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Abstract: In this paper, we propose a novel method for addressing Optimal Control Problems (OCPs)
with input-affine dynamics and cost functions. This approach adopts a Model Predictive Control (MPC)
strategy, wherein a controller is synthesized to handle an approximated OCP within a finite time horizon.
Upon reaching this horizon, the controller is re-calibrated to tackle another approximation of the OCP,
with the approximation updated based on the final state and time information. To tackle each OCP
instance, all non-polynomial terms are Taylor-expanded about the current time and state and the resulting
Hamilton-Jacobi-Bellman (HJB) PDE is solved via Sum-of-Squares (SOS) programming, providing us
with an approximate polynomial value function that can be used to synthesize a bang-bang controller.
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1. INTRODUCTION

A bang-bang controller exclusively operates at the extremities
of admissible inputs, toggling between upper and lower bounds.
This type of controller is used in numerous physical systems
with only binary actuation capabilities. Consider, for instance,
a thermostat which can only alternate between “on” and “off”
states. For more general systems where inputs are constrained
to be within some rectangular set, bang-bang controllers are
the optimal solution to a large class of Optimal Control Prob-
lems (OCPs) that have input affine dynamics and costs. Be-
cause of their optimality, Bang-bang controllers are ubiquitous
in a wide domain of applications from medicine (Ledzewicz
and Schättler, 2002), semiconductor gas discharge (Kim et al.,
2001), spacecraft maneuvers (Taheri and Junkins, 2018), etc.
Over the years many methods to synthesize bang-bang con-
trollers have been proposed including Jacobson et al. (1970);
Dadebo et al. (1998); Kaya et al. (2004)

Numerical methods for solving OCPs can be broken down into
two distinct categories, direct methods and indirect methods.
Direct methods parameterize the system state and control tra-
jectories by a finite sum of basis functions on a time discretisa-
tion mesh to convert the continuous-time infinite-dimensional
OCP into a Nonlinear Programming (NLP) problem that can be
solved numerically. There are many toolboxes using the direct
approach including ICLOCS (Nie et al., 2018) and GPOPs (Pat-
terson and Rao, 2014), with the subsequent NLPs solved using
solvers such as SNOPT (Gill et al., 2005) and IPOPT (Biegler
and Zavala, 2009). Direct methods have demonstrated impres-
sive capabilities. However, as noted in Aghaee and Hager
(2021), when it comes to OCPs that have bang-bang solutions
direct methods may struggle due to “ill conditioning and dis-
continuities in the optimal control at the switching points”.
Such computational issues of direct methods are also discussed
in Pager and Rao (2022). Another obstacle associated with the
direct method lies in the difficulty of finding the global optimal

solution for the resulting NLP. Mitigating the risk of converging
to local minima entails initializing the algorithm with a good
initial guess at the solution, also known as warm starting.

Indirect methods for solving OCPs can be further broken down
into two sub-categorizes, those based on Pontryagin Maximum
Principle (PMP) and those based on Dynamic Programming
(DP). The PMP provides necessary conditions for the optimal-
ity of an open-loop controller while DP is able to provide nec-
essary and sufficient conditions for the optimality of a closed-
loop controller through the Hamilton Jacobi Bellman (HJB)
PDE. A more detailed discussion of the methods can be found
in Liberzon (2011). The PMP method involves minimizing the
Hamiltonian along the solution map of the adjoint equation.
If the Hamiltonian is convex (implying a unique optimal con-
troller), it has been shown in Preininger and Vuong (2018)
that bang-bang controllers can be synthesized using the PMP.
However, in general, this assumption is restrictive.

For these reasons, we focus on the DP approach to solving
the optimal control problem. The disadvantage of using DP in
continuous time, of course, is that it requires us to solve the HJB
PDE – a notoriously difficult nonlinear PDE. Various methods
for approximately solving the HJB PDE exist such as the rela-
tively recent approaches of Kalise and Kunisch (2018) or Gar-
cke and Kröner (2017). These methods typically require some
sort of discretization of state and time. Alternatively, it is possi-
ble to approximately solve the HJB PDE by relaxing the equa-
tion to an inequality and applying the moment method (Zhao
et al., 2017; Korda et al., 2016; Kamoutsi et al., 2017), Sum-of-
Squares (SOS) programming (Ichihara, 2009; Jennawasin et al.,
2011) or other approximation schemes (Sassano and Astolfi,
2012). The advantage of these HJB relaxation approaches is
that you can certify properties of the resulting approximate
solution to the HJB PDE, such as being a uniformly lower
bound. For this reason, we adopt the Sum-of-Squares (SOS)
approach to computing HJB sub-value functions as described
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in Jones and Peet (2020). This approach yields an approximate
polynomial value function. A key advantage of this method is
that by increasing the degree of the SOS problem, this function
can be made arbitrary close (under the L1-norm) to the true
solution of the HJB PDE.

Unfortunately the work of Jones and Peet (2020) requires the
vector field to be polynomial, which is not true for many appli-
cations. The contribution of this work, then, is to extend Jones
and Peet (2020) to tackle non-polynomial OCPs. Specifically,
we propose to Taylor expand non-polynomial terms and solve
the resulting approximate OCP. Unfortunately, of course, accu-
racy of the Taylor expansion can only be guaranteed in a small
neighborhood of the expansion point and degrades quickly as
we move away from this point. To address this issue, we pro-
pose a Model Predictive Control (MPC) type framework where
after a small time horizon, the Taylor expansion is re-computed
and the controller is re-synthesized.

Notation: For x ∈ Rn we denote ||x||2 =
√

∑
n
i=1 x2

i . Let

C1(Ω,Θ) be the set of continuous functions with domain Ω ⊂
Rn and image Θ ⊂ Rm. We denote the space of polynomials
p : Rn →R by R[x] and polynomials with degree at most d ∈N
by Rd [x]. We say p ∈ R2d [x] is Sum-of-Squares (SOS) if there
exist pi ∈Rd [x] such that p(x) = ∑

k
i=1(pi(x))2. We denote ∑

d
SOS

to be the set of SOS polynomials of at most degree d ∈ N and
the set of all SOS polynomials as ∑SOS.

2. SOLVING OCPS USING DYNAMIC PROGRAMMING

Consider the following family of Optimal Control Problems
(OCPs), each initialized by (x0, t0) ∈ Rn × [0,T ],

V (x0, t0) := inf
u,x

∫ T

t0
c(x(t),u(t), t)dt +g(x(T ))

subject to, ẋ(t) = f (x(t),u(t)) for all t ∈ [t0,T ], (1)
(u(t),x(t)) ∈U ×Ω for all t ∈ [t0,T ], x(t0) = x0,

where c : Rn ×Rm ×R→ R is referred to as the running cost;
g : Rn → R is the terminal cost; f : Rn ×Rm → Rn is the
vector field; Ω ⊂Rn is the state constraint, U ⊂Rm is the input
constraint set; and T is the final time. For simplicity, throughout
this paper, we assume the existence of unique solutions to
the Ordinary Differential Equation (ODE) described by the
nonlinear dynamics ẋ= f (x(t),u(t)), for every admissible input
to the Optimal Control Problem (OCP) and initial condition
x0 ∈ Ω. This assumption is non-restrictive, as various well-
established conditions ensure the existence and uniqueness
of solution maps. For instance, when the vector field, f , is
Lipschitz continuous, the solution map exists over a finite time
interval. Moreover, this interval can be extended arbitrarily if
the solution map remains within a compact set, as elaborated
in Khalil (2002).

Solving OCPs is a formidable challenge due to their lack
of analytical solutions. One approach to solve OCPs, often
referred to as the Dynamic Programming (DP) method, reduces
the problem to solving a nonlinear PDE. More specifically,
rather than solving Opt. (1) we solve the following nonlinear
PDE:

∇tV (x, t)+ inf
u∈U

{
c(x,u, t)+∇xV (x, t)T f (x,u)

}
= 0

for all (x, t) ∈ Rn × [t0,T ] (2)
V (x,T ) = g(x) for all x ∈ Rn.

Upon solving the HJB PDE (2) we can derive a controller as
shown in the following theorem.

Theorem 1. (Liberzon (2011)). Consider the family of OCPs
in Eq. (1) with Ω = Rn (no state constraints). Suppose V ∈
C1(Rn ×R,R) solves the HJB PDE (2). Then u∗ : [t0,T ] →
U solves the OCP initialized at (x0, t0) ∈ Rn × [0,T ] with
associated dynamical trajectory x∗ : [t0,T ]→ Rn if and only if

u∗(t) = k(x∗(t), t), ˙x∗(t) = f (x∗(t),u∗(t)) for t ∈ [t0,T ], (3)

where k(x, t) ∈ arg inf
u∈U

{c(x,u, t)+∇xV (x, t)T f (x,u)}. (4)

Note that Theorem 1 requires the solution to the HJB PDE
to be differentiable. In practice this condition is often relaxed
using a generalized notion of a solution to the HJB PDE, called
a viscosity solution (Bardi et al., 1997). Also note that in the
state unconstrained case, Ω = Rn, the solution to the HJB PDE
corresponds to the optimal objective function of the OCP and is
referred to as the value function.

Bang-Bang control: Given a solution to the HJB PDE (2), we
can construct an optimal state feedback controller according to
Eq. (4). However, Eq. (4) is an optimization problem in itself
requiring us to compute the infimum over u ∈ U . Solving this
optimization at every time-step during implementation could be
impractical. Fortunately, for OCPs with input-affine dynamics
and costs, this auxiliary optimization problem has an analytical
solution.

Consider OCP (1), where the cost function is of the form
c(x,u, t) = c0(x, t) + ∑

m
i=1 ci(x, t)ui, the dynamics are of the

form f (x,u) = f0(x) + ∑
m
i=1 fi(x)ui, there are no state con-

straints, Ω = Rn, and the input constraints are of the form U =
[a1,b1]× ...× [am,bm]. WLOG we assume ai = −1 and bi = 1
for i ∈ {1, . . . ,m}, that is U = [−1,1]m, since we can always
make the coordinate substitution ũi =

2ui−2bi
bi−ai

for i ∈ {1, ...,m}.
Substituting this into Eq. (4) we obtain

k(x, t) ∈ arg inf
u∈[−1,1]m

{ m

∑
i=1

ci(x, t)ui +∇xV (x, t)T fi(x)ui

}
. (5)

The objective function in Eq. (5) is linear in the decision
variables u ∈ Rm, and since the constraints have the form ui ∈
[1,−1], it follows that Eq. (5) can be analytically solved,

ki(x, t) =−sign(ci(x, t)+∇xV (x, t)T fi(x)). (6)

3. APPROXIMATE SOLUTIONS OF THE HJB PDE

Let us view the problem of solving the HJB PDE (2) through
the lens of optimization theory and consider this problem as a
feasibility optimization problem with two equality constraints:
the HJB PDE itself and the boundary condition. In optimization
theory, when faced with a challenging non-convex problem, a
common tactic is to relax the constraints of the optimization
problem to make the feasible set convex. In the context of
solving the HJB, the equality constraints make the feasible set
non-convex. However, we may relax the equality constraints to
inequality constraints in the following manner,

Find J ∈C1(Rn ×R,R) subject to: (7)

∇tJ(x, t)+ c(x,u, t)+∇xJ(x, t)T f (x,u)≥ 0 (8)
for all (x,u, t) ∈ Ω×U × (t0,T ),

J(x,T )≤ g(x) for all x ∈ Ω. (9)

Now, if V is a solution to the HJB PDE then it satisfies Eqs (8)
and (9) since



0 = ∇tV (x, t)+ inf
u∈U

{
c(x,u, t)+∇xV (x, t)T f (x,u)

}
≤ ∇tV (x, t)+ c(x,u, t)+∇xV (x, t)T f (x,u)

for all (x,u, t) ∈ Ω×U × (t0,T ).

Problem (7) is linear in the decision variable J. However, a
function J, feasible for Problem (7), may be arbitrarily far from
the value function. For instance, in the case c(x,u, t) ≥ 0 and
0 ≤ g(x) < M, the constant function J(x, t) ≡ −C is feasible
for any C > M. Thus, by selecting sufficiently large enough
C > M, we can make ||J −V || arbitrary large, regardless of
the chosen norm, || · ||. To address this issue, we propose a
modification of Problem (7), wherein we include an objective
of minimizing the L1 distance to the true solution to the HJB
PDE

∫
Λ×[t0,T ] |V (x, t)− J(x, t)|dxdt, where V is the unknown

solution to the HJB PDE Λ ⊂ Rn is some compact set.

inf
J∈C1(Rn×R,R)

∫
Λ×[t0,T ]

|V (x, t)− J(x, t)|dxdt subject to: (10)

∇tJ(x, t)+ c(x,u, t)+∇xJ(x, t)T f (x,u)≥ 0
for all (x,u, t) ∈ Ω×U × (t0,T ),

J(x,T )≤ g(x) for all x ∈ Ω.

Unfortunately, since V is unknown we cannot simply solve
Opt. (10). Fortunately, as we will see in the next proposition,
feasible solutions to Problem (10) are “sub-value functions” –
i.e. functions that uniformly lower bound the true value func-
tion. Then

∫
Λ×[t0,T ] |V (x, t)−J(x, t)|dxdt =

∫
Λ×[t0,T ]V (x, t)dxdt−∫

Λ×[t0,T ] J(x, t)dxdt and since
∫

Λ×[t0,T ]V (x, t)dxdt is a constant
it can be eliminated from the objective function.
Proposition 2. Suppose J ∈ C1(Rn × R,R) satisfies Eqs (8)
and (9) and Ω is compact. Then

J(x, t)≤V (x, t) for all (x, t) ∈ Ω× [t0,T ],

where V is given by the objective function of the OCP (1).

Proof. Let (x0, t0) ∈ Ω× [0,T ]. First suppose there is no feasi-
ble input to the OCP, then V ∗(x0, t0) = ∞. Clearly in this case
J(x0, t0) < V ∗(x0, t0) as J is continuous and therefore is finite
over the compact region Ω× [0,T ]. Alternatively if there exists
a feasible input, u, let us denote the resulting solution map of
the underlying dynamics of the OCP by x̃, where x̃(t) ∈ Ω for
all t ∈ [t0,T ] and x̃(t0) = x0. By Eq. (8) we have for all t ∈ [t0,T ]

∇tJ(x̃(t), t)+ c(x̃(t), ũ(t), t)+∇xJ(x̃(t), t)T f (x̃(t), ũ(t))≥ 0.

Now, using the chain rule we deduce

d
dt

J(x̃(t), t)+ c(x̃(t), ũ(t), t)≥ 0 for all t ∈ [t0,T ].

Then, integrating over t ∈ [t0,T ], and since J(x̃(T ),T ) ≤
g(x̃(T )) by Eq. (9), we have

J(x0, t0)≤
∫ T

t0
c(x̃(t), ũ(t), t)dt +g(x̃(T )). (11)

Since Eq. (11) holds for any feasible input, we may take
the infimum over all feasible inputs to show that J(x0, t0) ≤
V (x0, t0).

For the case that c, g and f are polynomials, U = [−1,1]m and
Ω = {x ∈ Rn : R2 − ||x||22 ≥ 0}, and hΩ are polynomials, we
are now able to eliminate V from Opt. (10) and tighten the
optimization problem to the following Sum-of-Squares (SOS)
optimization problem,

Pd ∈ arg max
P∈Rd [x]

cT
f α (12)

subject to: k0,k1 ∈
d

∑
SOS

, si ∈
d

∑
SOS

for i = 0,1, . . . ,m+2

P(x, t) = cT
f Zd(x, t),k0(x) = g(x)−P(x,T )− s0(x)(R2−||x||22),

k1(x,u, t) = ∇tP(x, t)+ c(x,u, t)+∇xP(x, t)T f (x,u)

− s1(x,u, t)(R2 −||x||22)− s2(x,u, t)(t − t0)(T − t)

−
m

∑
i=1

s2+i(x,u, t)(ui +1)(1−ui),

where αi =
∫

Λ×[t0,T ] Zd,i(x, t)dxdt, Zd :Rn×R→R(
n+1+d

d ) is the

vector of monomials of degree d ∈ N and c f ∈ R(
n+1+d

d ) is the
monomial coefficient vector.

We next show that by solving Opt. (12) we can approximate
value functions, solutions to the HJB PDE (2), to arbitrary
accuracy with respect to the L1 norm.
Proposition 3. Consider OCP (1), where Ω = Rn (no state
constraints), c, g and f are polynomials, U = [−1,1]m and
T > 0. If this OCP has a solution (x∗(t),u∗(t)) such that for
some R > 0 we have that

||x∗(t)||22 < R2 for all t ∈ [0,T ], (13)

then lim
d→∞

∫
Λ×[t0,T ]

|V (x, t)−Pd(x, t)|dxdt = 0, (14)

where V solves the HJB PDE (2) and Pd is the solution to
Opt. (12) for d ∈ N.

Proof. The condition given in Eq. (13) ensures the value func-
tion of the state constrained (Ω = {x ∈ Rn : ||x||2 < R}) and
unconstrained versions (Ω = Rn) of the OCP are equivalent.
Then, following the mollification arguments of Jones and Peet
(2020) we approximate the Lipschitz continuous value function
of the unconstrained OCP by a smooth function while satisfying
the inequalities given Eqs (8) and (9). We then approximate
this smooth function by a polynomial using the Weierstrass ap-
proximation theorem. We show using Putinar’s Positivstellen-
satz (Putinar, 1993) that this polynomial is feasible to Opt. (12).
Hence, by optimality, the solution to Opt. (12) is closer to the
value function under the L1 than this feasible polynomial and
this feasible polynomial can be made arbitrarily close to the
value function, thus showing convergence.

4. MPC FOR SOLVING NON-POLYNOMIAL OCPS

We have seen that we can approximately solve the HJB PDE (2)
by numerically solving Opt. (12) for OCPs with polynomial
costs and dynamics. However, many practical problems are not
polynomial, limiting the broader applicability of the method.
To rectify this issue, faced with a non-polynomial OCP, we
propose to first approximate the non-polynomial terms using
a Taylor expansion about the initial condition of the OCP – i.e.
(x0, t0). More generally, we denote the Taylor operator as
Ty,d f (x)

:=
d

∑
kn=0

· · ·
d

∑
k1=0

(x1 − y)k1

k1!
· · · (xn − y)kn

kn!

(
∂ k1+...kn f

∂xk1
1 . . .∂xkn

n

)
(y).

Now, given an OCP (1), with input affine dynamics and cost,
we denote the polynomial terms with a superscript “p” and non-
polynomial terms with an “np” superscript as follows,



c(x,u, t) := cp
0(x, t)+

m

∑
i=1

cp
i (x, t)ui + cnp

0 (x, t)+
m

∑
i=1

cnp
i (x, t)ui.

g(x) := gp(x)+gnp(x). (15)

f (x,u) := f p
0 (x)+

m

∑
i=1

f p
i (x)ui + f np

0 (x)+
m

∑
i=1

f np
i (x)ui.

We then replace non-polynomial terms with their degree k
Taylor expansions about the initial state and time conditions of
the OCP ((x0, t0)), that is replace cnp

i (x, t) with T[x0,t0],kcnp
i (x, t)

and similarly for terms f np
i and gnp. This yields an OCP

parameterized exclusively by polynomials and which can be
solved using the methods described in the preceding section –
yielding a bang-bang feedback control law.

Unfortunately, the resulting value function only matches the
true value function near the initial condition of the OCP, (x0, t0).
Because the feedback law is based on the minimization of
this value function, we expect that the performance of the
resulting feedback controller will match the true optimal con-
troller near the initial condition, but will diverge as the solu-
tion evolves. Therefore, after implementing the controller over
an implementation period of length TI > 0 we propose to re-
synthesize the controller based on a new approximated OCP
with non-polynomial terms expanded about a new initial con-
dition (x(t0 +TI), t0 +TI) – yielding a new approximate value
function that closely matches the true value function about the
Taylor expansion point taken further along the systems trajec-
tory and hence synthesising a new approximately optimal feed-
back law. Fig. 1 illustrates how we expect the Taylor expansion
error to vary over time.

Finally, in order to reduce complexity of solving the SOS
optimization problem, and inspired by the MPC framework,
we take a receding horizon approach and only synthesize the
controller over a reduced prediction horizon length Th ≥ TI
(See Fig. 1). Of course, unless TI = Th = T , if the receding
horizon solution is to match the solution to the original OCP,
we must necessarily assume T = ∞ and in this case, we require
g(x) = 0 – i.e., there is no terminal cost. Note, however, that
since we allow for time-varying dynamics and cost functions,
we do not eliminate time as a dependent variable in the HJB
or value function. Moreover, because these prediction horizons
may be small we may wish to only approximate the value
function over some reduced integration region that depends on
the final state of the previous implementation period, that is
Λ = [δ1(x),δ2(x)]n where δi : Rn → R. The resulting algorithm
is illustrated in Fig. 1 and summarized in Algorithm 1.

5. NUMERICAL EXAMPLES

We next present several numerical examples of using Algo-
rithm 1 to solve OCPs. To evaluate the performance we ap-
proximate the objective/cost function over each implementation
period using the Riemann sum:∫ T

0
c(φ f (x0, t,u), t)dt ≈ ∆t

T/TI

∑
i=1

N−1

∑
j=1

c(xi(t),ui(ti, j), ti, j), (16)

where (i− 1)TI = ti,1 < ... < ti,N = iTI , ∆t = ti, j+1 − ti, j for all
i ∈ {1, ...,N−1}, ui is the controller synthesized for implemen-
tation over [(i−1)TI , iTI ], and xi(t) can be found using Matlab’s
ode45 function to solve ẋ(t) = f (x(t),ui(t)).

All SOS programs are solved by utilizing Yalmip (Lofberg,
2004) in conjunction with the SDP solver Mosek (ApS, 2019).

Algorithm 1 Polynomial VF-based Bang-Bang MPC
Input:
OCP parameters: c, f of Form (15), T > 0,x0 ∈ Rn

MPC parameters: Th > 0, TI > 0.
SOS parameters: d ∈ N, δ1, δ2 R > 0.
Taylor parameter: k ∈ N.

1: for t ∈ {0,TI ,2TI , . . . ,T −TI} do
2: c̃(x,u, t) = cp

0(x, t)+∑
m
i=1 cp

i (x, t)ui +T[x0,t],kcnp
0 (x, t)+

∑
m
i=1 T[x0,t],kcnp

i (x, t)ui ▷ Replace running cost by Taylor
approx cost

3: f̃ (x,u) = f p
0 (x) + ∑

m
i=1 f p

i (x)ui + Tx0,k f np
0 (x) +

∑
m
i=1 Tx0,k f np

i (x)ui ▷ Replace dynamics by Taylor approx
4: Compute Pd by solving Opt. (12) for c̃, f̃ ,R > 0 and

g̃(x) ≡ 0 over [t, t + Th] with integration region Λ =
[δ1(x0),δ2(x0)]

n.
5: ki(x, t) =−sign(ci(x, t)+∇xPd(x, t)T fi(x)) ▷ Eq. (6)
6: Simulate ẋ∗(t) = f (x∗(t),k(x∗(t), t)) over t ∈ [t +TI ].
7: x0 = x∗(TI) ▷ Set initial condition to be terminal

trajectory
8: end for

0 TI 2TI 3TI · · · T
Th

Ta
yl

or
ap

pr
ox

im
at

io
n

er
ro

r

Time

=Moving
Prediction horizon

Figure 1. Figure illustrating that the error of the Taylor approximation in
Alg. 1 grows with time, resetting after the implementation time, TI , has
passed. The controller is designed over a prediction horizon of length Th,
which could exceed the implementation time TI .

It’s worth noting that in every numerical example, we scale the
dynamics to confine the state within the range of [−1,1]n. This
scaling strategy ensures that both the objective function and
constraints of the associated SDP problem remain within rela-
tively small values. Consequently, this prevents the SDP solver
from terminating prematurely due to suspected unboundedness.

We benchmark Algorithm 1 against ICLOCS (Nie et al.,
2018) where we consider two numerical examples with non-
polynomial time varying costs and dynamics derived from prac-
tical systems, both of which have a two dimensional state space
and a one dimensional input space. However, it should be noted
that both methods are not limited to systems of these dimen-
sions and can be applied to arbitrary dimensions. Both methods
are fundamentally different, being of the indirect and direct
class of solution methods, but numerical examples demonstrate
competitive performance. Both methods have multiple parame-
ters that can be used to improve performance at the expense of
computation time, so the results are not necessarily indicative of
overall performance. Specifically, ICLOCS requires an initial
solution guess whereas Algorithm 1 is based on solving a se-
quence of convex optimization problems and therefore requires
no such initialization. Therefore, Algorithm 1 could be used to
help warm start direct methods like ICLOCS.
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(a) Phase plot for Example 1.
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Figure 2. Phase plots for Examples 1 and 2.

Example 1. (Controlling the Van der Pol oscillator).
Consider the following OCP

inf
u

{∫ T

0
||x(t)− yre f (t)||22dt

}
(17)

Subject to: u(t) ∈ [−1,1], x(0) = [0.75,0.75]⊤[
ẋ1(t)
ẋ2(t)

]
=

[
2x2(t)

10x2(t)(0.21−1.22x1(t)2)−0.8x1(t)

]
+

[
0
1

]
u(t)

yre f (t) =
[

0.2cos(−t)
0.2sin(−t)

]
.

The goal of OCP (17) is to minimize the tracking error between
the state and some parametric clockwise circular curve of radius
0.2. Although the dynamics of OCP (17) are polynomial the
cost function is not.

The terminal time is set as T = 20, controller implementation
time is set to TI = 0.5 and prediction horizon is set to Th = 1.
We use Alg. 1 to solve this OCP with the SOS program degree
set to d = 5, the Taylor expansion degree set to k = 4, the inte-
gration region set to Λ = [δ1,δ2]

n, where δ1 = −δ2 = −0.75,
and the computation domain given by R = ||[0.75,0.75]⊤||2.
Performance was analyzed using Eq. (16) with simulation time-
step ∆t = 0.01 and a cost of 0.521206 was found. In contrast,
for the same TI and Th, 51 discretization points, and degree
3 polynomial approximations of state trajectories and inputs,
ICLOCS incurred a slightly larger cost of 0.560883. Fig. 2(a)
shows the phase space plot and the slight difference in the
trajectories resulting from the two different methods. How the
individual states vary with respect to time is given in Fig. 3
as we as a log plot of how the running cost, ||x(t)− yre f (t)||22,
varies with respect to time.

Example 2. (The Single Machine Infinite Bus (SMIB)).
Improving the transient stability of the SMIB system has pre-
viously been studied in Chang and Chow (1998); Ford et al.
(2006) using the PMP. We also solve this problem by consider-
ing the following OCP,

inf
u

{∫ T

0
e−t ||x(t)||22dt

}
(18)

Subject to: u(t) ∈ [−1,1], x(0) = [1.5,15]⊤[
ẋ1(t)
ẋ2(t)

]
=

[
x2(t)

Pm −Dx2(t)
2H

]
−

[
0

Pe

2H
sin(x1(t)+δep)

]
u(t),

where H = 0.0106, Xt = 0.28, Pm = 1, Es = 1.21, V = 1,
Pe = (EsV )/(PmXt), D = 0.03 and δep = sin−1(1/Pe).

Before solving the OCP we scale the dynamics to evolve over
[−1,1]2 by making the coordinate transformation x→ Lx where

L=

[
3 0
0 30

]
. The goal of this problem is to improve the transient

stability – i.e. rate of convergence to the origin. Note that the
problem has non-polynomial dynamics and cost.
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Figure 3. Figure associated with Example 1 showing how the controller
effects individual states.
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Figure 4. Figure associated with Example 2 showing how the controller
effects individual states.

The terminal time is set as T = 4, controller implementation
time is set to TI = 0.25 and prediction horizon is set to Th = 0.5.
We use Alg. 1 to solve this OCP with the SOS program degree
set to d = 6, the Taylor expansion degree set to k = 5, the
integration region set to Λ = [δ1(x),δ2(x)]n, where δ1(x) = x−
0.2 and δ1(x) = x + 0.2, and the computation domain given
by R = 1. Performance was analyzed using Eq. (16) with
simulation time-step ∆t = 0.01 and a cost of 0.1672 was found.
In contrast, for the same TI and Th, 51 discretization points,
and degree 3 polynomial approximations of state trajectories
and inputs, ICLOCS incurred a slightly smaller cost of 0.1671.
Fig. 2(b) shows the phase space plot and the slight difference in
the trajectories resulting from the two different methods. How
the individual states vary with respect to time is given in Fig. 4
as we as a log plot of how the running cost, e−t ||x(t)||22, varies
with respect to time.



6. CONCLUSION
In this paper we have presented an iterative method for solving
optimal control problems based on sequentially the approxi-
mated problem, whose dynamics and costs are Taylor expanded
about the terminal state and time of the previous iteration.
During each iteration, the HJB PDE is approximately solved
using convex optimization and the resulting approximated value
function is used to synthesize a bang-bang controller. Numeri-
cal examples demonstrate that this approach is competitive with
the current state of the art direct method solver. Unlike direct
methods, our method does not require an initial guess of the
solution. Future work includes the possibility of precomputing
a library of approximated value functions for different meshes
of the state space and time interval offline. Then rather than
sequentially solving the HJB PDE in an online MPC fashion
the controller can be rapidly synthesized based on the current
state and time by selecting the appropriate value function from
this library.
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