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Abstract—The immune response is a dynamic process
by which the body determines whether an antigen is self
or nonself. The state of this dynamic process is defined
by the relative balance and population of inflammatory
and regulatory actors which comprise this decision making
process. The goal of immunotherapy as applied to, e.g.
Rheumatoid Arthritis (RA), then, is to bias the immune state
in favor of the regulatory actors - thereby shutting down
autoimmune pathways in the response. While there are
several known approaches to immunotherapy, the effective-
ness of the therapy will depend on how this intervention
alters the evolution of this state. Unfortunately, this process
is determined not only by the dynamics of the process,
but the state of the system at the time of intervention - a
state which is difficult if not impossible to determine prior
to application of the therapy. To identify such states we
consider a mouse model of RA (Collagen-Induced Arthritis
(CIA)) immunotherapy; collect high dimensional data on T
cell markers and populations of mice after treatment with a
recently developed immunotherapy for CIA; and use feature
selection algorithms in order to select a lower dimensional
subset of this data which can be used to predict both the
full set of T cell markers and populations, along with the
efficacy of immunotherapy treatment.

Index Terms—Immune State, immunotherapy, feature
selection, rheumatoid arthritis (RA), flow cytometry.

I. INTRODUCTION

WHILE a properly functioning immune system prevents
illness by recognizing nonself antigens as foreign, a

malfunctioning immune system can recognize self antigens
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as foreign, causing autoimmune diseases such as Rheumatoid
Arthritis (RA). In recent years immune therapies have been
proposed that attempt to treat autoimmune diseases such as
RA by shifting the relative balance between inflammatory and
regulatory immune responses in favor of the regulatory pop-
ulations. For example, sustained delivery of chemokines [1],
[2], cytokines [3] and small molecule inhibitors [3], [4], [5] can
modulate immune cell function (e.g. dendritic cells, T cells) in
inflamed tissues to resolve RA and other autoimmune disease
outcomes in pre-clinical animal models. However, the effect of
the immunotherapy regimen is influenced by factors such as tim-
ing, dosage, and the current balance of inflammatory/regulatory
response in the patient - thus making identification of effective
treatment standards a challenging problem [6].

For this reason, there is a growing need for an observable
measure of immune system health which can be used for the pre-
diction and prevention of RA and other autoimmune diseases [7],
[8], [9]. However, the question of identifying observables is com-
plicated by our relative lack of understanding of how the immune
system determines self vs nonself and the number of potential
observables which have been identified as contributing to the
function of the immune system. To clarify the problem at hand,
we therefore propose two relatively uncontroversial theses.

First, we presume that the immune system is governed
by some un-modelled dynamical process wherein the relative
populations of certain immunogenic and regulatory cells and
molecules evolve over time and that the relative balance of
these populations directly influences the establishment or elim-
ination of autoimmune disease. Furthermore, we assume that
this dynamic process is well-posed so that the inputs and initial
states of the system uniquely determine the output (i.e. self-
nonself). These unknown inputs and states are then potential
observables.

Second, we presume that the problem of data-based modeling
cannot be separated from the problem of identifying suitable ob-
servables. Specifically, if we knew which observables uniquely
determined the output, then that knowledge would necessarily
be based on some assumed physical model of the mechanism
for producing that output. Thus, if the model is truly unknown,
identification of observables must be included in the modeling
process.

Given these assertions, we can propose three necessary com-
ponents of any process for identification of observables with
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clinical predictive power. First, we require a method for mod-
eling based on a given set of observables. While such a model
may be based on physical principles, the model may also be
derived from data-based methods such as machine learning.
Second, we require a way to test suitability of the predictive
model associated with any given set of observables. Specifically,
this test of suitability may include predictive accuracy of the
associated model, along with other metrics such as clinical
feasibility and robustness to patient variation. Finally, we require
a methodology for selection and rejection of observables in
order to obtain a set of observables with maximal suitability
as defined previously. In this paper, we consider each of these
requirements: using experimental data and a variety of machine
learning algorithms to generate models; defining an appropriate
metric for suitability; and using feature selection algorithms
to find a set of observables with maximal suitability. Once
we have addressed these requirements, we apply the proposed
methodology to data obtained from immunotherapy trials in an
autoimmune mouse model of RA - arriving at a set of maxi-
mally suitable observables, which we define as the “immune
state”. An outline of our approach to addressing these required
subproblems is listed below. For the first component we focus
on machine learning algorithms for nonlinear regression. In the
context of the immunotherapy, these regression algorithms map
initial flow cytometry data to other observables such as outcome
– as measured by severity of inflammation (See Section III for
details).

For the second component we propose a dual metric for suit-
ability of a given set of observables based partially on predictive
power of the associated model. The first part of this metric is
based on minimality (not prediction), wherein we impose a
penalty based on the number of observables in the set (cardi-
nality) in order to reduce experimental and clinical complexity.
Second, in order to ensure that relevant immunological data is
not lost, we also add a penalty based on the error of the associated
model to predict observables from the data not included in the
given set. Third, to measure efficacy of the prediction, we impose
a penalty based on the error in prediction of CIA severity - a
quantity we refer to as the “disease state”.

For the third component we propose a variety of feature
selection algorithms to determine the set of observables which
are optimally suited using the suitability metric described above.
We then report the results of applying the resulting algorithms to
our dataset where we apply different weights to the three parts
of the suitability metric and propose sets of maximally suitable
observables for each case. We define the optimal sets as “immune
states” and analyze the immune cells that were selected by the
feature selection algorithms in each case.

The rest of the paper is organized as follows. In Section II,
we define the dataset which will be used to generate observables
(flow cytometry markers of predictive power). In Section III,
we define the computational and mathematical framework to be
employed. This includes the learning algorithms used to produce
the predictive models, a rigorous mathematical formulation of
the feature selection problem defined in terms of a suitability
metric, and a proposed wrapper algorithm for solving the feature
selection problem. In Section IV, we apply the methods from

Section III to the dataset in Section II using three possible
suitability metrics defined as Minimal Disease State (MDS),
Minimal Immune State (MIS), and a combined Minimal Im-
mune and Disease State (MIDS). The results are summarized in
Section V.

II. EXPERIMENTAL METHOD AND ASSOCIATED DATA

The identification of observables for immune state described
in this paper is based on a dataset generated from a series
of experiments involving the use of biomaterials-based parti-
cles [10] containing metabolites to promote self tolerance in
intermediate/late stage CIA in a DBA/1j mouse model. This
study is well-suited to our hypothesis that immune state can serve
to accurately predict the outcome of immunotherapy treatments
and overall disease progression. This section details the premise
and execution of this study and the nature of the associated data
collected.

A. Fabrication of Biomaterials-Based Particles

Immunosuppressive poly aKG (paKG(PFK15+bc2) mi-
croparticles (MPs) have been developed to co-deliver the gly-
colytic inhibitor, PFK15, and the CIA-specific antigen, bc2
(bovine collagen type II), to mice with collagen-induced arthri-
tis (CIA) [11], [12], [13]. The underlying hypothesis revolves
around the degradation of paKG MPs, which allows the delivery
of bc2 to facilitate antigen presentation by dendritic cells (DCs),
while simultaneously delivering PFK15 to attenuate glycolysis
and CD86 expression in pro-inflammatory DCs. Furthermore,
the intracellular release of PFK15 and aKG within DCs could
collaboratively meet the cellular energy needs through the Krebs
cycle, potentially curbing the energy requirements associated
with pro-inflammatory glycolysis and fostering the genera-
tion of anti-inflammatory DCs. This orchestrated induction of
anti-inflammatory DCs may consequently trigger suppressive
antigen-specific T cell responses. This study underscores the po-
tential of reprogramming DC metabolism, coupled with antigen
presence, to instigate anti-inflammatory DC and T cell reactions,
effectively alleviating arthritis symptoms in CIA mice. This in-
novative microparticle technology holds promise for addressing
autoimmune diseases with a similar pathogenesis as rheumatoid
arthritis [14].

B. Description of Experiment and Measurements

Six to eight week old male DBA/1j mice were obtained from
Jackson Laboratories and, after one to two weeks of mice ac-
climating to the experimental location, mice were induced with
CIA. In this experimental series, the particles were synthesized
either with or without disease-inducing antigen bc2 - a strategy
designed to determine if the particles can generate antigen-
specific anti-inflammatory response. The number of mice per
group were determined using a statistical power of 80 percent
and a significance level of alpha of 0.05. The arthritic scores
were utilized to randomize mice into the control and treatment
groups to assure that the overall average arthritic scores were
comparable between each group. Researchers were aware of
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Fig. 1. Graphical description of the experimental procedure of inducing
and treating CIA in mice. The first two steps induce CIA, the next two
steps is the application of the treatment and the final step is the data
generation using flow cytometry. CFA = complete Freund’s adjuvant,
IFA = incomplete Freund’s adjuvant.

the group allocation throughout the study. An overview of the
experimental procedure is provided in Fig. 1 and is further
described in [15]. The chronology of the experiment is listed
here in detail.

Day 0 and 21: CIA was induced in mice to generate an au-
toimmune response for the development of severe polyarthritis.
On day 35, the mice were divided into 3 groups, each receiving
a distinct therapeutic regimen.

Group 0 (control) - Days 35/42: The control group consists
of 5 control mice, each receiving two subcutaneous injections
of phosphate buffered saline (PBS) near the hind legs on days
35 and 42.

Group 1 (placebo) - Days 35/42: Treatment group 1 consists
of 5 mice. Each mouse receives two injections of 0.5 mg of
biomaterials-based particles without embedded antigen bc2 near
the hind legs on days 35 and 42.

Group 2 (treatment) - Days 35/42: Treatment group 2 consists
of 8 mice. Each mouse receives two injections of 0.5 mg of
biomaterials-based particles with embedded antigen bc2 near
the hind legs on days 35 and 42.

Measurements Taken on Days 62/70: The data collection used
for model generation occurs exclusively on either day 62 or
70. Paw thickness measurements are used to determine arthritic
scores for all mice and the end of study paw measurements
were obtained either on day 62 or 70. To quantify the range of
variability and severity in paw swelling within the CIA model,
paw inflammation was evaluated on a scale from 0 to 6, where
a score of 3 or higher indicated moderate-to-severe arthritis.
The scores were determined by assessing the degree of swelling
and/or redness in the rear left digits, with points assigned as
follows: 0 (no swelling), 1 (mild), 2 (moderate), or 3 (severe).
Similarly, the degree of swelling and/or redness in the rear left
mid-paw was evaluated and assigned a corresponding point (0,
1, 2, or 3). This assessment was repeated for rear right digits and
mid-paw. The cumulative points for the four assessments then
determine the Disease Progression Score (DPS), as defined in
Table I. Scoring was carried out separately for the front and back
paws. The mice were euthanized by carbon dioxide asphyxia-
tion according to the American Veterinary Medical Association

TABLE I
SCORING STRATEGY FOR MICE

(AVMA) guidelines and flow cytometry was performed on cells
collected from the popliteal lymph node, cervical lymph node
and spleen of each mouse on day 62 or 70.

C. Observables Measured in the Dataset

The flow cytometry data obtained from this experiment was
stained and gated to provide a robust set of features/(marker
combinations)/observables. In Section III we will define an
algorithm for selection of the best lower-dimensional subset of
these markers for predicting disease progression and represen-
tation of overall immune state. In this subsection, we briefly
describe the full selection of markers and (for motivation) list bi-
ological characterizations with which they are often associated.
Specifically, we stained for: CD4 (T helper (Th) cell marker),
CD8 (cytotoxic T (Tc) cell marker), Ki67 (proliferation),
CD25 (activation), Foxp3 (regulatory Tcell transcription fac-
tor (TF)), Tbet+GATA3-RORyt- (Th1/Tc1 TF), GATA3+Tbet-
RORyt- (Th2/Tc2 TF), RORyT+Tbet-GATA3- (Th17/Tc17 TF),
CD44 (effector memory marker), CD62 L (naïve T cells and
central memory T cells), and a tetramer (I-A(q) bovine collagen
II 271-285, GEPGIAGFKGEQGPK peptide) that is specific to
the disease-inducing antigen. For notational convenience, we use
GATA3+, RORyt+ and Tbet+ as an indicator of GATA3+Tbet-
RORyt-, RORyT+Tbet-GATA3- and Tbet+GATA3-RORyt-, re-
spectively. The flow cytometry data analysis was performed by
comparison of Forward scatter (FSC) vs. side scatter (SSC),
then single cell (SSC-A vs. SSC-H), followed by live dead
stain, followed by CD4 vs. CD8, followed by individual sub-
populations of the T cells [15]. Based on this staining, we
identified 41 different combinations of markers which might
be used to classify the phenotype of a T cell and determined
the percentage of either CD4 or CD8 T cells presenting the
associated combination of markers.

D. Summary of Associated Dataset

The data consists of 84 samples, based on 18 mice, each
sample is associated with a mouse and sample location. There
were no exclusions of mice, experimental units or data points.
All samples are taken on day 62/70, and each sample consists of
43 features and one label. The first two features of each sample
indicate group number (0-2) and sample location (1-3). The
remaining 41 features defining the percentage (0-100) of the
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CD4/CD8 population exhibiting the associated combination of
markers. The label for each sample is a Disease Prograssion
Score (DPS) (0-6).

This dataset has three crucial properties. First, measured
features represent the significant part of the immune system,
since we identify the wide range of measured T cell markers
and populations to reflect the majority of aspects of autoimmune
diseases, such as self-reactivity, memory, activation and prolif-
eration. Second, the collected data includes a full list of possible
stages of disease, so we include mice with and without CIA in
our experiment. Finally, the dataset has minimimal distortion
effects of non-measurable observables at measurements days,
for example the distorting effects of the treatment must wear off
and measured features then accurately reflect the immune state.
In this case, measurements were taken more than two weeks
after the treatment.

Based on this data we are ready to propose several methods
of machine learning to construct predictive models which use
subsets of the features to predict both the label (disease progres-
sion) and remaining features. For generating these models, all
features are scaled to the interval [0,1].

III. COMPUTATIONAL METHODS FOR IDENTIFICATION OF

OBSERVABLES

In this section, we describe a general mathematical and com-
putational approach for generating observables using machine
learning and feature selection. We start with a description of the
several candidate algorithms to be used for generating predic-
tive models (Section III-A). Next, in Section III-B we propose
a mathematical formulation of the feature selection problem,
using a metric for suitability of a set of observables in terms
of the predictive model generated by those observables. Then,
in Section III-C we describe the proposed feature selection
algorithm along with alternatives to be used for comparison.

A. Algorithms for Predictive Model Generation

To identify clinically significant observables, we will use a
metric of suitability combined with a feature selection algorithm
to determine which observables have the most predictive power.
However, the use of such feature selection algorithms requires
a procedure for using a subset of the features to predict both the
remaining features and the label.

Suppose we are given a dataset of m samples, wherein each
sample {xi, yi} defines a set of features {xi ∈ Rn}mi=1 and an
associated label {yi ∈ R}mi=1. The regression problem, then, is
to find a predictive model, f : Rn → R which minimizes the
predictive errors f(xi)− yi in an appropriately defined metric.
However, this metric and the resulting optimization problems
vary significantly between algorithms. We next define several
state-of-the-art machine learning algorithms which will be com-
bined with feature selection algorithms to determine features
with the most predictive power. Finally, we note that in the
context of feature selection algorithms, when only a subset of the
available features are used, the remaining “discarded” features
become labels.

Before beginning, we note that the choice and tuning of
ML algorithms is something more of an art than a science.
Specifically, we want to avoid overfitting the training data - thus
allowing our predictive models to perform well on unlabelled
data. To this end, each of the ML algorithms we define has an
associated set of “regularization parameters” which should be
selected through some ad hoc process. These tuning parameters
will then affect how well the resulting predictive model will
generalize to unlabeled data. In each case, therefore, we specify
these parameters but do not yet define how they are selected.

In each case below, we assume the data set contains m
samples, {xi, yi}mi=1, each with n features, xi ∈ Rn and a label
yi ∈ R.

Regularized Linear Regression (LR): The regularized linear
regression algorithm returns a predictive model y = f(x) =
wTx+ b, where w solves the following optimization problem.

min
w∈Rn

m∑
i=1

(yi − wTxi − b)2 + α2||w||2 + α1||w||.

In this case, α1 ≥ 0 and α2 ≥ 0 are the regularization parame-
ters. Linear regression has the advantage of low computational
complexity. However, the resulting predictor is linear and if
the underlying physical process is nonlinear, accuracy of the
predictive model will be poor.
ε-loss Support Vector Regression (SVR): The support vector

regression problem uses a predictive model of the form f(x) =∑m
i=1 αik(x, xi)whereα ∈ Rm is the decision variable and k is

a user selected positive kernel function. The objective function
being minimized includes

∑
i |f(xi)− yi| for any i such that

|f(xi)− yi| ≥ ε, where ε is a tuning parameter. In addition, there
is a regularization parameter, C where regularization increases
as C decreases. SVR can generate accurate nonlinear predictive
models for appropriate choice of k. However, the selection of the
kernel heavily influences the resulting accuracy and this process
of selection is difficult to automate.

Kernel Learning (PMKL): Kernel learning algorithms im-
prove on the SVR problem by automating the search for a
kernel function. Note we consider the class of kernel learning
algorithms to include Deep Learning (although the search prob-
lem in this case is non-convex). These approaches are limited,
however, by the class of kernels over which they are able to
search. The class of Tessellated Kernel functions have been
shown in [16] to have the properties of universality, density,
and tractability - meaning the resulting algorithms are rather
accurate and generalize well to new data. Specifically, the PMKL
algorithm for optimizing TK kernel functions was shown in [17]
to be more robust than other tested ML algorithms (including
multi-layer neural networks) - at the cost of some additional
computational complexity. The regularization parameters in this
case are the ε and C as defined above for SVR.

Decision Tree Algorithms: Decision trees are composed of
a series of conditional statements that branch in a “tree” like
manner. We say the “depth” of a decision tree is how many
conditional statements appear in a branch before leading to a
label denoted the “leaf”. Both the depth of the decision trees and
the maximum number of leaves are regularization parameters
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that can be modified by the user. Decision trees are often weak
predictors alone and in this article we use ensemble (random
forest) or boosting (boosted trees) methods to increase predictive
performance. These algorithms are defined as follows.

� Random Forest: The random forest algorithm is an en-
semble machine learning method based on a combination
of decision trees. Ensemble methods use a combination
of predictive models (trees) that individually have poor
generalization but when used in combination can have sig-
nificantly improved predictions. The number of decision
trees combined in the random forest algorithm can be used
as a regularization parameter.

� Boosted Trees: Gradient boosting is another machine
learning method also based on a combination of decision
trees. In the boosted algorithm trees are added to the
predictive model sequentially, and each additional tree is
fit to the current residuals of the model. A “learning rate” is
a weight applied to the addition of each decision tree, and
is often used as a regularization parameter. Small learning
rates tend to improve the generalization of the predictive
models.

Next we will focus on a metric we may use to identify the
observables which are most suitable to the task of predicting
self vs nonself determination in autoimmune disease.

B. Quantifying Suitability of a Given Set of Observables

To identify a set of observables for predicting self vs nonself
determination we rigorously define a metric for suitability in
order to select the observables which lead to superior predictive
models.

First, for the sake of generality, we define the algorithm,OPT ,
which we use as a placeholder for the machine learning algo-
rithms described previously. For a given dataset {xi, yi}mi=1 ⊂
Rw × Rq , OPT ({xi, yi}mi=1), returns a predictive function,
f = arg OPT ({xi, yi}mi=1), where f : Rw → Rq .

Next, given a possible set of feature indices F := {1, . . . , n},
we define the set of partitions of F as P(F ), and the set of all
possible partitions of F of length w ≤ n as follows.

Bw := {v ∈ Nw | v ∈ P(F )}
For a given selection of features, b ∈ Bw, we denote the as-
sociated projection Pb : Rn → Rw so that (Pb(x))i = xbi for
x ∈ Rn and i = 1, . . . , w.

To define a metric of suitability we consider three cost/penalty
functions, M1,M2, and, L. The function L is a function of
the cardinality of the number of features selected, L(|b|C). The
costs M1 and M2, however, measure how well the selection of
features can be used to predict the disease state and the remaining
features respectively. To accurately evaluate the performance of
the predictor a partition of the data must be withheld from the
training algorithm, OPT , and used solely for the purpose of
testing the performance. For a given set of data, these metrics will
vary depending on which data points are used for training OPT
and which are used to evaluate its performance. To explicitly
account for the effect of choice in partitioning of data samples,
we now define the set of samples S := {1, . . . ,m}, and the set

of partitions of S as P(S). As for features, we denote the set of
sample partitions of length r as

Sr := {v ∈ Nr | v ∈ P(S)}
and for a given selection of samples, g ∈ Sr, we denote the
associated projected data set as Pg(X) := {xi ∈ X, i ∈ g}.

Therefore, the costs M1 and M2 are a function of the fea-
ture partition, b, the training partition, g ∈ Sr ∈ P(S) and the
associated test partition, h := S/g ∈ Sm−r, so that M1(b, g)
and M2(b, g) are the Root Mean Square Error (MSE) of
predicting the test partition. Specifically, let R(f, x, y) =√

1
m−r

∑
i∈S/g |f(xi)− yi|22 and we have

M1(b, g) = R(fb,g, Pb(x), y)

M2(b, g) =
∑

j∈F/b

R(d
(j)
b,g, Pb(x), Pj(x))

fb,g = argOPT ({Pb(xgi), ygi}ri=1)

d
(j)
b,g = argOPT ({Pb(xgi), Pj(xgi)}ri=1)).

In the ideal case, we would average these costs over all
possible partitions of the data set to give an estimate of the
predictive power of b ∈ Bw. However, such an approach would
result in very large computational overhead. Therefore, we use
the k-fold cross validation approach, wherein we divide the
samples into k training partitions of size m(k−1)

k , which we label
as g(i) ∈ Sm(k−1)

k
for i = 1, . . . , k. Then the average cost of the

feature partition b over the k sample partitions is

J(b) =
1

k

k∑
i=1

J ′(b, g(i)).

where

J ′(b, g) := β1M1(b, g) + β2M2(b, g) + L(|b|C) (1)

and where β1, β2 ≥ 0 are given weights. In Section IV, we use
specific valued ofβ1, β2 andL to define three possible suitability
metrics relevant to identification of immune state. These will be
referred to as Minimal Disease State (MDS), Minimal Immune
State (MIS), and the combined Minimal Immune and Disease
State.

In the following Subsection, we propose a feature selection al-
gorithm which can be used to select observables which optimize
suitability metrics as defined in (1).

C. Feature Selection Algorithms

We have now defined the metric of suitability as a function of
the partition, b ∈ Bw. Using this metric, the Feature Selection
(FS) problem is defined as the following combinatoric optimiza-
tion problem.

min
b∈Bw,w∈N

J(b) (2)

Because optimization problems of this form are combina-
torial, FS problem is considered to be NP-hard [18]. As a
consequence, most existing FS algorithms are either heuristic,
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TABLE II
COMPARISON OF METRICS FOR THE OBSERVABLES SELECTED FROM THE 5

PROPOSED FEATURE SELECTION ALGORITHMS USING THE MDS
SUITABILITY METRIC

in that they are not guaranteed to converge to a globally optimal
solution, or solve variations of this problem which may or may
not yield reasonable values for Problem (2).

Nonetheless, several techniques have been proposed that en-
joy relative accuracy and computational efficiency. We focus first
on FS methods designed specifically for problems of the same
form as Optimization Problem (2), then consider two other FS
approaches that do not directly try to solve the optimization
problem of interest but provide a comparison to the direct
method.

1) Proposed Wrapper Method and Implementations: We first
define the algorithm (a wrapper method) which will be used and
then provide additional details on the various ML algorithms
which are combined with this wrapper to solve Problem (2).

The most common wrapper methods are Sequential Feature
Selection (SFS) algorithms [18]. SFS algorithms begin with an
empty (or full) set of features and sequentially add (or remove)
the highest value (or cost) feature until the set of features is a
certain size or meets a performance metric.

The SFS algorithm used in this paper is as described in [19].
This SFS algorithm begins with b := ∅, and iteratively selects a
locally optimal feature (with respect to the objective function of
Optimization Problem (2)) at each step.

Clearly, the effectiveness of Feature Selection depends on the
ML algorithm (OPT ) used to generate the predictive model.
Therefore, in the Results Section, we test all the machine learn-
ing algorithms proposed herein. Unfortunately, the accuracy of
the predictive model is influenced by user-selected parameters
within the algorithm. For reproducibility, we list here the selec-
tions for these parameter values.

Linear Regression: We test all 16 combinations of α1 ∈
[0, 0.1, 1, 5] and α2 ∈ [0, 0.1, 1, 5] and the data from choice
yielding highest suitability (J) is listed in Tables II–IV.

PMKL: We use the default TK kernel parameters and test
ε = .005, andC ∈ [.01, .1, .3, .5, 1] and the data from the choice
yielding highest suitability (J) is listed in Tables II–IV.

SVR: We test all combinations of ε = .1, C ∈ [1, 5, 10] and
3 kernel functions (linear, RBF, or 3 rd degree polynomial) and
the data from choice yielding highest suitability (J) is listed in
Tables II–IV. For the RBF kernel the features are normalized by
their variance and a bandwidth of 1

n is selected.

TABLE III
COMPARISON OF METRICS FOR THE OBSERVABLES SELECTED FROM THE 5
PROPOSED FEATURE SELECTION ALGORITHMS USING THE MIS SUITABILITY

METRIC

TABLE IV
COMPARISON OF METRICS FOR THE OBSERVABLES SELECTED FROM THE 5

PROPOSED FEATURE SELECTION ALGORITHMS USING THE MIDS
SUITABILITY METRIC

Random Forest: We test 9 combinations of number of
trees (ntrees ∈ [50, 100, 150]) and the maximum tree depth of
(maxdepth ∈ [5, 10, 20]) and the data from choice yielding highest
suitability (J) is listed in Tables II–IV.

Boosted Trees: We test 15 combinations of number of
trees (ntrees ∈ [50, 100, 150, 250]) and learning rate (LR ∈
[0.01, 0.1, 0.5]) and the data from choice yielding highest suit-
ability (J) is listed in Tables II–IV.

2) Suitability of Filter and Embedded Methods: Alternative
feature selection algorithms will be used as a baseline by which
we may compare the wrapper method. We use three filter meth-
ods and one embedded method in the analysis.

Given a set of data, filter methods use a rating function to
rank each features relative “importance”. After the features have
been ranked, the user may select w features to be kept and the
remaining features will be discarded. The rating functions used
to generate the data in Tables II–IV are as follows.

Mutual Information (MI): The Mutual Information crite-
ria [20] is a statistical function of two random variables that
describes the amount of information contained in one random
variable relative to the other.

Analysis of Variance (ANOVA): The ANOVA method [21] is
a commonly used method for analyzing variable dependencies.
The F-test is used to estimate the features importance.

Authorized licensed use limited to: Arizona State University. Downloaded on May 16,2025 at 00:00:39 UTC from IEEE Xplore.  Restrictions apply. 



1912 IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 28, NO. 4, APRIL 2024

Principle component analysis (PCA): This method approx-
imates the data with linear manifolds [22]. The main methods
used to perform PCA are based on the singular value decomposi-
tion and diagonalization of the correlation matrix. We calculate
the importance based on the first 3 eigenvectors.

In all cases, once a set of features has been selected, suitability
(J) is determined using each of the ML algorithms and we report
the minimum of these values.

Embedded FS methods attempt to embed the process of feature
selection directly into the model generation process - typically
adding a cost for inclusion of a particular feature in the model.
These methods have been used in the gene expression domains as
in [23] and have been successfully applied to mass spectrometry
analysis in [24], [25], [26]. For this analysis, only a single
embedded method was considered.

Mean Decrease in Impurity (RF): The Gini Importance or
Mean Decrease in Impurity [27] is an embedded method for
the Random forest algorithm. It calculates the importance of
features as the mean of the number of splits (over all trees) that
include this feature, weighted by the probability of reaching this
node.

3) Performance Metrics: To show that the results of Opti-
mization Problem (2) as applied to MDS, MIS and MIDS are
consistent with other learning metrics [28], we also include
data on these metrics for the chosen selection of features and
associated predictor. These metrics are defined as follows. Let y
to be the vector of labels (measured non-selected features and the
disease state) associated with features x. Let ŷ be the predicted
labels as generated by the predictor when applied to features x.
Let ȳ and ¯̂y be the average values of y and ŷ. Then we have the
following.

The Correlation Coefficient and relative Root Mean Squared
Error (CC and rRMSE):

CC =

∑N
i=1(yi − ȳi)(ŷi − ¯̂yi)√∑N

i=1(yi − ȳi)2
∑N

i=1(ŷi − ¯̂yi)2
(3)

rRMSE =

√∑N
i=1(yi − ŷi)2∑N
i=1(yi − ȳi)2

(4)

Mean Absolute Error and relative Mean Absolute Error (MAE
and rMAE):

MAE =
1

N

N∑
i=1

|yi − ŷi|; rMAE =

∑N
i=1 |yi − ŷi|∑N
i=1 |yi − ȳi|

(5)

IV. RESULTS: IDENTIFICATION OF OBSERVABLES FROM A

CIA DATASET

In this section, we apply the methods defined in Section III
to the data described in Section II to obtain three possible
sets of observables (immune state) corresponding to different
suitability metrics (as defined in Section III-B). Specifically,
these three immune states are lower dimensional subsets of the
data which can be used to either predict the progression of CIA,
reconstruct the full set of T cell markers and populations, or
perform both tasks simultaneously.

All results obtained in this section were obtained using imple-
mentations of the ML regression algorithms either from scikit-
learn 0.22.1 or PMKL v1 [16]. Computation was performed on
an Intel i7-5960X CPU with 128 Gb of RAM. Details of this
implementation, including all experimental data, FS wrapper,
and and codes for regression have been made publically available
and can be found at [29].

A. Suitability Metrics for the CIA Dataset

In this subsection, we define three metrics of suitability used
for selecting observables. First, we consider the feature selection
problem for Minimal Disease State (MDS) using the definition
of suitability in Section III-B with β1 = 1 and β2 = L(w) = 0.
In this case, suitability is defined only in terms of accuracy of the
prediction of the Disease Progression Score (DPS). Results for
MDS suitability are given in Section IV-B. Second, we define
the feature selection problem for Minimal Immune State (MIS)

usingβ1 = 0 andβ2 = 1 andL(w) =

{
0 for w ≤ 10

∞ for w > 10.
In this

case, we ignore the DPS and restrict our definition of state to
ten observables (flow cytometry markers), defining suitability
as the ability to predict all markers not included in our chosen
set of 10 observables. Results for MIS suitability are given in
Section IV-C. Finally, for Minimal Immune and Disease State
(MIDS), we let β1 = β2 = 1 and L(w) as defined for MIS. In
this case, we restrict our definition of state to 10 observables and
define suitability as the ability to predict a weighted combination
of the DPS and all markers not included in the chosen set
of 10 observables. Results for MIDS suitability are given in
Section IV-D.

B. The Best Features for Predicting Disease
Progression (MDS)

First, we consider selecting observables (markers) which op-
timize suitability with respect to Minimal Disease State (MDS)
as defined in Section IV-A. These are observables which are best
at predicting the disease progression score (DPS).

Performance of FS Algorithms: In Table II we rank the pro-
posed feature selection algorithms by performance with respect
to the MDS suitability metric, J (as defined in Optimization
Problem (2)). For comparison, we include other metrics of fit (as
defined in (3)–(5)), and alternative filter-based feature selection
algorithms.

The results indicate that Sequential Forward Selection (SFS)
based algorithms performed significantly better than embedded
and filter methods with respect to all metrics. Interestingly,
although no weight or limit was placed on the number of features
selected, the SFS Random Forest and the SFS TK both selected
relatively few features (4 and 5, respectively) – less than half
as many features as the 12 average features selected by other
methods. This indicates that use of the remaining increased error
in the testing set – meaning that other observables are likely
redundant or unreliable indicators of disease progression.

Most Important Features Using the SFS Algorithms: In Fig. 2
we show the observables that were selected by each of the

Authorized licensed use limited to: Arizona State University. Downloaded on May 16,2025 at 00:00:39 UTC from IEEE Xplore.  Restrictions apply. 



TALITCKII et al.: EMPLOYING FEATURE SELECTION ALGORITHMS TO DETERMINE THE IMMUNE STATE OF A MOUSE MODEL 1913

Fig. 2. Observables as selected by SFS with each of 5 ML algorithms using the MDS metric for suitability. For comparison, we also include the
observables selected by the 4 wrapper methods defined in Section III. The methods are ordered from top to bottom as determined by the metric for
suitability of the selected observables as defined in Section III-B and listed in Table II. Evaluation of suitability for wrapper methods is as described
in III-C. The SFS methods and the features most commonly selected by those methods are bolded.

proposed algorithms. If we consider only the top performing
algorithms (the SFS based algorithms) and the markers specific
to helper and regulatory cells, then counting the number of times
a feature was selected by the SFS algorithms, the following
features were chosen by at least three of the algorithms.

1) CD4+GATA3+CD44+CD62L(Lo) (3 times)
2) CD4+GATA3+Ki67+ (3 times)
3) CD4+Foxp3+CD25+ (3 times)
4) CD4+Foxp3+CD25+Ki67+bc2+ (3 times)
5) CD4+Tbet+ (3 times)

Among the cytotoxic cells, the algorithms were most con-
sistent, with all five of the algorithms selecting one feature in
common.

6) CD8+Ki67+ (4 times)
7) CD8+GATA3+ (3 times)
8) CD8+Tbet+ (3 times)

This group of cells consists of cytotoxic (6,7,8), Th mem-
ory (1), Th (2,5), and CD4+CD25+Foxp3+ regulatory T cell
sub-populations (3,4). The location feature (origin of the tested
cells), was selected only once by an SFS based algorithm. In this
case we do not include the treatment as a possible feature, since
we are primarily interested in the prediction of the disease state
using sub-populations of T cells as opposed to the already known
correlation between treatment and disease state. In the next two
cases (MIS and MIDS) treatment is considered a feature.

C. The Best Features for Reconstructing Discarded
Features (MIS)

Next, we consider selecting observables (markers) which op-
timize suitability with respect to Minimal Immune State (MIS).
These observables are optimal for predicting all markers not
included in our chosen set of 10 observables.

Performance of FS Algorithms: In Table III we rank feature
selection methods by performance with respect to the MIS

suitability, J . For comparison, we also include other metrics
and filter-based methods as defined in Section III-C.

The results show that Sequential Forward Selection (SFS)
based algorithms demonstrated the best performance. Espe-
cially, SFS Random Forest and SFS Boosted Trees are the best
methods with respect to MIS suitability metric. Note, that all
algorithms selected the maximum number of 10 features.

Most Important Features Using the SFS Algorithms: In Fig. 3
we show the features that were selected by each of the proposed
algorithms. Unlike in the previous subsection, there was less of
an agreement among the high-performing SFS algorithms as to
the most significant features. For MIS only 6 different features
were selected by at least three algorithms. First, if we consider
markers specific to helper and regulatory cells, and counting
the number of times a feature was selected by the SFS methods
(each method selected 10 features), the following features were
each chosen by at least 3 algorithms.

1) CD4+GATA3+CD44+CD62L(Lo) (4 times)
2) CD4+Tbet+Ki67+ (4 times)
3) CD4+GATA3+Ki67+bc2+ (3 times)
4) CD4+Tbet+bc2+ (3 times)

We note that two of the selected features are bc2 specific as
opposed to the single bc2 specific feature selected for cells in
MDS.

Among the cytotoxic cells, the algorithms were less consis-
tent, with only three of the algorithms selecting similar sub-
populations.

5) CD8+Ki67 (3 times)
6) CD8+GATA3+CD44+CD62L(Lo) (3 times)

We note that the central memory T cells (CD44+CD62L(Lo))
appear in both the helper/regulatory populations and the cyto-
toxic cell populations. In this case, data-rich biomarkers (those
containing multiple markers), were selected slightly more often
when compared to MDS. The average number of markers in
the selected features is 3.33 in this case compared to 2.875 in
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Fig. 3. Observables as selected by SFS with each of 5 ML algorithms using the MIS metric for suitability. For comparison, we also include the
observables selected by the 4 wrapper methods defined in Section III. The methods are ordered from top to bottom as determined by the metric for
suitability of the selected observables as defined in Section III-B and listed in Table III. Evaluation of suitability for wrapper methods is as described
in III-C. The SFS methods and the features most commonly selected by those methods are bolded.

the MDS case. Of particular note is the fact that the location
feature (origin of the tested cells) and the treatment feature
(which treatment was applied) were both selected by almost
every algorithm.

D. The Best Features for Disease Progression and
Reconstruction (MIDS)

Finally, we consider selecting obsevables which optimize
suitability with respect to Minimal Immune and Disease State
(MIDS) as defined in Section IV-A. These observables are
optimal for predicting a combination of the Disease Progression
Score (DPS) and all markers not included in the chosen set of
10 observables.

Overall Performance of FS Algorithms: In Table IV we rank
the proposed feature selection algorithms by performance with
respect to the MIDS suitability metric,J (as defined in Optimiza-
tion Problem (2)). We also report the other metrics (as defined
in (3)–(5)) and filter-based feature selection algorithms.

As in the MIS and MDS case, the results indicate that Se-
quential Forward Selection (SFS) based algorithms performed
significantly better than embedded and filter methods with re-
spect to all metrics. SFS wrapper method with Decision Tree
Algorithms demonstrate the best performance according to the
MIDS suitability metric. All algorithms selected the maximum
number of 10 allowable features.

Most Important Features Using the SFS Algorithms: In Fig. 4
we show the features that were selected by each of the proposed
algorithms. If we consider markers specific to helper and regu-
latory cells, the following features were each chosen by at least
three of the five algorithms.

1) CD4+GATA3+CD44+CD62L(Lo) (4 times)
2) CD4+Tbet+Ki67+ (4 times)
3) CD4+Tbet+bc2+ (4 times)

4) CD4+GATA3+Ki67+bc2+ (3 times)

V. INTERPRETATION OF RESULTS

Here we summarize the results for each proposed metric of
suitability: MDS, MIS, and MIDS.

Features for Predicting Disease Progression (MDS): The
MDS case is motivated by the need for T cell markers which
have high accuracy when predicting disease progression and
treatment outcome. In this context, we make the following
observations.

The location feature was not selected by the top performing
feature selection algorithms – suggesting that the location where
the T cells were collected is inconsequential to predicting the
disease state. This implies that there is significant uniformity in
the disease state among the lymph nodes and spleen.

In addition, 3 of 5 algorithms selected one antigen specific
observable (CD4+FoxP3+CD25+Ki67+bc2+) - indicating that
the other selected T cell markers are likely correlated to autoim-
mune disease in general and are not sepecific to CIA.

Finally, we note that most of the selected biomarkers only
consisted of 2 or 3 protein labels (unlike the more specific
sub-populations selected in the MIS and MIDS cases). This
suggests that the ability to predict of disease progression and
immunotherapy outcome is more robust (less prone to error) –
being based mostly on a well-established set of observables with
larger sample sizes.

Features for Reconstructing Discarded Features (MIS): The
MIS case is motivated by the desire to reduce the number of
markers used in flow cytometry by eliminating markers whose
values can be inferred using a lower dimensional set of observ-
ables. However, the observables selected in this case are not
necessarily correlated with disease progression or the effect of
immunotherapy.
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Fig. 4. Observables as selected by SFS with each of 5 ML algorithms using the MIDS metric for suitability. For comparison, we also include the
observables selected by the 4 wrapper methods defined in Section III. The methods are ordered from top to bottom as determined by the metric for
suitability of the selected observables as defined in Section III-B and listed in Table IV. Evaluation of suitability for wrapper methods is as described
in III-C. The SFS methods and the features most commonly selected by those methods are bolded.

Because the MIS case selects markers which are not neces-
sarily correlated with disease progression, a larger set of observ-
ables was selected and these observables generally include more
peptide labels than in the MDS case.

Interestingly, unlike for MDS, relatively few regulatory T
cell markers were selected in the MIS and MIDS case. This
is likely because for these cases we include treatment as a
potential observable. For MIS and MIDS, all algorithms now
select treatment and this likely acts as a more reliable proxy for
the regulatory population. This suggests that some caution is
advised when deciding whether to include treatment in the set
of selectable features.

Nearly all algorithms selected the location the T cells were
collected as an important observable for predicting T cell popu-
lations. This implies that many aspects of the immune state are
not uniform across the lymph nodes and spleen.

Features for Disease Progression and Reconstruction
(MIDS): The MIDS case combines the suitability metrics for
MDS and MIS. Because weighting of the DPS score was rela-
tively low, this case selected many of the same features as MIS.

Finally, we note that the memory T cell sub-population
CD4+GATA3+CD44+CD62L(Lo) was selected in all three
cases (MDS, MIS, and MIDS). It is clear that this sub-population
is significant to both the immune and disease states.

VI. CONCLUSION

In this article, we have considered the problem of using
machine learning and feature selection algorithms to identify
low dimensional subsets of observables (T cell markers) which
are most useful in predicting disease progression and overall
immune state. Specifically, we have used a robust dataset of
T cell markers obtained from mouse-model immunotherapy
for collagen induced arthritis. Moreover, we have identified
the markers (Tables II–IV) which are most associated with the

process of self-nonself determination. The algorithms proposed
in this paper are general in that they can be used to identify lower
dimensional subsets from any similar dataset. Furthermore,
these algorithms have been made open source and are available
for download online. Finally, we note that the list of biomarkers
used in this set of experiments is not exhaustive and the accuracy
of the results may be improved by testing whether inclusion of
additional markers or exclusions (e.g. CD127+/-) alters the set
of observables selected.
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of Arizona State University approved animal studies regarding
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