and leads
to solvable convex optimization problems called Linear PI
Inequalities (LPIs), we showed that H2 analysis, estimation
and control problems for PDEs can be solved using convex
optimization without conservatism. For this purpose, we
utilized an alternative definition of H2-norm of a system
that does not rely on the transfer function or impulse input;
Instead, we characterized H2-norm as the gain from an initial
condition to the output of the system. Using this alternative,
but equivalent, definition of H2-norm, we showed that a PIE
system and its corresponding dual PIE system have the same
H2-norm. Using this duality, we formulated two versions of
LPIs problems (a primal and dual) to upper bound the H2-
norm of the system that were later used to formulate H2-
optimal state estimator and state-feedback control problems
for PIEs as convex LPI optimization problems. By solving
these LPI optimization problems, we demonstrated the appli-
cation of this framework in estimator design and controller
synthesis for PDE numerical examples.
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Fig. 5: The observer is initialized with zero initial conditions
and disturbance w(t) = exp(−10t)sin(10t).(a) Error (e =
x̂ − x) in the state estimate. (b) Regulated error output of
the state observer for the system Eq. (21). The H2-norm of
the observer error system is 0.3239 (Numerical estimate ?)

APPENDIX

A. LPI to LMI

Proposition 10. Take Z1 : [a, b] → Rd1×n, Z2 : [a, b] ×
[a, b] → Rd2×n as matrices whose rows are vector monomial
basis for polynomials with bounded degrees d1 and d2,
respectively. Given g(s) ≥ 0 for all s ∈ [a, b] and

P = T11

∫ b

a
g(s)ds,

Q(η) = g(η)T12Z1(η) +

∫ b

η
g(s)T13Z2(s, η)ds +

∫ η

a
g(s)T14Z2(s, η)ds,

R1(s, η) = g(s)Z1(s)
⊤

T23Z2(s, η) + g(η)Z2(η, s)
⊤

T42Z1(η)+

+

∫ b

s
g(θ)Z2(θ, s)

⊤
T33Z2(θ, η)dθ +

∫ s

η
g(θ)Z2(θ, s)

⊤
T43Z2(θ, η)dθ+∫ η

a
g(θ)Z2(θ, s)

⊤
T44Z2(θ, η)dθ,

R2(s, η) = g(s)Z1(s)
⊤

T32Z2(s, η) + g(η)Z2(η, s)
⊤

T24Z1(η)+∫ b

η
g(θ)Z2(θ, s)

⊤
T33Z2(θ, η)dθ +

∫ η

s
g(θ)Z2(θ, s)

⊤
T34Z2(θ, η)dθ+

+

∫ s

a
g(θ)Z2(θ, s)

⊤
T44Z2(θ, η)dθ,

R0(s) = g(s)Z1(s)
⊤

T22Z1(s). (22)



Fig. 6: This figure plots the error (e = x̂ − x) in the state
estimate (on the left) and regulated error output (on the right)
of the state observer for the system Eq. (21). The observer
is initialized with zero initial conditions, whereas the PDE
state starts with an initial condition x1(0, s) = ∂tη = −s2/2
without disturbance. The H2-norm of the observer error
system is 0.3241 (Numerical estimate ).

where

T =


T11 T12 T13 T14

T21 T22 T23 T24

T31 T32 T33 T34

T41 T42 T43 T44

 ≽ 0,

then the operator Π
[

P Q1

Q2 {Ri}

]
as defined in section III-A

is positive semidefinite, i.e.
〈[

x
x

]
, Π
[

P Q1

Q2 {Ri}

]〉[
x
x

]
≥

0 for all
[
x
x

]
∈ Rm × Ln

2 [a, b].

B. Equivalence between PIEs and PDEs

To represent the class of problems covered by this work,
we need to define the partitioned state of the original PDE
system

x̂(t) = (x̂0(t), · · · , x̂d(t)),

and the fundamental state that will appear in the PIE formu-
lation,
x(t) = (x̂0(t), · · · , x̂d(t), ∂sx̂1(t), · · · , ∂sx̂d(t), · · · ∂d

s x̂d(t)),

which includes the PDE state and an ordered list with all
its possible derivatives in s according to the continuity
contraints [26]. In the above definitions, x̂i(t) is the part
of the PDE state that admits up to the i-th derivative in
s. Moreover, the differential operator Fdx̂(t) = x(t), and

∆d
a,bx(t) =

[
∆a

∆b

]
Fdx̂(t), where ∆ax(t) = x(t, a) is the

Dirac operator.
The class of PDEs that may admit a PIE representation in-

cludes, but is not limited to, PDEs that have: ODE coupling,
d-th order spatial derivatives, for some natural d, boundary
terms, finite-dimensional inputs, and outputs. Using the 4-PI

operators defined in the last section, the differential operator
Fdx̂(t) and the operator ∆d

a,bx̂(t), we can represent such
PDEs as

ẋ(t)
z(t)
y(t)
˙̂x(t)

 = Π


 A B1 Bbx

C1 D11 Cb1

C2 D21 Cb2

 Bx,x

Cx1

Cx2

[
0 B1 0

]
{Ai}




x(t)
w(t)

∆d−1
a,b x̂(t)

Fdx̂(t)

 ,

Π
[ [

Bx Bw Bb

]
BI

∅ {∅}

]
x(t)
w(t)

∆d−1
a,b x̂(t)

Fdx̂(t)

 = 0,

[
x(0)
x̂(0)

]
=

[
x0

x̂0

]
∈ Rm ×X ⊂ RLm,n

2 [a, b], (23)

where x(t) ∈ Rnx is the ODE state and x̂ ∈ X ⊆ Ln
2 [a, b] is

the variable in the PDEs, where X is the domain of the derivative
operator Fd, i.e. the space of functions satisfying the appropriate
continuity constraints and boundary conditions [18]. The above
parameterization extends the usual parametrization of input-output
systems and allows:

• d-th-order spatial derivatives through the operator Fd and
boundary valued terms through the operator ∆d−1

a,b , applied
to the PDE part of the state, both of which can impact the
dynamics (via Ai, Bxx and Bbx), the outputs (via Cx1, and
Cx2, Cb1, and Cb2), and the boundary conditions (via BI and
Bb);

• coupling with ODE via Bx,x, Bbx;
• linear boundary conditions, with possible effects from the

ODE part of the state (via Bx), from the input (via Bw), and
integral terms over the PDE part of the state and its existent
derivatives (via BI ).

The problems with the PDE representation, from a computational
point of view, can now be highlighted: the Derivative and Dirac
operators cannot be appropriately represented in computers and,
unlike 4-PIs, do not have algebraic properties similar to matri-
ces [26]. In fact, Fd(t) is generally unbounded, and its domain
imposes additional continuity constraints on x̂(t), which is hard
to represent in the optimization problems we wish to derive. On
the other hand, ∆d−1

a,b imposes singularities. In contrast, the PIE
representation is fully parametrized by 4-PI operators.

In the PIE representation given in Eq.(1), the transformation
given by T : RLm,n[a, b] → Rm × X is defined by successive
applications of the Fundamental Theorem of Calculus, substituting
the available boundary conditions. This transformation, when well
defined according to the requisites detailed in [18] for simple PDEs
and more generally in [26], gives an invertible map that formally
states the equivalence between the two formats. In this paper, rather
than restate the existent results, we show the equivalence for the
particular class of systems defined above.

Theorem 11 (Equivalence between solutions). Given admissible
polynomial matrices in Eq. (23), according to the requisites in [26].
Let T ,A,B1, C1, C2,D11,D12 be 4-PI operators parametrizing
Eq. ??. Then

A = Π
[

A−BbxBx Bx,x −BbxBI

0 {Ai}

]
,

B = Π
[

B1 −BbxBw ∅
B1 {Ai}

]
[
C1

C2

]
= Π

[ [
C1

C2

]
+

[
Cb1

Cb2

]
Bx

[
Cx1

Cx2

]
∅ {∅}

]
,

[
D11

D12

]
= Π

[ [
D11

D21

]
+

[
Cb1

Cb2

]
Bw ∅

∅ {∅}

]
.

Furthermore, the following are equivalent
• {x, x̂ z, y} satisfies the PDE for input w and initial condition



x0, x̂0.
• {x,Fdx̂ z, y} satisfies the PIE for input w and initial condi-

tion x0,F
dx̂0.

Alternatively, we may say
• {x,x, z, y} satisfies the PIE for input w and initial condition
x0,x0.

• {x, T x, z, y} satisfies the PDE for input w and initial condi-
tion x0, x0.

Proof. Eq. (23) may be rewritten as[
ẋ(t)
˙̂x(t)

]
= Π

[
A Bx,x

0 {Ai}

] [
x(t)

Fdx̂(t)

]
+ Π

[
B1 ∅
B1 {∅}

]
w(t)+

Π
[

Bbx ∅
∅ {∅}

]
∆d−1

a,b x̂(t) (24)[
z(t)
y(t)

]
= Π

[ [
C1

C2

] [
Cx1

Cx2

]
∅ {∅}

][
x(t)

Fdx̂(t)

]
+ Π

[ [
D11

D21

]
∅

∅ {∅}

]
w(t)+

Π

[ [
Cb1

Cb2

]
∅

∅ {∅}

]
∆d−1

a,b x̂(t) (25)

.
Note that, from the boundary conditions equation:

∆d−1
a,b x̂(t) = Π

[
Bx BI

∅ {∅}

] [
x(t)
x(t)

]
+ Π

[
Bw ∅
∅ {∅}

]
w(t)

(26)
To finish the proof, one just needs to substitute the state variable

by the fundamental state in Eq. 24 and use the formulas for addition
and composition of 4-PI operators [26].
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