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Extension of the Partial Integral Equation
Representation to GPDE Input-Output Systems

Sachin Shivakumar, Amritam Das, Siep Weiland, and Matthew Peet, Member, IEEE

Abstract—It has been shown that the existence of a Partial
Integral Equation (PIE) representation of a Partial Differential
Equation (PDE) simplifies many numerical aspects of analysis,
simulation, and optimal control. However, the PIE representation
has not previously been extended to many of the complex, higher-
order PDEs such as may be encountered in speculative or data-
based models. In this paper, we propose PIE representations
for a large class of such PDE models, including higher-order
derivatives, boundary-valued inputs, and coupling with Ordinary
Differential Equations. The main technical contribution which
enables this extension is a generalization of Cauchy’s rule for
repeated integration. The process of conversion of a complex PDE
model to a PIE is simplified through a PDE modeling interface
in the open-source software PIETOOLS. Several numerical tests
and illustrations are used to demonstrate the results.

Index Terms—PDEs, Optimization, LMIs

I. INTRODUCTION

While Partial Differential Equations (PDEs) have histori-
cally been used to model spatially distributed physical phe-
nomena dating back to Newton and Leibniz, the critical role
of boundary conditions (BCs) in defining a PDE model was not
formally recognized until Dirichlet’s time; See [5] for a histor-
ical survey of PDEs and BCs. Even with BCs, a PDE model
remains incomplete without ‘continuity’ requirements on the
solution. This means that spatial derivatives and boundary val-
ues must be well-defined. The formal mathematical framework
for imposing continuity constraints was only established in
the mid-20th century by Sergei Sobolev, introducing Sobolev
spaces and allowing for the use of generalized functions or
distributions to define weak solutions.

The PDE, BCs, and continuity constraints create a ‘PDE
model’– a system relying on three types of constraints, none
of which is individually sufficient. Yet, when combined, the
3 constraints establish a well-defined mapping from an initial
state to a unique solution. In the late 20th century, this mapping
and its continuity properties were formalized and generalized
under the concept of a C0-semigroup where these constraints
are embedded in the ‘domain of the infinitesimal genera-
tor’ [7], [11]. Thus, a well-posed PDE model requires three
constraints: a) the differential equation or ‘PDE’, constraining
spatiotemporal evolution within the domain; b) the continuity
condition, ensuring sufficient regularity of the solution; and c)
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the BCs, which may limit values or other properties of the
solutions as allowed by the regularity.

A. Computational Challenges of Using a PDE Model
Although the 3-constraint PDE model is a natural rep-

resentation due to its historical context and clear physical
interpretation, using such a model becomes inconvenient when
considering computational methods for analyzing, controlling,
and simulating spatially distributed phenomena. The most
significant inconveniences are as follows:
1) Non-Algebraic Structure All computations fundamentally
involve algebraic operations addition and multiplication. PDE
models, however, have operators such as spatial differentials
and Dirac operators (evaluating limit points) – neither of
which can be incorporated into a *-algebra of bounded linear
operators on a Hilbert space [24].

2) No Universality Computational methods are traditionally
centered on the ‘PDE’ part of the ‘PDE model’, and are
designed for a fixed set of BCs and continuity constraints.
As a result, there are no generic/universal algorithms for the
analysis, control, and simulation of PDEs.

To illustrate, consider the problem of simulating a simple
transport equation ut = us for a given initial condition. Using
a finite-difference approximation of us =

u(si+1)−u(si)
∆s

yields
an ODE representation ẋ(t) = 1

∆s
Ax(t), where xi = u(si),

∆s = si+1 − si, and A is a bi-diagonal matrix of ±1 entries.
An ideal ODE representation of the transport equation would
have a matrix with infinitely large coefficients. Such problems
associated with discretization are avoided by constructing an
explicit basis for the domain of the infinitesimal generator and
projecting our solution onto this basis – e.g., as in Galerkin
projection. However, these bases must satisfy the continuity
constraints and BCs present in the 3-constraint model. Thus,
any change in the set of BCs and continuity constraints
necessitates a change in the bases – an inconvenience and an
obstacle to the design of general/universal simulation tools.

To illustrate challenges in computational analysis of a
PDE model, consider the stability analysis problem of a heat
equation ut = uss with zero BCs, e.g. u(t, 0) = us(t, 1) = 0.
We can use a Lyapunov function V (u) =

∫ 1

0
u(s)2ds that

is uniformly decreasing with time to prove the stability. The
challenge, however, is to use computation to prove this fact.
By parameterizing positive operators using positive matri-
ces, computation-based methods can recognize that V (u) =
⟨u, u⟩L2

and hence a positive form [21]. However, the method
must also verify that V̇ (u(t)) ≤ 0 for all u(t) ∈ W2

satisfying the PDE model. Unfortunately, if we differentiate
V (u(t)) in time along solutions of the PDE model we ob-
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tain V̇ (u(t)) = 2
〈
u(t), ∂2

su(t)
〉

= 2
∫ 1

0
u(t, s)uss(t, s)ds.

Because differentiation is not embedded in a ∗-algebra, we
cannot simply parameterize a cone of positive quadratic forms
involving differential operators, e.g., ⟨∂su, ∂su⟩. Moreover,
since the derivative operator is unbounded, the functions u and
uss are independent until the continuity constraints and BCs
are enforced. However, accounting for the continuity and BCs
is an ad-hoc process, using integration-by-parts or inequalities
such as Wirtinger or Poincare. Such ad-hoc methods have
been used to generate stability tests for specific classes of
PDE models as in [2], [9], [12], [13], [19], [32], or for
control design as in Backstepping methods [1], [15], [16], [23],
[29], [34], late-lumping methods [17], and port-Hamiltonian
methods [33]). Despite these results, no universal approach to
computational analysis and control of PDE models exists.

To summarize, the presence of unbounded operators, con-
tinuity constraints, and BCs in a PDE model pose significant
challenges to the development of a universal computational
framework for analysis, control, and simulation. However,
these limitations primarily appear in PDEs, and can be reme-
died by using an alternative modeling framework defined by
Partial Integral Equations (PIEs).

B. The Partial Integral Equation (PIE) Framework

The PIE framework is a state-space approach to modeling
spatially distributed systems. PIE models can be considered
a generalization of the integro-differential systems that can
model phenomena such as elasticity, mechanical fracture,
etc. [3], [14]. Unlike a PDE model, wherein the state is
differentiated, consistent with continuity constraints, the state
of a PIE model is the highest spatial derivative of the PDE
model and this state is integrated in space in order to obtain
the evolution equation. Consequently, a PIE model is defined
by a single integro-differential equation, is parameterized by
the ∗-algebra of Partial Integral (PI) operators, and can be used
to represent almost any well-posed PDE model.

The simplest form of PIE, ignoring ODEs, inputs, and
outputs, is defined by two PI operators, T ,A : L2 → L2

as T v̇(t) = Av(t), where the state, v(t) ∈ L2 admits no
continuity constraints or BCs. An operator P is said to be a
3-PI operator, denoted P ∈ Π3 if there exist R0 ∈ L∞ and
separable functions R1, R2 such that

(Pu) (s)=R0(s)u(s)+

s∫
a

R1(s, θ)u(θ) dθ+

b∫
s

R2(s, θ)u(θ) dθ.

Since a PIE representation requires no auxiliary constraints
on the state, we can develop universal algorithms for analysis,
control, and simulation that apply to any well-posed PIE
model. Furthermore, PIEs are parameterized by PI operators
that inherit many properties of matrices and form a ∗-algebra
(See Appendix H) affording us many conveniences in building
computational tools using such algorithms.

To illustrate these advantages, consider the PIE model of
the heat equation, ut = uss with BCs u(t, 0) = us(t, 1) = 0,
and continuity constraint u ∈ W2. A PIE representation of this

PDE model is given by

T vt(t, s) =

∫ s

0

θ vt(t, θ) dθ +

∫ 1

s

s vt(t, θ) dθ = −v(t, s).

(1)
To prove the stability using the PIE model in the above
equation, we can define a Lyapunov function V = ⟨T v, T v⟩L2

and differentiate in time to obtain
V̇ (v(t)) = ⟨T v̇(t), T v(t)⟩L2

+ ⟨T v(t), T v̇(t)⟩L2

= ⟨v(t), (T + T ∗)v(t)⟩L2
= ⟨v(t),Dv(t)⟩L2

where D ∈ Πp
3 is parameterized by R1(s, θ) = −2θ,

R2(s, θ) = −2s and R0 = 0. We may now use convex opti-
mization to find the PI operator Q ∈ Π3 such that D = −Q∗Q.
In this case Q is parameterized by R1 =

√
2, R2 = 0 and

R0 = 0. This proves that V̇ (v) = ⟨v,Dv⟩ = −⟨Qv,Qv⟩ ≤ 0.

C. Contribution of this Paper
Because the PIE representation is unified, any algorithm or

method designed to analyze, control, or simulate PIE models
can be applied to any well-posed system that admits such a
representation. The impact of such algorithms and methods can
be increased by expanding the class of PDE models for which
an equivalent PIE model representation exists. Unfortunately,
however, the class of PDE models for which PDE-PIE conver-
sion formulae exist is still rather limited. To illustrate, consider
the following potential models which include integrals, higher
order derivatives and disturbances:
1) In [10, Theorem 8], a diffusion equation model is given for
the evolution of entropy in a 1D thermoelastic rod:
η̇(t, s) = ηss(t, s), η(t, ·) ∈ X

with the solution restricted to the state-space given by

X =

{
x ∈ W2[0, 1] | x(0) = x(1) = −

∫ 1

0

x(s)ds

}
.

2) If one includes boundary actuation (u ∈ W1[0,∞)) and
multiple disturbances (d0, d1 ∈ L2[0,∞), d2 ∈ W1[0,∞)) in
the Timoshenko beam equation, then a possible model can
be proposed as
ẍ(t) = −xsss(t, 0) + d0(t), {x(t),x(t, ·)} ∈ X(u(t),d2(t)),

˙̇ ˙̇x(t, s) = −ẍ(t, s) + ẍs(t, s)− xssss(t, s) + d1(t, s),

with the solution restricted to the state-space given by

X(u,v) =

{
x ∈ R,x ∈ W4[0, 1] | x(0) = x, ∂sx(0) = 0,

∂2
sx(1) = u, ∂3

sx(1) = v

}
.

Such PDE models, with integral terms at the boundary or
higher order spatial derivatives are rather simple extensions
of standard PDEs. The task of simulation and control for
such speculative extensions would require substantial effort
because typical methods for such tasks require careful analysis.
Assuming well-posedness, this effort could be substantially
reduced if the PDE admits a PIE representation. Currently,
however, the class of PDE models with known PIE conversion
formulae does not include generators with spatial derivatives
of order higher than 2, PDEs with inputs and outputs, PDEs
coupled with ODEs, or BCs that combine boundary values
with inputs and integrals of the state.

The goal of this paper, then, is to facilitate the rapid
prototyping and analysis of new and speculative PDE models
by extending the class of PDE models for which we have PDE
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to PIE conversion formulae to include the cases defined above.
While we do not address the issue of well-posedness in the
paper, this assumption allows one to apply the existing PIE
framework for simulation, stability, gain analysis, control, and
estimation to such models.

To achieve this goal, we: (a) define a parametric represen-
tation for the expanded class of PDE models; (b) define an
appropriate state-space to be used in the corresponding PIE
model; (c) find a unitary transformation from the PIE state-
space to the state-space of the PDE model – proving equiv-
alence of solutions and equivalence of stability properties. In
this context, the main contributions of the paper are:
1) A unified class of PDE models: We parameterize a class
of linear PDE models, referred to as Generalized Partial
Differential Equations (GPDEs), encompassing: ODEs cou-
pled with PDEs, N th-order spatial derivatives, integrals of
the state, control inputs and disturbances, and sensed and
regulated outputs.

2) Formulae to convert GPDE models to PIEs: Given a suffi-
ciently well-posed GPDE model, we generalize Fundamental
Theorem of Calculus (FTC) and give formulae (with a Matlab
modeling interface) for conversion to a PIE – Sections IV
and V.

3) Equivalence of GPDEs and PIEs: We show the solution of
a GPDE uniquely maps to a PIE solution via a unitary map.
Additionally, we prove input-output and internal stability of
the GPDE model are equivalent to that of the associated PIE
– Section VI.

Before looking at the class of models considered in this
paper, we will look at the notation used throughtout the
paper and then discuss the main results. For brevity, we only
provide proofs for the main results and an outline for other
Corollaries/Lemmas. Refer to the Appendices included in the
supplementary documents or the full version [28] for extended
proofs and non-essential definitions.

II. NOTATION, PI OPERATORS AND PIES

The empty set, ∅, is occasionally used to denote a matrix
or matrix-valued function with either zero row or column
dimension and whose non-zero dimension can be inferred
from context. 0m,n ∈ Rm×n is the matrix of all zeros,
0n := 0n,n, and In ∈ Rn×n is the identity matrix. We
use 0 and I for these matrices when dimensions are clear
from context. R+ is the set of non-negative real numbers.
The set of k-times continuously differentiable n-dimensional
vector-valued functions on the interval [a, b] is denoted by
Cn

k [a, b]. L
n
2 [a, b] is the Hilbert space of n-dimensional vector-

valued Lebesgue square-integrable functions on the interval
[a, b] equipped with the standard inner product. Lm,n

∞ [a, b] is
the Banach space of m × n-dimensional essentially bounded
measurable matrix-valued functions on [a, b] equipped with the
essential supremum singular value norm.

We utilize different fonts to denote different mathemati-
cal objects: u or u(t) typically denotes a scalar or finite-
dimensional vector; and, x or x(t) typically denotes a scalar
or vector-valued function. For a function, x, of spatial variable
s, we use ∂j

sx to denote the jth order partial derivative
∂jx
∂sj . For a function of time and possibly space, we denote

ẋ(t) = ∂
∂tx(t). We use Wn

k to denote the Sobolev spaces
Wn

k [a, b] := {u ∈ Ln
2 [a, b] | ∂i

su ∈ Ln
2 [a, b] ∀ i ≤ k}

with inner product ⟨u,v⟩Wn
k
=
∑k

i=0

〈
∂i
su, ∂

i
sv
〉
Ln

2
. Clearly,

Wn
0 [a, b] = Ln

2 [a, b]. For given n = {n0, · · · , nN} ∈ NN+1,
we define the Cartesian product space Wn :=

∏N
i=0 W

ni
i and

for u = {u0, · · · ,uN} ∈ Wn and v = {v0, · · · ,vN} ∈
Wn we define the associated inner product as ⟨u,v⟩Wn =∑N

i=0 ⟨ui,vi⟩Wni
i

. We use RLm,n
2 [a, b] to denote the space

Rm × Ln
2 [a, b] and for x =

[
x1

x2

]
∈ RLm,n

2 and y =

[
y1
y2

]
∈

RLm,n
2 , we define the associated inner product as〈[

x1

x2

]
,

[
y1
y2

]〉
RLm,n

2

= xT
1 y1 + ⟨x2,y2⟩Ln

2
.

Frequently, we omit the domain [a, b] and simply write Ln
2 ,

Wn
k , Wn, or RLm,n

2 . For functions of time only (L2[R+] and
Wk[R+]), to denote the extended subspaces of such functions
by L2e[R+] and Wke[R+] respectively as

L2e[R+] := {x | x ∈ L2[0, T ] ∀ T ≥ 0} ,
Wke[R+] := {x | x ∈ Wk[0, T ] ∀ T ≥ 0} .

Finally, for normed spaces A,B, L(A,B) denotes the space
of bounded linear operators from A to B equipped with the
induced operator norm. L(A) := L(A,A).

A. PI Operators: A ∗-algebra of bounded linear operators
PI algebras are parameterized classes of operators on

RLm,n
2 . The first of these is the algebra of 3-PI operators that

map Ln
2 → Ln

2 with separable functions in L∞ as parameters.

Definition 1 (Separable Function). We say R : [a, b]2 → Rp×q

is separable if there exist r ∈ N, F ∈ Lr×p
∞ [a, b] and G ∈

Lr×q
∞ [a, b] such that R(s, θ) = F (s)TG(θ).

Definition 2 (3-PI operators, Π3). Given R0 ∈ Lp×q
∞ [a, b] and

separable functions R1, R2 : [a, b]2 → Rp×q , we define the
operator P = Π {Ri} for v ∈ L2[a, b] as(

Π {Ri}v
)
(s) := (2)

R0(s)v(s) +

∫ s

a

R1(s, θ)v(θ)dθ +

∫ b

s

R2(s, θ)v(θ)dθ.

Furthermore, we say an operator, P , is 3-PI of dimension p×q,
denoted P ∈ [Π3]p,q ⊂ L(Lq

2, L
p
2), if there exist functions R0

and separable functions R1, R2 such that P = Π {Ri}.

For any p ∈ N, [Π3]p,p is a ∗-algebra, being closed under
addition, composition, scalar multiplication, and adjoint (See
Appendix H [28]). Likewise, the algebra of 3-PI operators can
be extended to L(RL2) as follows.

Definition 3 (4-PI operators). Given P ∈ Rm×n, Q1 ∈ Lm×q
∞ ,

Q2 ∈ Lp×n
∞ , and R0, R1, R2 with Π {Ri} ∈ [Π3]p,q , we say

P = Π
[

P Q1

Q2 {Ri}

]
∈ L(RLm,p

2 ,RLn,q
2 ) if(

P
[
u
v

])
(s) :=

[
Pu+

∫ b

a
Q1(θ)v(θ)dθ

Q2(s)u+
(
Π {Ri}v

)
(s)

]
. (3)

Furthermore, we say P , is 4-PI, denoted P ∈ [Π4]
m,n
p,q , if there

exist P,Q1, Q1, R0, R1, R2 such that P = Π
[

P Q1

Q2 {Ri}

]
.

Definition 4 (*-subalgebras of Πi with polynomial param-
eters). We say P ∈ [Πp

3]p,q if there exist polynomials Ri

of appropriate dimension such that P = Π {Ri}. We say



4

P ∈ [Πp
4]

m,n
p,q if there exist matrix P and polynomials Qi, Ri

of appropriate dimension such that P = Π
[

P Q1

Q2 {Ri}

]
.

Algebraic operations on Πi are defined by algebraic op-
erations on the parameters that represent these operators. To
illustrate, consider how composition of two operators in Π4

defines a map on the parameters which define those operators
(this map will be used later in the article). To define this map,
we first note that any Π4 operator has an associated set of
matrix and polynomial parameters which lie in the space

[Γ4]
m,p
n,q :=


[

P Q1

Q2 {R0, R1aR1b, R2aR2b}

]
:

P ∈ Rm×n, Q1 ∈ Lm×q
∞ , Q2 ∈ Lp×n

∞ ,
R0 ∈ Lq×n

∞ , Ria ∈ Lq×nb
∞ , Rib ∈ Lnb×n

∞

 .

Then, given any
[

A B1

B2 {Ci}

]
∈ [Γ4]

m,p
n,q and[

P Q1

Q2 {Ri}

]
∈ [Γ4]

p,l
q,k, if the parametric map

P4
× : [Γ4]

m,p
n,q × [Γ4]

p,l
q,k → [Γ4]

m,l
n,k , is defined as[

P̂ Q̂1

Q̂2 {R̂i}

]
= P4

×

([
A B1

B2 {Ci}

]
,
[

P Q1

Q2 {Ri}

])
(4)

where

P̂ = AP +

∫ b

a

B1(s)Q2(s)ds, R̂0(s) = C0(s)R0(s),

Q̂1(s) = AQ1(s) +B1(s)R0(s) +

∫ b

s

B1(η)R1(η, s)dη

+

∫ s

a

B1(η)R2(η, s)dη,

Q̂2(s) = B2(s)P + C0(s)Q2(s) +

∫ s

a

C1(s, η)Q2(η)dη

+

∫ b

s

C2(s, η)Q2(η)dη,

R̂1(s, η) = B2(s)Q1(η) + C0(s)R1(s, η) + C1(s, η)R0(η)

+

∫ η

a

C1(s, θ)R2(θ, η)dθ +

∫ s

η

C1(s, θ)R1(θ, η)dθ

+

∫ b

s

C2(s, θ)R1(θ, η)dθ,

R̂2(s, η) = B2(s)Q1(η) + C0(s)R2(s, η) + C2(s, η)R0(η)

+

∫ s

a

C1(s, θ)R2(θ, η)dθ +

∫ η

s

C2(s, θ)R2(θ, η)dθ

+

∫ b

η

C2(s, θ)R1(θ, η)dθ,

we have

Π
[

P̂ Q̂1

Q̂2 {R̂i}

]
= Π

[
A B1

B2 {Ci}

] (
Π
[

P Q1

Q2 {Ri}

])
.

B. Partial Integral Equations
A Partial Integral Equation (PIE) is an extension of the

state-space representation of ODEs (vector-valued first-order
differential equations on Rn) to spatially distributed states on
the product space RL2. Mirroring the 9-matrix optimal control
framework developed for state-space systems, a PIE system is
parameterized by twelve 4-PI operators asT ẋ

¯
(t)

z(t)
y(t)

 =

A B1 B2

C1 D11 D12

C2 D21 D22

x
¯
(t)

w(t)
u(t)

−

Twẇ(t) + Tuu̇(t)
0
0

 ,

x
¯
(0) = x

¯
0 ∈ RLm,n

2 [a, b], (5)

where z(t) ∈ Rnz is the regulated output, y(t) ∈ Rny is the
sensed output, w(t) ∈ Rnw is the disturbance, u(t) ∈ Rnu is
the control input, and x

¯
(t) ∈ RLnx,nx̂

2 is the internal state.
Let us note two significant features of this model. First,

through some slight abuse of notation, in this paper, we will
use expressions such as T ẋ

¯
to represent ∂t(T x

¯
). Second, we

observe that PIEs allow for the dynamics to depend on the
time-derivative of the input signals: ∂t(Tww) and ∂t(Tuu).
These terms are included to allow for the PIEs to represent
certain classes of PDEs wherein signals enter through the BCs.
Notation: Finally, we collect the 12 PI parameters which
define a PIE system in Eq. (5) and introduce the shorthand
notation GPIE which represents the labeled tuple of such
system parameters as
GPIE = {T , Tw, Tu,A,B1,B2, C1, C2,D11,D12,D21,D22} .

When this shorthand notation is used, it is presumed that all
parameters have appropriate dimensions.

We now define minimal requirements that a solution of a
PIE system should satisfy.

Definition 5 (Admissible solution for a PIE system). For
given inputs u ∈ Lnu

2e [R+], w ∈ Lnw
2e [R+] with (Tuu)(·, s) ∈

Wnx+nx̂
1e [R+] and (Tww)(·, s) ∈ Wnx+nx̂

1e [R+] for all s ∈
[a, b] and x

¯
0(t) ∈ RLnx,nx̂

2 , we say that {x
¯
, z, y} satisfies

the PIE defined by GPIE with initial condition x
¯
0 and input

{w, u} if z ∈ Lnz
2e [R+], y ∈ L

ny

2e [R+], x¯
(t) ∈ RLnx,nx̂

2 [a, b]
for all t ≥ 0, T x

¯
is Frechét differentiable on R+, T x

¯
(0) =

T x
¯
0, and Eq. (5) is satisfied for all t ∈ R+.

Note that the Frechét (and not Gateaux) derivative is used
in Defn. 5 because we restrict our analysis to linear systems.

III. GPDES: A GENERALIZED CLASS OF LINEAR MODELS

Now, we parameterize the class of PDE models for which
we may define associated PIE systems. To simplify the no-
tation and analysis, we will represent these models as the
interconnection of ODE and PDE subsystems – See Figure 3.
This class of PDE models will be referred to as Generalized
Partial Differential Equations (GPDEs).

A. ODE Subsystem
The ODE subsystem of a GPDE model, illustrated in Fig-

ure 1, is a typical state-space representation with real-valued
finite-dimensional inputs and outputs. These inputs and outputs
include both the interconnection with the PDE subsystem and
the inputs and outputs of the GPDE model as a whole. We
partition both the input and output signals into 3 components,
differentiating these channels by function. The input channels
are: the control input to the GPDE (u(t) ∈ Rnu ); the ex-
ogenous disturbance (w(t) ∈ Rnw ); and the internal feedback
input (r(t) ∈ Rnr ) which is the output of the PDE subsystem.
The output channels of the ODE subsystem are: the regulated
output of the GPDE (z(t) ∈ Rnz ); the sensed outputs of the
GPDE (y(t) ∈ Rny ); and the output from the ODE subsystem
which becomes the input to the PDE subsystem (v(t) ∈ Rnv ).

Definition 6 (Admissible solution for an ODE subsystem).
Given matrices A, Bxw, Bxu, Bxr, Cz , Dzw, Dzu, Dzr, Cy ,



5

w, u
ODE subsystem

z, y
r v

Fig. 1: Depiction of the ODE subsystem for use in defining a
GPDE. All external input signals in the GPDE model pass
through the ODE subsystem and are labeled as u and w,
corresponding to control input and disturbance/forcing input.
All external outputs pass through the ODE subsystem and
are labeled y and z, corresponding to measured output and
regulated output. All interaction with the PDE subsystem is
routed through two vector-valued signals: r the sole output of
the PDE subsystem and v the sole input to the PDE subsystem.

r v
PDE+BC

+continuity constraints

x̂F x̂,Bx̂
Differential operator

Dirac operator

Fig. 2: Depiction of the PDE subsystem for use in defining a
GPDE. All interaction of the PDE subsystem with the ODE
subsystem is routed through the two vector-valued signals:
r(t) an output of the PDE subsystem (and input to the ODE
subsystem) and v(t) is input to the PDE subsystem (and output
from the ODE subsystem).

Dyw, Dyu, Dyr, Cv , Dvw, Dvu of appropriate dimension, we
say {x, z, y, v} with {x(t), z(t), y(t), v(t)} ∈ Rnx × Rnz ×
Rny ×Rnv satisfies the ODE with initial condition x0 ∈ Rnx

and input {w, u, r} if x is differentiable, x(0) = x0 and for
t ≥ 0 

ẋ(t)
z(t)
y(t)
v(t)

 =


A Bxw Bxu Bxr

Cz Dzw Dzu Dzr

Cy Dyw Dyu Dyr

Cv Dvw Dvu 0



x(t)
w(t)
u(t)
r(t)

 . (6)

Notation: We collect all matrix parameters from the ODE
subsystem in (6) and introduce the shorthand notation Go

which represents the labelled tuple of such parameters as
Go = {A,Bxw, Bxu, Bxr, Cz, Dzw, Dzu, Dzr, Cy, Dyw, Dyu,

Dyr, Cv, Dvw, Dvu} . (7)
When this shorthand notation is used, it is presumed that all
parameters have appropriate dimensions.

B. PDE Subsystem
Our parameterization of the PDE subsystem, illustrated in

Fig. 2, is divided into three parts: the continuity constraints, the
in-domain dynamics, and the BCs. The continuity constraints
specify the existence of partial derivatives and boundary values
for each state as required by the in-domain dynamics and BCs.
The in-domain dynamics (or generating equation) specify the
time derivative of the state at every point in the interior of the
domain, and are expressed using integral, dirac, and N th-order
spatial derivative operators. The BCs are represented as a real-
valued algebraic constraint subsystem that maps the distributed
state and inputs to a vector of boundary values. External
inputs or outputs are not defined for the PDE subsystem
and instead are routed through the ODE subsystem using the
interconnection signals.

B.1 The continuity constraint

The ‘continuity constraint’ partitions the state vector of
the PDE subsystem, x̂(t, ·), and specifies the differentiability
properties of each partition as required for existence of the
required partial derivatives and limit values. This partition
is defined by the parameter n ∈ NN+1 = {n0, · · ·nN},
wherein ni specifies the dimension of the ith partition vector
so that x̂i(t, s) ∈ Rni . The partitions are ordered by increasing
differentiability so that

x̂(t, ·) =

 x̂0(t, ·)
...

x̂N (t, ·)

 ∈ Wn :=

W
n0
0
...

WnN

N

 .

Given the partition defined by n ∈ NN+1, and given x̂ ∈
Wn, we would like to list all well-defined partial derivatives
of x̂. Note that the Sobolev spaces WN have a continuous
embedding into the space of continuous functions, WN [a, b] ⊂
CN−1[a, b] – implying existence of boundary values ∂i

sx(a)
and classical partial derivatives ∂i

sx for i < N above and also
in Lem. 11.

To do this, we first define nx̂ := |n|1 =
∑N

i=0 ni to be the
number of states in x̂, nSi :=

∑N
j=i nj ≤ nx̂ to be the total

number of i-times differentiable states, and nS =
∑N

i=1 nSi

to be the total number of possible partial derivatives of x̂ as
permitted by the continuity constraint.

Notation: For indexed vectors (such as n or x̂) we use
x̂i:j to denote the components i to j. Specifically, x̂i:j =

col(x̂i, · · · , x̂j), ni:j :=
∑j

k=i nk and nSi:j
=
∑j

k=i nSk
.

Next, we define the selection operator Si : Rnx̂ → RnSi

which is used to select only those states in x̂ which are at
least i-times differentiable. Specifically, for x̂ ∈ Wn, we have

Si =
[
0nSi

×nx̂−nSi
InSi

]
, so that (Six̂)(s) =

 x̂i(s)
...

x̂N (s)

 .

We may now conveniently represent all well-defined ith-order
partial derivatives of x̂ as ∂i

sS
ix̂ so that

(∂i
sS

ix̂)(s) =

 ∂i
sx̂i(s)
...

∂i
sx̂N (s)

 and (F x̂)(s) :=


x̂(s)

(∂sSx̂)(s)
...

(∂N
s SN x̂)(s)


where F concatenates all the ∂i

sS
ix̂ for i = 0, · · · , N —

creating an ordered list including both the PDE state, x̂, as
well as all nS possible partial derivatives of x̂ as permitted by
the continuity constraint and the vector (F x̂)(s) ∈ RnS+nx .

Lastly, we may construct (Cx̂)(s) ∈ RnS , the vector of all
absolutely continuous functions generated by x̂ and its partial
derivatives. Using Cx̂, we may then construct Bx̂ ∈ R2nS , the
list all possible boundary values of x̂ ∈ Wn. Specifically, Cx̂
and Bx̂ are defined as

Cx̂(s) =


(Sx̂)(s)

(∂sS
2x̂)(s)
...

(∂N−1
s SN x̂)(s)

 and Bx̂ =

[
(Cx̂)(a)
(Cx̂)(b)

]
. (8)

This notation also allows us to specify all well-defined bound-
ary values of x̂ ∈ Wn and of its partial derivatives.
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B.2 Boundary Conditions (BCs)
Given the notational framework afforded by the continuity

condition, and equipped with our list of well-defined terms
(F x̂ and Bx̂), we may now parameterize a generalized class
of BCs consisting of a combination of boundary values,
integrals of the PDE state, and the effect of the input signal,
v. Specifically, the BCs are parameterized by the square-
integrable function BI : [a, b] → RnBC×(nS+nx̂) and matrices
Bv ∈ RnBC×nv and B ∈ RnBC×2nS as∫ b

a

BI(s)(F x̂(t))(s)ds+
[
Bv −B

] [ v(t)
Bx̂(t)

]
= 0 (9)

where nBC is the number of specified BCs. For reasons
of well-posedness, as discussed in Section IV, we typically
require nBC = nS . If fewer BCs are available, it is likely that
the continuity constraint is too strong.

Now that we have parameterized a general set of BCs, we
embed these BCs in what is typically referred to as the domain
of the infinitesimal generator – which combines the BCs and
continuity constraints into a set of acceptable states.

Xv :=

x̂ ∈ Wn[a, b] :∫ b

a
BI(s)(F x̂)(s)ds+

[
Bv −B

] [ v
Bx̂

]
= 0

 .

(10)
The set Xv is used to restrict the state and initial conditions
as x̂(t) ∈ Xv(t) and x̂(0) = x̂0 ∈ Xv(0).
Notation: We collect all the parameters which define the
constraint in Eq. (9) in Gb, as

Gb = {B, BI , Bv} . (11)
When this shorthand notation is used, it is presumed that all
parameters have appropriate dimensions.
B.3 In-Domain Dynamics of the PDE Subsystem

Having specified the continuity constraint and BCs using
{n,Gb}, we once again use our list of well-defined terms
(F x̂ and Bx̂) to define the in-domain dynamics of the PDE
subsystem and the output to the ODE subsystem. These
dynamics are parameterized by the functions A0(s), A1(s, θ),
A2(s, θ) ∈ Rnx̂×(nS+nx̂), Cr(s) ∈ Rnr×(nS+nx̂), Bxv(s)
∈ Rnx̂×nv , Bxb(s) ∈ Rnx̂×2nS , and matrices Drv ∈ Rnr×nv

and Drb(s) ∈ Rnr×2nS as[
˙̂x(t, s)
r(t)

]
=

[
A0(s)(F x̂(t))(s)

0

]
+

[
Bxv(s) Bxb(s)

0 Drb

] [
v(t)
Bx̂(t)

]

+

 s∫
a

A1(s, θ)(F x̂(t))(θ)dθ +
b∫
s

A2(s, θ)(F x̂(t))(θ)dθ∫ b

a
Cr(θ)(F x̂(t))(θ)dθ

 .

(12)
Many commonly used PDE models are defined solely by

A0. For example, if we consider ut = λu + uss, then
A0 =

[
λ 0 1

]
and all other parameters are zero. While the

parameters other than A0, appear infrequently in application,
they can be used to model non-local effects of distributed state,
forcing function, boundary values, etc.
Notation: We collect all parameters from the in-domain dy-
namics of the PDE subsystem (Eq. (12)) in Gp as

Gp = {A0, A1, A2, Bxv, Bxb, Cr, Drb} . (13)
When this shorthand notation is used, it is presumed that all
parameters have appropriate dimensions.

Fig. 3: A GPDE is the interconnection of an ODE subsystem
(an ODE with finite-dimensional inputs w, u, v and outputs
z, y, r) with a PDE subsystem (N th-order PDEs and BCs with
finite-dimensional input r and output v). The BCs and internal
dynamics of the PDE subsystem are specified in terms of all
well-defined spatially distributed terms as encoded in F x̂(t)
and all well-defined limit values as encoded in Bx̂(t).

Definition 7 (Admissible solution for a PDE subsystem). For
given x̂0 ∈ Xv(0) and v ∈ Lnv

2e [R+] with Bvv ∈ W 2nS
1e [R+],

we say that {x̂, r} satisfies the PDE subsystem defined by
n ∈ NN+1 and {Gb,Gp} (defined in Eqs. (11) and (13)) with
initial condition x̂0 and input v if r ∈ Lnr

2e [R+], x̂(t) ∈ Xv(t)

for all t ≥ 0, x̂ is Frechét differentiable with respect to the
L2-norm on R+, x̂(0) = x̂0, and Eq. (12) is satisfied for all
t ≥ 0.

Note that the Defn. 7 defines a minimal criterion for
the admissibility of solutions of the PDE to guarantee the
existence of an associated PIE solution. While Defn. 7 is not
intended as a formal statement of the Cauchy problem, the
required properties of the solution are similar to the regularity
conditions used in classical definitions of solution such as in,
e.g., see [7, Theorem 3.3.3], [31, Proposition 10.1.8], and [4].

C. GPDE: Interconnection of ODE and PDE Subsystems
A GPDE model, illustrated in Figure 3, is the mutual

interconnection of the ODE and PDE subsystems through the
interconnection signals (r, v) and is collectively defined by
Eqs. (6)-(12). Given suitable inputs w,u, for a GPDE model,
parameterized by {n,Go,Gb,Gp}, we define the continuity
constraint and time-varying BCs by {x(t), x̂(t)} ∈ Xw(t),u(t)

where

Xw,u :=

{[
x
x̂

]
∈Rnx×Xv | v = Cvx+Dvww +Dvuu

}
.

(14)

Definition 8 (Admissible solution for a GPDE model). For
given {x0, x̂0} ∈ Xw(0),u(0) and w ∈ Lnw

2e [R+], u ∈ Lnu
2e [R+]

with BvDvww ∈ W 2nS
1e [R+] and BvDvuu ∈ W 2nS

1e [R+],
we say that {x, x̂, z, y, v, r} satisfies the GPDE defined
by {n, Go, Gb, Gp} (defined in Eqs. 7, 11, and 13) with
initial condition {x0, x̂0} and input {w, u} if z ∈ Lnz

2e [R+],
y ∈ L

ny

2e [R+], v ∈ Lnv
2e [R+], r ∈ Lnr

2e [R+], {x(t), x̂(t)} ∈
Xw(t),u(t) for all t ≥ 0, x is differentiable on R+, x̂ is Frechét
differentiable with respect to the L2-norm on R+, x(0) = x0,
x̂(0) = x̂0, and Eqs. (6)-(12) are satisfied for all t ≥ 0.

D. Illustrative Example of the GPDE Representation
In this subsection, we illustrate the process of identifying

the GPDE parameters of a given system. Firstly, we divide
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the system into ODE and PDE subsystems and focus on
identifying the continuity constraint for the PDE subsystem –
always the least restrictive constraint necessary for existence of
the partial derivatives and boundary values. We then proceed
to identify the remaining parameters.

Illustration 1 (Damped Wave equation with delay and
motor dynamics) Let us consider a wave equation η̈(t, s) =
∂2
sη(t, s), defined on the interval s ∈ [0, 1], to which we apply

a control using a DC motor and where the output from the DC
motor experiences a distributed delay and some disturbance
modeled as ηs(t, 1) = w(t) +

∫ 0

−τ
µ(s/τ)T (t + s)ds where

T (t) is the output of the DC motor and µ(s) is a given
multiplier. The delay is represented using a transport equation
with distributed state p(t, s) on the interval [−1, 0] so that

ṗ(t, s) =
1

τ
ps(t, s), p(t, 0) = T (t), η(t, 1) =

0∫
−1

µ(s)p(t, s)ds.

The DC motor dynamics relate the voltage input, u(t) to the
torque T (t) through the current, i(t) as

∂ti(t) =
−R

L
i(t) + u(t) T (t) = Kti(t).

The sensed output is the feedback signal ηt(1, t) and the
regulated output is a combination of the integral of the
displacement and controller effort so that

z(t) =

[∫ 1

0
η(t, s)ds
u(t)

]
, y(t) = ηt(1, t).

Firstly, we introduce the change of variables ζ1 = η, ζ2 = η̇,
ζ3(t, s) = p(t, s − 1). A complete list of equations is now
i̇(t) = −R

L i(t) + u(t) and
ζ̇1(t, s) = ζ2(t, s), ζ̇2(t, s) = ∂2

sζ1(t, s),

ζ̇3(t, s) =
1

τ
∂sζ3(t, s), ζ1(t, 0) = 0, ζ3(t, 1) = Kti(t),

∂sζ1(t, 1) = w(t) +

∫ 1

0

µ(s− 1)ζ3(t, s)ds,

z(t) =

[∫ 1

0
ζ1(t, s)ds
u(t)

]
, y(t) = ζ2(t, 1), s ∈ [0, 1], t ≥ 0.

ODE Subsystem: Since i(t) is the only finite dimensional
state we set x(t) = i(t) to get ẋ(t) = −R

L x(t)+u(t). The ODE
subsystem influences the PDE subsystem via signals w(t) and
T (t). The effect of the PDE subsystem on the regulated and
observed outputs (z and y, respectively) is routed through r(t).
The outputs, z, y and internal signals, v, r, are now defined as

v(t) =

[
T (t)
w(t)

]
=

[
Kt

0

]
x(t) +

[
0
1

]
w(t),

r(t) =

[∫ 1

0
ζ1(t, s)ds
ζ2(t, 1)

]
,

[
z(t)
y(t)

]
=

 0
u(t)
0

+

1 0
0 0
0 1

 r(t).

Expressing these equations in the form of Eq. (6), we find Go

has the following nonzero parameters: A = −R
L , Bxu = 1,

Dyr =
[
0 1

]
,

Dzu =

[
0
1

]
, Cv =

[
Kt

0

]
, Dvw =

[
0
1

]
, Dzr =

[
1 0
0 0

]
.

PDE subsystem: Next, we need to define: n, Gb, and Gp.

Continuity Constraint: To identify, n, we consider the
required partial derivatives and limit values for the three
distributed states: ζ1, ζ2 and ζ3. Since ∂2

sζ1 appears in the in-

domain dynamics and the BCs involve ζ1(t, 0) and ∂sζ1(t, 1),
the least restrictive constraint which guarantees existence of
all three terms is ζ1 ∈ x̂2. Next, no partial derivatives of ζ2
are needed, but the limit value ζ(t, 1) appears in the BCs –
so we restrict ζ2 ∈ x̂1. Finally, ∂sζ3 appears in the in-domain
dynamics and ζ3(t, 1) appears in the BCs – implying ζ3 ∈ x̂1.
We conclude that n = {n0, n1, n2} = {0, 2, 1} and the GPDE
state is x̂ = col(x̂1, x̂2) where x̂1 = col(ζ2, ζ3) and x̂2 = ζ1.

Boundary Conditions: For this, n, we have nx̂ = 3, nS0
=

3, nS1
= 3, nS2

= 1 and nS = 4. Recalling the definitions of
F , C, and B, we have

F x̂ = col(ζ2, ζ3, ζ1, ∂sζ2, ∂sζ3, ∂sζ1, ∂2
sζ1),

Cx̂ = col(ζ2, ζ3, ζ1, ∂sζ1), Bx̂ = col(Cx̂(0), Cx̂(1)).
Checking our BCs, we note that ζ1(t, 0) = 0 implies ζ2(t, 0) =
0. Placing these BCs in the required form, we have∫ 1

0


0
0
0

µ(s− 1)ζ3(s)

 ds =


ζ1(0)
ζ2(0)
ζ3(1)
∂sζ1(1)

+


0
0

−v1
−v2

 .

Recalling the expansions of F x̂ and Bx̂ and Eq. (9), we may
identify the parameters in Gb as

B =


0 0 1 01,2 0 0 0
1 0 0 01,2 0 0 0
0 0 0 01,2 1 0 0
0 0 0 01,2 0 0 1

 ,

Bv =

[
02
I2

]
, BI(s) =

[
03,1 03,1 03,5
0 µ(s− 1) 01,5

]
. (15)

In-Domain Dynamics: Recalling the form of the PDE dy-
namics from Eq. (12), we can represent the dynamics as

˙̂x(t, s)=

 ∂2
sζ1(t, s)

1/τ∂sζ3(t, s)
ζ2(t, s)

=
0 01,3 0 0 1
0 01,3

1
τ 0 0

1 01,3 0 0 0


︸ ︷︷ ︸

A0

(F x̂(t))(s).

Likewise, from the definition of r(t), we have

r(t) =

[∫ 1

0
ζ1(t, s)ds
ζ2(t, 1)

]
=

1∫
0

Cr︷ ︸︸ ︷[
01,2 1 01,4
01,2 0 01,4

]
(F x̂(t))(θ)dθ

+

[
01,4 0 01,3
01,4 1 01,3

]
︸ ︷︷ ︸

Drb

Bx̂(t).

Thus we have A0, Cr, Drb – the only nonzero terms in Gp.

IV. REPRESENTING A PDE SUBSYSTEM AS A PIE

In Section III, we proposed a GPDE representation for a
broad class of coupled ODE-PDEs Systems. Now, we beign
the process of finding an alternative representation of such a
GPDE model as a PIE by focusing on conversion of the PDE
subsystem to a restricted class of PIE subsystem of the form[

T̂ ˙̂x
¯
(t)

r(t)

]
=

[
Â Bv

Cr Drv

] [
x̂
¯
(t)

v(t)

]
−
[
Tv v̇(t)

0

]
, (16)

with initial condition x̂
¯
(0) = x̂

¯
0 ∈ Lm

2 . Such PIE subsystems
are a special case of Definition 5 with parameter set given by

GPIEs :=
{
T̂ , Tv, ∅, Â,Bv, ∅, Crv, ∅,Drv, ∅, ∅, ∅

}
.
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In this section, we will show that for any PIE-compatible PDE
subsystem, there exists a corresponding PIE subsystem such
that the existence of a solution for one ensures the existence
of a solution for the other.

A. PIE-compatibility
Before we map the PDE subsystem to an associated PIE

subsystem, we first define a notion of ‘PIE-compatibility’.
This definition imposes a notion of well-posedness on Xv in
the sense that it guarantees the existence of a unitary map
to the solution of a PIE. However, it does not guarantee the
existence of a solution itself. This condition ensures, e.g.,
that there are a sufficient number of independent BCs to
establish a mapping between the distributed state and its partial
derivatives. Without such a mapping, the solution to the PDE
may not exist (too many BCs) or may not be unique (too few
BCs).

Definition 9 (PIE-compatible). Given a GPDE parameter set
{n ∈ NN+1, Gb := {B, BI , Bv}, Go, Gp}, we say the
GPDE is PIE-compatible, or alternatively {n,Gb} is PIE-
compatible, if BT is invertible where

BT := B

[
T (0)

T (b− a)

]
−
∫ b

a

BI(s)U2T (s− a)ds ∈ RnBC×nS ,

and where T and U2 are defined (See also Block 4) as

U2i =

[
0ni×ni+1:N

Ini+1:N

]
∈ RnSi

×nSi+1 , (17)

U2 =

[
diag(U20, · · · , U2(N−1))

0nN×nS

]
∈ R(nx̂+nS)×nS , (18)

Ti,j(s) =
s(j−i)

(j − i)!

[
0nSi−nSj×nSj

InSj

]
∈ RnSi×nSj , (19)

T (s) =


T1,1(s) T1,2(s) · · · T1,N (s)

0 T2,2(s) · · · T2,N (s)
...

...
. . .

...
0 0 · · · TN,N (s)

 ∈ RnS×nS .

(20)

Invertibility of BT implies the matrix is square requiring
nBC = nS . This requirement can be explained by relating to
the loss of boundary value information during the differenti-
ation of a function. If a function is differentiated nS-times,
we need nS BCs to relate all the partial derivatives to the
original function. Furthermore, nBC = nS is a necessary but
not sufficient requirement – the BCs must be both independent
and provide enough information to allow us to find the original
function. See Subsection 3.2.2 in [20] for an enumeration of
pathological cases, including periodic BCs.

B. A map between PIE and PDE states
Given a PIE-compatible GPDE, we may construct a PIE

subsystem, which we will associate with the PDE subsystem
defined by those parameters. The first step is to map x̂(t) ∈
Xv , the state of the PDE subsystem, to x̂

¯
(t) ∈ L2, the state

of the PIE subsystem using

x̂
¯
= Dx̂ =


x̂0

∂sx̂1

...
∂N
s x̂N

 ∈ Lnx̂
2 ,

where D := diag(∂0
sIn0

, · · · , ∂N
s InN

). The following theo-
rem shows that this mapping is invertible and the inverse is
defined by PI operators.

Theorem 10. Given {n ∈ NN+1, Gb} PIE-compatible,
let {T̂ , Tv} be as defined in Block 4, Xv as defined in
Eq. (10) and D :=diag(∂0

sIn0
, · · · , ∂N

s InN
). Then we have

the following: (a) For any v ∈ Rnv , if x̂ ∈ Xv , then Dx̂ ∈ Lnx̂
2

and x̂ = T̂ Dx̂+Tvv; and (b) For any v ∈ Rnv and x̂
¯
∈ Lnx̂

2 ,
T̂ x̂

¯
+ Tvv ∈ Xv and x̂

¯
= D(T̂ x̂

¯
+ Tvv).

First, we generalize Cauchy’s classical rule (can also be
viewed as a form of Taylor’s expansion) for repeated integra-
tion to include dependence on boundary values.

Lemma 11. Suppose x ∈ Wn
N [a, b] for any N ∈ N. Then

x(s)= x(a)+

N−1∑
j=1

(s−a)j

j!
∂j
sx(a)+

s∫
a

(s−θ)N−1

(N − 1)!
∂N
s x(θ)dθ.

Proof. This result is proved by induction. Assume the identity
holds is true for some k < N − 1. We can substitute ∂k

sx(s)

with ∂k
sx(a) +

s∫
a

(s−θ)k+1

(k+1)! ∂
k+1
s x(θ)dθ because of the Funda-

mental Theorem of Calculus. Then, by changing the order of
integration, we obtain the identity presented in the Lemma
statement. A detailed proof can be found in Appendix B.

The following proof of Thm. 10 applies Lemma 11 to the
PDE model and uses the admissibility criterion to eliminate
boundary conditions.

Proof. Proof of Thm. 10: Statement a) Let x̂ ∈ Xv for some
v ∈ Rq . Clearly, by definition of Xv , ∂i

sx̂i ∈ Lni
2 . Therefore,

Dx̂ ∈ Lnx̂
2 . Next we need to express x̂ in terms of x̂

¯
:= Dx̂

and v. For that, we will first express (Cx̂)(a) solely in terms
of x̂

¯
and v. Using Lem. 11, we can show that if {n,Gb} is

PIE compatible, then

(Cx̂)(a) =
∫ b

a

BQ(θ)x̂¯
(θ)dθ +B−1

T Bvv.

This is obtained by applying the C operator on a x̂ ∈ Xv ,
followed by boundary conditions in Xv to eliminate all eval-
uations at s = b. For details, see Cor. 27 in Appendix A of
the supplementary material or [28].

Now that we have an expression for (Cx̂)(a), we simply
apply Lem. 11 to x ∈ Xv , and substitute (Cx̂)(a) into the
expression to obtain

x̂(s) =

[
x̂0(s)
x̂1:N (s)

]
= G0x̂¯

(s) +

∫ b

s

G2(s, θ)x̂¯
(θ)dθ

+

∫ s

a

G1(s, θ)x̂¯
(θ)dθ +Gv(s)v

= (T̂ x̂
¯
)(s) + (Tvv)(s).

Proof of Thm. 10: Statement b) First, we reverse the formula
in Lemma 11 by differentiating to show that D(T̂ x̂

¯
+ Tvv) =

x̂
¯
. Next, we can use a similar process to find the boundary

values of y := T̂ x̂
¯
+ Tvv and show that y ∈ Xv . For details,

see Appendix A in the supplementary material, or [28].

For any given v ∈ Rnv , Theorem 10 provides an invertible
map between the state of the PIE subsystem, x̂

¯
(t) ∈ Lnx̂

2 and
the state of the PDE subsystem, x̂(t) ∈ Xv . In the following
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subsection, we apply this mapping to the internal dynamics
of the PDE subsystem in order to obtain an equivalent PIE
representation of this subsystem.

nx̂ =
N∑
i=0

ni, nSi
=

N∑
j=i

nj , nS =
N∑
i=1

nSi
ni:j =

j∑
k=i

nk,

τi(s) =
si

i!
, Tij = τ(j−i)

[
0(nSi−nSj),nSj

InSj

]
, U1i =

[
Ini

0ni+1:N ,ni

]
,

T (s) =

T1(s)
...

TN (s)

 =

T11(s) · · · T1N (s)
...

. . .
...

0 · · · TNN (s)

 , U2i =

[
0ni,ni+1:N

Ini+1:N

]
,

U1 = diag(U10, · · · , U1N ), U2 =

[
diag(U20, · · · , U2(N−1))

0nN ,nS

]
,

BT = B

[
T (0)

T (b− a)

]
−
∫ b

a

BI(s)U2T (s− a)ds,

Qi(s) =


0 τ0(s)Ini

0 τ1(s)Ini+1

. . .

0 τN−i(s)InN

, Q(s) =

Q1(s)
...

QN (s)



BQ(s)=B−1
T

BI(s)U1+

b∫
s

BI(θ)U2Q(θ − s)dθ −B

[
0

Q(b− s)

],

G0 =

[
In0

0(nx̂−n0)

]
, G2(s, θ) =

[
0

T1(s− a)BQ(θ)

]
,

G1(s, θ) =

[
0

Q1(s− θ)

]
+G2(s, θ), Gv(s) =

[
0

T1(s− a)B−1
T Bv

]
,

T̂ = Π
[

∅ ∅
∅ {Gi}

]
, Tv = Π

[
∅ ∅
Gv {∅}

]
.

Block 4: Definitions based on n ∈ NN+1 and the parameters
of Gb := {B, BI , Bv} used in Theorem 10.

C. PIE representation of a PDE Subsystem
For finite-dimensional state-space systems, similarity trans-

forms are used to construct equivalent representations of the
input-output map. Specifically, for any invertible T , the system
G := {A,B,C,D} with internal state x may be equivalently
represented as G := {T−1AT, T−1B,CT,D} with internal
state x̂ = T−1x. In this subsection, we apply this approach
to PDE subsystems. Specifically, now that we have obtained
an invertible transformation from Lnx̂

2 to Xv , we apply the
logic of the similarity transform to the internal dynamics of
the PDE subsystem to obtain an equivalent PIE subsystem
representation. Specifically, in Theorem 12, we substitute
x̂ = T̂ x̂

¯
+Tvv in the internal dynamics of the PDE subsystem.

The result is a set of equations parameterized entirely using PI
operators. These PI operators, as defined in Block 5, specify a
PIE subsystem whose input-output behavior mirrors that of the
PDE subsystem and whose solution can be constructed using
the solution of the PDE subsystem. Conversely, any solution
of the associated PIE subsystem can be used to construct a
solution for the PDE subsystem.

Theorem 12. Given a PIE-compatible GPDE with parameter
set {n ∈ NN+1, Gb, Go, Gp} as defined in eqs. (7), (11)
and (13), suppose v ∈ Lnv

2e [R+] with Bvv ∈ W 2nS
1e [R+],

{T̂ , Tv} are as defined in Block 4, {Â, Bv, Cr, Drv} are
as defined in Block 5 and

GPIE =
{
T̂ , Tv, ∅, Â,Bv, ∅, Cr, ∅,Drv, ∅, ∅, ∅

}
.

Then we have the following.
1) For any x̂0 ∈ Xv(0) (Xv is as defined in Equation (10)), if
{x̂, r} satisfies the PDE defined by {n,Gb,Gp} with initial
condition x̂0 and input v, then {Dx̂, r, ∅} satisfies the PIE
defined by GPIE with initial condition Dx̂0 ∈ Lnx̂

2 and input
{v, ∅} where Dx̂ = col(∂0

s x̂0, · · · , ∂N
s x̂N ).

2) For any x̂
¯
0 ∈ Lnx̂

2 , if {x̂
¯
, r, ∅} satisfies the PIE defined by

GPIE for initial condition x̂
¯
0 and input {v, ∅}, then {T̂ x̂

¯
+

Tvv, r} satisfies the PDE defined by {n,Gb,Gp} with initial
condition x̂0 = T̂ x̂

¯
0 + Tvv(0) and input v.

Proof. Here we will prove 1) implies 2). Let {x̂, r} be as
stated in 1). Then by Definition 7: a) r ∈ Lnr

2e [R+]; b) x̂(t) ∈
Xv(t) for all t ≥ 0; c) x̂ is Frechét differentiable with respect
to the L2-norm on R+; d) Equation (12) is satisfied for all
t ≥ 0; and e) x̂(0) = x̂0.

Let x̂
¯
= Dx̂, x̂

¯
0 = Dx̂0, n = nx̂ and m = 0. Our goal

is to show that, {x̂
¯
, r, ∅} satisfies the PIE defined by GPIE

for initial condition x̂
¯
0 and input {v, ∅}. Since v ∈ Lnv

2e [R+]
from the theorem statement and by the definition of Tw, Bvv ∈
W 2nS

1e [R+] we have

(Tww)(s) = (Tvv)(s) =
[

0
T1(s− a)

]
B−1

T Bvv ∈ Wnx̂
1e [R+].

From Theorem 10a we have that x̂(t) ∈ Xv(t) implies
x̂
¯
(t) = Dx̂(t) ∈ RL0,nx̂

2 = Lnx̂
2 for all t ≥ 0. Furthermore,

from the Definition 7, r ∈ Lnr
2e [R+]. From Theorem 10a we

have that x̂0 ∈ Xv(0) implies x̂
¯
0 = Dx̂0 ∈ RL0,nx̂

2 = Lnx̂
2 .

Furthermore, since x̂
¯
(t) = Dx̂(t) for all t ≥ 0, we have

x̂
¯
(0) = Dx̂(0) = Dx̂0 = x

¯
0. Since x̂ is Frechét differentiable,

the limit of x̂(t+h)−x̂(t)
h as h → 0+ exists for any t ≥ 0 when

convergence is defined with respect to the L2 norm. This, and
the fact that Tvv ∈ Wnv

1e implies that limh→0+
T̂ x̂

¯
(t+h)−T̂ x̂

¯
(t)

h

exists for all t ≥ 0. Thus, T̂ x̂
¯

is Frechét differentiable with
respect to L2-norm. Lastly, since x̂(t) satisfies (9)-(12) for
all t ≥ 0, and since x̂(t) ∈ Xv(t) and x̂

¯
(t) = Dx̂(t) for all

t ≥ 0, from Theorem 10, we have that x̂(t) = T̂ x̂
¯
(t)+Tvv(t)

implies ˙̂x(t) = T̂ ˙̂x
¯
(t) + Tv v̇(t). We can substitute this into

Eq. 30 and re-write Eq. 30 using the PI operator notation to
get the compact relation[

r(t)

T̂ ˙̂x
¯
(t) + Tv v̇(t)

]
= Π

[ [
0 Drb

]
Cr[

Bxv Bxb

]
{Ai}

][ v(t)
(Bx̂)(t)

]
(F x̂)(t)

 .

Using Theorem 10 and above relations, we can show that
{x̂

¯
, r, ∅} satisfies the PIE defined by GPIE for initial condition

x̂
¯
0 and input {v, ∅}.
Likewise, one can prove 2) implies 1) using the Def. 5,

Def. 7, and Thm. 10 – details may be found in Appendix B
of the supplementary material or [28].

The two parts of Theorem 12 show that the PDE subsys-
tem’s well-posedness guarantees the PIE subsystem’s well-
posedness and that the PIE subsystem’s input-output behavior
mirrors that of the PDE subsystem and vice versa. Because
PIEs are potentially easier to numerically analyze, control,
and simulate, this result suggests that the tasks of analysis,
control, and simulation of a PDE subsystem may be more
readily accomplished by performing the desired task on the
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PIE subsystem and then applying the result to the original
PDE subsystem.

RD,2(s, θ) = U2T (s− a)BQ(θ),

RD,1(s, θ) = RD,2(s, θ) + U2Q(s− θ),

Υ =


 Inv

B−1
T Bv

T (b− a)B−1
T Bv

  0nr×nx

BQ(s)
T (b− a)BQ(s) +Q(b− s)


U2T (s− a)B−1

T Bv {U1, RD,1, RD,2}

 ,

Ξ =
[ [

0 Drb

]
Cr[

Bxv Bxb

]
{Ai}

]
,

[
Drv Crx

Bv {Âi}

]
= P4

× (Ξ,Υ) ,

Â = Π
[ ∅ ∅

∅ {Âi}

]
, Bv = Π

[
∅ ∅
Bv {∅}

]
, Cr = Π

[
∅ Crx

∅ {∅}

]
,

Drv = Π
[

Drv ∅
∅ {∅}

]
, T =

[
Inx

0

GvCv T̂

]
, Tw =

[
0 0

GvDvw 0

]
,

Tu =

[
0 0

GvDvu 0

]
, , A =

[
A+BxrDrvCv BxrCr

BvCv Â

]
,

B1 =

[
Bxw +BxrDrvDvw

BvDvw

]
, B2 =

[
Bxu +BxrDrvDvu

BvDvu

]
,

C1 =
[
Cz +DzrDrvCv DzrCr

]
, C2 =

[
Cy +DyrDrvCv DyrCr

]
,

D11 = Dzw +DzrDrvDvw, D12 = Dzu +DzrDrvDvu,

D21 = Dyw +DyrDrvDvw, D22 = Dyu +DyrDrvDvu.

Block 5: Definitions based on the PDE and GPDE parameters
in Gp= {A0, A1, A2, Bxv, Bxb, Cr, Drb} and Go = {A,
Bxw, Bxu, Bxr, Cz, Dzw, Dzu, Dzr, Cy, Dyw, Dyu, Dyr,
Cv, Dvw, Dvu}, the Definitions from Gb as listed in Block 4
and the map P4

× as defined in Equation (4).

To summarize, finding the PIE representation of a GPDE
system involves 4 major steps. To illustrate these steps we go
back to the GPDE model of the entropy evolution introduced
in Subsec. I-C.

Illustration 3 Referring back to the PDE model of entropy
change from Subsec. I-C, we have

η̇(t, s) = ∂2
sη(t, s), η(t, 0) = η(t, 1) = −

∫ 1

0

η(t, s)ds.

The GPDE representation of this model is defined by n =
{0, 0, 2}, Gp = {A0 =

[
0 0 1

]
}, and

Gb =

{
B =

[
1 0 0 0
0 0 1 0

]
, BI = −

[
1 0 0
1 0 0

]}
.

Using the formulae in Blocks 4 and 5, we find the PIE
subsystem as follows (we neglect interconnection to the ODE
subsystem as there are no ODEs, inputs, or outputs).

U2 =

1 0
0 1
0 0

 , U1 =

00
1

 , T (s) =

[
1 s
0 1

]
, Q(s) =

[
s
1

]
,

BT =

[
2 1/2
2 3/2

]
, BQ(s) = (1− s)

[
s
4
−1

]
, G0(s) = 0,

G1(s, θ) = G2(s, θ) + (s− θ), G2(s, θ) = 3s
(s− 1)

4
.

The PIE form (η
¯
= ∂2

2η) of the entropy PDE is then given by
s∫

0

(
s2 +

s

4
− θ
)
η̇
¯
(t, θ)dθ +

1∫
s

3

4
(s2 − s)η̇

¯
(t, θ)dθ = η

¯
(t, s).

V. PIE REPRESENTATION OF A GPDE

Having converted the PDE subsystem to a PIE, integration
of the ODE dynamics is a simple matter of augmenting the
PIE subsystem (Equation (16)) with the differential equations
that define the ODE (Equation (6)), followed by elimination of
the interconnection signals v and r. The result is an augmented
PIE system, as defined in Equation (5) whose parameters are
4-PI operators, as defined in Blocks 4 and 5.

A. A map between PIE and GPDE states
Our first step in constructing the augmented PIE system that

will be associated with a given GPDE model is to construct the
augmented map from the GPDE state (defined on Xw,u) to the
associated PIE state (defined on RLnx,nx̂

2 ). Specifically, given
a GPDE model {n,Gb,Go,Gp} with {n,Gb} PIE compat-

ible and state x =

[
x
x̂

]
∈ Xw,u, the associated PIE system

state is x
¯
=

[
x
Dx̂

]
∈ RLnx,nx̂

2 where D := diag(∂0
sIn0 , · · · ,

∂N
s InN

). Using this definition, Corollary 13 shows that if {T ,
Tw, Tu} are as defined in Block 5, then the map x → x

¯
can

be inverted as x = T x
¯
+ Tww + Tuu.

Corollary 13 (Corollary of Theorem 10). Given {n ∈ NN+1,
Gb} PIE-compatible, let {T , Tw, Tu} be as defined in Block 5,
Xw,u as defined in Eq. (14) and D :=diag(∂0

sIn0 , · · · ,
∂N
s InN

). Then for any w ∈ Rnw and u ∈ Rnu we have:
(a) If x := {x, x̂} ∈ Xw,u, then x

¯
:= {x,Dx̂} ∈ RLnx,nx̂

2 and
x = T x

¯
+ Tww + Tuu.

(b) If x
¯
∈ RLnx,nx̂

2 , then x := T x
¯
+ Tww + Tuu ∈ Xw,u and

x
¯
=

[
Inx

0
0 D

]
x.

Proof. This follows from the application of Thm. 10 along
with the definitions of x, x

¯
, and v. One can augment the

ODE state x to the PDE subsystem state x̂ as well as the
PIE subsystem state x̂

¯
. Since the interconnection signals and

definition of Xw,u are consistent with the assumptions of
Thm. 10, x̂ and x̂

¯
are as stated in Thm. 10. Using this,

we can simply eliminate the interconnection signals v to get
direct maps between x, x

¯
, w, and u— See Appendix C of the

supplementary material or [28] for more details.

Thus, for any given w, u, we have an invertible transforma-
tion from RLnx,nx̂

2 to Xw,u.

B. Representation of a GPDE model as a PIE system
In this subsection, we define the PIE system associ-

ated with a given GPDE model. This associated PIE sys-
tem is defined by 4-PI parameters as defined in Blocks 4
and 5. For convenience, we use M : {n,Gb,Go,Gp} 7→
{T , Tw, Tu,A,B1,B2, C1, C2,D11,D12,D21,D22} to repre-
sent the several formulae used to map GPDE parameters to
PIE parameters.

Definition 14. Given {n,Gb,Go,Gp} where
Gb = {B,BI , Bv} , Gp = {A0, A1, A2, Bxv, Bxb, Cr, Drb}
Go = {A,Bxw, Bxu, Bxr, Cz, Dzw, Dzu, Dzr, Cy, Dyw, Dyu,

Dyr, Cv, Dvw, Dvu}
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we say that GPIE = M({n,Gb,Go,Gp}) if GPIE =
{T , Tw, Tu,A,B1,B2, C1, C2,D11,D12,D21,D22} where {T ,
Tw, Tu, A, B1, B2, C1, C2, D11, D12, D21, D22} are as defined
in Blocks 4 and 5.

Having specified the PIE system associated with a given
GPDE model, we now extend the results of Theorem 12 to

show that the map x 7→
[
I 0
0 D

]
x proposed in Corollary 13

maps a solution of a given GPDE model to a solution of the
associated PIE system and that the inverse map x

¯
7→ T x

¯
+

Tww+Tuu maps a solution of the associated PIE to a solution
of the given GPDE model.

Corollary 15 (Corollary of Theorem 12). Given a PIE-
compatible GPDE with parameter set {n ∈ NN+1, Go,
Gb, Gp} as defined in Equations (7), (11) and (13), let
w ∈ Lnw

2e [R+] with BvDvww ∈ W 2nS
1e [R+], u ∈ Lnu

2e [R+]
with BvDvuu ∈ W 2nS

1e [R+]. Define
GPIE = {T , Tw, Tu,A,B1,B2, C1, C2,D11,D12,D21,D22}

= M({n,Gb,Go,Gp}.
Then we have the following:
1) For any {x0, x̂0} ∈ Xw(0),u(0) (where Xw,u is as defined in
Equation (14)), if {x, x̂, z, y, v, r} satisfies the GPDE defined
by {n, Go, Gb, Gp} with initial condition {x0, x̂0} and

input {w, u}, then
{[

x
Dx̂

]
, z, y

}
satisfies the PIE defined by

GPIE with initial condition
[
x0

Dx̂0

]
and input {w, u} where

Dx̂ = col(∂0
s x̂0,· · · ,∂N

s x̂N ).
2) For any x

¯
0 ∈ RLnx,nx̂

2 , if {x
¯
, z, y} satisfies the PIE

defined by GPIE with initial condition x
¯
0 and input

{w, u}, then {x, x̂, z, y, v, r} satisfies the GPDE defined by

{n,Go,Gb,Gp} with initial condition
[
x0

x̂0

]
= T x

¯
0 +

Tww(0) + Tuu(0) and input {w, u} where[
x(t)
x̂(t)

]
:= T x

¯
(t) + Tww(t) + Tuu(t),

v(t) := Cvx(t) +Dvww(t) +Dvuu(t),

r(t) :=
[
0nx̂×nx

Cr
]
x
¯
(t) +Drvv(t),

and where Cr and Drv are as defined in Block 5.

To prove Cor. 15 one simply uses Theorem 12 to construct
a PIE representation of the PDE subsystem and then augments
this PIE using the dynamics of the ODE subsystem. For
details, we may refer to Appendix D of the supplementary
material or extended Arxiv version of this paper [28]. Several
examples of the conversion of GPDE models to PIE systems
can be found in Section VII.

VI. EQUIVALENCE OF PROPERTIES OF GPDE AND PIE

We have motivated the construction of PIE representations
of GPDE models by stating that many analysis, control, and
simulation tasks may be more readily accomplished in the
PIE framework. However, this motivation is predicated on the
assumption that the results of analysis, control and simulation
of a PIE system somehow translate to analysis, control and
simulation of the original GPDE model. For simulation, the

conversion of a numerical solution of a PIE system to the
numerical solution of the GPDE is trivial, as per Corollary 15
through the mapping x

¯
(t) 7→ T x

¯
(t)+Tww(t)+Tuu(t). In this

section, we show that analysis and control of the PIE system
may also be translated to the GPDE model. For input-output
properties, this translation is trivial. For internal stability and
control, additional mathematical structure is required.

A. Equivalence of Input-Output Properties
Because the translation of PIE solution to GPDE solution is

limited to the internal state of the PIE (inputs and outputs are
unchanged), Corollary 15 implies that all input-output (I/O)
properties of the GPDE model are inherited by the PIE system
and vice versa. As a result, we have the following.

Corollary 16 (Input-Output Properties). Given a PIE compat-
ible GPDE with parameter set {n ∈ NN+1, Go, Gb, Gp} as
defined in Equations (7), (11) and (13), let w ∈ Lnw

2e [R+] with
BvDvww ∈ W 2nS

1e [R+]. Let GPIE = M({n,Gb,Go,Gp}.
Suppose {x0, x̂0} = {0, 0}. Then the following are equivalent.
1) If {x, x̂, z, y, v, r} satisfies the GPDE defined by {n, Go,
Gb, Gp} with initial condition {0, 0} and input {w, 0}, then
∥z∥L2

≤ γ ∥w∥L2
.

2) If {x
¯
, z, y} satisfies the PIE defined by GPIE with initial

condition 0 and input {w, 0}, then ∥z∥L2
≤ γ ∥w∥L2

.
Suppose K :∈ L

ny

2e → Lnu
2e . Then the following are equivalent.

a) If {x, x̂, z, y, v, r} satisfies the GPDE defined by {n, Go,
Gb, Gp} with initial condition {0, 0} and input {w,Ky},
then ∥z∥L2

≤ γ ∥w∥L2
.

b) If {x
¯
, z, y} satisfies the PIE defined by GPIE with initial

condition 0 and input {w,Ky}, then ∥z∥L2
≤ γ ∥w∥L2

.

Proof. Clearly, the change in representation only changes the
internal state of the solutions of a GPDE and its PIE without
affecting the inputs or outputs. Thus, Corollary 16 follows
directly from Corollary 15.

B. Equivalence of Internal Stability
Unlike I/O properties, the question of internal stability of

a GPDE model is complicated by the fact that there is no
universally accepted definition of stability for such models.
Specifically, if the state-space of a GPDE model is defined
to be Xu,w (a subspace of the Sobolev space Wn), then the
obvious norm is the Sobolev norm – implying that exponential
stability requires exponential decay with respect to the Sobolev
norm. However, many results on stability of PDE models use
the L2 norm as a simpler notion of size of the state.

In this section, we show that while both notions of stability
are reasonable, the use of the Sobolev norm and associated
inner product confers significant advantages in terms of math-
ematical structure on the GPDE model and offers a clear
equivalence between internal stability of the GPDE model and
associated PIE system. In particular, we first show that X0,0 is
a Hilbert space when equipped with the Sobolev inner product
and furthermore, exponential stability of the GPDE model
with respect to the Sobolev norm is equivalent to exponential
stability of the PIE system with respect to the L2 norm.
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B.1 Topology of X0,0

Before we begin, for n ∈ NN , let us recall the standard
inner product on Rnx ×Wn〈[

u
u

]
,

[
v
v

]〉
Rnx×Wn

= uT v +
∑N

i=0
⟨ui,vi⟩Wni

i
,

⟨ui,vi⟩Wni
i

:=
∑i

j=0

〈
∂j
sui, ∂

j
sui

〉
L2

with associated norms ∥ui∥Wni
i

:=
∑i

j=0

∥∥∂j
sxi

∥∥
L

ni
2

and∥∥∥∥[uu
]∥∥∥∥

Rnx×Wn

= ∥u∥R +
∑N

i=0
∥ui∥Wni

i
.

As we will see, however, the standard inner product Rnx×Wn

is not quite the right inner product for X0,0. For this reason, we
propose a slightly modified inner product which we will denote
⟨·, ·⟩Xn , and show that this new inner product is equivalent to
the standard inner product on Wn. Specifically, we have

⟨u,v⟩Xn :=
∑N

i=0

〈
∂i
sui, ∂

i
svi

〉
L

ni
2

= ⟨Du,Dv⟩Lnx
2

(21)
and define the obvious extension〈[

u
u

]
,

[
v
v

]〉
Rnx×Xn

:= uT v + ⟨u,v⟩Xn .

We now show that the norms ∥·∥Rnx×Wn and ∥·∥Rnx×Xn

are equivalent on the subspace X0,0.

Lemma 17. Suppose {n,Gb} is PIE-compatible. Then
∥u∥Rnx×Xn ≤ ∥u∥Rnx×Wn and there exists c0 > 0 such that
for any u ∈ X0,0, we have ∥u∥Rnx×Wn ≤ c0 ∥u∥Rnx×Xn .

Proof. Clearly, the Rnx ×Wn-norm upper bounds Rnx ×Xn-
norm by definition of these norms. Next, the map x

¯
→ x

is a PI operator and, hence, bounded, which allows a bound
on all terms in the Sobolev norm. See Appendix F of the
supplementary material or [28] for a complete proof.

Trivially, using nx = 0, this result also extends to equiva-
lence of ∥·∥Wn and ∥·∥Xn on X0.

Next, we will show that T̂ and T are isometric when X0

and X0,0 are endowed with the inner products ⟨·, ·⟩Rnx×Wn

and ⟨·, ·⟩Rnx×Xn , respectively. This implies that these spaces
are complete with respect to both ∥·∥Rnx×Xn (∥·∥Xn ) and
∥·∥Rnx×Wn (∥·∥Wn ).
B.2 X0,0 is Hilbert and T is unitary

First, recall X0 and X0,0 are defined by {n,Gb,Go,Gp}
as

X0 :=
{
x̂ ∈ Wn[a, b] : BBx̂ =

∫ b

a
BI(s)(F x̂)(s)ds

}
,

X0,0 :=

{[
x
x̂

]
∈ R×Xv : v = Cvx

}
.

The sets X0 and X0,0 are the subspaces of valid PDE
subsystem and GPDE model states when v = 0 and when
u = 0, w = 0, respectively. Previously, in Theorem 10,
we have shown that T̂ is a bijective map. In Theorem 18
we extend this result to show that T̂ : Lnx̂

2 → Xn and
T : RLnx,nx̂

2 → Rnx ×Xn are unitary in that the respective
inner products are preserved under these transformations.

Theorem 18. Suppose {n,Gb} is PIE-compatible, {T̂ , Tv}
are as defined in Block 4, and {T , Tw, Tu} are as defined in
Block 5 for some matrices Cv , Dvw and Dvu. If ⟨·, ·⟩Xn is as
defined in Equation (21), then we have the following:

a) for any v1, v2 ∈ Rnv and x̂
¯
, ŷ

¯
∈ Lnx̂

2〈(
T̂ x̂

¯
+ Tvv1

)
,
(
T̂ ŷ

¯
+ Tvv2

)〉
Xn

=
〈
x̂
¯
, ŷ
¯

〉
L

nx̂
2

. (22)

b) for any w1, w2 ∈ Rnw , u1, u2 ∈ Rnu , x
¯
,y
¯
∈ RLnx,nx̂

2 ,〈
(T x

¯
+ Tww1 + Tuu1),

(
T y

¯
+ Tww2 + Tuu2

)〉
Rnx×Xn

=
〈
x
¯
,y
¯

〉
RLnx,nx̂

2

. (23)

Proof. Let x̂
¯
, ŷ

¯
∈ Lnx̂

2 and v1, v2 ∈ Rnv . Then, from
Theorem 10, we have

T̂ x̂
¯
+ Tvv1 ∈ Xv1 , T̂ ŷ

¯
+ Tvv2 ∈ Xv2 .

Therefore, by Equation (21) and the result in Theorem 10b,〈(
T̂ x̂

¯
+ Tvv1

)
,
(
T̂ ŷ

¯
+ Tvv2

)〉
Xn

=
〈
D
(
T̂ x̂

¯
+ Tvv1

)
,D
(
T̂ ŷ

¯
+ Tvv2

)〉
L

nx̂
2

=
〈
x̂
¯
, ŷ

¯

〉
L

nx̂
2

.

For b), let x
¯
,y

¯
∈ RLnx,nx̂

2 and w1, w2 ∈ Rnw , u1, u2 ∈
Rnu . Then, from Corollary 13, we have T x

¯
+Tww1+Tuu1 ∈

Xw1,u1
and T y

¯
+ Tww2 + Tuu2 ∈ Xw2,u2

. Since Rnx ×Xn

inner product is just sum of R and Xn inner products, using
definitions of T , Tw, and Tu and the result in Corollary 13b,
we have〈

(T x
¯
+ Tww1 + Tuu1),

(
T y

¯
+ Tww2 + Tuu2

)〉
Rnx×Xn

=
〈
x
¯
,y

¯

〉
RLnx,nx̂

2

.

Corollary 19. Suppose {n,Gb} is PIE-compatible, T̂ is as
defined in Block 4, T is as defined in Block 5, Xv is as defined
in Eq. (10) and, for any matrices Cv , Dvw and Dvu, Xw,u

is as defined in Eq. (14). Then X0 is complete with respect
to ∥·∥Xn and X0,0 is complete with respect to ∥·∥Rnx×Xn .
Furthermore, T̂ : Lnx̂

2 → X0 and T : RLnx,nx̂

2 → X0,0

are unitary (isometric surjective mappings between Hilbert
spaces).

Proof. From Theorem 10 and Corollary 13, we have that T is
a bijective mapping from RLnx,nx̂

2 to X0,0. From Theorem 18,
we have that T is isometric with respect to the Rnx×Xn inner
product. Since RLnx,nx̂

2 is complete, we conclude that X0,0 is
complete with respect to the Rnx ×Xn norm. Completeness
of X0 follows trivially from the special case nx = 0.

As a direct consequence of Corollary 19 and Lemma 17,
X0 and X0,0 are also complete with respect to ∥·∥Wn and
∥·∥Rnx×Wn , respectively.
B.3 Equivalence of Internal Stability Properties

Although the natural definition of exponential stability of a
GPDE model is with respect to the Rnx ×Xn norm, since the
Rnx ×Xn norm is equivalent to the Rnx ×Wn norm, we can
also claim stability with respect to the Rnx ×Wn norm.

Definition 20 (Exponential Stability of a GPDE model). We
say a GPDE model defined by {n,Go,Gb,Gp} is exponen-
tially stable if there exist constants M , α > 0 such that for
any {x0, x̂0} ∈ X0,0, if {x, x̂, z, y, v, r} satisfies the GPDE
defined by {n,Go,Gb,Gp} with initial condition {x0, x̂0}
and input {0, 0}, then∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

≤ M

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Wn

e−αt for all t ≥ 0.
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Clearly, internal stability of a PIE system is with respect to
the RL2 norm.

Definition 21 (Exponential Stability of a PIE system). We say
a PIE defined by GPIE is exponentially stable if there exist M ,
α > 0 such that for any x

¯
0 ∈ RLnx,nx̂

2 , if {x
¯
, z, y} satisfies

the PIE defined by GPIE with initial condition x
¯
0 and input

{0, 0}, then ∥x
¯
(t)∥RL2

≤ M
∥∥x

¯
0
∥∥
RL2

e−αt for all t ≥ 0.

Exponential stability of a GPDE model is equivalent to
exponential stability of the associated PIE system.

Theorem 22. Given {n,Go,Gb,Gp} PIE-compatible, the
GPDE model defined by {n,Go,Gb,Gp} is exponentially
stable if and only if the PIE defined by GPIE :=
M({n,Gb,Go,Gp}) is exponentially stable.

Proof. Suppose GPDE defined by {n,Go,Gb,Gp} is expo-
nentially stable. Then, there exist constants M , α > 0 such that
for any {x0, x̂0} ∈ X0,0, if {x, x̂, z, y, v, r} satisfies the GPDE
defined {n,Go,Gb,Gp} with initial condition {x0, x̂0} and
input {0, 0}, we have∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

≤ M

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Wn

e−αt for all t ≥ 0.

For any x
¯
0 ∈ RLnx,nx̂

2 , let {x
¯
, z, y} satisfy the PIE defined

by GPIE with initial condition x
¯
0 ∈ RLnx,nx̂

2 and input
{0, 0}. Then, from Corollary 15, {x, x̂, z, y, v, r} satisfies
the GPDE defined by {n,Go,Gb,Gp} with initial condition[
x0

x̂0

]
:= T x

¯
0 ∈ X0,0 and input {0, 0} for some v and r

where
[
x(t)
x̂(t)

]
:= T x

¯
(t). Then, by the exponential stability of

the GPDE, we have∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

≤ M

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Wn

e−αt for all t ≥ 0.

By theorem 18 and lemma 17, for any x ∈ RL2 we have
∥x∥RL2

= ∥T x∥Rnx×Xn . Thus, we have the following:
∥x

¯
(t)∥RL2

= ∥T x
¯
(t)∥Rnx×Xn

≤
∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

≤ M

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Wn

e−αt

≤ c0M

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Xn

e−αt = c0M
∥∥x

¯
0
∥∥
RL2

e−αt.

Therefore, the PIE defined by GPIE is exponentially stable.
For the reverse implication, we start by assuming the

exponential stability of the PIE. Then, we take an arbitrary
solution of the GPDE, and find the associated solution of the
PIE using Corollary 15 and theorem 10. Finally, by applying,
lemma 17 and theorem 18, we get the exponentially stability
of the GPDE.

The results of Theorem 22 also imply that Lyapunov and
asymptotic stability of the GPDE model in the Rnx×Wn norm
are equivalent to Lyapunov and asymptotic stability of the
associated PIE system in the RL2 norm — See Appendix G
for details.

C. Convex Conditions for Internal Stability of a GPDE model
Next, we look at a test for stability of the PDE in RL2

norm (as opposed to the R × Wn norm) using the PIE

framework. While we do not establish stability of the PIE
system itself. The stability test is defined in terms of the PIE
system representation but is not actually a test for the stability
of the PIE system. This stability test is defined in terms of the
existence of positive semidefinite PI operators subject to affine
inequality constraints. Such forms of convex optimization are
labeled Linear PI Inequalities (LPIs), and LMI-based methods
for the feasibility of LPIs have been discussed in, e.g. [20].

Theorem 23. Given {n,Go,Gb,Gp} PIE-compatible, let
GPIE := M({n,Gb,Go,Gp}). Suppose there exist ϵ, δ > 0,
and P ∈ [Π4]

nx̂,nx̂
nx,nx

such that P = P∗ ≥ ϵI and
A∗PT + T ∗PA ≤ −δT ∗T .

Then the GPDE model defined by {n,Go,Gb,Gp} is expo-
nentially stable in the RLnx,nx̂

2 norm.

Proof. This can proved by using a Lyapunov function candi-
date V (x) = ⟨T x

¯
,PT x

¯
⟩RL2

. Then, by the assumptions of
the Theorem V̇ (x

¯
(t)) ≤ −2αV (x

¯
(t)). Thus, one can use the

coercivity of V to show that any solution x = T x
¯

to the
GPDE model is exponentially stable in RL2-norm.

Lastly, we note that other LPI tests for properties of the
GPDE in terms of the associated PIE include L2-gain [26],
H∞-optimal estimator design [8], and H∞-optimal full-state
feedback controller synthesis [27].

D. A Side Note on PIETOOLS
The generality of the class of models (GPDE) consid-

ered requires the identification of a large number of system
parameters — most of which are typically zero or sparse.
Furthermore, construction of the associated PIE system us-
ing the formulae in Blocks 4 and 5 can be cumbersome.
This complicated process of identification of parameters and
application of formulae may thus be an impediment to the
practical application of the results in this paper. For this reason,
PIETOOLS versions include a Graphical User Interface and
symbolic parser for the construction of GPDE models, which
do not require the user to understand the notational system
defined in this paper. Additional details can be found in
the PIETOOLS user manual [25]. In addition to the GUI,
PIETOOLS includes many tools for the analysis, control,
estimation and simulation of PIE systems in the context
of: simple PDE models, advanced GPDE models and Delay
Differential Equations. In the following section, we apply this
GUI to several GPDE models. We will also include results
generated by the analysis, control, and simulation tools in
PIETOOLS when relevant.

VII. EXAMPLES OF THE PIE REPRESENTATION

Now, we illustrate the PIE representation of four GPDE
models. We can use the PIETOOLS GUI, as described in
Section VI-D, to construct the associated PIE system. More
examples can be found in Appendix J or [25], [28].

A. Damped wave equation with delay and motor dynamics
First, we revisit the GPDE model studied in Section III-D.

Since we have already identified the parameters of the GPDE
model and we can construct the associated PIE system using
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Fig. 6: Output response of the wave equation driven by a motor
with delay via boundary control. We see in the plot that, for
u(t) = sin(t) and w = 0, the effect of the input on z1 is
delayed.

the formulae in Block 5. For simplicity, we choose µ(s) = 1
which yields the following nonzero PIE system parameters.

T = Π

 1
[
0 0 0

] 0
−2
−2s

 03,

1 0 0
0 0 0
0 −sθ −θ

 ,

0 0 0
0 −1 0
0 −sθ −s


 ,

A=Π

 − 5
2

01,300
0

 
0 0 1
0 1

0.2
0

0 0 0

 , 03, 03


 , Tw=Π

 ∅ ∅00
s

 {∅}

 ,

B2 = Π
[

1 ∅
03,1 {∅}

]
, C2 = Π

[
0

[
1 0 0

]
∅ {∅}

]
C1 = Π

[ [
−1
0

] [
0 −0.5s −0.5s2 − s
0 0 0

]
∅ {∅}

]
,

D12 = Π

[ [
0
1

]
∅

∅ {∅}

]
, D11 = Π

[ [
0.5
0

]
∅

∅ {∅}

]
.

Having obtained a PIE representation, we simulate the
response of the system to control input with delay by using
a single mode control excitation u(t) = sin(t) and no
exogenous inputs. In Figure 6, we see that output z1 lags
behind the control input z2, which is expected since the
maximum delay value is τ = 0.5 and the history of the control
input is set to zero.

B. A 4th order PDE: Timoshenko Beam Equation
In this example, we find the PIE system associated with a

GPDE model with a 4th order spatial derivative. While the
dynamics of the Timoshenko beam [30] are often modeled
as two coupled 2nd order PDEs, if the beam is elastic,
isotropic and homogeneous with constant cross-section then
these equations can be combined to obtain a 4th order GPDE
representation.

ρAẅ(t, s)−
(
ρI +

EIρ

κG

)
∂2
s ẅ(t, s) +

ρ2I

κG
˙̇ ˙̇w(t, s)

= −EI∂4
sw(t, s) + d(t),

where ρ is the density of the beam material, A is the cross
section area, I is the second moment of area, κ is the Timo-
shenko beam constant, E is the elastic modulus, G is the shear
modulus, and d is some distributed exogenous disturbance. For

Fig. 7: In this figure, we plot the lateral displacement of
the Timoshenko Beam equations Eq. (24) under a sinosuidal
excitation d(t) = sin(t) using the PIE representation given in
Section VII-B.

simplicity, we take ρ = A = I = κ = G = E = 1. The BCs
are given by w(t, 0) = 0, ∂sw(t, 0) = 0, ∂2

sw(t, 1) = w(t, 1),
and ∂3

sw(t, 1) = ∂sw(t, 1).
We define the state variables as w, ẇ, ẅ and ˙̇ẇ and based

on the generator and BCs, we partition the state variables as
x̂0 = col(ẇ, ˙̇ẇ), x̂1 = ẅ, and x̂4 = w. The full state is
then x̂ = col(x̂0, x̂2, x̂4) so that the continuity condition is
n = {2, 0, 1, 0, 1}, implying nS1

= 2, nS2
= 2, nS3

= 1,
nS4

= 1, and hence nS = 6. Because we require nBC =
nS , we need two additional BCs. To get these new BCs, we
differentiate w(t, 0) = 0 and ∂sw(t, 0) = 0 twice in time
to obtain ẅ(t, 0) = 0 and ∂sẅ(t, 0) = 0. We now use the
PIETOOLS GUI to calculate the PIE representation as

Π
[

∅ ∅
∅ {Gi}

]
˙̂x
¯
(t, s) = Π

[
∅ ∅
∅ {Ai}

]
x̂
¯
(t, s) (24)

+ Π
[

∅ ∅[
0 0 0 1

]T {∅}

]
d(t)

where x̂
¯
= col(ẇ, ˙̇ẇ, ∂2

s ẅ, ∂
4
sw) and

A0(s) =


0 0 0 0
0 0 1 −1
0 1 0 0
1 0 0 0

 , A1(s, θ) =


0 0 s− θ 0
0 0 θ − s 0
0 0 0 0
0 0 0 0

 ,

A2(s, θ) = 04, f0(s, θ) = − 1

39
s3θ3 +

s2θ2

26
(3s− θ − 2) ,

G0(s) =

[
I2

02

]
, G2(s, θ) =

[
03

f0(s, θ)− 1
6s

2(s+ 3θ)

]
,

G1(s, θ) =

02 [
s− θ 0
0 f0(s, θ) +

1
6θ

2(3s− θ)

] .

Using the PIE representation given above, we can simulate
the system response under external excitation d for any initial
conditions. In Figure 7, we simulate the PIE system using
PIESIM module of the PIETOOLS with zero initial conditions
and a sinusoidal input d(t) = sin(t).

C. Simulation of diffusion PDE with nonlocal boundary con-
ditions

In this example, we consider a simple linear PDE model of
heat-conduction in an elastic material [10] which is modeled
as a reaction-diffusion equation with some non-local effects
that are modeled as volumetric constraints at the boundary.
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Fig. 8: A simulation of the open-loop GPDE model defined by
Eq. (25) in Section VII-C via PIESIM module of PIETOOLS
and the PIE representation of a GPDE. The initial conditions
are set to zero. However, non-zero decaying sinusoidal distur-
bances, wa = sinc(t) and wb(t) = cos(2t)e−t, are applied at
t = 0.

Normalizing the domain, we obtain the GPDE model
ẋ(t, s) = x(t, s) + ∂2

sx(t, s) + wa(t), x(0, s) = 0,

x(t, 0) =

∫ 1

0

x(t, s)ds+ wb(t), x(t, 1) = 0,

wb(t) =
sin(t)

t
, wa(t) = cos(2t)e−t. (25)

In simulation of such PDEs, using discretization or Galerkin
methods, one requires a coupled ODE model such as
ẋ1:N (t) = Ax1:N (t) +Bwa(t), Cbx1:N (t) = Cwwb(t),

where x1:N is the finite-dimensional discretization (or projec-
tion) of the PDE state, A and B are sparse matrices from
PDE dynamics, and Cb and Cw are non-sparse matrices from
the BC conditions. However, typical schemes for numerical
simulation of PDEs require a suitable choice of basis func-
tions and often suffers from high complexity and numerical
instability [18]. The existence of a PIE representation, how-
ever, simplifies the process of simulation using the methods
proposed in, e.g. [22]. To illustrate, in Figure 8, we use the
PDE modeling tool and PIESIM module of PIETOOLS to
simulate the proposed PDE model with minimal effort.

D. Control of Reaction-Diffusion PDE
Consider a reaction-diffusion PDE model with an ODE-

based controller acting at the boundary.
ẋ(t) = −x(t) + u(t), ẋ(t, s) = 10x(t, s) + ∂2

sx(t, s) + w(t),

z(t) =

[
x(t, 1)
u(t)

]
, s ∈ (0, 1), t ≥ 0

x(t, 0) = 0, x(t, 1) = x(t), x(0) = 0, x(0, s) = sin(πs),
(26)

where x is the state of the dynamic boundary controller, x
is the distributed state, z is the regulated output and w is a
disturbance. The control input, u(t), enters the system through
an ODE which is then coupled with the PDE state x at the
boundary. Using the PIETOOLS GUI to define the GPDE,
we construct the associated PIE system. The open loop GPDE
model is unstable, however, the PIETOOLS tool for stabilizing
state-feedback controller synthesis (based on [27]) provides the

(a) Variation of z(t) vs t (b) Variation of x(t) vs t

Fig. 9: A simulation of the closed-loop GPDE model defined
by Eq. (26) in Section VII-D using the stabilizing state-
feedback controller generated using PIETOOLS. The initial
conditions and decaying sinusoidal disturbance, w, are as
defined in section VII-D.

following state-feedback controller.

u(t) = −13.45x(t) +

∫ 1

0

k(s)∂2
sx(s, t)ds, where

k(s) = −9.39s10 + 19.7s9 + 34.7s8 − 124s7 + 83.5s6

+ 48.2s5 − 78.9s4 + 25.4s3 + 3.98s2 − 8.73s+ 6.61.

We now use the PIESIM package in PIETOOLS to simulate
the closed-loop PIE system and reconstruct the GPDE solution
where the disturbance is w(t) = sin(10t)

10t+10−5 . Both the output
and control input are shown in Figure 9(a) – verifying that the
proposed controller stabilizes the system.

VIII. CONCLUSION

A general parametrization was proposed for a class of
linear coupled ODE-PDE models (GPDEs) with N th-order
spatial derivatives that allows for inputs and outputs that enter
through: the limit values of the GPDE model, the in-domain
dynamics of the PDE subsystem, and a coupled ODE. This
parametrization also allows integrals of the PDE state to appear
in the ODE-PDE dynamics, the boundary conditions, and the
system’s outputs — unifying several existing classes of PDE
models in a single parameterized framework.

Having parameterized a broad class of coupled ODE-PDE
models, we proposed a test for the PIE-compatibility of a given
well-posed GPDE model. We showed that such compatibility
implies the existence of an associated Partial Integral Equation
(PIE) representation of the GPDE model with a unitary PI
map from the state of the PIE system to the state of the
GPDE model. Finally, we have shown that many properties
of the GPDE model and associated PIE system are equivalent
– including the existence of solutions, input-output properties,
internal stability, and controllability.

To aid in the practical application of the proposed GPDE
models and PIE conversion formulae, we have described effi-
cient open-source software (PIETOOLS) for the construction
of the GPDE model, conversion to PIE system, simulation
of the GPDE/PIE, and analysis/control of the GPDE/PIE –
features demonstrated on several example problems.
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APPENDIX

In these appendices, we provide proofs for all theorems, lemmas, and corollaries stated in the paper along with several
intermediate lemmas. In Appendix A, the goal is to prove Theorem 10 - the map between the domain of the PIE subsystem and
the domain of the PDE subsystem. In Appendix B, we prove equivalence of solutions for the PIE subsystem and PDE subsystem.
In Appendix C we construct the map between the domain of the GPDE and associated PIE representation. In Appendix D, we
prove equivalence of solutions of the GPDE and associated PIE system. In Appendices E to G, we prove that map from PIE
to GPDE state is unitary and that internal stability of PIE and GPDE model is equivalent. Finally, in Appendices H and I we
show that the Partial Integral (PI) operators form a ∗-algebra and provide formulae for composition, adjoint, and concatenation
of PI operators.

A. The map between PIE and PDE states: Proof of Theorem 10
To find a map between the fundamental state (state of the PIE) and the primal state (state of the PDE subsystem), we will

use the Fundamental Theorem of Calculus (FTC) and the BCs. First, we recall the FTC and extend it to vector-valued functions
on the interval [a, b] as shown below.

Lemma 11. Suppose x ∈ Wn
N [a, b] for any N ∈ N. Then

x(s)= x(a) +

N−1∑
j=1

(s−a)j

j!
∂j
sx(a) +

s∫
a

(s−θ)N−1

(N − 1)!
∂N
s x(θ)dθ.

Proof. We prove this using the principle of induction. Suppose the lemma is true for some N and x ∈ Wn
N+1[a, b]. Because

the lemma is true for N , we have

x(s) = x(a) +

N−1∑
j=1

(s− a)j

j!
(∂j

sx)(a) +

∫ s

a

(s− θ)N−1

(N − 1)!
(∂N

s x)(θ)dθ. (27)

Now, by the FTC, we have

∂N
s x(s) = (∂N

s x)(a) +

∫ s

a

(∂(N+1)
s x)(θ)dθ.

Next, we substitute the above identity into Equation (27), and using the integral identity∫ b

a

∫ θ

a

f(θ, η)dηdθ =

∫ b

a

∫ b

η

f(θ, η)dθdη

we have

x(s) = x(a) +

N−1∑
j=1

(s− a)j

j!
∂j
sx(a) +

∫ s

a

(s− θ)N−1

(N − 1)!

(
∂N
s x(a) +

∫ θ

a

∂(N+1)
s x(η)dη

)
dθ.

While the first two terms are close to the required form, the last term (the integral term) is not and can be simplified by using
integration by parts. Then, from the integral term we get∫ s

a

(s− θ)N−1

(N − 1)!

(
∂N
s x(a) +

∫ θ

a

∂(N+1)
s x(η)dη

)
dθ

=

(∫ s

a

(s− θ)N−1

(N − 1)!
dθ

)
∂N
s x(a) +

∫ s

a

∫ θ

a

(s− θ)N−1

(N − 1)!
∂(N+1)
s x(η)dη dθ

=
(s− a)N

N !
∂N
s x(a) +

∫ s

a

(∫ s

η

(s− θ)N−1

(N − 1)!
dθ

)
∂(N+1)
s x(η)dη

=
(s− a)N

N !
∂N
s x(a) +

∫ s

a

(s− η)N

N !
∂(N+1)
s x(η)dη.

Finally, by substituting the above terms back into the equation we get,

x(s) = x(a) +

N∑
j=1

(s− a)j

j!
∂j
sx(a) +

∫ s

a

(s− η)N

N !
∂(N+1)
s x(η)dη.

Therefore, if the statement of the lemma is true for N , then it is also true for N +1. Clearly, the lemma is true for N = 1.

We can extend Lemma 11 to obtain an expression for the derivatives of x ∈ Cn
N in terms of ∂N

s x and of a given set of core
boundary values of x.

Lemma 24. Suppose x ∈ Wn
N . Then, for any i < N , we have

(∂i
sx)(s) =

N−1∑
j=i

τj−i(s− a)(∂j
sx)(a) +

∫ s

a

τN−i−1(s− θ)(∂N
s x)(θ)dθ

where τi(s) =
si

i! .
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Proof. First note that τi(0) = 0 for any i > 0, ∂sτ0(s) = 0 and

τi(s) =
si

i!
→ ∂sτi(s) = i

si−1

i!
= τi−1(s)

and suppose the formula holds for i− 1 ≥ 0. Then

(∂i−1
s x)(s) =

N−1∑
j=i−1

τj−i+1(s− a)(∂j
sx)(a) +

∫ s

a

τN−i(s− θ)(∂N
s x)(θ)dθ.

and hence, since ∂sτ0(s) = 0, we have
(∂i

sx)(s) = ∂s(∂
i−1
s x)(s)

=

N−1∑
j=i−1

(∂sτj−i+1(s− a)) (∂j
sx)(a) + τN−i(0)(∂

N
s x)(s) +

∫ s

a

(∂sτN−i(s− θ)) (∂N
s x)(θ)dθ.

=

N−1∑
j=i

(∂sτj−i+1(s− a)) (∂j
sx)(a) + τN−i(0)(∂

N
s x)(s) +

∫ s

a

(∂sτN−i(s− θ)) (∂N
s x)(θ)dθ.

=

N−1∑
j=i

τj−i(s− a)(∂j
sx)(a) +

∫ s

a

τN−i−1(s− θ)(∂N
s x)(θ)dθ.

By lemma 11, the result holds for i = 0, which completes the proof.

We now propose a mixed-order version of Lemma 11

Corollary 25. Suppose x ∈∏N
i=0 W

ni
i and define

Ji,j =

[
0ni:j−1×nj:N

Inj:N

]
∈ Rni:N×nj:N , τi(s) =

si

i!
, Ti,j(s) = τj−i(s)Ji,j j ≥ i, Cx :=


Sx

∂sS
2x
...

∂N−1
s SNx

 ,

we have x1(s)
...

xN (s)

 =
[
T1,1(s− a) T1,2(s− a) · · · T1,N (s− a)

]
(Cx)(a)

+

∫ s

a

τ0(s− θ)In1

. . .

τN−1(s− θ)Ink


 ∂θx1(θ)

...
∂N
θ xN (θ)

 dθ

= T1(s− a)(Cx)(a) +
∫ s

a

Q1(s− θ)

 x0(θ)
...

∂N
θ xN (θ)

 dθ. (28)

Proof. For convenience, let us denote Pi,j ∈ Rni×nSj to be the uniquely defined 0-1 matrix so that xi(s) = Pi,jS
jx(s) and

which is given by
Pi,j :=

[
0ni×(nSj

−nSi−1
) Ini

0ni×nSi+1

]
=
[
0ni×nj:i−1

Ini
0ni×ni+1:N

]
.

We now use Pi,j and the identity from Lemma 11 to write xi in terms of (Cx)(a) and ∂i
sxi. Specifically, if xk ∈ Cnk

k [a, b],
then

xi(s) =

i−1∑
j=0

τj(s− a)∂j
sxi(a) +

∫ s

a

τi−1(s− θ)∂i
sxi(θ)dθ

=

i−1∑
j=0

τj(s− a)Pi,j+1∂
j
sS

j+1x(a) +

∫ s

a

τi−1(s− θ)∂i
sxi(θ)dθ

=
[
τ0(s− a)Pi,1 · · · τi−1(s− a)Pi,i

]  Sx(a)
...

∂i−1
s Six(a)

+

∫ s

a

τi−1(s− θ)∂i
sxi(θ)dθ

=
[
τ0(s− a)Pi,1 · · · τi−1(s− a)Pi,i 0ni×nSi+1:N

]  Sx(a)
...

∂N−1
s SNx(a)

+

∫ s

a

τi−1(s− θ)∂i
sxi(θ)dθ

=
[
τ0(s− a)Pi,1 · · · τi−1(s− a)Pi,i 0ni×nSi+1:N

]
(Cx)(a) +

∫ s

a

τi−1(s− θ)∂i
sxi(θ)dθ.
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Now, we can concatenate the xi’s to get,x1(s)
...

xN (s)

 =

 τ0(s− a)P1,1 0 0
...

. . . 0
τ0(s− a)PN,1 · · · τN−1(s− a)PN,N

 (Cx)(a) +
∫ s

a

 τ0(s− θ)∂sx1(θ)
...

τN−1(s− θ)∂N
s xN (θ)

 dθ

=

τ0(s− a)


P1,1

P2,1

...
PN,1

 τ1(s− a)


0

P2,2

...
PN,2

 · · · τN−1(s− a)


0
0
...

PN,N


 (Cx)(a)

+

∫ s

a

 τ0(s− θ)∂sx1(θ)
...

τN−1(s− θ)∂N
s xN (θ)

 dθ

=
[
τ0(s− a)J1,1 τ1(s− a)J1,2 · · · τN−1(s− a)J1,N

]
(Cx)(a)

+

∫ s

a

τ0(s− θ)
. . .

τN−1(s− θ)


 ∂θx1(θ)

...
∂N
θ xN (θ)

 dθ

=
[
T1,1(s− a) · · · T1,N (s− a)

]
(Cx)(a)

+

∫ s

a

τ0(s− θ)
. . .

τN−1(s− θ)


 ∂θx1(θ)

...
∂N
θ xN (θ)

 dθ

where we have used the fact that for any i
Pi,i

Pi+1,i

...
PN,i

 =


[
0ni×ni:i−1 Ini 0ni×ni+1:N

][
0ni+1×ni:i

Ini+1
0ni+1×ni+2:N

]
...[

0nN×ni:N−1
InN

0nN×nN+1:N

]
 =


Ini

Ini+1

. . .

InN

 = Ini:N

and hence 
0n1:i−1×ni:N

Pi,i

...
PN,i

 =

[
0n1:i−1×ni:N

Ini:N

]
= J1,i.

We conclude that it is possible to express any function x ∈∏N
i=1 W

ni
i using left boundary values (at s = a) of the continuous

partial derivatives (Cx) and the fundamental state x̂
¯
= col(x0, · · · , ∂N

s xN ). Since we require a map from the fundamental
state x̂

¯
to the primal state x, we need to eliminate the left boundary values (Cx)(a). The first step in this direction is to express

Cx in terms of x̂
¯

and (Cx)(a).

Corollary 26. Suppose x ∈∏N
i=0 W

ni
i . Then, for T and Q are as defined in Block 5, and

(Cx) :=


Sx

∂sS
2x
...

∂N−1
s SNx

 , x̂
¯
:=


x0

∂1
sx1

...
∂N
s xN

 ,

we have

(Cx)(s) = T (s− a)(Cx)(a) +
∫ s

a

Q(s− θ)x̂
¯
(θ)dθ.

Proof. We will use the identity from corollary 25 and lemma 24 to find ∂i−1
s Six for all 1 ≤ i ≤ N and concatenate them

vertically to obtain (Cx). First, we need to find an expression for ∂i−1
s Six. By definition, we have

∂i−1
s Six(s) =


∂i−1
s xi(s)

∂i−1
s xi+1(s)

...
∂i−1
s xN (s)

 .
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By lemma 24,

(∂i
sx)(s) =

N−1∑
j=i

τj−i(s− a)(∂j
sx)(a) +

∫ s

a

τN−i−1(s− θ)(∂N
s x)(θ)dθ

i which can be generalized for xk ∈ Ck with k < N as

(∂i
sxk)(s) =

k−1∑
j=i

τj−i(s− a)(∂j
sxk)(a) +

∫ s

a

τk−i−1(s− θ)(∂k
sxk)(θ)dθ.

To find the (i− 1)th− derivative for each component of the vector we just perform concatenation to get

∂i−1
s Six(s) =


∂i−1
s xi(s)

∂i−1
s xi+1(s)

...
∂i−1
s xN (s)



=


(∂i−1

s xi)(a)
(∂i−1

s xi+1)(a) + τ1(s− a)(∂i
sxi+1)(a)

...

(∂i−1
s xN )(a) +

N−1∑
j=i

τj−i+1(s− a)(∂j
sxN )(a)

+

∫ s

a


(∂i

sxi)(θ)
τ1(s− θ)(∂i+1

s xi+1)(θ)
...

τ(N−i)(s− θ)(∂N
s xN )(θ)

 dθ.

The matrices Ji,j for j > i are used to select the elements from (∂j−1
s Sjx)(a) ∈ Rnj:N (jth part of (Cx)(a)) which appear

in the (j − i)th to (N − i)th components of (∂i−1
s Six)(s) ∈ Rni:N (ith part of (Cx)(s)). Specifically, for j ≥ i, we will see

that ∂i−1
s Six is the combination of terms of the form

0ni:j−1×1

(∂j−1
s xj)(s)

...
(∂j−1

s xN )(s)

 =

[
0ni:j−1×nj:N

Inj:N

] (∂j−1
s xj)(s)

...
(∂j−1

s xN )(s)

 =

[
0ni:j−1×nj:N

Inj:N

]
(∂j−1

s Sjx)(s) = Ji,j(∂
j−1
s Sjx)(s).

By exploiting the Ji,j notation, we are able to represent the first term in the expression for ∂i−1
s Six as

(∂i−1
s xi)(a)

(∂i−1
s xi+1)(a) + τ1(s− a)(∂i

sxi+1)(a)
...

(∂i−1
s xN )(a) +

N−1∑
j=i

τj−i+1(s− a)(∂j
sxN )(a)

 = τ0(s− a)


∂i−1
s xi(a)

∂i−1
s xi+1(a)

...
∂i−1
s xN (a)

+ · · ·+ τj−i(s− a)


0ni:j−1×1

(∂j−1
s xj)(a)

...
(∂j−1

s xN )(a)

+ · · ·

+ τN−i(s− a)


0ni

0ni+1

...
∂N−1
s xN (a)


= τ0(s− a)(∂i−1

s Six)(a) + · · ·+ τj−i(s− a)Ji,j(∂
j−1
s Sjx)(a) + · · ·

+ τN−i(s− a)Ji,N (∂N−1
s SNx)(a)

=
[
τ0(s− a)Ji,i · · · τN−i(s− a)Ji,N

]  ∂i−1
s Six(a)

...
∂N−1
s SNx(a)



=
[
0ni:N×nS1:i−1

τ0(s− a)Ji,i · · · τN−i(s− a)Ji,N
]


Sx(a)
...

∂i−1
s Six(a)

∂i−1
s Si+1x(a)

...
∂N−1
s SNx(a)


= Ti(s− a)(Cx)(a).
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The second vector with the integral terms can be written as

∫ s

a


∂i
sxi(θ)

τ1(s− θ)∂i+1
s xi+1(θ)
...

τN−i(s− θ)∂N
s xN (θ)

 dθ =

∫ s

a


0 Ini

0 τ1(s− θ)Ini+1

...
. . .

0 τN−i(s− θ)InN




x0

∂sx1(θ)
...

∂N
s xN (θ)

 dθ

=

∫ s

a

Qi(s− θ)x̂
¯
(θ)dθ

Therefore, combining both the terms we get

∂i−1
s Six(s) = Ti(s− a)(Cx)(a) +

∫ s

a

Qi(s− θ)x̂
¯
(θ)dθ.

Since ∂i−1
s Six(s) can be uniquely determined using (Cx)(a) and x̂

¯
, we can now generalize this to all of (Cx) by using

concatenation of ∂i−1
s Six(s) over all i ∈ n as

(Cx)(s) =

 Sx(s)
...

∂N−1
s SNx(s)

 =


T1(s− a)
T2(s− a)

...
TN (s− a)




Sx(a)
∂sS

2x(a)
...

∂N−1
s SNx(a)

+

∫ s

a

Q1(s− θ)
...

QN (s− θ)

 x̂
¯
(θ)dθ

= T (s− a)(Cx)(a) +
∫ s

a

Q(s− θ)x̂
¯
(θ)dθ.

Next, we use the map from (Cx)(a) and x̂
¯

to (Cx) to obtain the following list of identities.

Corollary 27. Suppose x̂ ∈ Wn for some v ∈ Rq . Define

(F x̂) :=


x̂

∂sSx̂
...

∂N
s SN x̂

 , (Cx̂) :=


Sx̂

∂sS
2x̂
...

∂N−1
s SN x̂

 , x̂
¯
:=


x̂0

∂1
s x̂1

...
∂N
s x̂N

 .

Then we have the following.

(a) For Ui, T , and Q as defined in Block 5, we have
(F x̂)(s) = U1x̂¯

(s) + U2(Cx̂)(s)

= U2T (s− a)(Cx̂)(a) + U1x̂¯
(s) +

∫ s

a

U2Q(s− θ)x̂
¯
(θ)dθ.

(b) Given a set of parameters Gb, if {n,Gb} is PIE-compatible, then for BQ as defined in Block 5

B

[
(Cx̂)(a)
(Cx̂)(b)

]
−
∫ b

a

BI(s)(F x̂)(s)ds = BT (Cx̂)(a)−
∫ b

a

BTBQ(s)x̂¯
(s)ds.

(c) Given a set of parameters Gb, if x̂ ∈ Xv and {n,Gb} is PIE-compatible, then

(Cx̂)(a) =
∫ b

a

BQ(θ)x̂¯
(θ)dθ +B−1

T Bvv.

(d) Given a set of parameters Gb, if x̂ ∈ Xv and {n,Gb} is PIE-compatible, then[ v
(Bx̂)

]
(F x̂)(·)

 = Π


 Inv

B−1
T Bv

T (b− a)B−1
T Bv

  0nr×nx

BQ(s)
T (b− a)BQ(s) +Q(b− s)


U2T (s− a)B−1

T Bv {U1, RD,1, RD,2}

[vx̂
¯

]
.

Proof. Let x̂ ∈ Xv for some v ∈ Rq .

For (a), we examine the terms ∂i
sS

ix̂ in the vector (F x̂). These terms may be divided into those from x̂
¯

and those from
(Cx̂). Specifically, we define the permutation matrix U =

[
U1 U2

]
so that

x̂(s)
∂sSx̂(s)

...
(∂N

s SN x̂)(s)


︸ ︷︷ ︸

(Fx̂)

= U


x̂(s) Sx̂(s)
...

∂N−1
s SN x̂(s)


 =

[
U1 U2

] [ x̂
¯
(s)

(Cx̂)(s)

]
.
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To justify our expression for the permutation matrix, U , first note that

∂i
sS

ix̂ =


∂i
sx̂i

∂i
sx̂i+1

...
∂six̂N

 =

[
x̂
¯ i∂i

sS
i+1x̂

]
=

[
x̂
¯ i(Cx̂)i+1

]

=

[[
Ini

0ni+1:N×ni

] [
0ni×ni+1:N

Ini+1:N

]] [
x̂
¯ i(Cx̂)i+1

]
=
[
U1,i U2,i

] [ x̂
¯ i(Cx̂)i+1

]
which holds for i < N . For i = N , we simply have

∂N
s SN x̂ := ∂N

s x̂N = x̂
¯N

= InN︸︷︷︸
U1,N

x̂
¯N

.

Clearly, then
(F x̂)

=

 ∂0
sS

0x̂
...

∂N
s SN x̂

 =

U1,0

. . .
U1,N


︸ ︷︷ ︸

U1

 x̂
¯ 0...
x̂
¯N


︸ ︷︷ ︸

x̂
¯

+


U2,0

. . .
U2,(N−1)

0nN×n1:N · · · 0nN×nN:N


︸ ︷︷ ︸

U2

 (Cx̂)1
...

(Cx̂)N


︸ ︷︷ ︸

(Cx̂)

= U1x̂¯
+ U2(Cx̂).

Finally, by Corollary 26, we write

(F x̂)(s) = U1x̂¯
(s) + U2(Cx̂)(s) = U1x̂¯

(s) + U2T (s− a)(Cx̂)(a) +
∫ s

a

U2Q(s− θ)x̂
¯
(θ)dθ

= U2T (s− a)(Cx̂)(a) + U1x̂¯
(s) +

∫ s

a

U2Q(s− θ)x̂
¯
(θ)dθ

Now, suppose we are given Gb = {B,BI , Bv} such that BT is invertible where

BT = B

[
InS

T (b− a)

]
−
∫ b

a

BI(s)U2T (s− a)ds.

For (b), we temporarily partition B as B =
[
Bl Br

]
where both Bl and Br have equal number of columns. Then, we look

at the expression B

[
(Cx̂)(a)
(Cx̂)(b)

]
−
∫ b

a
BI(s)(F x̂)(s)ds. Clearly, we need an expression for (Cx̂)(b) which can be obtained from

corollary 26 (by substituting s = b) as

(Cx̂)(b) = T (b− a)(Cx̂)(a) +
∫ b

a

Q(b− s)x̂
¯
(s)ds.

Replacing (Cx̂)(b) and (F x̂) in the expression for B
[
(Cx̂)(a)
(Cx̂)(b)

]
−
∫ b

a
BI(s)(F x̂)(s)ds, we get

[
Bl Br

]︸ ︷︷ ︸
B

[
(Cx̂)(a)
(Cx̂)(b)

]
−

∫ b

a

BI(s)(F x̂)(s)ds

= (Bl +BrT (b− a))(Cx̂)(a) +
∫ b

a

BrQ(b− s)x̂
¯
(s)ds

−
(∫ b

a

BI(s)U2T (s− a)ds

)
(Cx̂)(a)−

∫ b

a

(
BI(s)U1 +

∫ b

s

BI(θ)U2Q(θ − s)dθ

)
x̂
¯
(s)ds

=

(
Bl +BrT (b− a)−

∫ b

a

BI(s)U2T (s− a)ds

)
︸ ︷︷ ︸

BT

(Cx̂)(a)

+

∫ b

a

(
BrQ(b− s)−BI(s)U1 −

∫ b

s

BI(θ)U2Q(θ − s)dθ

)
︸ ︷︷ ︸

BTBQ(θ)

x̂
¯
(s)ds

= BT (Cx̂)(a)−
∫ b

a

BTBQ(s)x̂¯
(s)ds,

which proves the second statement of the corollary.

For (c), we have the additional constraint that x̂ ∈ Xv . Then, we know that

B

[
(Cx̂)(a)
(Cx̂)(b)

]
−
∫ b

a

BI(s)(F x̂)(s)ds−Bvv = 0.



23

Therefore, from second statement of the corollary, we have

BT (Cx̂)(a)−
∫ b

a

BTBQ(s)x̂¯
(s)ds−Bvv = 0,

and since BT is invertible, we can conclude that

(Cx̂)(a) =
∫ b

a

BQ(s)x̂¯
(s)ds+B−1

T Bvv.

For (d), we know that (F x̂) and (Cx̂)(a) (from steps (a) and (b)) can be expressed as

(F x̂)(s) = U2T (s− a)(Cx̂)(a) + U1x̂¯
(s) +

∫ s

a

U2Q(s− θ)x̂
¯
(θ)dθ,

(Cx̂)(a) =
∫ b

a

BQ(s)x̂¯
(s)ds+B−1

T Bvv.

Thus, by substituting (Cx̂)(a) in the expression for (F x̂), we get

(F x̂)(s) = U2T (s− a)(Cx̂)(a) + U1x̂¯
(s) +

∫ s

a

U2Q(s− θ)x̂
¯
(θ)dθ

= U2T (s− a)

(∫ b

a

BQ(s)x̂¯
(s)ds+B−1

T Bvv

)
+ U1x̂¯

(s) +

∫ s

a

U2Q(s− θ)x̂
¯
(θ)dθ

= Π
[

∅ ∅
U2T (s− a)B−1

T Bv
{
U1, U2(T (s− a)BQ(θ) +Q(s− θ)), U2T (s− a)BQ(θ)

} ] [
v

x̂
¯
(·)

]
=

(
Π

[
∅ ∅

U2T (s− a)B−1
T Bv

{
U1, RD,1, RD,2

} ] [
v
x̂
¯

])
(s).

where we define the variables
RD,1(s, θ) = RD,2(s, θ) + U2Q(s− θ), RD,2(, sθ) = U2T (s− a)BQ(θ).

Now, since x̂ ∈ Xv for all t ≥ 0, by Corollary 26, we have

(Cx̂)(s) = T (s− a)(Cx̂)(a) +
∫ s

a

Q(s− θ)x̂
¯
(θ)dθ.

Furthermore, since BT is invertible, from Corollary 27, we have

(Cx̂)(a) =
∫ b

a

BQ(θ)x̂¯
(θ)dθ +B−1

T Bvv,

and hence we can express (Bx̂) in terms of x̂ and v as

(Bx̂) =
[
(Cx̂)(a)
(Cx̂)(b)

]
=

[
I

T (b− a)

]
(Cx̂)(a) +

∫ b

a

[
0

Q(b− θ)

]
x̂
¯
(θ)dθ

=

[
I

T (b− a)

](∫ b

a

BQ(θ)x̂¯
(θ)dθ +B−1

T Bvv

)
+

∫ b

a

[
0

Q(b− θ)

]
x̂
¯
(θ)dθ

= Π

[ [
I

T (b− a)

]
B−1

T Bv

[
I

T (b− a)

]
BQ +

[
0
Q

]
∅ {∅}

][
v
x̂
¯

]
.

To get an expression for the combined v, (Bx̂) and (F x̂), we can just concatenate them vertically to get[ v
(Bx̂)

]
(F x̂)(·)

 = Π


 Inv

B−1
T Bv

T (b− a)B−1
T Bv

  0nr×nx

BQ(s)
T (b− a)BQ(s) +Q(b− s)


U2T (s− a)B−1

T Bv {U1, RD,1, RD,2}

[vx̂
¯

]
.

Now, from a), we have a map from {(Cx̂)(a), x̂
¯
} to the vector of all well-defined terms, F x̂. Furthermore, from c), when

the BCs are PIE-compatible we have a map from {x̂
¯
, v} to (Cx̂)(a). This allows us to express the left boundary values,

(Cx̂)(a) in terms of {x̂
¯
, v} – yielding a map from x̂

¯
to (F x̂). Extending this result, we can use corollary 25 to obtain a map

from {x̂
¯
, v} to x̂.

Theorem 10. Given {n ∈ NN+1, Gb} PIE-compatible, let {T̂ , Tv} be as defined in Block 4, Xv as defined in Eq. (10)
and D :=diag(∂0

sIn0 , · · · , ∂N
s InN

). Then we have the following: (a) For any v ∈ Rnv , if x̂ ∈ Xv , then Dx̂ ∈ Lnx̂
2 and

x̂ = T̂ Dx̂+ Tvv; and (b) For any v ∈ Rnv and x̂
¯
∈ Lnx̂

2 , T̂ x̂
¯
+ Tvv ∈ Xv and x̂

¯
= D(T̂ x̂

¯
+ Tvv).

Proof. Proof of Part 1. Let x̂ ∈ Xv for some v ∈ Rq . Clearly, by definition of Xv , ∂i
sx̂i ∈ Lni

2 . Therefore, Dx̂ ∈ Lnx̂
2 . Next

we need to express x̂ in terms of x̂
¯
:= Dx̂ and v. For that, we will first express (Cx̂)(a) solely in terms of x̂

¯
and v. From

corollary 27, we know that if {n,Gb} is PIE-compatible, then

(Cx̂)(a) =
∫ b

a

BQ(θ)x̂¯
(θ)dθ +B−1

T Bvv.
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Now that we have an expression for (Cx̂)(a), we simply substitute this into the expression for x̂ from Corollary 25 to obtain

x̂1:N (s) = T1(s− a)(Cx̂)(a) +
∫ s

a

Q1(s− θ)x̂
¯
(θ)dθ

=

∫ b

a

T1(s− a)BQ(θ)x̂¯
(θ)dθ +

∫ s

a

Q1(s− θ)x̂
¯
(θ)dθ + T1(s− a)B−1

T Bvv.

Adding on the somewhat incongruous x̂0 term, we obtain

x̂(s) =

[
x̂0(s)
x̂1:N (s)

]
=

[
In0

0
0 0nx−n0

]
︸ ︷︷ ︸

G0

x̂
¯
(s) +

∫ b

a

[
0n0×nx̂

T1(s− a)BQ(θ)

]
︸ ︷︷ ︸

G2(s,θ)

x̂
¯
(θ)dθ +

∫ s

a

[
0n0×nx̂

Q1(s− θ)

]
︸ ︷︷ ︸
G1(s,θ)−G2(s,θ)

x̂
¯
(θ)dθ (29)

+

[
0n0×nv

T1(s− a)B−1
T Bv

]
︸ ︷︷ ︸

Gv(s)

v

= G0x̂¯
(s) +

∫ b

s

G2(s, θ)x̂¯
(θ)dθ +

∫ s

a

G1(s, θ)x̂¯
(θ)dθ +Gv(s)v = (T̂ x̂

¯
)(s) + (Tvv)(s).

Proof. Proof of Part 2. Let v ∈ Rq and x̂
¯
∈ Lnx̂

2 be arbitrary. Our first step is to show that D
(
T̂ x̂

¯
+ Tvv

)
= x̂

¯
∈ Lnx̂

2 . By

the definition of T̂ and Tv , Eqn (29) at the end of the proof of Part 1 shows that for any x̂
¯
∈ Lnx̂

2 and v ∈ Rq ,
(T̂ x̂

¯
)(s) + (Tvv)(s)

=

[
I 0
0 0

]
x̂
¯
(s) +

∫ b

a

[
0

T1(s− a)BQ(θ)

]
x̂
¯
(θ)dθ +

∫ s

a

[
0

Q1(s− θ)

]
x̂
¯
(θ)dθ

+

[
0

T1(s− a)B−1
T Bv

]
v.

Thus, we may group the terms with T1(s− a) together and apply the D operator to obtain

D
(
T̂ x̂

¯
+ Tvv

)
(s) = D

[
0

T1(s− a)

](∫ b

a

BQ(θ)x̂¯
(θ)dθ +B−1

T Bvv

)

+D
([

In0
0

0 0

]
x̂
¯
(s) +

∫ s

a

[
0n0×nx̂

Q1(s− θ)

]
x̂
¯
(θ)dθ

)
.

Now, examining the first term we have

D
[

0
T1(s− a)

]
=

In0

. . .

∂N
s InN

[ 0
T1(s− a)

]
=


0

∂sIn1

. . .

∂N
s InN

T1(s− a)




and since ∂i
sτj(s) = 0 for any j > i, we have

∂sIn1

. . .

∂N
s InN

T1(s− a)

 =

∂sIn1

. . .

∂N
s InN

 [
τ0(s− a)J1,1 τ1(s− a)J1,2 · · · τN−1(s− a)J1,N

]

=

∂sIn1

. . .

∂N
s InN

[
τ0(s− a)In1:N

[
0

τ1(s− a)In2:N

]
· · ·

[
0

τN−1(s− a)InN

]]
= 0.

Hence the first term in our expression for D
(
T̂ x̂

¯
+ Tvv

)
is zero. Now, consider the second term in the expression for

D
(
T̂ x̂

¯
+ Tvv

)
,

D
([

In0 0
0 0

]
x̂
¯
(s) +

∫ s

a

[
0n0×nx

Q1(s− θ)

]
x̂
¯
(θ)dθ

)

= D


[
In0

0
0 0

]
x̂
¯
(s) +

∫ s

a


0n0

0 0
0 τ0(s)In1

...
. . .

0 τN−1(s)InN

 x̂
¯
(θ)dθ

 .



25

For this term, we use an inductive approach. Specifically, we factor D into first-order derivative operators as

D =


I

∂sI
. . .

∂N
s I

 =

N∏
i=1

[
In0:i−1

0
0 Ini:N

∂s

]
︸ ︷︷ ︸

Di

.

Now, since ∂sτi(s) = τi−1(s) for i ≥ 1, τi(0) = 0 for i > 0 and τ0(0) = 1, we have that for any i < N ,

Di

[
0n0:i−1×nx

Qi(s− θ)

]
=

[
In0:i−1

0
0 Ini:N

∂s

]
0n0:i−1×n0:i−1

τ0(s)Ini

. . .

τN−i(s)InN



=


0n0:i×n0:i

τ0(s)Ini+1

. . .

τN−i−1(s)InN

 =

[
0n0:i×nx

Qi+1(s− θ)

]

and DN

[
0n0:N−1×nx

QN (s− θ)

]
= 0. Additionally, for i ≥ 0, we have[

0n0:i−1×nx

Qi(0)

]
=

0n0:i−1×n0:i−1

Ini

0ni+1:N×ni+1:N

 .

We conclude that

Di

([
In0:i−1

0

]
x̂
¯
(s) +

∫ s

a

[
0n0:i−1×nx

Qi(s− θ)

]
x̂
¯
(θ)dθ

)
=

[
In0:i−1

0

]
x̂
¯
(s) +

[
0n0:i−1×nx

Qi(0)

]
x̂
¯
(s) +

∫ s

a

[
0n0:i×nx

Qi+1(s− θ)

]
x̂
¯
(θ)dθ

=

[
In0:i

0

]
x̂
¯
(s) +

∫ s

a

[
0n0:i×nx

Qi+1(s− θ)

]
x̂
¯
(θ)dθ.

Applying this inductive step to each of the Di operators in Dx̂, we have

D
([

In0
0

0 0

]
x̂
¯
(s) +

∫ s

a

[
0

Q1(s− θ)

]
x̂
¯
(θ)dθ

)
= DN · · · D1

([
In0 0
0 0

]
x̂
¯
(s) +

∫ s

a

[
0

Q1(s− θ)

]
x̂
¯
(θ)dθ

)
= x̂

¯
(s).

Combining these results, we conclude that for any x̂
¯
∈ Lnx̂

2(
D
(
T̂ x̂+ Tvv

))
(s) = = D

(∫ b

a

G2(s, θ)x̂¯
(θ)dθ +Gv(s)v

)
+D

([
In0 0
0 0

]
x̂
¯
(s) +

∫ s

a

[
0

Q1(s− θ)

]
x̂
¯
(θ)dθ

)
= x̂

¯
(s).

Finally, we need to show that for any x̂
¯
∈ Lnx̂

2 , T̂ x̂
¯
+ Tvv ∈ Xv . Let x̂ := T̂ x̂

¯
+ Tvv. Clearly, since Dx̂ = x̂

¯
∈ Lnx̂

2 , we
have x̂ ∈ Wn. To show that x̂ ∈ Xv , however, we must now show that the BCs are satisfied. For this part, we have that if
x̂ = T̂ x̂

¯
+ Tvv ∈ Wn, then by Corollary 27,

B

[
(Cx̂)(a)
(Cx̂)(b)

]
−

∫ b

a

BI(s)(F x̂)(s)ds−Bvv = BT

(
(Cx̂)(a)−

∫ b

a

BQ(s)x̂¯
(s)ds−B−1

T Bvv

)
.

Since x̂ ∈ Wn and BT is invertible, we have that x̂ ∈ Xv if and only if

(Cx̂)(a)−
∫ b

a

BQ(s)x̂¯
(s)ds−B−1

T Bvv = 0.

Recall from the beginning of the proof of Part 2 that

x̂(s) :=

[
x̂0(s)
x̂1:N (s)

]
=

[
I 0
0 0

]
x̂
¯
(s) +

∫ b

a

[
0

T1(s− a)BQ(θ)

]
x̂
¯
(θ)dθ +

∫ s

a

[
0

Q1(s− θ)

]
x̂
¯
(θ)dθ

+

[
0

T1(s− a)B−1
T Bv

]
v

and hence

x̂1:N (s) =

∫ b

a

T1(s− a)BQ(θ)x̂¯
(θ)dθ +

∫ s

a

Q1(s− θ)x̂
¯
(θ)dθ + T1(s− a)B−1

T Bvv.

In addition, from Corollary A.3, we have

x̂1:N (s) = T1(s− a)(Cx̂)(a) +
∫ s

a

Q1(s− θ)x̂
¯
(θ)dθ.
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Substituting this identity in the previous equation, we get

T1(s− a)(Cx̂)(a) +
∫ s

a

Q1(s− θ)x̂
¯
(θ)dθ

=

∫ b

a

T1(s− a)BQ(θ)x̂¯
(θ)dθ +

∫ s

a

Q1(s− θ)x̂
¯
(θ)dθ + T1(s− a)B−1

T Bvv,

which implies

T1(s− a)

(
(Cx̂)(a)−

∫ b

a

BQ(θ)x̂¯
(θ)dθ −B−1

T Bvv

)
= 0.

We will use induction to show that the above equality holds when T1 is replaced by Ti. First, suppose

Ti(s− a)

(
(Cx̂)(a)−

∫ b

a

BQ(θ)x̂¯
(θ)dθ −B−1

T Bvv

)
= 0.

Then, since
∂s
[
0ni+1:N×ni

Ini+1:N

]
Ti(s− a) = Ti+1(s− a),

we have the relation

∂s
[
0ni+1:N×ni Ini+1:N

]
Ti(s− a)

(
(Cx̂)(a)−

∫ b

a

BQ(θ)x̂¯
(θ)dθ −B−1

T Bvv

)

= Ti+1(s− a)

(
(Cx̂)(a)−

∫ b

a

BQ(θ)x̂¯
(θ)dθ −B−1

T Bvv

)
= 0.

Since the equality is true for i = 1, by induction we can conclude, for any i ≥ 1,

Ti(s− a)

(
(Cx̂)(a)−

∫ b

a

BQ(θ)x̂¯
(θ)dθ −B−1

T Bvv

)
= 0.

By stacking all Ti’s and using T = col(T1, · · · , TN ), for any s ∈ [a, b] we have

T (s− a)

(
(Cx̂)(a)−

∫ b

a

BQ(θ)x̂¯
(θ)dθ −B−1

T Bvv

)
= 0.

and since T (0) = InS
, we have that

(Cx̂)(a)−
∫ b

a

BQ(θ)x̂¯
(θ)dθ −B−1

T Bvv = 0.

which completes the proof.

B. Equivalence of PIE and PDE subsystems: Proof of Theorem 12
Now that we have established a PI map from L2 to Xv , we will obtain the PIE associated with a PDE subsystem by replacing

x̂ in the PDE subsystem with x̂ = T̂ x̂
¯
+ Tvv. Because we have shown that this PI map is a bijection, we will then conclude

that existence of a solution for the PIE subsystem guarantees the existence of a solution for the PDE subsystem. This proof
is split into two parts.

Theorem 12. Given a PIE-compatible GPDE with parameter set {n ∈ NN+1, Gb, Go, Gp} as defined in eqs. (7), (11)
and (13), suppose v ∈ Lnv

2e [R+] with Bvv ∈ W 2nS
1e [R+], {T̂ , Tv} are as defined in Block 4, {Â, Bv, Cr, Drv} are as defined

in Block 5 and
GPIE =

{
T̂ , Tv, ∅, Â,Bv, ∅, Cr, ∅,Drv, ∅, ∅, ∅

}
.

Then we have the following.
1) For any x̂0 ∈ Xv(0) (Xv is as defined in Equation (10)), if {x̂, r} satisfies the PDE defined by {n,Gb,Gp} with initial
condition x̂0 and input v, then {Dx̂, r, ∅} satisfies the PIE defined by GPIE with initial condition Dx̂0 ∈ Lnx̂

2 and input
{v, ∅} where Dx̂ = col(∂0

s x̂0, · · · , ∂N
s x̂N ).

2) For any x̂
¯
0 ∈ Lnx̂

2 , if {x̂
¯
, r, ∅} satisfies the PIE defined by GPIE for initial condition x̂

¯
0 and input {v, ∅}, then {T̂ x̂

¯
+Tvv, r}

satisfies the PDE defined by {n,Gb,Gp} with initial condition x̂0 = T̂ x̂
¯
0 + Tvv(0) and input v.

Proof. Proof of 1). Suppose {x̂, r} satisfies the PDE Equation (12) defined by n ∈ NN+1 and {Gb,Gp} with initial conditions
x̂0 and input v. Then by Definition 7: a) r ∈ Lnr

2e [R+]; b) x̂(t) ∈ Xv(t) for all t ≥ 0; c) x̂ is Frechét differentiable with respect
to the L2-norm on R+; d) Equation (12) is satisfied for all t ≥ 0; and e) x̂(0) = x̂0.

Let x̂
¯
= Dx̂, x̂

¯
0 = Dx̂0, n = nx̂ and m = 0. Our goal is to show that for GPIE as defined above, {x̂

¯
, r, ∅} satisfies

the PIE defined by GPIE for initial condition x̂
¯
0 and input {v, ∅}. For this, we must show that: 1) v ∈ Lnv

2e [R+] and
(Tvv)(·, s) ∈ Wnx̂

1e [R+] for all s ∈ [a, b]; 2) x̂
¯
: R+ → RL0,nx̂

2 [a, b] and r ∈ Lnr
2e [R+]; 3) x̂

¯
0 ∈ RL0,nx̂

2 [a, b] and x̂
¯
(0) = x̂

¯
0;

4) T̂ x̂
¯

is Frechét differentiable on R+; and 5) Equation (5) is satisfied for all t ∈ R+.
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For 1), v ∈ Lnv
2e [R+] from the theorem statement and by the definition of Tw, Bvv ∈ W 2nS

1e [R+] implies

(Tww)(s) = (Tvv)(s) =
[

0
T1(s− a)

]
B−1

T Bvv ∈ Wnx̂
1e [R+].

For 2), from Theorem 10a we have that x̂(t) ∈ Xv(t) implies x̂
¯
(t) = Dx̂(t) ∈ RL0,nx̂

2 = Lnx̂
2 for all t ≥ 0. Furthermore,

from the definition of solution of the PDE, r ∈ Lnr
2e [R+].

For 3), from Theorem 10a we have that x̂0 ∈ Xv(0) implies x̂
¯
0 = Dx̂0 ∈ RL0,nx̂

2 = Lnx̂
2 . Furthermore, since x̂

¯
(t) = Dx̂(t)

for all t ≥ 0, we have x̂
¯
(0) = Dx̂(0) = Dx̂0 = x

¯
0.

For 4), because x̂ is Frechét differentiable on R+, the limit of x̂(t+h)−x̂(t)
h as h → 0+ exists for any t ≥ 0 when convergence

is defined with respect to the L2 norm. This, and the fact that Tvv ∈ Wnv
1e implies that

lim
h→0+

T̂ x̂
¯
(t+ h)− T̂ x̂

¯
(t)

h
= lim

h→0+

x̂(t+ h)− x̂(t)

h
− lim

h→0+

Tvv(t+ h)− Tvv(t)
h

similarly exists for all t ≥ 0. Thus, T̂ x̂
¯

is Frechét differentiable with respect to L2-norm.
Lastly, for 5), since x̂(t) satisfies (9)-(12) for all t ≥ 0, we have[

˙̂x(t, s)
r(t)

]
=

N∑
i=0

A0(s) +
s∫
a

A1(s, ·) +
b∫
s

A2(s, ·)∫ b

a
Cr(·)

 (F x̂)(t, ·) +
[
Bxv(s) Bxb(s)

0 Drb

] [
v(t)

(Bx̂)(t)

]
. (30)

Since x̂(t) ∈ Xv(t) and x̂
¯
(t) = Dx̂(t) for all t ≥ 0, from Theorem 10, we have that
x̂(t) = T̂ x̂

¯
(t) + Tvv(t) which implies ˙̂x(t) = T̂ ˙̂x

¯
(t) + Tv v̇(t).

We can substitute this into Eq. 30 and re-write Eq. 30 using the PI operator notation to get the compact relation[
r(t)

T̂ ˙̂x
¯
(t) + Tv v̇(t)

]
= Π

[ [
0 Drb

]
Cr[

Bxv Bxb

]
{Ai}

][ v(t)
(Bx̂)(t)

]
(F x̂)(t)

 . (31)

where we define

(F x̂)(t) := U1x̂¯
(t) + U2(Cx̂)(t), (Bx̂)(t) :=

[
(Cx̂)(t, a)
(Cx̂)(t, b)

]
(Cx̂)(t) :=


(Sx̂)(t)

(∂sS
2x̂)(t)
...

(∂N−1
s SN x̂)(t)

 .

We know from Corollary 27d that when BT is invertible, x̂(t) ∈ Xv(t) and x̂
¯
(t) = Dx̂(t), we have the relation[ v(t)

(Bx̂)(t)

]
(F x̂)(t)

 = Π

[ [
I
Pb

] [
0
Qb

]
U2T (s− a)B−1

T Bv {{U1, RD,1, RD,2}}

][
v(t)
x̂
¯
(t)

]
.

Using the above expression for

 v(t)
(Bx̂)(t)
(F x̂)(t)

, we now expand Eq. 31 to obtain

[
r(t)

T̂ ˙̂x
¯
(t) + Tv v̇(t)

]
= Π

[ [
0 Drb

]
Cr[

Bxv Bxb

]
{Ai}

][ v(t)
(Bx̂)(t)

]
(F x̂)(t)


= Π

[ [
0 Drb

]
Cr[

Bxv Bxb

]
{Ai}

]
Π

[ [
I
Pb

] [
0
Qb

]
U2T (s− a)B−1

T Bv {{U1, RD,1, RD,2}}

] [
v(t)
x̂
¯
(t)

]
= Π

[
Drv Crx

Bxv {Âi}

] [
v(t)
x̂
¯
(t)

]
where [

Drv Crx

Bxv Âi

]
= P4

×

[ [
0 Drb

]
Cr[

Bxv Bxb

]
{Ai}

]
,


 Inv

B−1
T Bv

T (b− a)B−1
T Bv

  0nr×nx

BQ(s)
T (b− a)BQ(s) +Q(b− s)


U2T (s− a)B−1

T Bv {U1, RD,1, RD,2}


 .

which shows that {x̂
¯
, r, ∅} satisfies the PIE defined by GPIE for initial condition x̂

¯
0 and input {v, ∅}.

Proof. Proof of 2). Suppose {x̂
¯
, r, ∅} satisfies the PIE Equation (5) defined by the set of parameters GPIE for initial conditions

x̂
¯
0 and input {v, ∅}. Then we have: a) r ∈ Lnr

2e [R+]; b) x̂
¯
(t, ·) ∈ RLm,n

2 [a, b] for all t ≥ 0; c) T̂ x̂
¯

is Frechét differentiable on
R+; d) Equation (5) is satisfied for all t ∈ R+; and e) x̂

¯
(0, ·) = x̂

¯
0. Let

x̂(t) = T̂ x̂
¯
(t) + Tvv(t), x̂0 = T̂ x̂

¯
0 + Tvv(0).

Then, our goal is to show that, {T̂ x̂
¯
+ Tvv, r} satisfies the PDE Equation (12) defined by n ∈ NN+1 and {Gb,Gp} with

initial conditions x̂0 = T̂ x̂
¯
0 + Tvv(0) and input v. For this, we must show: 1) r ∈ Lnr

2e [R+]; 2) x̂(t) ∈ Xv(t) for all t ≥ 0;
3) x̂0 ∈ Xv(0) and x̂(0, ·) = x̂0; 4) x̂ is Frechét differentiable with respect to the L2-norm on R+; and 5) Equation (12) is
satisfied for all t ≥ 0.
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For 1), r ∈ Lnr
2e [R+] holds immediately by the definition of solution of the PIE.

For 2), Theorem 10b states that for any v(t) ∈ R and x̂
¯
(t) ∈ Lnx̂

2 , we have x̂(t) = T̂ x̂
¯
(t) + Tvv(t) ∈ Xv(t).

For 3), Theorem 10b states that for any v(0) ∈ R and x̂
¯
0 ∈ Lnx̂

2 , we have x̂0 = T̂ x̂
¯
0 + Tvv(0) ∈ Xv(0). In addition,

x̂(0) = T̂ x̂
¯
(0) + Tvv(0) = T̂ x̂

¯
0 + Tvv(0) ∈ Xv(0).

For 4), we know T̂ x̂
¯

is Frechét differentiable, which implies that limh→0+
T x̂

¯
(t+h)−T x̂

¯
(t)

h exists when the convergence is
with respect to L2-norm. Since Tvv ∈ Wnv

1e , we conclude that

lim
h→0+

x̂(t+ h)− x̂(t)

h
= lim

h→0+

T̂ x̂
¯
(t+ h)− T̂ x̂

¯
(t)

h
+ lim

h→0+

Tvv(t+ h)− Tvv(t)
h

exists for all t ≥ 0. Thus, x̂ is Frechét differentiable with respect to L2-norm.
For 5), since x̂ is Frechét differentiable and x̂

¯
satisfies the PIE, we have

˙̂x(t) = T̂ ˙̂x
¯
(t) + Tv v̇(t) = Âx̂

¯
(t) + Bvv(t)

and furthermore, r(t) = Crx̂¯ (t) +Drvv(t). Combining these expressions, we obtain[
r(t)
˙̂x(t)

]
=

[Drv Cr
Bv Â

] [
v(t)
x̂
¯
(t)

]
= Π

[
Drv Crx

Bxv {Âi}

] [v(t)
x̂
¯
(t)

]
.

Now, we use the relation from Block 5

Π
[

Drv Crx

Bxv {Âi}

]
= P

P4
×

[ [
0 Drb

]
Cr[

Bxv Bxb

]
{Ai}

]
,


 Inv

B−1
T Bv

T (b− a)B−1
T Bv

  0nr×nx

BQ(s)
T (b− a)BQ(s) +Q(b− s)


U2T (s− a)B−1

T Bv {U1, RD,1, RD,2}





= Π
[ [

0 Drb

]
Cr[

Bxv Bxb

]
{Ai}

]
Π


 Inv

B−1
T Bv

T (b− a)B−1
T Bv

  0nr×nx

BQ(s)
T (b− a)BQ(s) +Q(b− s)


U2T (s− a)B−1

T Bv {U1, RD,1, RD,2}

 ,

to obtain [
r(t)
˙̂x(t)

]
= Π

[
Drv Crx

Bxv {Âi}

] [
v(t)
x̂
¯
(t)

]
=

Π
[ [

0 Drb

]
Cr[

Bxv Bxb

]
{Ai}

]
Π


 Inv

B−1
T Bv

T (b− a)B−1
T Bv

  0nr×nx

BQ(s)
T (b− a)BQ(s) +Q(b− s)


U2T (s− a)B−1

T Bv {U1, RD,1, RD,2}

[v(t)x̂
¯
(t)

]
.

We need to eliminate x̂
¯
(t) from the right hand side to get an expression solely in terms of x̂. For this purpose, we use

Theorem 10b, which gives us the relation x̂
¯
(t) = Dx̂(t). Defining now

(F x̂)(t) :=


x̂(t)

∂sSx̂(t)
...

∂N
s SN x̂(t)

 , (Cx̂)(t) :=


Sx̂(t)

∂sS
2x̂(t)
...

∂N−1
s SN x̂(t)

 (Bx̂) =
[
(Cx̂)(t, a)
(Cx̂)(t, b)

]
.

Using Corollaries 26 and 27d, these definitions now imply[ v(t)
(Bx̂)(t)

]
(F x̂)(t, ·)

 = Π


 Inv

B−1
T Bv

T (b− a)B−1
T Bv

  0nr×nx

BQ(s)
T (b− a)BQ(s) +Q(b− s)


U2T (s− a)B−1

T Bv {U1, RD,1, RD,2}

[v(t)x̂
¯
(t)

]
.

Then, we can re-write the expressions for r and ˙̂x as[
r(t)
˙̂x(t)

]
= Π

[ [
0 Drb

]
Cr[

Bxv Bxb

]
{Ai}

][ v(t)
(Bx̂)(t)

]
(F x̂)(t, ·)


=

N∑
i=0


∫ b

a
Cr(·)

A0(s) +
s∫
a

A1(s, ·) +
b∫
s

A2(s, ·)

 (F x̂)(t, ·) +
[

0 Drb

Bxv(s) Bxb(s)

] [
v(t)

(Bx̂)(t)

]
.

Thus we conclude that {x̂, r} satisfies the PDE Equation (12) with initial condition x̂0 and input v.

C. Bijective map between PIE and GPDE states: Proof of Corollary 13
We now construct the map between the domain of the GPDE and associated PIE representation and show this is a bijection.

Corollary 13 (Corollary of Theorem 10). Given {n ∈ NN+1, Gb} PIE-compatible, let {T , Tw, Tu} be as defined in Block 5,
Xw,u as defined in Eq. (14) and D :=diag(∂0

sIn0
, · · · , ∂N

s InN
). Then for any w ∈ Rnw and u ∈ Rnu we have:

(a) If x := {x, x̂} ∈ Xw,u, then x
¯
:= {x,Dx̂} ∈ RLnx,nx̂

2 and x = T x
¯
+ Tww + Tuu.

(b) If x
¯
∈ RLnx,nx̂

2 , then x := T x
¯
+ Tww + Tuu ∈ Xw,u and x

¯
=

[
Inx 0
0 D

]
x.
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Proof. Proof of Part 1. Let
[
x
x̂

]
∈ Xw,u for some w ∈ Rp, u ∈ Rq . Clearly, by definition of Xw,u, x̂ ∈ Xv with v =

Cvx+Dvww+Dvuu for arbitrary matrices Cv , Dvw, and Dvu. Therefore, from theorem 10a, Dx̂ ∈ Lnx̂
2 and hence {x,Dx̂} ∈

RLnx,nx̂

2 . Furthermore, for T̂ and Tv as defined in Block 4, we have

x̂ = T̂ Dx̂+ Tvv =
[
TvCv T̂

] [ x
Dx̂

]
+ Tv

[
Dvw Dvu

] [w
u

]
.

Then, by concatenating x and x̂ and by using the definitions of T , Tw, Tu, we have[
x
x̂

]
=

 x[
TvCv T̂

] [ x
Dx̂

]
+ Tv

[
Dvw Dvu

] [w
u

]
=

 x[
TvCv T̂

] [ x
Dx̂

]+

[
0

TvDvw

]
w +

[
0

TvDvu

]
u

=

[
I 0

TvCv T̂

] [
x
Dx̂

]
+

[
0

TvDvw

]
w +

[
0

TvDvu

]
u = T

[
x
Dx̂

]
+ Tww + Tuu.

Proof. Proof of Part 2. Let w ∈ Rp, u ∈ Rq and x
¯
∈ RLnx,nx̂

2 be arbitrary.

Let
[
x
x̂
¯

]
:= x

¯
where x ∈ Rnx and x̂

¯
∈ Lnx̂

2 .

By substituting the definitions of T , Tw and Tu,

T
[
x
x̂
¯

]
+ Tww + Tuu =

[
I 0

TvCv T̂

] [
x
x̂
¯

]
+

[
0

TvDvw

]
w +

[
0

TvDvu

]
u =


x

T̂ x̂
¯
+ Tv

[Cv Dvw Dvu

] xw
u




︸ ︷︷ ︸x
x̂

:=

.

Clearly, from theorem 10b, defining x̂ as x̂ = T̂ x̂
¯
+ Tv

[Cv Dvw Dvu

] xw
u

 implies that x̂ ∈ Xv with v =

[
Cv Dvw Dvu

] xw
u

. Therefore, by definition of Xw,u,
[
x
x̂

]
∈ Xw,u.

Our next step is to show that
[
I 0
0 D

]
(T x

¯
+ Tww + Tuu) = x

¯
∈ RLnx,nx̂

2 . Earlier, we defined
[
x
x̂
¯

]
:= x

¯
and showed that

if we define (T x
¯
+ Tww + Tuu) =

[
x
x̂

]
for some x̂ ∈ Xv with v = Cvx+Dvww+Dvuu. Thus, from theorem 10b, we have

Dx̂ = D
(
T̂ x̂

¯
+ Tvv

)
= x̂

¯
.

Therefore, [
I 0
0 D

]
(T x

¯
+ Tww + Tuu) =

[
I 0
0 D

] [
x
x̂

]
=

[
x
Dx̂

]
=

[
x
x̂
¯

]
= x

¯
.

D. Equivalence of PIE and GPDE: Proof of Corollary 15
The equivalence of solutions between a GPDE model and associated PIE is a straightforward extension of Theorem 12).

This proof is split into two parts.

Corollary 15 (Corollary of Theorem 12). Given a PIE-compatible GPDE with parameter set {n ∈ NN+1, Go, Gb, Gp}
as defined in Equations (7), (11) and (13), let w ∈ Lnw

2e [R+] with BvDvww ∈ W 2nS
1e [R+], u ∈ Lnu

2e [R+] with BvDvuu ∈
W 2nS

1e [R+]. Define
GPIE = {T , Tw, Tu,A,B1,B2, C1, C2,D11,D12,D21,D22}

= M({n,Gb,Go,Gp}.
Then we have the following:
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1) For any {x0, x̂0} ∈ Xw(0),u(0) (where Xw,u is as defined in Equation (14)), if {x, x̂, z, y, v, r} satisfies the GPDE defined

by {n, Go, Gb, Gp} with initial condition {x0, x̂0} and input {w, u}, then
{[

x
Dx̂

]
, z, y

}
satisfies the PIE defined by GPIE

with initial condition
[
x0

Dx̂0

]
and input {w, u} where Dx̂ = col(∂0

s x̂0,· · · ,∂N
s x̂N ).

2) For any x
¯
0 ∈ RLnx,nx̂

2 , if {x
¯
, z, y} satisfies the PIE defined by GPIE with initial condition x

¯
0 and input {w, u}, then

{x, x̂, z, y, v, r} satisfies the GPDE defined by {n,Go,Gb,Gp} with initial condition
[
x0

x̂0

]
= T x

¯
0 + Tww(0) + Tuu(0) and

input {w, u} where [
x(t)
x̂(t)

]
:= T x

¯
(t) + Tww(t) + Tuu(t),

v(t) := Cvx(t) +Dvww(t) +Dvuu(t),

r(t) :=
[
0nx̂×nx Cr

]
x
¯
(t) +Drvv(t),

and where Cr and Drv are as defined in Block 5.

Proof. Proof of Part 1 Suppose {x, x̂, z, y, v, r} satisfies the GPDE defined by {Go, Gb, Gp} with initial condition
{x0, x̂0} and input {w, u}. Then, we have: a) x ∈ Wnx

1e [R+], z ∈ Lnz
2e [R+], y ∈ L

ny

2e [R+], v ∈ Lnv
2e [R+], r ∈ Lnr

2e [R+]; b)
x̂(t) ∈ Xv(t) for all t ≥ 0; c) x is differentiable on R+, x̂ is Frechét differentiable with respect to the L2-norm on R+; d)
Equations (6) and (12) are satisfied for all t ≥ 0; and e) x(0) = x0, x̂(0) = x̂0 and x̂0 ∈ Xv(0).

Now, from above points, since x̂0 ∈ Xv(0) and x̂(0) = x̂0, r ∈ Lnr
2e [R+], x̂(t) ∈ Xv(t) for all t ≥ 0, x̂ is Frechét

differentiable with respect to the L2-norm on R+, and Equation (12) is satisfied for all t ≥ 0, we have that {x̂, r} satisfies
the PDE defined by n ∈ NN+1 and {Gb,Gp} with initial conditions x̂0 and input v. Furthermore, since

v(t) = Cvx(t) +Dvww(t) +Dvuu(t),

we have that v ∈ Lnv
2e [R+] with Bvv ∈ W 2nS

1e [R+]. Thus, by Theorem 12, {Dx̂, r} is a solution to the PIE defined

GPIEs
=
{
T̂ , Tv, ∅, Â,Bv, ∅, Cr, ∅,Drv, ∅, ∅, ∅

}
with initial condition Dx̂0 ∈ Lnx̂

2 . Therefore, if we define x̂
¯
(t) = Dx̂(t) and x̂

¯
0 = Dx̂0, we have that: f) v ∈ Lnv

2e [R+] and
(Tvv)(·, s) ∈ Wnx̂

1e [R+] for all s ∈ [a, b]; g) x̂
¯
: R+ → RL0,nx̂

2 [a, b] and r ∈ Lnr
2e [R+]; h) x̂

¯
0 ∈ RL0,nx̂

2 [a, b] and x̂
¯
(0) = x̂

¯
0; i)

T̂ x̂
¯

is Frechét differentiable on R+; and j) Equation (5) (defined by GPIEs
) is satisfied for all t ∈ R+, i.e.[

r(t)

T̂ ˙̂x
¯
(t) + Tv v̇(t)

]
=

[Drv Cr
Bv Â

] [
v(t)
x̂
¯
(t)

]
.

Now, let x
¯
0 =

[
x0

Dx̂0

]
=

[
x0

x̂
¯
0

]
and x

¯
(t) =

[
x(t)
Dx̂(t)

]
=

[
x(t)
x̂
¯
(t)

]
for all t ≥ 0. Our goal is to show that {x

¯
, z, y} satisfies the PIE

defined by GPIE with initial condition x
¯
0 and input {w, u}, which means we need to show that: 1) (Tww)(·, s), (Tuu)(·, s) ∈

Wnx+nx̂
1e for all s ∈ [a, b]; 2) x

¯
(t) ∈ RLnx,nx̂

2 [a, b] for all t ≥ 0; 3) x
¯
(0) = x

¯
0 and x

¯
0 ∈ RLnx,nx̂

2 ; 4) T x
¯

is Frechét
differentiable on R+; and 5) Equation (5) (defined by GPIE) is satisfied for all t ∈ R+.
For 1), BvDvww ∈ W 2nS

1e [R+] and hence by the definition of Tw, we have

(Tww(·))(s) =
[

0
T1(s− a)

]
B−1

T BvDvww(·) ∈ Wnx+nx̂
1e [R+].

Likewise, BvDvuu ∈ W 2nS
1e [R+] implies

(Tuu(·))(s) =
[

0
T1(s− a)

]
B−1

T BvDvuu(·) ∈ Wnx+nx̂
1e [R+].

For 2), since x̂
¯
(t) ∈ L0,nx̂

2 [a, b] and x(t) ∈ Rnx , we have x
¯
(t) =

[
x(t)
x̂
¯
(t)

]
∈ RLnx,nx̂

2 for all t ≥ 0.

For 3), since x̂
¯
0 ∈ L0,nx̂

2 [a, b] and x0 ∈ Rnx , we have x
¯
0 =

[
x0

x̂
¯
0

]
∈ RLnx,nx̂

2 . Furthermore, x
¯
(0) =

[
x(0)
x̂
¯
(0)

]
=

[
x0

x̂
¯
0

]
= x

¯
0.

For 4), by definitions of T and x
¯
, there exists a k > 0 such that

∥T x
¯
(t)∥L2

=

∥∥∥∥[ I 0

GvCv T̂

] [
x(t)
x̂
¯
(t)

]∥∥∥∥
L2

=

∥∥∥∥[ x(t)

GvCvx(t) + T̂ x̂
¯
(t)

]∥∥∥∥
L2

= ∥x(t)∥L2
+
∥∥∥GvCvx(t) + T̂ x̂

¯
(t)
∥∥∥
L2

≤ k ∥x(t)∥R +
∥∥∥T̂ x̂

¯
(t)
∥∥∥
L2

.

Since T̂ x̂
¯
(t) is Frechét differentiable and x ∈ Wnx

1e is differentiable, we have that T x
¯
(t) is Frechét differentiable.

Finally, for 5), we need to show thatT ẋ
¯
(t)

z(t)
y(t)

 =

A B1 B2

C1 D11 D12

C2 D21 D22

x¯ (t)w(t)
u(t)

−

Twẇ(t) + Tuu̇(t)
0
0


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is satisfied for all t ≥ 0.
Since x, z, y, v satisfy the GPDE, we have

ẋ(t)
z(t)
y(t)
v(t)

 =


A Bxw Bxu Bxr

Cz Dzw Dzu Dzr

Cy Dyw Dyu Dyr

Cv Dvw Dvu 0



x(t)
w(t)
u(t)
r(t)

 . (32)

Furthermore, as stated above, [
T̂ ˙̂x

¯
(t) + Tv v̇(t)

r(t)

]
=

[
Â Bv

Cr Drv

] [
x̂
¯
(t)

v(t)

]
. (33)

These two identities are all that are required to conclude the proof. Specifically, extracting expression for v, r and Tv v̇, we
obtain

v(t) =
[
Cv Dvw Dvu

] x(t)w(t)
u(t)

 ,

r(t) = Crx̂¯ (t) +Drvv(t) =
[
DrvCv Cr DrvDvw DrvDvu

] 
x(t)
x̂
¯
(t)

w(t)
u(t)

 ,

(Tv v̇(t))(s) = Gv(s)
[
Cv Dvw Dvu

] ẋ(t)ẇ(t)
u̇(t)


= Gv(s)Cvẋ(t) +Gv(s)Dvwẇ(t) +Gv(s)Dvuu̇(t).

Substituting these expressions back into Eq. (33) yields

T̂ ˙̂x
¯
(t) +Gv(s)Cvẋ(t) +Gv(s)Dvwẇ(t) +Gv(s)Dvuu̇(t) = Âx̂

¯
(t) + Bv

[
Cv Dvw Dvu

] x(t)w(t)
u(t)


or

[
Gv(s)Cv T̂

] [ẋ(t)
˙̂x
¯
(t)

]
+Gv(s)Dvwẇ(t) +Gv(s)Dvuu̇(t) =

[
BvCv Â BvDvw BvDvu

] 
x(t)
x̂
¯
(t)

w(t)
u(t)

 .

Appending the above equation to the system of equations in Eq. (32) and omitting the equation for v yields
[

I 0

Gv(s)Cv T̂

] [
ẋ(t)
˙̂x
¯

]
+ Twẇ(t) + Tuu̇(t)

z(t)
y(t)

 =


A 0 Bxw Bxu

BvCv Â BvDvw BvDvu

Cz 0 Dzw Dzu

Cy 0 Dyw Dyu



x(t)
x̂
¯
(t)

w(t)
u(t)

+


[
Bxr

0

]
Dzr

Dyr

 r(t)

=


A 0 Bxw Bxu

BvCv Â BvDvw BvDvu

Cz 0 Dzw Dzu

Cy 0 Dyw Dyu



x(t)
x̂
¯
(t)

w(t)
u(t)

+


[
Bxr

0

]
Dzr

Dyr

 [DrvCv Cr DrvDvw DrvDvu

] 
x(t)
x̂
¯
(t)

w(t)
u(t)


=

A B1 B2

C1 D11 D12

C2 D21 D22

x¯ (t)w(t)
u(t)

 .

We conclude that T ẋ
¯
(t)

z(t)
y(t)

 =

A B1 B2

C1 D11 D12

C2 D21 D22

x¯ (t)w(t)
u(t)

−

Twẇ(t) + Tuu̇(t)
0
0



which implies that {
[
x
Dx̂

]
, z, y} satisfies the PIE defined by GPIE with initial condition

[
x0

Dx̂

]
∈ RLnx,nx̂

2 and input

{w, u}.

Proof. Proof of Part 2 In this proof, we will use definitions in Block 5 using the parameters contained in {Go, Gb, Gp}.
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Now, suppose {x
¯
, z, y} satisfies the PIE defined by GPIE with initial condition x

¯
0 and input {w, u}. Then, by definition

of solution of a PIE: a) z ∈ Lnz
2e [R+], y ∈ L

ny

2e [R+]; b) x
¯
(t) ∈ RLnx,nx̂

2 [a, b] for all t ≥ 0; c) T x
¯

is Frechét differentiable on
R+; d) x

¯
(0) = x

¯
0; and e) The equationT ẋ

¯
(t) + Twẇ(t) + Tuu̇(t)

z(t)
y(t)

 =

A B1 B2

C1 D11 D12

C2 D21 D22

x¯ (t)w(t)
u(t)

 (34)

is satisfied for all t ∈ R+.

For x
¯
(t) ∈ RLnx,nx̂

2 we define x̂(t) ∈ Rnx and x̂
¯
(t) ∈ Lnx̂

2 by
[
x̂(t)
x̂
¯
(t)

]
:= x

¯
(t). Similarly, we define the elements

[
x̂0

x̂
¯
0

]
:= x

¯
0.

Now, by the definitions of T , Tw and Tu, we have[
x(t)
x̂(t)

]
=

[
I 0

GvCv T̂

] [
x̂(t)
x̂
¯
(t)

]
+

[
0

GvDvw

]
w(t) +

[
0

GvDvu

]
u(t)

and hence x(t) = x̂(t). Similarly, x0 = x̂0. Hence we have x
¯
(t) =

[
x(t)
x̂
¯
(t)

]
and x

¯
0 =

[
x0

x̂
¯
0

]
.

Now, using the definitions of r and v and examining the right hand side of Eq. (34), we haveA B1 B2

C1 D11 D12

C2 D21 D22

x
¯
(t)

w(t)
u(t)

 =


A 0 Bxw Bxu

B̂xvCv Â B̂xvDvw B̂xvDvu

Cz 0 Dzw Dzu

Cy 0 Dyw Dyu


x(t)
x̂
¯
(t)

w(t)
u(t)

+


[
Bxr

0

]
Dzr

Dyr

 [
DrvCv Cr DrvDvw DrvDvu

] x(t)
x̂
¯
(t)

w(t)
u(t)



=


A 0 Bxw Bxu

BvCv Â BvDvw BvDvu

Cz 0 Dzw Dzu

Cy 0 Dyw Dyu


x(t)
x̂
¯
(t)

w(t)
u(t)

+


[
Bxr

0

]
Dzr

Dyr

 r(t)

=


A 0 Bxw Bxu Bxr

BvCv Â BvDvw BvDvu 0
Cz 0 Dzw Dzu Dzr

Cy 0 Dyw Dyu Dyr



x(t)
x̂
¯
(t)

w(t)
u(t)
r(t)

 .

Likewise, if we substitute the definitions of the PI operators T , Tw, and Tu in the left hand side of Eq. (34), we getT ẋ
¯
(t) + Twẇ(t) + Tuu̇(t)

z(t)
y(t)

 =


[

I 0

Gv(s)Cv T̂

] [
ẋ(t)
˙̂x
¯
(t)

]
+

[
0

Gv(s)Dvw

]
ẇ(t) +

[
0

Gv(s)Dvu

]
u̇(t)

z(t)
y(t)



=


[
ẋ(t)

T̂ ˙̂x
¯
(t)

]
+

[
0

Tv v̇(t)

]
z(t)
y(t)

 .

Adding the definition of v, we conclude that
[
ẋ(t)

T̂ ˙̂x
¯
(t)

]
+

[
0

Tv v̇(t)

]
z(t)
y(t)
v(t)

 =


A 0 Bxw Bxu Bxr

BvCv Â BvDvw BvDvu 0
Cz 0 Dzw Dzu Dzr

Cy 0 Dyw Dyu Dyr

Cv 0 Dvw Dvu 0



x(t)
x̂
¯
(t)

w(t)
u(t)
r(t)

 .

Therefore, 
ẋ(t)
z(t)
y(t)
v(t)

 =


A Bxw Bxu Bxr

Cz Dzw Dzu Dzr

Cy Dyw Dyu Dyr

Cv Dvw Dvu 0



x(t)
w(t)
u(t)
r(t)


and [

T̂ ˙̂x
¯
(t) + Tv v̇(t)

r(t)

]
=

[
Â Bv

Cr Drv

] [
x̂
¯
(t)

v(t)

]
.

Thus, we conclude: f) Since x
¯

is Frechét differentiable, x and T̂ x̂
¯

are Frechét differentiable; g) Since x is Frechét
differentiable, x ∈ Wnx

1e and w ∈ Lnw
2e , u ∈ Lnu

2e from the theorem statement, thus v ∈ Lnv
2e ; h) Since T̂ x̂

¯
is Frechét

differentiable and v ∈ Lnv
2e , we have r ∈ Lnr

2e ; i) Since x
¯
0 ∈ RLnx,nx̂

2 , we have x0 ∈ Rnx , x̂
¯
0 ∈ Lnx̂

2 ; and j) For all t ≥ 0[
r(t)

T̂ ˙̂x
¯
(t) + Tv v̇(t)

]
=

[Drv Cv
Bv Â

] [
v(t)
x̂
¯
(t)

]
.
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Thus, {x̂
¯
, r} (as defined above), satisfies the PIE defined by

GPIEs
= {T̂ , Tv, ∅, Â,Bv, ∅, Cv, ∅,Drv, ∅, ∅, ∅}

for initial condition x̂
¯
0 and input {v, ∅}. Thus, from theorem 12, {T̂ x̂

¯
+Tvv, r} satisfies the PDE defined by n and {Gb,Gp}

with initial condition T̂ x̂
¯
0 + Tvv(0) and input v. Since[

x(t)
x̂(t)

]
= T x

¯
(t) + Tww(t) + Tuu(t) =

[
x(t)

T̂ x̂
¯
(t)

]
+

[
0

Tvv(t)

]
and since similarly x̂0 = T̂ x̂

¯
0 + Tvv(0), by the definition of solution of a PDE in 7, we have: k) x̂(t) ∈ Xv(t) for all t ≥ 0; l)

x̂ is Frechét differentiable with respect to the L2-norm on R+; m) Equation (12) is satisfied for all t ≥ 0; and n) x̂(0) = x̂0.
Reviewing all the above steps, we conclude that: 1) z ∈ Lnz

2e [R+] and y ∈ L
ny

2e [R+] by definition of solution of the PIE
defined by GPIE; 2) v ∈ Lnv

2e [R+] and r ∈ Lnr
2e [R+] since r, v satisfy the PDE; 3) x̂(t) ∈ Xv(t) for all t ≥ 0 since x̂

satisfies the PDE; 4) x ∈ Wnx
1e since x̂ is Frechét differentiable; 5) x̂ is Frechét differentiable with respect to the L2-norm

since x̂ satisfies the PDE;
[
x(0)
ˆx(0)

]
= T x

¯
(0) + Tww(0) + Tuu(0) = T x

¯
0 + Tww(0) + Tuu(0) by definition of x and x̂; and 6)

Equations (6) and (12) are satisfied for all t ≥ 0 as shown above.

We conclude that {x, x̂, z, y, v, r} satisfies the GPDE defined by n and {Go, Gb, Gp} with initial condition
[
x0

x̂0

]
and

input {w, u}.

E. Proof of Theorem 18
Having proven the equivalence between solutions of GPDE model and associated PIE, we now prove that these models have

the same internal stability properties. Specifically, when u = w = 0, the solution to associated PIE is stable if and only if the
solution to GPDE model is internally stable. We do this in three parts. First, we show that the map x

¯
→ T x

¯
+ Tww+ Tuu is

an isometric map between inner product spaces L2 and Xn. Next, we show that the Wn and Xn (defined in Equation (21))
norms are equivalent. Finally, we show equivalence of internal stability in the respective norms.

Theorem 18. Suppose {n,Gb} is PIE-compatible, {T̂ , Tv} are as defined in Block 4, and {T , Tw, Tu} are as defined in
Block 5 for some matrices Cv , Dvw and Dvu. If ⟨·, ·⟩Xn is as defined in Equation (21), then we have the following:
a) for any v1, v2 ∈ Rnv and x̂

¯
, ŷ

¯
∈ Lnx̂

2〈(
T̂ x̂

¯
+ Tvv1

)
,
(
T̂ ŷ

¯
+ Tvv2

)〉
Xn

=
〈
x̂
¯
, ŷ
¯

〉
L

nx̂
2

. (22)

b) for any w1, w2 ∈ Rnw , u1, u2 ∈ Rnu , x
¯
,y
¯
∈ RLnx,nx̂

2 ,〈
(T x

¯
+ Tww1 + Tuu1),

(
T y

¯
+ Tww2 + Tuu2

)〉
Rnx×Xn

=
〈
x
¯
,y
¯

〉
RLnx,nx̂

2

. (23)

Proof. Let x̂
¯
, ŷ

¯
∈ Lnx̂

2 and v1, v2 ∈ Rp. Then, from Theorem 10, we have

T̂ x̂
¯
+ Tvv1 ∈ Xv1 , T̂ ŷ

¯
+ Tvv2 ∈ Xv2 .

Therefore, by definition Equation (21) and the result in Theorem 10b,〈(
T̂ x̂

¯
+ Tvv1

)
,
(
T̂ ŷ

¯
+ Tvv2

)〉
Xn

=
〈
D
(
T̂ x̂

¯
+ Tvv1

)
,D
(
T̂ ŷ

¯
+ Tvv2

)〉
L

nx̂
2

=
〈
x̂
¯
, ŷ

¯

〉
L

nx̂
2

.

For b), let x
¯
,y

¯
∈ RLnx,nx̂

2 and w1, w2 ∈ Rp, u1, u2 ∈ Rq . Then, from Corollary 13, we have
T x

¯
+ Tww1 + Tuu1 ∈ Xw1,u1

, T y
¯
+ Tww2 + Tuu2 ∈ Xw2,u2

.

Since Rnx ×Xn inner product is just sum of R and Xn inner products, using definitions of T , Tw, and Tu and the result in
Corollary 13b, we have〈

(T x
¯
+ Tww1 + Tuu1),

(
T y

¯
+ Tww2 + Tuu2

)〉
Rnx×Xn

=

〈[
I 0
0 D

]
(T x

¯
+ Tww1 + Tuu1),

[
I 0
0 D

] (
T y

¯
+ Tww2 + Tuu2

)〉
RLnx,nx̂

2

=
〈
x
¯
,y

¯

〉
RLnx,nx̂

2

.

Using this result, we conclude that when v = 0, the PI map (T̂ ) is unitary. Since T̂ is a unitary map from L2 to Xv , the
space Xv is complete under the X-norm because L2 is complete.

F. Proof of Lemma 17
Next, we prove that the RX norm is equivalent to the Wn-norm on the subspace R×X .

Lemma 17. Suppose {n,Gb} is PIE-compatible. Then ∥u∥Rnx×Xn ≤ ∥u∥Rnx×Wn and there exists c0 > 0 such that for any
u ∈ X0,0, we have ∥u∥Rnx×Wn ≤ c0 ∥u∥Rnx×Xn .
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Proof. Suppose X0,0 is as defined in Equation (14). Then, for any
[
x
x̂

]
∈ X0,0, we have, x ∈ Rnx and x̂ ∈ XCvx for some

matrix Cv and hence, from Theorem 10, we have x̂ = T̂ Dx̂+ TvCvx where T̂ and Tv are as defined in Block 4.
Let the space X0,0 be equipped with two different inner products Rnx ×Xn and Rnx ×Wn. Then∥∥∥∥[xx̂
]∥∥∥∥2

Rnx×Wn

= ∥x∥2R +

N∑
i=0

i∑
j=0

∥∥∂j
s x̂i

∥∥2
L2

= ∥x∥2R +

N∑
i=0

∥∥∂i
sx̂i

∥∥2
L2

+

N∑
i=0

i−1∑
j=0

∥∥∂j
s x̂i

∥∥2
L2

≥ ∥x∥2R +

N∑
i=0

∥∥∂i
sx̂i

∥∥2
L2

= ∥x∥2R + ∥x̂∥2Xn ≥
∥∥∥∥[xx̂

]∥∥∥∥2
Rnx×Xn

.

For the reverse inequality we try to find an upper bound on ∥·∥Rnx×Wn as follows.∥∥∥∥[xx̂
]∥∥∥∥2

Rnx×Wn

= ∥x∥2R +

N∑
i=0

i∑
j=0

∥∥∂j
s x̂i

∥∥2
L2

= ∥x∥2R + ∥(F x̂)∥2L2
,

where (F x̂) = col(∂0
sS

0x̂, · · · , ∂N
s SN x̂). Recall from Corollary 27,

(F x̂) = TD
[
v
Dx̂

]
, for any x̂ ∈ Xv and {n,Gb} PIE-compatible

where TD = Π
[ ∅ ∅

U2T (s− a)B−1
T Bv {U1, RD,1, RD,2}

]
is a bounded PI operator. Substituting v = Cvx specifically, we have

∥(F x̂)∥2L2
=

∥∥∥∥TD [Cvx
Dx̂

]∥∥∥∥2
L2

≤ ∥TD∥2L(RL2)

(
(b− a)2 ∥Cvx∥2R + ∥Dx̂∥2L2

)
= K0 ∥Dx̂∥2L2

+K1 ∥x∥2R

where K0 = ∥TD∥2L(RL2)
and K1 = K0(b−a)2σ̄(Cv)

2. Recall from Theorem 18, for any x̂ ∈ L2 and v ∈ R,
∥∥∥T̂ x̂+ Tvv

∥∥∥2
Xn

=

∥x̂∥2L2
. Then ∥∥∥∥[xx̂

]∥∥∥∥2
Rnx×Wn

= ∥x∥2R +K0 ∥Dx̂∥2L2
+K1 ∥x∥2R = (1 +K1) ∥x∥2R ++K0

∥∥∥T̂ Dx̂+ TvCvx
∥∥∥2
Xn

≤ (1 +K1) ∥x∥2R +K0 ∥x̂∥2Xn ≤ (1 +K0 +K1)

∥∥∥∥[xx̂
]∥∥∥∥2

Rnx×Xn

.

G. Proof of Theorem 22
Now that we have established equivalence of the Xn and Wn norms, we may prove that a GPDE model is internally

(exponential, Lyapunov, or asymptotically) stable if and only if the associated PIE is internally stable.

Theorem 22. Given {n,Go,Gb,Gp} PIE-compatible, the GPDE model defined by {n,Go,Gb,Gp} is exponentially stable
if and only if the PIE defined by GPIE := M({n,Gb,Go,Gp}) is exponentially stable.

Proof. Suppose GPDE defined by {n,Go,Gb,Gp} is exponentially stable. Then, there exist constants M , α > 0 such that
for any {x0, x̂0} ∈ X0,0, if {x, x̂, z, y, v, r} satisfies the GPDE defined {n,Go,Gb,Gp} with initial condition {x0, x̂0} and
input {0, 0}, we have ∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

≤ M

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Wn

e−αt for all t ≥ 0.

For any x
¯
0 ∈ RLnx,nx̂

2 , let {x
¯
, z, y} satisfy the PIE defined by GPIE with initial condition x

¯
0 ∈ RLnx,nx̂

2 and input {0, 0}.

Then, from Corollary 15, {x, x̂, z, y, v, r} satisfies the GPDE defined by {n,Go,Gb,Gp} with initial condition
[
x0

x̂0

]
:=

T x
¯
0 ∈ X0,0 and input {0, 0} for some v and r where

[
x(t)
x̂(t)

]
:= T x

¯
(t). Then, by the exponential stability of the GPDE, we

have ∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

≤ M

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Wn

e−αt for all t ≥ 0.

Since
[
x(t)
x̂(t)

]
∈ X0,0 and

[
x0

x̂0

]
∈ X0,0, from lemma 17, we have∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Xn

≤
∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

and
∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Wn

≤ c0

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Xn

.

By theorem 18, for any x ∈ RL2 we have ∥x∥RL2
= ∥T x∥Rnx×Xn . Thus, we have the following:

∥x
¯
(t)∥RL2

= ∥T x
¯
(t)∥Rnx×Xn =

∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Xn

≤
∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

≤ M

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Wn

e−αt
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≤ c0M

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Xn

e−αt = c0M
∥∥T x

¯
0
∥∥
Rnx×Xn e−αt = c0M

∥∥x
¯
0
∥∥
RL2

e−αt.

Therefore, the PIE defined by GPIE is exponentially stable.
Suppose the PIE defined by GPIE is exponentially stable. Then, there exist constants M , α > 0 such that for any x

¯
0 ∈ RLm,n

2 ,
if x

¯
satisfies the PIE defined by {GPIE} with initial condition x

¯
0 and input {0, 0}, we have

∥x
¯
(t)∥RL2

≤ M
∥∥x

¯
0
∥∥
RL2

e−αt for all t ≥ 0.

For any {x0, x̂0} ∈ X0,0, let {x, x̂, z, y, v, r} satisfy the GPDE defined by n and {Go,Gb,Gp} with initial condition {x0, x̂0}
and input {0, 0}. Then, from Corollary 15, {x

¯
, z, y} satisfies the PIE defined by GPIE with initial condition x

¯
0 ∈ RLnx,nx̂

2

and input {0, 0} where

x
¯
(t) =

[
x(t)
Dx̂(t)

]
, x

¯
0 =

[
x0

Dx̂0

]
.

Since x̂(t) ∈ XCvx(t), from theorem 10, we have x̂(t) = T̂ Dx̂(t) + TvCvx(t). Therefore,[
x(t)
x̂(t)

]
=

[
x(t)

T̂ Dx̂(t) + TvCvx(t)

]
=

[
I 0

TvCv T̂

] [
x(t)
Dx̂(t)

]
= T x

¯
(t).

Similarly, we have
[
x0

x̂0

]
= T x

¯
0.

By the exponential stability of the PIE, we have
∥x

¯
(t)∥RL2

≤ M
∥∥x

¯
0
∥∥
RL2

e−αt for all t ≥ 0.

Again, from lemma 17, we have∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

≤ c0

∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Xn

,

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Xn

≤
∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Wn

and, from theorem 18, ∥T x∥Rnx×Xn = ∥x∥RL2
for any x ∈ RL2 which implies∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

≤ c0

∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Xn

= c0 ∥T x
¯
(t)∥Rnx×Xn = c0 ∥x¯ (t)∥RL2

≤ c0M
∥∥x

¯
0
∥∥
RL2

e−αt = c0M
∥∥T x

¯
0
∥∥
Rnx×Xn e−αt

= c0M

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Xn

e−αt ≤ c0M

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Wn

e−αt.

Therefore, the GPDE defined by n and {Go,Gb,Gp} is exponentially stable.

We can prove equivalence of stability for the two representations by using other notions of stability as well. For e.g., consider
the Lyapunov and asymptotic stability of GPDEs and PIEs are defined as follows.
Definition 28 (Lyapunov Stability).
1) We say a GPDE model defined by {n,Go,Gb,Gp} is Lyapunov stable, if for every ϵ > 0 there exists a δ > 0 such that

for any {x0, x̂0} ∈ X0,0 with
∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Wn

< δ, if {x, x̂, z, y, v, r} satisfies the GPDE defined by {n,Go,Gb,Gp} with

initial condition {x0, x̂0} and input {0, 0}, then∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

< ϵ for all t ≥ 0.

2) We say a PIE model defined by GPIE is Lyapunov stable if for every ϵ > 0 there exists a constant δ > 0 such that for any
x
¯
0 ∈ RLm,n

2 with
∥∥x

¯
0
∥∥
RLm,n

2
< δ, if {x

¯
, z, y} satisfies the PIE defined by GPIE with initial condition x

¯
0 and input {0, 0},

then ∥x
¯
(t)∥RLm,n

2
< ϵ for all t ≥ 0.

Definition 29 (Asymptotic Stability).
1) We say a GPDE defined by {n,Go,Gb,Gp} is asymptotically stable, if for every {x0, x̂0} ∈ X0,0 and ϵ > 0, there exists
a Tϵ > 0 such that if {x, x̂, z, y, v, r} satisfies the GPDE defined by {n,Go,Gb,Gp} with initial condition {x0, x̂0} and

input {0, 0}, then
∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

< ϵ for all t > Tϵ.

2) We say a PIE model defined by GPIE is asymptotically stable, if for every x
¯
0 ∈ RLm,n

2 and ϵ > 0, there exists a Tϵ > 0
such that if {x

¯
, z, y} satisfies the PIE defined by GPIE with initial condition x

¯
0 and input {0, 0}, then there exists Tϵ > 0

such that ∥x
¯
(t)∥RLm,n

2
< ϵ for all t > Tϵ.

For the above notions of stability, we have the following results.

Corollary 30. Given {n,Go,Gb,Gp} PIE-compatible, let GPIE := M({n,Gb,Go,Gp}). Then
1) The GPDE model defined by {n,Go,Gb,Gp} is Lyapunov stable if and only if the PIE system defined by GPIE is Lyapunov
stable.
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2) The GPDE model defined by {n,Go,Gb,Gp} is asymptotically stable if and only if the PIE system defined by GPIE is
asymptotically stable.

Proof. Proof of part 1. Suppose GPDE defined by {n,Go,Gb,Gp} is Lyapunov stable. For any x
¯
0 ∈ RLnx,nx̂

2 , let {x
¯
, z, y}

satisfy the PIE defined by GPIE with initial condition x
¯
0 ∈ RLnx,nx̂

2 and input {0, 0}. Then, from Corollary 15, {x, x̂, z, y, v, r}
satisfies the GPDE defined by n and {Go,Gb,Gp} with initial condition

[
x0

x̂0

]
:= T x

¯
0 ∈ X0,0 and input {0, 0} for some v

and r where
[
x(t)
x̂(t)

]
:= T x

¯
(t). Suppose ϵ > 0, then by the Lyapunov stability of the GPDE, there exists δ such that∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Wn

< δ =⇒
∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

< ϵ for all t ≥ 0.

Since
[
x(t)
x̂(t)

]
∈ X0,0 and

[
x0

x̂0

]
∈ X0,0, from lemma 17, we have∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Xn

≤
∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

and
∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Wn

≤ c0

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Xn

.

Let
∥∥x

¯
0
∥∥
RL2

< δ
c0

. By theorem 18, for any x
¯
∈ RLnx,nx̂

2 we have ∥x
¯
∥RL2

= ∥T x
¯
∥Rnx×Xn . Thus, we have the following:∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Wn

≤ c0

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Xn

= c0
∥∥T x

¯
0
∥∥
Rnx×Xn = c0

∥∥x
¯
0
∥∥
RL2

< δ, and

∥x
¯
(t)∥RL2

= ∥T x
¯
(t)∥Rnx×Xn =

∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Xn

≤
∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

< ϵ.

Therefore, the PIE defined by GPIE is Lyapunov stable.
Suppose the PIE defined by GPIE is Lyapunov stable. For any {x0, x̂0} ∈ X0,0, let {x, x̂, z, y, v, r} satisfy the GPDE

defined by n and {Go,Gb,Gp} with initial condition {x0, x̂0} and input {0, 0}. Then, from Corollary 15, {x
¯
, z, y} satisfies

the PIE defined by GPIE with initial condition x
¯
0 ∈ RLnx,nx̂

2 and input {0, 0} where

x
¯
(t) =

[
x(t)
Dx̂(t)

]
, x

¯
0 =

[
x0

Dx̂0

]
.

Since x̂(t) ∈ XCvx(t), from theorem 10, we have x̂(t) = T̂ Dx̂(t) + TvCvx(t). Therefore,[
x(t)
x̂(t)

]
=

[
x(t)

T̂ Dx̂(t) + TvCvx(t)

]
=

[
I 0

TvCv T̂

] [
x(t)
Dx̂(t)

]
= T x

¯
(t).

Similarly, we have
[
x0

x̂0

]
= T x

¯
0. Again, from lemma 17, we have∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

≤ c0

∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Xn

,

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Xn

≤
∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Wn

and, from theorem 18, ∥T x∥Rnx×Xn = ∥x∥RL2
for any x ∈ RLnx,nx̂

2 . Let ϵ > 0. Then, by the Lyapunov stability of the PIE,
there exists δ such that ∥∥x

¯
0
∥∥
RL2

< δ =⇒ ∥x
¯
(t)∥RL2

<
ϵ

c0
for all t ≥ 0.

For any initial condition for the GPDE such that
∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Wn

< δ, we have

∥∥x
¯
0
∥∥
RL2

=
∥∥T x

¯
0
∥∥
Rnx×Xn =

∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Xn

≤
∥∥∥∥[x0

x̂0

]∥∥∥∥
Rnx×Wn

< δ, and∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

≤ c0

∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Xn

= c0 ∥T x
¯
(t)∥Rnx×Xn = c0 ∥x¯ (t)∥RL2

< ϵ.

Therefore, the GPDE defined by {n,Go,Gb,Gp} is Lyapunov stable.
Proof of part 2. Suppose GPDE defined by {n,Go,Gb,Gp} is asymptotically stable. For any x

¯
0 ∈ RLnx,nx̂

2 , let {x
¯
, z, y}

satisfy the PIE defined by GPIE with initial condition x
¯
0 ∈ RLnx,nx̂

2 and input {0, 0}. Then, from Corollary 15, {x, x̂, z, y, v, r}
satisfies the GPDE defined by n and {Go,Gb,Gp} with initial condition

[
x0

x̂0

]
:= T x

¯
0 ∈ X0,0 and input {0, 0} for some v

and r where
[
x(t)
x̂(t)

]
:= T x

¯
(t). Suppose ϵ > 0, then by the asymptotic stability of the GPDE, there exists T0 such that∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

< ϵ for all t ≥ T0.
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Since
[
x(t)
x̂(t)

]
∈ X0,0, from lemma 17, we have∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Xn

≤
∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

.

By theorem 18, for any x
¯
∈ RLnx,nx̂

2 we have ∥x
¯
∥RL2

= ∥T x
¯
∥Rnx×Xn . Thus, for any t > T0, we have,

∥x
¯
(t)∥RL2

= ∥T x
¯
(t)∥Rnx×Xn =

∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Xn

≤
∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

< ϵ.

Therefore, the PIE defined by GPIE is asymptotically stable.
Suppose the PIE defined by GPIE is asymptotically stable. For any {x0, x̂0} ∈ X0,0, let {x, x̂, z, y, v, r} satisfy the GPDE

defined by {n, Go, Gb, Gp} with initial condition {x0, x̂0} and input {0, 0}. Then, from Corollary 15, {x
¯
, z, y} satisfies the

PIE defined by GPIE with initial condition x
¯
0 ∈ RLnx,nx̂

2 and input {0, 0} where

x
¯
(t) =

[
x(t)
Dx̂(t)

]
, x

¯
0 =

[
x0

Dx̂0

]
.

Again, we know x̂(t) ∈ XCvx(t), and hence from theorem 10, we have x̂(t) = T̂ Dx̂(t) + TvCvx(t). Therefore,[
x(t)
x̂(t)

]
=

[
x(t)

T̂ Dx̂(t) + TvCvx(t)

]
=

[
I 0

TvCv T̂

] [
x(t)
Dx̂(t)

]
= T x

¯
(t).

Again, from lemma 17, we have ∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

≤ c0

∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Xn

,

and, from theorem 18, ∥T x∥Rnx×Xn = ∥x∥RL2
for any x ∈ RLnx,nx̂

2 . Let ϵ > 0. Then, by the asymptotic stability of the PIE,
there exists T0 such that

∥x
¯
(t)∥RL2

<
ϵ

c0
for all t ≥ T0.

Then, for any t ≥ T0, we have∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Wn

≤ c0

∥∥∥∥[x(t)x̂(t)

]∥∥∥∥
Rnx×Xn

= c0 ∥T x
¯
(t)∥Rnx×Xn = c0 ∥x¯ (t)∥RL2

< ϵ.

Therefore, the GPDE defined by {n,Go,Gb,Gp} is asymptotically stable.

H. Set Of PI Operators Forms A ∗-Algebra
In this section, we prove that set of PI operators when parameterized by L∞-bounded functions forms a ∗-algebra, i.e.,

closed algebraically. Furthermore, the formulae provided here will act as a guideline to perform the binary operations (addition,
composition, and concatenation) of PI operators since various formulae in the paper were presented using such binary operation
notation. First, we provide a formal definition of the list of properties a set must satisfy to be a ∗-algebra. A ∗-algebra must be
an associative algebra with an involution operation. Since definition of ∗-algebra depends on definitions of an algebra that is
associative, we introduce those definitions first. Since we only use 4-PI operators in this Subsection, we will drop the subscript
and use Π instead of Π4 — the results naturally extend to operators in Π3.

Definition 31 (Algebra). A vector space, A, equipped with a multiplication operation is said to be an algebra if for every
X,Y ∈ A we have XY ∈ A.

Definition 32 (Associative Algebra). An algebra, A, is said to be associative if for every X,Y, Z ∈ A

X(Y Z) = (XY )Z

where XY denotes a multiplication operation between X and Y .

Definition 33 (∗-algebra). An algebra, A, over the R with an involution operation ∗ is called a ∗-algebra if
1) (X∗)∗ = X, ∀X ∈ A
2) (X + Y )∗ = X∗ + Y ∗, ∀X,Y ∈ A
3) (XY )∗ = Y ∗X∗, ∀X,Y ∈ A
4) (λX)∗ = λX∗, ∀λ ∈ R, X ∈ A

To prove that the set of PI operators Πp,p
q,q satisfy all the above properties, we prove that Πp,p

q,q satisfies the requirements of
each of the above definitions where

Πp,p
q,q :=


Π
[

P Q1

Q2 {R0, R1, R2}

]
| P ∈ Rp×p, Q1(s), Q2(s)

T ∈ Rp×q,

R0(s), R1(s, θ), R2(s, θ) ∈ Rq×q, and Q1, Q2, R0, R1, R2 ∈ L∞,
R1, R2 are separable

 .
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Also, recall that any Π4 operator has an associated set of matrix and polynomial parameters which lie in the space

[Γ]m,p
n,q :=


[

P Q1

Q2 {R0, R1aR1b, R2aR2b}

]
:

P ∈ Rm×n, Q1 ∈ Lm×q
∞ , Q2 ∈ Lp×n

∞ ,
R0 ∈ Lq×n

∞ , Ria ∈ Lq×nb
∞ , Rib ∈ Lnb×n

∞

 .

To prove that the set is an algebra, we need to define two binary operations addition and multiplication, which in case of Πp,p
q,q

will be given be addition of PI operators (as defined in Lemma 34) and composition of PI operators (as defined in Lemma 35).
For the set to be a ∗-algebra we also need an involution operation which is given by the adjoint with respect to R × L2

inner-product (as defined in Lemma 36).

Lemma 34 (Addition). For any A,L ∈ Rm×p and B1,M1 : [a, b] → Rm×q , B2,M2 : [a, b] → Rn×p, C0, N0 : [a, b] → Rn×q ,
Ci, Ni : [a, b]× [a, b] → Rn×q , for i ∈ {1, 2}, L∞ bounded, define a linear map P4

+ : Γm,p
n,q × Γm,p

n,q → Γm,p
n,q such that[

P Q1

Q2 {Ri}

]
= P4

+

([
A B1

B2 {Ci}

]
,
[

L M1

M2 {Ni}

])
where

P = A+ L, Qi = Bi +Mi, Ri = Ci +Ni.

If P,Qi, Ri are as defined above, then, for any x ∈ Rp and z ∈ Lq
2([a, b])

Π
[
P4

+

([
A B1

B2 {Ci}

]
,
[

L M1

M2 {Ni}

])] [x
z

]
=
(
Π
[

A B1

B2 {Ci}

]
+ Π

[
L M1

M2 {Ni}

]) [x
z

]
.

Proof. Let x ∈ Rp and y ∈ Lq
2[a, b] be arbitrary. Then

Π
[

P Q1

Q2 {Ri}

] [x
y

]
(s) =

[
Px+

∫ b

a
Q1(s)y(s)ds

Q2(s)x+ Π {Ri}y(s)

]
=

[
(A+ L)x+

∫ b

a
(B1 +M1)(s)y(s)ds

(B2 +M2)(s)x+ (Π {Ci+Ni})y(s)

]
=

[
Ax+

∫ b

a
B1(s)y(s)ds

B2(s)x+ Π {Ci}y(s)

]
+

[
Lx+

∫ b

a
M1(s)y(s)ds

M2(s)x+ Π {Ni}y(s)

]
= Π

[
A B1

B2 {Ci}

] [x
y

]
(s) + Π

[
L M1

M2 {Ni}

] [x
y

]
(s) =

(
Π
[

A B1

B2 {Ci}

]
+ Π

[
L M1

M2 {Ni}

]) [x
y

]
(s).

Lemma 35 (Composition). For any matrices A ∈ Rm×k, P ∈ Rk×p and L∞ bounded functions B1 : [a, b] → Rm×l, Q1 :
[a, b] → Rk×q , B2 : [a, b] → Rn×k, Q2 : [a, b] → Rl×p, C0 : [a, b] → Rn×l, R0 : [a, b] → Rl×q , Ci : [a, b]

2 → Rn×l, Ri :
[a, b]2 → Rl×q , for i ∈ {1, 2}, define a linear map P× : Γm,k

n,l × Γk,p
l,q → Γm,p

n,q such that[
P̂ Q̂1

Q̂2 {R̂i}

]
= P4

×

([
A B1

B2 {Ci}

]
,
[

P Q1

Q2 {Ri}

])
where

P̂ = AP +

∫ b

a

B1(s)Q2(s)ds, R̂0(s) = C0(s)R0(s),

Q̂1(s) = AQ1(s) +B1(s)R0(s) +

∫ b

s

B1(η)R1(η, s)dη +

∫ s

a

B1(η)R2(η, s)dη,

Q̂2(s) = B2(s)P + C0(s)Q2(s) +

∫ s

a

C1(s, η)Q2(η)dη +

∫ b

s

C2(s, η)Q2(η)dη,

R̂1(s, η) = B2(s)Q1(η) + C0(s)R1(s, η) + C1(s, η)R0(η)

+

∫ η

a

C1(s, θ)R2(θ, η)dθ +

∫ s

η

C1(s, θ)R1(θ, η)dθ +

∫ b

s

C2(s, θ)R1(θ, η)dθ,

R̂2(s, η) = B2(s)Q1(η) + C0(s)R2(s, η) + C2(s, η)R0(η)

+

∫ s

a

C1(s, θ)R2(θ, η)dθ +

∫ η

s

C2(s, θ)R2(θ, η)dθ +

∫ b

η

C2(s, θ)R1(θ, η)dθ.

If P̂ , Q̂i, R̂i are as defined above, then, for any x ∈ Rm and z ∈ Ln
2 ([a, b]),

Π
[
P4

×

([
A B1

B2 {Ci}

]
,
[

P Q1

Q2 {Ri}

])] [x
z

]
= Π

[
A B1

B2 {Ci}

](
Π
[

P Q1

Q2 {Ri}

] [x
z

])
.

Proof. Let {A, Bi, Ci}, {P, Qi, Ri} and {P̂ , Q̂i, R̂i} be such that

Π
[

A B1

B2 {Ci}

](
Π
[

P Q1

Q2 {Ri}

] [x1

x2

])
(s) =

(
Π
[

P̂ Q̂1

Q̂2 {R̂}

] [
x1

x2

])
(s),
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for any x1 ∈ Rp and x2 ∈ Lq
2[a, b]. Since PI operators are bounded operators on R× L2, we define[

y1
y2(s)

]
:=

(
Π
[

P Q1

Q2 {R}

] [x1

x2

])
(s).

Then, by definition of a PI operator,

y1 = Px1 +

∫ b

a

Q1(s)x2(s)ds

y2(s) = Q2(s)x1 +R0(s)x2(s) +

∫ s

a

R1(s, η)x2(η)dη +

∫ b

s

R2(s, η)x2(η)dη.

Likewise, let us also define[
z1

z2(s)

]
=

(
Π
[

A B1

B2 {Ci}

] [y1
y2

])
(s) = Π

[
A B1

B2 {Ci}

]
Π
[

P Q1

Q2 {Ri}

] [x1

x2

]
(s),

which gives us the equations

z1 = Ay1 +

∫ b

a

B1(s)y2(s)ds

z2(s) = B2(s)y1 + C0(s)y2(s) +

∫ s

a

C1(s, η)y2(η)dη +

∫ b

s

C2(s, η)y2(η)dη.

We will try to find a direct map between xi and zi by substituting yi in the above equation, however, we will perform the
substitution by taking one term at a time. First,∫ b

a

B1(s)y2(s)ds =

∫ b

a

B1(s)
(
Q2(s)x1 +R0(s)x2(s) +

∫ s

a

R1(s, η)x2(η)dη +

∫ b

s

R2(s, η)x2(η)dη
)
ds.

Then

z1 = Ay1 +

∫ b

a

B1(s)y2(s)ds

= APx1 +

∫ b

a

AQ1(s)x2(s)ds+

∫ b

a

B1(s)
(
Q2(s)x1 +R0(s)x2(s)

+

∫ s

a

R1(s, η)x2(η)dη +

∫ b

s

R2(s, η)x2(η)dη
)
ds

= P̂ x1 +

∫ b

a

Q̂1(s)x2(s)ds.

Next, we substitute yi in the map from yi to z2(s) to get

z2(s) = B2(s)Px1 +

∫ b

a

B2(s)Q1(η)x2(s)dη + C0(s)Q2(s)x1 + C0(s)R0(s)x2(s)

+

∫ s

a

C0(s)R1(s, η)x2(η)dη +

∫ b

s

C0(s)R2(s, η)x2(η)dη +

∫ s

a

C1(s, η)Q2(η)x1dη

+

∫ s

a

C1(s, η)R0(s)x2(s)dη +

∫ s

a

∫ η

a

C1(s, η)R1(η, β)x2(β)dβdη

+

∫ s

a

∫ b

η

C1(s, η)R2(η, β)x2(β)dβdη +

∫ b

s

C2(s, η)Q2(η)x1dη

+

∫ b

s

C2(s, η)R0(η)x2(η)dη +

∫ b

s

∫ η

a

C2(s, η)R1(η, β)x2(β)dβdη

+

∫ b

s

∫ b

η

C2(s, η)R2(η, β)x2(β)dβdη.

Next, we separate the terms by factoring x1. Then, we change the order of integration in the double integrals (and swap the
variable β ↔ η) to get

z2(s) =
(
B2(s)P + C0(s)Q2(s) +

∫ s

a

C1(s, η)Q2(η)dη
∫ b

s

+C2(s, η)Q2(η)dη
)
x1

+ C0(s)R0(s)x2(s) +

∫ b

a

B2(η)Q1(s)x2(η)dη +

∫ s

a

C0(s)R1(s, η)x2(η)dη

+

∫ b

s

C0(s)R2(s, η)x2(η)dη +

∫ b

s

C2(s, η)R0(η)x2(η)dη +

∫ s

a

C1(s, η)R0(s)x2(s)dη

+

∫ s

a

(∫ η

a

C1(s, θ)R2(θ, η)dθ +
∫ s

η

C1(s, θ)R1(θ, η)dθ +
∫ b

s

C2(s, θ)R1(θ, η)dθ
)
x2(η)dη
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+

∫ b

s

(∫ s

a

C1(s, θ)R2(θ, η)dθ +
∫ η

s

C2(s, θ)R2(θ, η)dθ +

∫ b

η

C2(s, θ)R1(θ, η)dθ
)
x2(η)dη

= Q̂2(s)x1 + Ŝ(s)x2(s) +

∫ s

a

R̂1(s, η)x2(η)dη +

∫ b

s

R̂2(s, η)x2(η)dη.

This completes the proof.

Lemma 36. For any matrices P ∈ Rm×p and L∞-bounded functions Q1 : [a, b] → Rm×q , Q2 : [a, b] → Rn×p, R0 : [a, b] →
Rn×q , R1, R2 : [a, b]× [a, b] → Rn×n, define a linear map P4

∗ : Γm,p
n,q → Γp,m

q,n such that[
P̂ Q̂1

Q̂2 {R̂i}

]
= P4

∗

([
P Q1

Q2 {Ri}

])
where

P̂ = P⊤, Q̂1(s) = Q⊤
2 (s), Q̂2(s) = Q⊤

1 (s),

R̂0(s) = R⊤
0 (s), R̂1(s, η) = R⊤

2 (η, s), R̂2(s, η) = R⊤
1 (η, s). (35)

Then, for any x ∈ RLm,n
2 ,y ∈ RLp,q

2 , then we have〈
x,Π

[
P Q1

Q2 {Ri}

]
y
〉
RLm,n

2

=
〈
Π
[
P4

∗

([
P Q1

Q2 {Ri}

])]
x,y

〉
RLp,q

2

, (36)

Proof. To prove this, we use the fact that for any scalar a we have a = a⊤. Let x(s) =
[

x1

x2(s)

]
and y =

[
y1

y2(s)

]
. Then〈

x,Π
[

P Q1

Q2 {Ri}

]
y
〉
RLm,n

2

= x⊤
1 Py1 +

∫ b

a

x⊤
1 Q1(s)y2(s)ds+

∫ b

a

x⊤
2 (s)Q2(s)y1ds

+

∫ b

a

x2(s)
⊤R0(s)y2(s)ds+

∫ b

a

∫ s

a

x⊤
2 (s)R1(s, η)y2(η)dηds

+

∫ b

a

∫ b

s

x⊤
2 (s)R2(s, η)y2(η)dηds

= y⊤1 P
⊤x1 +

∫ b

a

y⊤1 Q
⊤
2 (s)x2(s)ds+

∫ b

a

y2(s)Q
⊤
1 (s)x1ds

+

∫ b

a

y⊤
2 (s)R

⊤
0 (s)x2(s)ds+

∫ b

a

∫ s

a

y⊤
2 (s)R

⊤
2 (η, s)x2(η)dηds

+

∫ b

a

∫ b

s

y⊤
2 (s)R

⊤
1 (η, s)x2(η)dηds

= y⊤1 P̂ x1 +

∫ b

a

y⊤1 Q̂1(s)x2(s)ds+
∫ b

a

y⊤
2 (s)Q̂2(s)x1ds

+

∫ b

a

y⊤
2 (s)R̂0(s)x2(s)ds+

∫ b

a

∫ s

a

y⊤
2 (s)R̂1(s, η)x2(η)dηds

+

∫ b

a

∫ b

s

y⊤
2 (s)R̂2(s, η)x2(η)dηds

=

〈
y,Π

[
P̂ Q̂1

Q̂2 {R̂i}

]
x

〉
RLp,q

2

=

〈
Π
[

P̂ Q̂1

Q̂2 {R̂i}

]
x,y

〉
RLp,q

2

where,
P̂ = P⊤, Q̂1(s) = Q⊤

2 (s), Q̂2(s) = Q⊤
1 (s),

R̂0(s) = R⊤
0 (s), R̂1(s, η) = R⊤

2 (η, s), R̂2(s, η) = R⊤
1 (η, s).

This completes the proof.

Now that we have formally defined the binary and involution operations on the set of PI operators, we show that Πp,p
q,q when

equipped with these operations forms a ∗-algebra.

Lemma 37. The set Πp,p
q,q equipped with composition operation forms an associative algebra.

Proof. Suppose Π
[

P Q1

Q2 {Ri}

]
,Π
[

A B1

B2 {Ci}

]
∈ Πp,p

q,q . From Lemma 35, we have that Π
[

P̂ Q̂1

Q̂2 {R̂i}

]
=

Π
[

A B1

B2 {Ci}

]
Π
[

P Q1

Q2 {Ri}

]
with

P̂ = AP +

∫ b

a

B1(s)Q2(s)ds, R̂0(s) = C0(s)R0(s),
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Q̂1(s) = AQ1(s) +B1(s)R0(s) +

∫ b

s

B1(η)R1(η, s)dη +

∫ s

a

B1(η)R2(η, s)dη,

Q̂2(s) = B2(s)P + C0(s)Q2(s) +

∫ s

a

C1(s, η)Q2(η)dη +

∫ b

s

C2(s, η)Q2(η)dη,

R̂1(s, η) = B2(s)Q1(η) + C0(s)R1(s, η) + C1(s, η)R0(η)

+

∫ η

a

C1(s, θ)R2(θ, η)dθ +
∫ s

η

C1(s, θ)R1(θ, η)dθ +
∫ b

s

C2(s, θ)R1(θ, η)dθ,

R̂2(s, η) = B2(s)Q1(η) + C0(s)R2(s, η) + C2(s, η)R0(η)

+

∫ s

a

C1(s, θ)R2(θ, η)dθ +
∫ η

s

C2(s, θ)R2(θ, η)dθ +

∫ b

η

C2(s, θ)R1(θ, η)dθ.

Since Bi, Ci, Qi, Ri are all L∞ we have Q̂i, R̂i ∈ L∞. Thus, composition of any two PI operators in Πp,p
q,q is a PI operator in

the same set.
Similarly, by using composition formulae from Lemma 35, we can show that for any 3 PI operators P,Q,R ∈ Πp,p

q,q we
have (PQ)R = P(QR). The steps are omitted here since the proof is a straightforward arithmetic exercise. Thus Πp,p

q,q is an
associative algebra.

So far we have shown that the set Πp,p
q,q is closed algebraically, i.e., the binary and involution operations on PI operators

also result in PI operators. In the following Lemma, we conclude that Πp,p
q,q is a ∗-algebra.

Lemma 38. The set Πp,p
q,q equipped with the binary operations of addition and composition along with the involution operation

given by the adjoint with respect to R× L2 inner product is a ∗-algebra.

Proof. To prove this, we first show that Πp,p
q,q when equipped with the adjoint operator satisfies the requirements of a ∗-algebra.

Since PI operators are operators on a Hilbert space R×L2, from Propositions 2.6 and 2.7 in [6, p .32], we know that for any
two such operators P and Q
• (P∗)∗ = P
• (λP)∗ = λP∗

• (P +Q)∗ = P∗ +Q∗

• (PQ)∗ = Q∗P∗.
Therefore, since Πp,p

q,q is a Banach algebra with an involution ∗ that satisfies all the properties in the definition of a ∗-algebra,
Πp,p

q,q is a ∗-algebra.

I. Concatenation properties used in the paper
The results presented in this subsection are specific to the notational convenience granted by concatenation of PI operators.

Note that in this subsection, we assume that two vectors x,y ∈ RL2 are identical if there exists a permutation matrix P such
that x = Py. This assumption is made to accommodate for the notational convenience that concatenation of PI operators
provide because any Πm,p

n,q PI operator requires inputs to be completely segregated with finite-dimensional part of the vector
to be on the top while infinite-dimensional part at the bottom. However, since concatenation of such vectors is likely to lose
such a segregation, we think of the vector x,y ∈ RL2 as ordered pairs (x,x1), (y,y1) with x, y ∈ R and x1,y1 ∈ L2 with
concatenation of two such vectors being performed individually on each element of the ordered pair. This allows us to retain
the convenient segregation of finite and infinite dimensional parts of the vector and use concatenation notation of PI operators.

Lemma 39 (Horizontal concatenation). Suppose Aj ∈ Rm×pj and B1,j : [a, b] → Rm×qj , B2,j : [a, b] → Rn×pj , C0,j :
[a, b] → Rn×qj , Ci,j : [a, b] × [a, b] → Rn×qj , for i ∈ {0, 1, 2}, j ∈ {1, 2}, are bounded functions. If we define P , Q1, Q2

and Rk, for k ∈ {0, 1, 2} as
P =

[
A1 A2

]
, Qi =

[
Bi,1 Bi,2

]
, Ri =

[
Ci,1 Ci,2

]
,

then

Π
[

P Q1

Q2 {Ri}

]
=
[
Π
[

A1 B1,1

B2,1 {Ci,1}

]
Π
[

A2 B1,2

B2,2 {Ci,2}

]]
.

Proof. We will prove this identity by a series of equalities. Let x1 ∈ Rp1 , y1 ∈ Rp2 , x2 ∈ Lq1
2 [a, b], and y2 ∈ Lq2

2 [a, b]

be arbitrary. Next, we define z1 =

[
x1

x2

]
∈ Rp1+p2 and z2 ∈ Lq1+q2

2 . Then the following series of equalities hold. We can

substitute {z1, z2} in terms of {x1, y1, x2, y2} and perform matrix multiplication to get

Π
[

P Q1

Q2 {Ri}

] [
z1
z2

]
(s) =

[
Pz1 +

∫ b

a
Q1(s)z2(s)ds

Q2(s)z1 +R0(s)z2(s) +
∫ s

a
R1(s, θ)z2(θ)dθ +

∫ b

s
R2(s, θ)z2(θ)dθ

]
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=

 P

[
x1

y1

]
+
∫ b

a
Q1(s)

[
x2(s)
y2(s)

]
ds

Q2(s)

[
x1

y1

]
+R0(s)

[
x2(s)
y2(s)

]
+
∫ s

a
R1(s, θ)

[
x2(θ)
y2(θ)

]
dθ +

∫ b

s
R2(s, θ)

[
x2(θ)
y2(θ)

]
dθ


=

[
A1x1 +

∫ b

a
B0,1(s)x2(s)ds

B2,1(s)x1 + C0,1(s)x2(s) +
∫ s

a
C1,1(s, θ)x2(θ)dθ +

∫ b

s
C2,1(s, θ)x2(θ)dθ

]

+

[
A2y1 +

∫ b

a
B0,2(s)y2(s)ds

B2,2(s)y1 + C0,2(s)y2(s) +
∫ s

a
C1,2(s, θ)y2(θ)dθ +

∫ b

s
C2,2(s, θ)y2(θ)dθ

]

= Π
[

A1 B1,1

B2,1 {Ci,1}

] [
x1

x2

]
(s) + Π

[
A2 B1,2

B2,2 {Ci,2}

] [
y1
y2

]
(s)

=
[
Π
[

A1 B1,1

B2,1 {Ci,1}

]
Π
[

A2 B1,2

B2,2 {Ci,2}

]]
x1

x2

y1
y2

 (s).

By rearranging the vector col(x1,x2, y1,y2) we can obtain {z1, z2(s)}. Thus the horizontal concatenation of two PI maps
gives rise to another uniquely defined PI map.

Note that in the last equality permutation of rows of the vector is needed to obtain {z1, z2} back. However, that does not
affect the conversion formulae for PIE since states can be arranged in any order based on convenience.

Lemma 40 (Vertical concatenation). Suppose Aj ∈ Rmj×p and B1,j : [a, b] → Rmj×q , B2,j : [a, b] → Rnj×p, C0,j : [a, b] →
Rnj×q , Ci,j : [a, b] × [a, b] → Rnj×q , for i ∈ {0, 1, 2}, j ∈ {1, 2}, are bounded functions. If we define P , Q1, Q2 and Rk,
for k ∈ {0, 1, 2} as

P =

[
A1

A2

]
, Qi =

[
Bi,1

Bi,2

]
, Ri =

[
Ci,1

Ci,2

]
,

then

Π
[

P Q1

Q2 {Ri}

]
=

Π [ A1 B1,1

B2,1 {Ci,1}

]
Π
[

A2 B1,2

B2,2 {Ci,2}

] .

Proof. Similar to horizontal concatenation, we will prove this identity by a series of equalities. Let x1 ∈ Rp and x2 ∈ Lq
2[a, b]

be arbitrary. Then the following series of equalities hold. We can substitute {P, Qi, Ri} in terms of {Aj , Bi,j , Ci,j} and
perform matrix multiplication to get

Π
[

P Q1

Q2 {Ri}

] [
x1

x2

]
(s) =

[
Px1 +

∫ b

a
Q1(s)x2(s)ds

Q2(s)z1 +R0(s)x2(s) +
∫ s

a
R1(s, θ)x2(θ)dθ +

∫ b

s
R2(s, θ)x2(θ)dθ

]

=


[
A1

A2

]
x1 +

∫ b

a

[
B1,1(s)
B1,2(s)

]
x2(s)ds[

B2,1(s)
B2,2(s)

]
x1 +

[
C0,1(s)
C0,2(s)

]
x2(s) +

∫ s

a

[
C1,1(s, θ)
C1,2(s, θ)

]
x2(θ)dθ +

∫ b

s

[
C2,1(s, θ)
C2,2(s, θ)

]
x2(θ)dθ



=


[
A1

A2

]
x1 +

∫ b

a

[
B1,1(s)
B1,2(s)

]
x2(s)ds[

B2,1(s)
B2,2(s)

]
x1 +

[
C0,1(s)
C0,2(s)

]
x2(s) +

∫ s

a

[
C1,1(s, θ)
C1,2(s, θ)

]
x2(θ)dθ +

∫ b

s

[
C2,1(s, θ)
C2,2(s, θ)

]
x2(θ)dθ

 .

By rearranging the rows of the above vector, we get
[

A1x1 +
∫ b

a
B0,1(s)x2(s)ds

B2,1(s)x1 + C0,1(s)x2(s) +
∫ s

a
C1,1(s, θ)x2(θ)dθ +

∫ b

s
C2,1(s, θ)x2(θ)dθ

]
[

A2x1 +
∫ b

a
B0,2(s)x2(s)ds

B2,2(s)x1 + C0,2(s)x2(s) +
∫ s

a
C1,2(s, θ)x2(θ)dθ +

∫ b

s
C2,2(s, θ)x2(θ)dθ

]


=

Π
[

A1 B1,1

B2,1 {Ci,1}

] [x1

x2

]
(s)

Π
[

A2 B1,2

B2,2 {Ci,2}

] [
x1

x2

]
(s)


=

Π [ A1 B1,1

B2,1 {Ci,1}

]
Π
[

A2 B1,2

B2,2 {Ci,2}

][x1

x2

]
(s).

Thus the vertical concatenation of two PI maps gives rise to another uniquely defined PI map.
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J. Additional Examples
In this section, we present additional examples explaining the process of identification of GPDE parameters and finding PIE

representation to illustrate the PIE representation for a wide variety PDE systems.

Illustration 1 (ODE coupled with PDE at the Boundary). In this example, we consider a thermal reactor, Tr(t), which is
modeled as an ODE and which is coupled to a cooling jacket, Tc(t, s) which is modeled as a PDE. The dynamics of the
reactor and jacket are given by

Ṫr(t) = λTr(t)− C(Tr(t)− Tc(t, 0)),

Ṫc(t, s) = k∂2
sTc(t, s), s ∈ (0, 1),

Tc(t, 0) = Tr(t), ∂sTc(t, 1) = 0 (37)
where λ is the reaction coefficient of the reactor, C is the specific heat of the reactor, and k is a diffusivity parameter for
the coolant. In this case, we first model the ODE, where the influence of the PDE on the ODE is isolated in the signal
r(t) = Tc(t, 0) and the influence of the PDE on the ODE is isolated in the signal v(t) = Tr(t). The state of the ODE
subsystem is x(t) = Tr(t) with the following dynamics.

ẋ(t) = (λ− C)x(t) + r(t), v(t) = x(t), Ṫc(t, s) = k∂2
sTc(t, s), s ∈ (0, 1),

Tc(t, 0) = v(t), ∂sTc(t, 1) = 0 (38)

Examining the ODE dynamics 
ẋ(t)
z(t)
y(t)
v(t)

 =


A Bxw Bxu Bxr

Cz Dzw Dzu Dzr

Cy Dyw Dyu Dyr

Cv Dvw Dvu 0



x(t)
w(t)
u(t)
r(t)

 .

we may parameterize the ODE subsystem, Go as
Go : A = λ− C, Bxr = C, Cv = 1.

Now, examining the PDE subsystem, we have a system similar to Illustration in Section IV-C so that the continuity parameter
is

n : n = {0, 0, 1} N = 2

with x̂2(t, s) = Tc(t, s). Again, the BCs appear in the form

0 =

∫ b

a

BI(s)F x̂(t, s)ds+
[
Bv −B

] [ v(t)
(Bx̂)(t)

]

=

∫ 1

0

BI(s)

 Tc(t, s)
Tc,s(t, s)
Tc,ss(t, s)

 ds−B


Tc(t, 0)
Tc,s(t, 0)
Tc(t, 1)
Tc,s(t, 1)

+Bvv(t).

v(t) = x(t)Ṫc(t, s) = k∂2
sTc(t, s), s ∈ (0, 1),

Tc(t, 0) = v(t), ∂sTc(t, 1) = 0 (39)

By inspection of the BCs, we may now define the parameters for Gb as

Gb : B =

[
1 0 0 0
0 0 0 1

]
, Bv =

[
1
0

]
.

To define the parameters of the PDE dynamics, we again ignore integral terms, yielding[
˙̂x(t, s)
r(t)

]
=

[
Tc(t, s)
r(t)

]
=

A0(s)

 Tc(t, s)
Tc,s(t, s)
Tc,ss(t, s)


0

+

[
Bxv(s) Bxb(s)

0 Drb

] [
v(t)

(Bx̂)(t)

]
.

By inspection of Eq. (25), the only non-zero parameter in this expression is
Gp : A0 =

[
0 0 k

]
which becomes the entire parameter set for Gp.

Illustration 2 (Second Order Time Derivatives). For our next illustration, we consider wave motion
η̈(t, s) = c2∂2

sη(t, s), s ∈ (0, 1),

z(t, s) =

∫ 1

0

η(t, s)ds,
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where z is a regulated output (the average displacement of the string) with a general form of BCs (Sturm-Liouville type BCs)
given by

η(t, 0)− k∂sη(t, 0) = 0, η(t, 1) + l∂sη(t, 1) = w(t),

where η stands for lateral displacement, c is the speed of propagation of a wave in the string, and w is external disturbance
acting on the boundary. The constants k and l represent reflection and mirroring of the wave at the boundary.

To rewrite this PDE model as a state-space GPDE model, we must first eliminate the second order time-derivative. As is
common in state-space representation of ODEs, we eliminate the 2nd order time-derivative by creating a new state ζ2 = η̇
with ζ1 = η. This change of variable leads to a coupled PDE of the form

ζ̇1(t, s) = ζ2, s ∈ (0, 1),

ζ̇2(t, s) = c2∂2
sζ1(t, s),

z(t, s) =

∫ 1

0

ζ1(t, s)ds, (40)

with BCs
ζ1(t, 0)− k∂sζ1(t, 0) = 0, ζ1(t, 1) + l∂sζ1(t, 1) = w(t). (41)

Here we note that, the ODE subsystem has the parameters related to outputs z and inputs w, however, there is no ODE state.
Thus, we only have parameters related to z and w. First, we include the influence of PDE on the ODE into the interconnection
signal as r(t) =

∫ 1

0
ζ1(t, s)ds whereas the influence of the ODE on the PDE is routed through v where v(t) = w(t). Then, by

inspection, the output z can be written as z(t) = r(t). Consequently, we find that Dzr = 1, while the remaining parameters
related to z are zero. Likewise, we note that Dvw = 1 and leave the remaining parameters of v as empty. This completes the
definition of the ODE subsystem.

Go : Dzr = 1 Dvw = 1.

Examining the partial derivatives and boundary values used in Eqs. (40) and (41), we first define the continuity equation using
n0 = 1 so that x̂0 = ζ2 and n2 = 1 so that x̂2 = ζ1.

n : n = {1, 0, 1} N = 2.

For this definition of n, we have nx̂ = nS0
= 2 and nS1

= nS2
= 1 – there are two 0th order and one 1st and 2nd order

partial derivatives. In addition, nS = 2, indicating there are 2 possible partial derivatives. Thus

S0x̂ =

[
x̂1

x̂2

]
=

[
ζ1
ζ2

]
Sx̂ = S2x̂ = x̂2 = ζ1.

Next, we construct (Bx̂) – the vector of all possible boundary values of x̂ allowable for the given n.

(Bx̂) =
[
(Cx̂)(0)
(Cx̂)(1)

]
=


x̂2(0)
x̂2,s(0)
x̂2(1)
x̂2,s(1)

 =


ζ(0)
ζ1,s(0)
ζ(1)
ζ1,s(1)


We may now define the BCs. There is no ODE state, however, there is a disturbance w that influences the PDE via the signal
v which can be chosen as v(t) = w(t). Then, the BCs appear in the form[

0
v(t)

]
=

∫ b

a

BI(s)F x̂(t, s)ds−B(Bx̂)(t)

=

∫ 1

0

BI(s)

 x̂1(t, s)
x̂2(t, s)
x̂2,s(t, s)
x̂2,ss(t, s)

 ds−B(Bx̂)(t) =
∫ 1

0

BI(s)

 ζ1(t, s)
ζ2(t, s)
ζ1,s(t, s)
ζ1,ss(t, s)

 ds−B

 ζ1(t, 0)
ζ1,s(t, 0)
ζ1(t, 1)
ζ1,s(t, 1)


By inspection of Eq. (41), we may now define the parameters for Gb and hence Xv(t) as

Gb : B = −
[
1 −k 0 0
0 0 1 l

]
Bv = −

[
0
1

]
.

The final step is to define the parameters of the PDE dynamics. Ignoring the integral terms for simplicity, and noting that

x̂ =

[
x̂0

x̂2

]
=

[
ζ2
ζ1

]
, Sx̂ = S2x̂ = x̂2 = ζ1 and r = v = ∅, we have

[
ζ̇2(t, s)

ζ̇1(t, s)

]
= A0(s)


ζ2(t, s)
ζ1(t, s)
ζ1,s(t, s)
ζ1,ss(t, s)

+Bxb(s)


ζ1(t, 0)
ζ1,s(t, 0)
ζ1(t, 1)
ζ1,s(t, 1)

 .

By inspection of Eq. (40), we have two non-zero parameters in Gp. However, the interconnection signal r has an integral
term, which can be written as

r(t) =

∫ b

a

Cr(s)F x̂(t, s)ds+Drb(Bx̂)(t)
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=

∫ 1

0

Cr(s)


x̂1(t, s)
x̂2(t, s)
x̂2,s(t, s)
x̂2,ss(t, s)

 ds+Drb(Bx̂)(t) =
∫ 1

0

Cr(s)


ζ1(t, s)
ζ2(t, s)
ζ1,s(t, s)
ζ1,ss(t, s)

 ds+Drb


ζ1(t, 0)
ζ1,s(t, 0)
ζ1(t, 1)
ζ1,s(t, 1)

 .

Clearly, only Cr,0 =
[
1 0

]
is non-zero, whereas the remaining terms are zero which gives us the final set of parameters for

the PDE subsystem as

Gp : A00 =

[
0 0
1 0

]
, A02 =

[
c2

0

]
, Cr,0 =

[
1 0

]
.

This completes the definition of the GPDE.

Illustration 3. Chemical Reactor with Cooling Jacket Consider a chemical reactor with a cooling jacket as described in [15].
In this model the reactor temperature is a lumped parameter system while the coolant temperature is a distributed state that
varies along the length of the pipe. Assuming conduction inside the cooling jacket to be negligible, we obtain the following
coupled ODE-PDE.

ẋ(t) = kx(t) + µ

∫ 1

0

x(t, s)ds

ẋ(t, s) = −c∂sx(t, s)− ζx(t, s) + ζx(t) x(t, 0) = w(t) (42)
where x is the reactor temperature, x is the temperature in the cooling jacket, w(t) is a disturbance, µ, c, ζ are positive
constants, and k is a negative constant. In this model, the distributed state x has a single boundary condition and highest
spatial derivative of order 1, so n = {0, 1}. In order to retain the parameter dependencies, we use the formulae in Blocks 4
and 5 to obtain the following PIE representation.

ẋ(t) = kx(t) +

∫ 1

0

µ(1− s)x̂
¯
(t, s)ds,∫ s

0

s ˙̂x
¯
(t, θ)dθ = ζx(t)− cx̂

¯
(t, s)−

∫ s

0

ζx̂
¯
(t, θ)dθ − ẇ(t)− ζw(t), (43)

or, alternatively,

Π
[

1 0
0 {0, s, 0}

] [ẋ(t)
˙̂x
¯
(t)

]
+ Π

[
0 0
1 {0}

]
ẇ(t) = Π

[
k µ(1− s)
ζ {−c,−ζ, 0}

] [
x(t)
x̂
¯
(t)

]
+ Π

[
0 0
−ζ {0}

]
w(t), (44)

where x̂
¯
= ∂sx.
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