
Journal of Computational and Applied Mathematics 442 (2024) 115673

A
0

Contents lists available at ScienceDirect

Journal of Computational and Applied Mathematics

journal homepage: www.elsevier.com/locate/cam

A new treatment of boundary conditions in PDE solution with
Galerkin methods via Partial Integral Equation framework
Yulia T. Peet ∗, Matthew M. Peet
School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ 85287, USA

A R T I C L E I N F O

Keywords:
Partial Differential Equations
Boundary conditions
Galerkin methods
Chebyshev polynomials

A B S T R A C T

We present a new mathematical framework for solution of Partial Differential Equations (PDEs),
which is based on an exact transformation of the underlying PDE that removes the boundary
constraints from the solution state and moves them into the dynamics of the equivalent trans-
formed equation. The framework is based on a Partial Integral Equation (PIE) representation of a
PDE or a system of PDEs, where Partial Integral Equation does not require boundary conditions
on its solution state. The PDE-PIE framework allows for a development of a generalized and
consistent treatment of boundary conditions in constructing spectrally convergent solution
approximations to a broad class of linear PDEs with non-constant coefficients governed by
non-periodic boundary conditions, including, e.g., Dirichlet, Neumann and Robin boundaries,
among others. The significance of this result is that a solution to almost any linear PDE in a
form of a function series approximation can now be systematically constructed, irrespective
of the boundary conditions. Furthermore, in many cases, the resulting ODE system for the
expansion coefficients can now be integrated analytically in time, which allows us to obtain
solution approximations to a broad class of unsteady PDEs with unprecedented accuracy. We
present several PDE solution examples in one spatial variable implemented with the developed
PIE-Galerkin methodology using both analytical and numerical integration in time. We also
present comparison of the PIE methods with some classical direct PDE solution methods,
further demonstrating advantages and potential limitations of the PIE approach. The developed
framework can be naturally extended to multiple spatial dimensions and, potentially, to
nonlinear problems.

Science is a Differential Equation. Religion is a Boundary Condition. – Alan Turing (1912–1954).

1. Introduction

Models in physical, biological and engineering sciences are frequently represented by Partial Differential Equations (PDEs)
[1–3]. Efficient and accurate methods for analytical and numerical solution of PDEs are crucial for modeling, analysis and control
of fundamental processes in these systems. Development of generalized techniques for treatment of PDEs in mathematical and
computational sciences has been, however, hampered by the need to enforce boundary conditions.

Boundary conditions are the auxiliary constraints on the solution, its partial derivatives, or a combination of thereof, whose
imposition is required to guarantee a unique solution to a PDE [4,5]. To enforce boundary conditions, a solution function is typically
split into a homogeneous part that satisfies a specified type of boundary conditions but with zero values, and an inhomogeneous

∗ Corresponding author.
E-mail addresses: ypeet@asu.edu (Y.T. Peet), mpeet@asu.edu (M.M. Peet).
vailable online 29 November 2023
377-0427/© 2023 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cam.2023.115673
Received 10 February 2023; Received in revised form 23 October 2023

https://www.elsevier.com/locate/cam
https://www.elsevier.com/locate/cam
mailto:ypeet@asu.edu
mailto:mpeet@asu.edu
https://doi.org/10.1016/j.cam.2023.115673
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2023.115673&domain=pdf
https://doi.org/10.1016/j.cam.2023.115673

Journal of Computational and Applied Mathematics 442 (2024) 115673Y.T. Peet and M.M. Peet

t
a
o
b
t
p
b
t
m
b
T
i
a
m
W
i
r
c

c
P
n
a
t
c
c
r
s
b

w
a
s
t
d
a
t
i
d
B
f
a

a
p
s
a

i
i
i
c
f
l
c

part that must satisfy non-zero boundary conditions [6,7]. For the inhomogeneous part, any appropriately smooth function defined
on the solution domain that conforms to the boundary values but not necessarily satisfies the PDE can be used, which will result in
a modification of the right-hand side of the PDE. However, it is the search for a homogeneous solution, which is required to satisfy
both the PDE and the homogeneous boundary conditions, that represents the biggest challenge and has hindered a development of
a unifying theoretical framework for solving PDE equations for more than two centuries.

The easiest way to impose boundary conditions is to seek a solution to a PDE in terms of functions that already satisfy
he boundary conditions, which is done in the so-called Galerkin methods [8]. Unfortunately, such basis functions are readily
vailable only for a limited class of problems, e.g., the ones with periodic boundary conditions, for which Fourier methods based
nto expansion into harmonic bases offer an elegant, efficient, and generalizable approach to the solution of PDEs with periodic
oundaries [9]. For boundary conditions other than periodic, the picture is more obscure. An unfortunate fact to accept is that
here are no convenient basis functions (viz. harmonic functions or classical orthogonal polynomials) that satisfy general, non-
eriodic boundary conditions. This yields, in a classical PDE analysis framework, three options: (1) construct more sophisticated
asis functions from the primary ones that do satisfy boundary conditions [10,11], (2) enforce boundary conditions discretely on
he expansion coefficients [12–14], (3) enforce boundary conditions in a weak form, by introducing penalty terms or Lagrange
ultipliers into the variational form of the equations [15–17]. The problem with the first approach is that it leads to a complicated

asis that depends on the order of equations and on the boundary conditions [10,11,18,19], limiting the generalizability of approach.
he second option, which is typically used in conjunction with either tau methods [12,14] or nodal/collocation methods [13,20,21],

s inherently tied to a discretization, and thus has limited options for providing generalized close-form solutions that are useful for
nalysis and control of continuous models [22–24]. Additionally, a discrete enforcement of boundary conditions requires an ad-hoc
odification of the discrete matrix operators, which can lead to ill-conditioned matrices and affect stability and accuracy [9,25,26].
eak enforcement of the boundary conditions attempts to circumvent the above deficiencies [27,28]. However, this method

ntroduces a tunable penalty parameter, which is not known from the first principles, problem-dependent, and leads to a lack of
obustness of the solution [28–30]. Moreover, a weak imposition of boundary conditions forfeits the possibility of satisfying the
onservation laws in a strong form, which, in some cases, e.g. for hyperbolic systems, is highly desirable [31–33].

In this paper, we present a conceptually new approach to address the problems associated with the enforcement of boundary
onditions in the solution of PDEs. Specifically, we exploit a novel Partial Integral Equation (PIE) framework for representation of
artial Differential Equations [24]. In this framework, PIEs can be used to equivalently represent the solution of PDEs, yet require
o boundary conditions on their solution variables. This is due to the fact that solutions of the PIE equations are expressed using
so-called ‘‘fundamental state’’, which consists of specially constructed functions that include derivatives of the primary solution;

hese functions lie in a space of 𝐿2 square-integrable functions and require no boundary conditions. Instead, the effect of boundary
onditions (both homogeneous and inhomogeneous) is analytically incorporated into the PIE dynamics through construction of the
orresponding partial-integral operators. This integral representation essentially acts to move the boundary conditions from the
ealm of ‘‘religion’’ (artificial constraints on a solution) to the realm of ‘‘science’’ (integro-differential equations). Significantly, by
olving PIEs, we are now free to represent the solution using any choice of an approximation space without the need to impose the
oundary conditions on the solution functions in that space!

Since the idea of solving boundary value problems by relating the boundary condition functions to the interior solution resonates
ith several other techniques in mathematics, here we contrast our approach with the popular methods of Green functions [34–36]
nd boundary integral equations (BIE) [37–39]. Both Green functions and BIE approaches require a knowledge of the fundamental
olutions of the corresponding differential operator, while no such a-priori knowledge is required in the current approach. Note
hat the ‘‘fundamental state’’ in a PIE is completely different from the ‘‘fundamental solution’’, which is a response of a linear
ifferential operator to an impulse forcing [40,41]. In a classical Green functions approach, the acquired fundamental solutions are
lso required to satisfy homogeneous boundary conditions. In a BIE formulation, this requirement is relaxed, and solution satisfying
he desired boundary conditions is formulated as a continuous superposition of arbitrary fundamental solutions, giving rise to an
ntegral equation for the distribution density on the boundary of the domain [37–39]. Both these approaches are fundamentally
ifferent from the methodology presented in this paper, since, first of all, the integral operators act on the domain boundary in
IEs, and they act on the domain interior in PIEs, and, second, the PIE formulation does not require any a-priori knowledge of the
undamental solutions, which are only available for certain equations [34–36], and, for the case of non-constant coefficients, only
pproximately [42–44].

Several other approaches utilize a spatial integration of PDEs to eliminate function derivatives from a solution as a means to
rrive at better-conditioned and more compact discrete matrix operators resulting from an integration as opposed to a differentiation
rocedure [45–47]. However, these approaches do not eliminate the boundary conditions and still have to enforce them on a
olution, which is typically done at a discrete level by modifying the corresponding rows of discrete matrix operators to represent the
lgebraic constraints on the expansion coefficients [45,46], similar to the corresponding differentiation tau or collocation techniques.

In this regard, it is also useful to mention the Fokas method [48], which seeks to propose a unified transform procedure for solving
nitial–boundary value problems. The method involves performing joint Fourier-type integral transforms of the PDE together with
nitial and boundary conditions in space and time, solving for a global relation, and performing an inverse Fourier transform, which
nvolves taking an indefinite integral over specified contours in a complex half-plane. This approach, however, is associated with
ertain difficulties as applied to a general case: first, it relies on the existence of a Lax pair [49], which can only be formulated
or certain equations [48,50]; second, extension to a finite-size domain is challenging in that it yields an integrand which is no
onger analytic, and requires evaluation of the residues at the complex poles, which may lack convergence and complicate the
2

omputation [51,52].

Journal of Computational and Applied Mathematics 442 (2024) 115673Y.T. Peet and M.M. Peet

o
s
t
m
a
t
s
a
a
i
o
t
b
p
t

(
d
o
T
b
a
s

P
i
k
t
c

2

2

t
s

t
d
a

t

w

a

w

Previous research on PDEs and their numerical solution briefly surveyed above laid out a groundbreaking work in development
f innovative numerical approaches for PDE discretizations [6,8,53] and established theories for analyzing their accuracy and
tability [32,53,54]. However, generalized approaches of treating boundary conditions during the solution of PDEs on a firm
heoretical basis are still lacking, limited to either an ad-hoc modification of the resulting discrete operators [12,45,46], or an ad-hoc
odification of the governing equations [14,29,30]. We propose to remedy this situation by introducing the PIE formulation, which

llows us to treat boundary conditions in a unified and consistent manner, prior to discretization, in a way, which is supported by
heory and does not rely on an ad-hoc modification of either the underlying PDEs or the resulting solution. Apart from yielding
olutions to a large class of unsteady PDEs with an unprecedented accuracy, as shown in this work, PIE representation, via an
nalytical embedment of the boundary constraints into the governing equation dynamics, enables a development of provably optimal
pproaches for stability analysis and control of PDE systems [55–57], which were previously unattainable. While PIE representation
tself is decoupled from discretization [24,58], a discrete approximation of PIEs in a stable and accurate manner is the subject
f the current paper. While other choices are possible, we focus on Galerkin methods as they allow us to analytically compute
he action of the partial integral operators on the basis functions, thus limiting discretization errors. We are further motivated
y developing numerical approximations that are spectrally convergent (in space, for smooth solutions); we choose Chebyshev
olynomials of the first kind as suitable candidate basis functions for this purpose, which also possess convenient and fast spectral
ransform routines [8,47,59].

The objective of this paper is to present a theoretical formulation and a numerical implementation of the PIE-Galerkin-Chebyshev
PGC) methodology for linear PDEs with non-constant coefficients under generalized (non-periodic) boundary conditions. The
eveloped numerical methodology based on the transformation of the PDE to PIE equations is unique and warrants the originality
f the presented methodology. All the data obtained with this novel numerical method is new and has not been presented before.
he current work aims to answer the following research questions: (1) Can stability and convergence of the PGC methodology
e theoretically established and numerically verified? (2) What is the influence of a temporal integration on the overall solution
ccuracy in the PGC methods? (3) What are the specific advantages, if any, of the developed PGC methodology as applied to a
olution of parabolic and hyperbolic PDE systems?

The current paper is organized as follows. In Section 2, we present a general formulation of the PIE framework for linear
DEs with non-constant coefficients in one spatial dimension, where we also extend an original representation in [24] to include
nhomogeneous boundary conditions. In Section 3, we introduce a Galerkin approach based on Chebyshev polynomials of the first
ind for a solution of the PDE equations in the PIE framework, and present the corresponding stability and convergence proofs for
he PIE-Galerkin approach. In Section 4, we show numerical examples and compare our developed PDE-PIE approach with some
onventional direct PDE solution methods, followed by discussion and conclusions in Section 5.

. Partial Integral Equations PIE framework

.1. Standardized PDE representation

The assumptions of the methodology developed in the current paper are as follows: (1) PDE (or a system of PDEs) has one
emporal and one spatial dimension; (2) PDE (or a system of PDEs) is linear with the coefficients that are constant or functions of
pace; (3) PDE problem is well-posed [1,2].

We now define some notation. We solve a Partial Differential Equation (PDE), or a coupled system of PDEs, on a spatio-
emporal domain (𝑥, 𝑡) ∈ ([𝑎, 𝑏] × R+). Let 𝐿2[𝑎, 𝑏]𝑛 be the space of R𝑛-valued square-integrable functions in a Lebesgue sense
efined on [𝑎, 𝑏], equipped with an inner product. We use the notation 𝐻𝑘[𝑎, 𝑏]𝑛 to denote a Sobolev subspace of 𝐿2[𝑎, 𝑏]𝑛 defined
s
{

𝐮 ∈ 𝐿2[𝑎, 𝑏]𝑛 ∶
𝜕𝑞𝐮
𝜕𝑥𝑞 ∈ 𝐿2[𝑎, 𝑏]𝑛, ∀ 𝑞 ≤ 𝑘

}

. 𝐶𝑘 will denote the space of functions with 𝑘 continuous derivatives. 𝐼𝑛 ∈ R𝑛×𝑛 is used
to denote the identity matrix, while 0𝑛 denotes a zero vector of size 𝑛. It is implied that, for all the solution states 𝐮(𝑥, 𝑡), a partial
derivative with respect to time exists for 𝑡 ∈ R+.

We now consider a PDE or a system of PDEs, which satisfies the aforementioned assumptions, in its ‘‘state-space’’ representa-
ion [24,60],

⎡

⎢

⎢

⎣

𝐮0(𝑥, 𝑡)
𝐮1(𝑥, 𝑡)
𝐮2(𝑥, 𝑡)

⎤

⎥

⎥

⎦𝑡

= 𝐴0(𝑥)
⎡

⎢

⎢

⎣

𝐮0(𝑥, 𝑡)
𝐮1(𝑥, 𝑡)
𝐮2(𝑥, 𝑡)

⎤

⎥

⎥

⎦

+ 𝐴1(𝑥)
[

𝐮1(𝑥, 𝑡)
𝐮2(𝑥, 𝑡)

]

𝑥
+ 𝐴2(𝑥)

[

𝐮2(𝑥, 𝑡)
]

𝑥𝑥 + 𝐟 (𝑥, 𝑡), (2.1)

ith boundary conditions,

𝐵

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐮1(𝑎, 𝑡)
𝐮1(𝑏, 𝑡)
𝐮2(𝑎, 𝑡)
𝐮2(𝑏, 𝑡)
𝐮2𝑥(𝑎, 𝑡)
𝐮2𝑥(𝑏, 𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 𝐡(𝑡) ∈ 𝐶1(𝑅+), (2.2)

nd initial conditions
⎡

⎢

⎢

⎣

𝐮0(𝑥, 0)
𝐮1(𝑥, 0)
𝐮2(𝑥, 0)

⎤

⎥

⎥

⎦

= 𝛽𝛽𝛽ℎ(𝑥) ∈ 𝑋ℎ, (2.3)

ℎ

3

ith the space 𝑋 defined below in Eq. (2.5).

Journal of Computational and Applied Mathematics 442 (2024) 115673Y.T. Peet and M.M. Peet

F

p
d
o
t
a
c
c
f
l

2

2

f
b
d
t

L

P

Here, 𝐴0(𝑥) ∶ R → R 𝑛𝑠×𝑛𝑠, 𝐴1(𝑥) ∶ R → R 𝑛𝑠×(𝑛1+𝑛2), 𝐴2(𝑥) ∶ R → R 𝑛𝑠×𝑛2 are the bounded matrix-valued real functions. We
introduce a functional space 𝑋 of dimension 𝑛𝑠 = 𝑛0 + 𝑛1 + 𝑛2, such that

𝑋 ∶=

⎧

⎪

⎨

⎪

⎩

⎡

⎢

⎢

⎣

𝐮0(𝑥, 𝑡)
𝐮1(𝑥, 𝑡)
𝐮2(𝑥, 𝑡)

⎤

⎥

⎥

⎦

∈
⎡

⎢

⎢

⎣

𝐿2[𝑎, 𝑏]𝑛0
𝐻1[𝑎, 𝑏]𝑛1
𝐻2[𝑎, 𝑏]𝑛2

⎤

⎥

⎥

⎦

, 𝑡 ∈ R+

⎫

⎪

⎬

⎪

⎭

. (2.4)

urthermore, we denote a subset 𝑋ℎ ⊂ 𝑋 that contains functions satisfying the boundary conditions (2.2) as

𝑋ℎ ∶=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎣

𝐮0(𝑥, 𝑡)
𝐮1(𝑥, 𝑡)
𝐮2(𝑥, 𝑡)

⎤

⎥

⎥

⎦

∈ 𝑋 ∩ 𝐵

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐮1(𝑎, 𝑡)
𝐮1(𝑏, 𝑡)
𝐮2(𝑎, 𝑡)
𝐮2(𝑏, 𝑡)
𝐮2𝑥(𝑎, 𝑡)
𝐮2𝑥(𝑏, 𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 𝐡(𝑡), 𝑡 ∈ R+

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

. (2.5)

We say that a solution,

𝐮ℎ(𝑥, 𝑡) =
⎡

⎢

⎢

⎢

⎣

𝐮ℎ0 (𝑥, 𝑡)
𝐮ℎ1 (𝑥, 𝑡)
𝐮ℎ2 (𝑥, 𝑡)

⎤

⎥

⎥

⎥

⎦

∈ 𝑋ℎ, (2.6)

to Eq. (2.1) with boundary (2.2) and initial (2.3) conditions is in its primary state. Here, a superscript ℎ denotes a dependency of the
solution on the boundary conditions. Note that, for a well-posed problem, we demand that initial conditions (2.3) satisfy boundary
conditions at 𝑡 = 0, i.e. 𝛽𝛽𝛽ℎ(𝑥) ∈ 𝑋ℎ|

|

|𝑡=0
.

To arrive at an Eq. (2.1) for any given linear PDE, a set containing an original scalar-valued dependent variable 𝑣(𝑥, 𝑡) of a
PDE (or a vector-valued dependent variable 𝐯(𝑥, 𝑡) for a system of coupled PDEs) and their partial derivatives must be transformed
into its corresponding state-space form, where the functions 𝐮0(𝑥, 𝑡) ∈ 𝐿2[𝑎, 𝑏]𝑛0 admit no partial spatial derivatives, the functions
𝐮1(𝑥, 𝑡) ∈ 𝐻1[𝑎, 𝑏]𝑛1 admit only first-order partial spatial derivatives, and the functions 𝐮2(𝑥, 𝑡) ∈ 𝐻2[𝑎, 𝑏]𝑛2 admit up to second-order
artial spatial derivatives. Note that the functions {𝐮0,𝐮1,𝐮2} in a state-space form are generally vector-valued, even if the original
ependent variable 𝑣(𝑥, 𝑡) was a scalar [24,60]. Matrix 𝐵 ∈ R𝑛𝑏×2𝑛𝑏 is the boundary conditions matrix, 𝑛𝑏 = 𝑛1 + 2𝑛2 is the number
f boundary conditions required for a well-posed problem, and 𝐡(𝑡) ∈ R𝑛𝑏 is the vector of the boundary condition values. According
o a decomposition of the functions into its state-space form, the functions 𝐮0(𝑥, 𝑡) admit no boundary conditions, functions 𝐮1(𝑥, 𝑡)
dmit one boundary condition per each scalar component, and functions 𝐮2(𝑥, 𝑡) admit two boundary conditions per each scalar
omponent. Since these boundary conditions can be prescribed either on the left or the right ends of the domain or, in general,
ontain boundary constraints that couple the two ends, a boundary conditions matrix 𝐵 has 2𝑛𝑏 columns. Most 1D PDEs can be
ormulated using this standardized representation, with multiple examples on how to accomplish this transformation for various
inear PDE models given in our previous work [24,60], and in the numerical examples presented in this paper.

.2. Conversion to a Partial Integral Equation (PIE) representation

.2.1. Some useful preliminaries
Peet [24] have introduced a framework for converting PDE equations in the form of (2.1) to a Partial Integral Equation (PIE)

orm. The original formulation is, however, restricted to a homogeneous case, i.e. a zero forcing function 𝐟 (𝑥, 𝑡), and homogeneous
oundary conditions (2.2) given by 𝐡(𝑡) = 0. Here, we extend the previous result to inhomogeneous boundary conditions in (2.2)
efined by an arbitrary vector 𝐡(𝑡) ∈ 𝐶1(R+)2𝑛𝑏 , and an arbitrary forcing function 𝐟 (𝑥, 𝑡) ∈ 𝐿𝑛𝑠2 in Eq. (2.1). We will try to minimize
he repetition of the proofs that already appeared in [24,61], and will refer the reader to these two manuscripts, whenever possible.

For the homogeneous boundary conditions, we have the following lemma [24].

emma 2.1. If 𝐡(𝑡) = 0, i.e. boundary conditions are homogeneous, 𝑋0 is a linear subspace of 𝑋.

roof. We show the following properties of 𝑋0 that makes it a linear subspace:

1. The zero element 0𝑛𝑠 ∈ 𝑋0, since 0𝑛𝑠 ∈ 𝑋, and 0𝑛𝑠 satisfies (2.2) with 𝐡(𝑡) = 0.
2. 𝑋0 is closed under addition and scalar multiplication, since 𝑋 is closed under addition and scalar multiplication, and these

operations preserve homogeneous boundary conditions. □

Note that, for inhomogeneous boundary conditions, 𝐡(𝑡) ≠ 0, 𝑋ℎ is not a linear subspace, since, for one, it does not contain a
zero vector. Instead, it corresponds to an affine space isomorphic to 𝑋0 that is obtained from 𝑋0 by a translation transformation,
as will be discussed later.

Given a primary state defined by (2.6), we now introduce a fundamental state as

𝐮𝑓 (𝑥, 𝑡) =
⎡

⎢

⎢

𝐮𝑓0(𝑥, 𝑡)
𝐮𝑓1(𝑥, 𝑡)

⎤

⎥

⎥

=
⎡

⎢

⎢

𝐮0(𝑥, 𝑡)
𝐮1𝑥(𝑥, 𝑡)

⎤

⎥

⎥

∈
⎡

⎢

⎢

(𝐿2[𝑎, 𝑏])𝑛0
(𝐿2[𝑎, 𝑏])𝑛1

𝑛2

⎤

⎥

⎥

, 𝑡 ∈ R+. (2.7)
4

⎣𝐮𝑓2(𝑥, 𝑡)⎦ ⎣𝐮2𝑥𝑥(𝑥, 𝑡)⎦ ⎣(𝐿2[𝑎, 𝑏]) ⎦

Journal of Computational and Applied Mathematics 442 (2024) 115673Y.T. Peet and M.M. Peet

N
f

L

w
N

3

D
o

Note that the fundamental state solution is in 𝐿2[𝑎, 𝑏]𝑛𝑠 space, and thus, it does not admit boundary constraints, which is reflected in
the fact that the superscript ℎ is now omitted from the notation. It can be seen, that the fundamental state is related to the primary
state by the following differentiation operation

𝐮𝑓 (𝑥, 𝑡) = 𝐮ℎ(𝑥, 𝑡), (2.8)

where the differentiation operator  has the form

 ∶=
⎡

⎢

⎢

⎣

𝐼𝑛0
𝐼𝑛1 𝜕𝑥

𝐼𝑛2 𝜕
2
𝑥

⎤

⎥

⎥

⎦

. (2.9)

ote that, in general, a map  ∶ 𝑋 → 𝐿𝑛𝑠2 is non-injective, since there can be multiple elements of 𝑋 mapped into the same
undamental state 𝐮𝑓 (𝑥, 𝑡), differing by boundary conditions.

We now proceed with invoking the following lemma proven in [24].

emma 2.2. Suppose that 𝑢 ∈ 𝐻2[𝑎, 𝑏]. Then for any 𝑥 ∈ [𝑎, 𝑏],

𝑢(𝑥) = 𝑢(𝑎) + ∫

𝑥

𝑎
𝑢𝑥(𝑠)𝑑𝑠 (2.10)

𝑢𝑥(𝑥) = 𝑢𝑥(𝑎) + ∫

𝑥

𝑎
𝑢𝑥𝑥(𝑠)𝑑𝑠 (2.11)

𝑢(𝑥) = 𝑢(𝑎) + 𝑢𝑥(𝑎)(𝑥 − 𝑎) + ∫

𝑥

𝑎
(𝑥 − 𝑠)𝑢𝑥𝑥(𝑠)𝑑𝑠 (2.12)

Proof. See the manuscript [24] for a proof. □

Next, we define the boundary conditions vectors as

𝐮𝑏𝑓 (𝑡) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐮1(𝑎, 𝑡)
𝐮1(𝑏, 𝑡)
𝐮2(𝑎, 𝑡)
𝐮2(𝑏, 𝑡)
𝐮2𝑥(𝑎, 𝑡)
𝐮2𝑥(𝑏, 𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝐮𝑏𝑐 (𝑡) =
⎡

⎢

⎢

⎣

𝐮1(𝑎, 𝑡)
𝐮2(𝑎, 𝑡)
𝐮2𝑥(𝑎, 𝑡)

⎤

⎥

⎥

⎦

, (2.13)

here 𝐮𝑏𝑓 (𝑡) corresponds to a full set of boundary conditions, and 𝐮𝑏𝑐 (𝑡) corresponds to a ‘‘core’’ set of boundary conditions [61].
ote that, under this definition, boundary constraint (2.2) reads as 𝐵𝐮𝑏𝑓 (𝑡) = 𝐡(𝑡).

We now have to introduce the notation to define a partial-integral operator of a specific form, which will be referred to as a
-PI operator.

efinition 1. If 𝑁0 ∶ [𝑎, 𝑏] → R𝑛×𝑛, 𝑁1 ∶ [𝑎, 𝑏]2 → R𝑛×𝑛, 𝑁2 ∶ [𝑎, 𝑏]2 → R𝑛×𝑛 are bounded matrix-valued functions, we define a 3-PI
perator  ∶ 𝐿𝑛2[𝑎, 𝑏] → 𝐿𝑛2[𝑎, 𝑏] as

(𝐮)(𝑥) ∶=
(

{𝑁0 ,𝑁1 ,𝑁2}𝐮
)

(𝑥) ∶= 𝑁0(𝑥)𝐮(𝑥) (2.14)

+ ∫

𝑥

𝑎
𝑁1(𝑥, 𝑠)𝐮(𝑠) 𝑑𝑠 + ∫

𝑏

𝑎
𝑁2(𝑥, 𝑠)𝐮(𝑠)𝑑𝑠,

where 𝑁0 defines a multiplier operator and 𝑁1, 𝑁2 define the kernels of the integral operators.

Our definition is slightly different from the one presented in [24] in that a last term here is defined as an integral from 𝑎 to 𝑏,
while it is defined as an integral from 𝑥 to 𝑏 in [24], however, with the appropriate modification of the integral kernels, the two
definitions are equivalent. It is proven in [24] that 3-PI operators are closed under addition, scalar multiplication and composition,
and thus form an algebra.

We now define two specific 3-PI operators, which will be instrumental for conversion of the PDEs into the PIE framework, as
will be seen below.

 ∶= {𝐺0 ,𝐺1 ,𝐺2},  ∶= {𝐻0 ,𝐻1 ,𝐻2},

𝐻0(𝑥) = 𝐴0(𝑥)𝐺0 + 𝐴1(𝑥)𝐺3 + 𝐴20(𝑥),

𝐻1(𝑥, 𝑠) = 𝐴0(𝑥)𝐺1(𝑥, 𝑠) + 𝐴1(𝑥)𝐺4, (2.15)
𝐻2(𝑥, 𝑠) = 𝐴0(𝑥)𝐺2(𝑥, 𝑠) + 𝐴1(𝑥)𝐺5(𝑠),

𝐴20(𝑥) =
[

0 0 𝐴2(𝑥)
]

,

where 𝐴𝑖(𝑥), 𝑖 = 0…2, are as defined in Eq. (2.1), 𝐺𝑖(𝑥, 𝑠), 𝑖 = 0…5, are given in the Appendix A. With this definition, only 𝐺2(𝑥, 𝑠)
and 𝐻2(𝑥, 𝑠) operators depend on the boundary conditions matrix 𝐵, and the other operators will stay invariant for a given PDE
5

regardless of the choice of the boundary conditions.

Journal of Computational and Applied Mathematics 442 (2024) 115673Y.T. Peet and M.M. Peet

T

i

t
𝐮

w

P
w

w
a

w

f

U

S

2.2.2. PIE representation
We are now ready to prove the following theorem.

heorem 2.3. If the matrix

𝐵𝑇 = 𝐵𝑇 (2.16)

s invertible, where 𝑇 is given by

𝑇 ∶=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐼𝑛1 0 0
𝐼𝑛1 0 0
0 𝐼𝑛2 0
0 𝐼𝑛2 (𝑏 − 𝑎)𝐼𝑛2
0 0 𝐼𝑛2
0 0 𝐼𝑛2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (2.17)

hen for any 𝐮ℎ(𝑥, 𝑡) ∈ 𝑋ℎ there exists a unique fundamental state 𝐮𝑓 (𝑥, 𝑡) ∈ 𝐿𝑛𝑠2 given by (2.8), such that 𝐮ℎ(𝑥, 𝑡) can be obtained from
𝑓 (𝑥, 𝑡) by a transformation

𝐮ℎ(𝑥, 𝑡) = 𝐾(𝑥)𝐵−1
𝑇 𝐡(𝑡) +  𝐮𝑓 (𝑥, 𝑡), (2.18)

ith  as defined in (2.15), and 𝐾(𝑥) given in Appendix A. Furthermore, for any 𝐮𝑓 (𝑥, 𝑡) ∈ 𝐿𝑛𝑠2 , 𝐮ℎ(𝑥, 𝑡) obtained via (2.18) is in 𝑋ℎ.

roof. Suppose 𝐮ℎ(𝑥, 𝑡) ∈ 𝑋ℎ. Define the corresponding fundamental state 𝐮𝑓 (𝑥, 𝑡) via (2.8). Clearly, 𝐮𝑓 (𝑥, 𝑡) ∈ 𝐿𝑛𝑠2 . Using Lemma 2.2,
e can express 𝐮𝑏𝑓 (𝑡) through 𝐮𝑏𝑐 (𝑡) (see Eq. (2.13)) and the fundamental state 𝐮𝑓 (𝑥, 𝑡) given by (2.8) as

𝐮𝑏𝑓 (𝑡) = 𝑇𝐮𝑏𝑐 (𝑡) + {0,0,𝑄}𝐮𝑓 (𝑥, 𝑡), (2.19)

here 𝑇 is given by (2.17), and 𝑄 is defined in Appendix A. Analogously, the primary state 𝐮ℎ(𝑥, 𝑡) can be expressed through 𝐮𝑏𝑐 (𝑡)
nd 𝐮𝑓 (𝑥, 𝑡) as

𝐮ℎ(𝑥, 𝑡) = 𝐾(𝑥)𝐮𝑏𝑐 (𝑡) + {𝐺0 ,𝐺1 ,0}𝐮𝑓 (𝑥, 𝑡), (2.20)

here 𝐺0, 𝐺1 are as defined in Appendix A. Using (2.19), the boundary constraint (2.2) can be expressed as

𝐵𝐮𝑏𝑓 (𝑡) = 𝐵𝑇 𝐮𝑏𝑐 (𝑡) + 𝐵{0,0,𝑄}𝐮𝑓 (𝑥, 𝑡), (2.21)

rom where, since 𝐵𝐮𝑏𝑓 (𝑡) = 𝐡(𝑡), we have

𝐵𝑇 𝐮𝑏𝑐 (𝑡) + 𝐵{0,0,𝑄}𝐮𝑓 (𝑥, 𝑡) = 𝐡(𝑡). (2.22)

sing the assumption of invertibility of 𝐵𝑇 , we may now express the core boundary condition vector as

𝐮𝑏𝑐 (𝑡) = 𝐵−1
𝑇 𝐡(𝑡) − 𝐵−1

𝑇 𝐵{0,0,𝑄}𝐮𝑓 (𝑥, 𝑡) (2.23)
= 𝐵−1

𝑇 𝐡(𝑡) − {0,0,𝐵−1
𝑇 𝐵𝑄}𝐮𝑓 (𝑥, 𝑡).

ubstituting (2.23) into (2.20), we get

𝐮ℎ(𝑥, 𝑡) = 𝐾(𝑥)𝐵−1
𝑇 𝐡(𝑡) − {𝐾,0,0}{0,0,𝐵−1

𝑇 𝐵𝑄}𝐮𝑓 (𝑥, 𝑡)+ (2.24)

{𝐺0 ,𝐺1 ,0}𝐮𝑓 (𝑥, 𝑡) = 𝐾(𝑥)𝐵−1
𝑇 𝐡(𝑡) + {𝐺0 ,𝐺1 ,𝐺2}𝐮𝑓 (𝑥, 𝑡),

which concludes the proof of the first part of the theorem. Note that the addition rule, scalar multiplication rule and the composition
rule for the 3-PI operators [24] were used in this proof.

Conversely, let 𝐮𝑓 (𝑥, 𝑡) be in 𝐿𝑛𝑠2 . It is proven in [61] that  𝐮𝑓 (𝑥, 𝑡) ∈ 𝑋0. Therefore,  𝐮𝑓 (𝑥, 𝑡) ∈ 𝑋, since 𝑋0 ⊂ 𝑋. It is easy
to see that 𝐾(𝑥)𝐵−1

𝑇 𝐡(𝑡) ∈ 𝐻𝑛𝑠
∞ , therefore 𝐾(𝑥)𝐵−1

𝑇 𝐡(𝑡) ∈ 𝑋, and 𝐮ℎ(𝑥, 𝑡) ∈ 𝑋. We now only need to show that 𝐮ℎ(𝑥, 𝑡) satisfies
boundary conditions (2.2). We may evaluate the value of components 𝐮ℎ1 (𝑥, 𝑡), 𝐮

ℎ
2 (𝑥, 𝑡) from (2.18) using the definition of 𝐾(𝑥) and

 . Correspondingly, we have

𝐮ℎ1 (𝑥, 𝑡) =
[

𝐼𝑛1 0 0
]

𝐵−1
𝑇 𝐡(𝑡) −

[

0 𝐼𝑛1 0
]

{0,𝐺1 ,𝐺2}𝐮𝑓 (𝑥, 𝑡), (2.25)

𝐮ℎ2 (𝑥, 𝑡) =
[

0 𝐼𝑛2 (𝑥 − 𝑎)𝐼𝑛2
]

𝐵−1
𝑇 𝐡(𝑡) −

[

0 0 𝐼𝑛2
]

{0,𝐺1 ,𝐺2}𝐮𝑓 (𝑥, 𝑡). (2.26)

Furthermore, differentiating (2.26) with respect to 𝑥, we get

𝐮ℎ (𝑥, 𝑡) =
[

00 𝐼
]

𝐵−1𝐡(𝑡) − 𝜕 (

[

0 0 𝐼
]

 𝐮 (𝑥, 𝑡)
)

. (2.27)
6

2𝑥 𝑛2 𝑇 𝜕𝑥 𝑛2 {0,𝐺1 ,𝐺2} 𝑓

Journal of Computational and Applied Mathematics 442 (2024) 115673Y.T. Peet and M.M. Peet

v

s
p

C

P
(

C

w
t

P
s
a

t
u
i
e
𝐮
H

P

T
o

Now, evaluating (2.25), (2.26), (2.27) at 𝑥 = 𝑎 nullifies the contribution of {0,𝐺1 ,0} operator and gives us the boundary conditions
ector 𝐮𝑏𝑐 (𝑡) as

𝐮𝑏𝑐 (𝑡) =
⎡

⎢

⎢

⎢

⎣

𝐮ℎ1 (𝑎, 𝑡)
𝐮ℎ2 (𝑎, 𝑡)
𝐮ℎ2𝑥(𝑎, 𝑡)

⎤

⎥

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

𝐼𝑛1 0 0

0 𝐼𝑛2 0

0 0 𝐼𝑛2

⎤

⎥

⎥

⎥

⎦

𝐵−1
𝑇 𝐡(𝑡) − 𝐵−1

𝑇 𝐵 {0,0,𝑄}𝐮𝑓 (𝑥, 𝑡), (2.28)

ee also [61]. Now, multiplying both sides of (2.28) by 𝐵𝑇 shows that 𝐵𝑇 𝐮𝑏𝑐 (𝑡) + 𝐵{0,0,𝑄}𝐮𝑓 (𝑥, 𝑡) = 𝐡(𝑡), which, by identity (2.21)
roves that the primary state 𝐮ℎ(𝑥, 𝑡) constructed via the transformation (2.18) satisfies the boundary conditions. □

We also have the following corollary that further establishes the properties of the transformation (2.18).

orollary 2.4. A transformation 𝐿𝑛𝑠2 → 𝑋ℎ defined by Eq. (2.18) is a surjection.

roof. Since, by Theorem 2.3, for every 𝐮ℎ(𝑥, 𝑡) ∈ 𝑋ℎ there exists 𝐮𝑓 (𝑥, 𝑡) ∈ 𝐿𝑛𝑠2 that can be mapped into 𝐮ℎ(𝑥, 𝑡), this shows that
2.18) is a surjection. □

Another corollary allows to view the transformation (2.18) as a sequence of a linear and an affine transformation.

orollary 2.5. A transformation 𝐿𝑛𝑠2 → 𝑋ℎ defined by Eq. (2.18) consists of a sequence of transformations 𝐿𝑛𝑠2 →
⏟⏟⏟



𝑋0 →
⏟⏟⏟



𝑋ℎ

here the transformation  ∶ 𝐿𝑛𝑠2 → 𝑋0 is a unitary map, and a transformation  ∶ 𝑋0 → 𝑋ℎ is an affine isomorphism defined by a
ranslation.

roof. Denote 𝐮0(𝑥, 𝑡) =  𝐮𝑓 (𝑥, 𝑡). From [24,61], we see that 𝐮0(𝑥, 𝑡) ∈ 𝑋0. Since 𝑋0 is a special case of 𝑋ℎ with 𝐡(𝑡) = 0, Corollary 2.4
hows that  ∶ 𝐿𝑛𝑠2 → 𝑋0 is a surjection (an alternative proof can be found in [61]. Since, by Lemma 2.1, 𝑋0 is a linear subspace,
n inner product can be defined. Refs. [24,61] further show that  preserves the inner products, and thus is a unitary map.

Now, we define 𝑅(𝑥, 𝑡) = 𝐾(𝑥)𝐵−1
𝑇 𝐡(𝑡), such that  ∶ 𝑋0 → 𝑋ℎ is given by 𝐮ℎ(𝑥, 𝑡) = 𝐮0(𝑥, 𝑡) + 𝑅(𝑥, 𝑡), which is an affine

ransformation of translation. Given a specific vector of boundary conditions 𝐡(𝑡) that fixes 𝑋ℎ, a translation function 𝑅(𝑥, 𝑡) is
niquely defined. We now show that  is isomorphism. Let 𝐮ℎ(𝑥, 𝑡) be in 𝑋ℎ. Theorem 2.3 shows that 𝐮0(𝑥, 𝑡) = 𝐮ℎ(𝑥, 𝑡) − 𝑅(𝑥, 𝑡)
s in 𝑋0, and thus  ∶ 𝑋0 → 𝑋ℎ is a surjection. Now, we have to show that 𝑅 is also an injection. Suppose there are two
lements in 𝑋0, 𝐮01(𝑥, 𝑡) and 𝐮02(𝑥, 𝑡) that are mapped into a single element 𝐮ℎ(𝑥, 𝑡). We then have 𝐮01(𝑥, 𝑡) = 𝐮ℎ(𝑥, 𝑡) − 𝑅(𝑥, 𝑡), and
0
2(𝑥, 𝑡) = 𝐮ℎ(𝑥, 𝑡)−𝑅(𝑥, 𝑡). Since 𝑅(𝑥, 𝑡) is a unique function for every 𝑋ℎ, this shows that 𝐮01(𝑥, 𝑡) = 𝐮02(𝑥, 𝑡), and thus  is an injection.
ence,  is an isomorphism, as desired. □

We are now ready to state the final result concerning the conversion of PDEs with inhomogeneous boundary conditions to the
IE framework.

heorem 2.6. The function 𝐮ℎ(𝑥, 𝑡) ∈ 𝑋ℎ satisfies the PDE Eq. (2.1) with boundary conditions (2.2) and initial conditions (2.3) if and
nly if the corresponding fundamental state function 𝐮𝑓 (𝑥, 𝑡) = 𝐮ℎ(𝑥, 𝑡) ∈ 𝐿𝑛𝑠2 satisfies the following PIE equation


𝜕𝐮𝑓 (𝑥, 𝑡)
𝜕 𝑡

=  𝐮𝑓 (𝑥, 𝑡) + 𝐠(𝑥, 𝑡), (2.29)

with 𝐠(𝑥, 𝑡) given by

𝐠(𝑥, 𝑡) = 𝐴0(𝑥)𝐾(𝑥)𝐵−1
𝑇 𝐡(𝑡) (2.30)

+ 𝐴1(𝑥)𝑉 𝐵−1
𝑇 𝐡(𝑡) −𝐾(𝑥)𝐵−1

𝑇
𝑑 𝐡(𝑡)
𝑑 𝑡

+ 𝐟 (𝑥, 𝑡),

initial conditions 𝐮𝑓 (𝑥, 0) = 𝛽𝛽𝛽𝑓 (𝑥), where 𝛽𝛽𝛽𝑓 (𝑥) = 𝛽𝛽𝛽ℎ(𝑥), and the 3-PI operators  ,  as defined by (2.15), 𝐾(𝑥) and 𝑉 as defined in
Appendix A. Moreover, 𝐮ℎ(𝑥, 𝑡) is related to 𝐮𝑓 (𝑥, 𝑡) by the transformation (2.18).

Proof. Suppose 𝐮ℎ(𝑥, 𝑡) ∈ 𝑋ℎ satisfies the PDE (2.1) with boundary conditions (2.2) and initial conditions (2.3). Since 𝐮𝑓 (𝑥, 𝑡) =
𝐮ℎ(𝑥, 𝑡), it immediately follows that 𝐮𝑓 (𝑥, 0) = 𝐮ℎ(𝑥, 0), i.e. 𝛽𝛽𝛽𝑓 (𝑥) = 𝛽𝛽𝛽ℎ(𝑥). Using the definition of the PDE (2.1) and defining
an auxiliary differentiation operator 1 as

1 ∶=

[

0𝑛1×𝑛0 𝐼𝑛1𝜕𝑥 0

0 0 𝐼𝑛2 𝜕𝑥

]

, (2.31)

we get

𝜕𝐮ℎ(𝑥, 𝑡)
𝜕 𝑡

= {𝐴0 ,0,0}𝐮
ℎ(𝑥, 𝑡) + {𝐴1 ,0,0} 1 𝐮ℎ(𝑥, 𝑡) (2.32)

+ {𝐴20 ,0,0} 𝐮ℎ(𝑥, 𝑡) + 𝐟 (𝑥, 𝑡),
7

Journal of Computational and Applied Mathematics 442 (2024) 115673Y.T. Peet and M.M. Peet

C

a
P

with 𝐴20 defined in (2.15). To evaluate 𝐮ℎ(𝑥, 𝑡), Eq. (2.8) can be used, while 1𝐮ℎ(𝑥, 𝑡) can be obtained from

1𝐮ℎ(𝑥, 𝑡) = 1{𝐾̃,0,0}𝐡(𝑡) +1 𝐮𝑓 (𝑥, 𝑡), (2.33)

where the notation 𝐾̃(𝑥) = 𝐾(𝑥)𝐵−1
𝑇 is used. Substituting (2.18), (2.8) and (2.33) into (2.32), we obtain

𝜕𝐮ℎ(𝑥, 𝑡)
𝜕 𝑡

= {𝐴0 ,0,0}{𝐾̃,0,0}𝐡(𝑡) + {𝐴0 ,0,0} 𝐮𝑓 (𝑥, 𝑡)

+ {𝐴1 ,0,0}1{𝐾̃,0,0}𝐡(𝑡) + {𝐴1 ,0,0}1 𝐮𝑓 (𝑥, 𝑡) (2.34)
+ {𝐴20 ,0,0} {𝐾̃,0,0}𝐡(𝑡) + {𝐴20 ,0,0} 𝐮𝑓 (𝑥, 𝑡) + 𝐟 (𝑥, 𝑡).

Separating homogeneous and inhomogeneous terms in the right-hand side, we have

𝜕𝐮ℎ(𝑥, 𝑡)
𝜕 𝑡

= 𝐻(𝑥, 𝑡) + 𝐼(𝑥, 𝑡), (2.35)

where

𝐻(𝑥, 𝑡) = {𝐴0 ,0,0} 𝐮𝑓 (𝑥, 𝑡) + {𝐴1 ,0,0}1 𝐮𝑓 (𝑥, 𝑡) + {𝐴20 ,0,0}𝐮𝑓 (𝑥, 𝑡), (2.36)

𝐼(𝑥, 𝑡) = {𝐴0 ,0,0}{𝐾̃,0,0} 𝐡(𝑡) + {𝐴1 ,0,0}1{𝐾̃,0,0}𝐡(𝑡) + 𝐟 (𝑥, 𝑡). (2.37)

The homogeneous term, as shown in [24], reduces to

𝐻(𝑥, 𝑡) = {𝐻0 ,𝐻1 ,𝐻2}𝐮𝑓 (𝑥, 𝑡) = 𝐮𝑓 (𝑥, 𝑡). (2.38)

Finally, taking a partial derivative with respect to time of Eq. (2.18), we have

𝜕𝐮ℎ(𝑥, 𝑡)
𝜕 𝑡

= 𝐾(𝑥)𝐵−1
𝑇
𝑑 𝐡(𝑡)
𝑑 𝑡

+ 
𝜕𝐮𝑓 (𝑥, 𝑡)
𝜕 𝑡

. (2.39)

ombining Eqs. (2.35)–(2.39) leads to (2.29)–(2.30).
Conversely, suppose 𝐮𝑓 (𝑥, 𝑡) ∈ 𝐿𝑛𝑠2 satisfies the PIE Eq. (2.29)–(2.30) with initial conditions 𝐮𝑓 (𝑥, 0) = 𝛽𝛽𝛽𝑓 (𝑥). Define 𝐮ℎ(𝑥, 𝑡)

ccording to the transformation (2.18). By Theorem 2.3, 𝐮ℎ(𝑥, 𝑡) ∈ 𝑋ℎ, and thus satisfies boundary conditions (2.2). Rearrange the
IE equation as


𝜕𝐮𝑓 (𝑥, 𝑡)
𝜕 𝑡

+𝐾(𝑥)𝐵−1
𝑇
𝑑 𝐡(𝑡)
𝑑 𝑡

=  𝐮𝑓 (𝑥, 𝑡) + 𝐼(𝑥, 𝑡), (2.40)

with 𝐼(𝑥, 𝑡) as defined in (2.37). The left-hand side of (2.40) is equal to 𝜕 𝐮ℎ(𝑥, 𝑡)∕𝜕 𝑡, according to (2.39). Recognizing that, by (2.38),
𝐮𝑓 (𝑥, 𝑡) = 𝐻(𝑥, 𝑡), and using Eqs. (2.36) and (2.37), the right-hand side of (2.40) becomes

𝐻(𝑥, 𝑡) + 𝐼(𝑥, 𝑡) = {𝐴0 ,0,0}
(

 𝐮𝑓 (𝑥, 𝑡) + {𝐾̃,0,0} 𝐡(𝑡)
)

+ {𝐴1 ,0,0}
(

1 𝐮𝑓 (𝑥, 𝑡) +1{𝐾̃,0,0}𝐡(𝑡)
)

(2.41)
+ {𝐴20 ,0,0}𝐮𝑓 (𝑥, 𝑡) + 𝐟 (𝑥, 𝑡).

Using (2.8), (2.18) and (2.33), the right-hand side of (2.41) reduces to

𝐻(𝑥, 𝑡) + 𝐼(𝑥, 𝑡) (2.42)
= {𝐴0 ,0,0}𝐮

ℎ(𝑥, 𝑡) + {𝐴1 ,0,0} 1 𝐮ℎ(𝑥, 𝑡) + {𝐴20 ,0,0} 𝐮ℎ(𝑥, 𝑡) + 𝐟 (𝑥, 𝑡),

which is equivalent to the right-hand side of the PDE Eq. (2.1), showing that 𝐮ℎ(𝑥, 𝑡) indeed satisfies the original PDE. □

2.2.3. Note on invertibility of 𝐵𝑇
Theorem 2.3 relies on the condition of invertibility of the 𝐵𝑇 matrix. It was proven in [24] that the necessary and sufficient

condition for the inverse of 𝐵𝑇 to exist is for 𝐵 to: (1) have a row rank of 𝑛𝑏, and (2) have a row space that has a trivial intersection
with the row space of 𝑇 ⟂, where 𝑇 ⟂ defines an orthogonal complement to a column space of 𝑇 . This leads to an exclusion of the
boundary conditions that are a linear combination of

𝐮1(𝑎, 𝑡) − 𝐮1(𝑏, 𝑡) = 𝐡1(𝑡), (2.43)

𝐮2(𝑎, 𝑡) + (𝑏 − 𝑎)𝐮2𝑥(𝑎, 𝑡) − 𝐮2(𝑏, 𝑡) = 𝐡(1)2 (𝑡), (2.44)

𝐮2𝑥(𝑎, 𝑡) − 𝐮2𝑥(𝑏, 𝑡) = 𝐡(2)2 (𝑡), (2.45)

from the set of the boundary conditions, for which 𝐵𝑇 is invertible. Note that the excluded boundary conditions involve periodic
boundary conditions on the state 𝐮1(𝑥, 𝑡), periodic boundary conditions on the derivatives of the state 𝐮2(𝑥, 𝑡), and Neumann–
Neumann conditions on the state 𝐮2(𝑥, 𝑡), among others. In general, such boundary conditions are ill-posed for the boundary value
problems, however, a unique solution might exist to initial–boundary value problems [62]. In a PIE framework, the problem with 𝐵𝑇
invertibility for these boundary conditions arises from the fact that now a fundamental state needs to have an additional constraint
8

Journal of Computational and Applied Mathematics 442 (2024) 115673Y.T. Peet and M.M. Peet

I

i
a
m

3

3

𝛽𝛽𝛽
S
c
a
w

T

d
𝑢
d

w

f

w

w
𝑘
𝑁

w

w

in order to satisfy these boundary conditions, implying that the fundamental state is no longer minimal. For example, with the
periodic boundary condition on 𝐮1, we have a constraint that the integral of its derivative over the domain must be equal to zero.
f this derivative enters the fundamental state, as would be the case for 𝐮1𝑥, this additional constraint, since it is not embedded into

the PIE dynamics, may not be satisfied.
To remedy this situation, it is possible to redefine a fundamental state to be free of constraints, and embed the corresponding

constraints into the PIE operators. This can be formally accomplished by performing an SVD decomposition of the 𝐵𝑇 matrix,
ntroducing an auxiliary state vector 𝐮𝑛(𝑡) ∈ R𝑟, where 𝑟 is the rank deficiency of 𝐵𝑇 , and modifying the PIE equations
ccordingly [63]. While this is generally possible, such modification will not be considered here, and we will assume that 𝐵𝑇
atrix is invertible, with the use of appropriate boundary conditions.

. Solution of the PDEs in the PIE framework: PIE-Galerkin- Chebyshev (PGC) approximation

.1. Spatial treatment

We are now interested in finding a solution 𝐮𝑓 (𝑥, 𝑡) ∈ 𝐿2[𝑎, 𝑏]𝑛𝑠 to the PIE equation (2.29) with the initial conditions 𝐮𝑓 (𝑥, 0) =
𝑓 (𝑥), whose corresponding primary state 𝐮ℎ(𝑥, 𝑡) given by (2.18) satisfies the original PDE equation (2.1), according to Theorem 2.6.
ince 𝐮𝑓 (𝑥, 𝑡) ∈ 𝐿2[𝑎, 𝑏]𝑛𝑠, we are free to choose any approximation space without needing to worry about satisfying boundary
onditions. We choose Chebyshev polynomials of the first kind as the approximation functions [8,59]. Since Chebyshev polynomials
re defined on the [−1, 1] domain, we need to map our original PDE from 𝑥 = [𝑎, 𝑏] onto a computational domain 𝑥(𝑐) = [−1, 1],
hich can be readily accomplished by a linear transformation 𝑥(𝑐) = 2𝑥−(𝑏+𝑎)

𝑏−𝑎 , with the inverse map 𝑥 = 𝑏−𝑎
2 𝑥(𝑐) + 𝑏+𝑎

2 . With a slight
abuse of notation, in what follows, we will assume that the corresponding PIE equation is defined on 𝑥 ∈ [−1, 1] domain, following
a prior mapping if necessary.

In accordance with (2.7), (2.8), and (2.9), we can write for each sub-component 𝐮𝑓𝑝(𝑥, 𝑡) of 𝐮𝑓 (𝑥, 𝑡), 𝑝 = 0, 1, 2,

𝐮𝑓𝑝(𝑥, 𝑡) =
𝜕 𝑝𝐮𝑝(𝑥, 𝑡)
𝜕𝑥𝑝

. (3.1)

herefore, with each component 𝑢𝑓𝑖(𝑥, 𝑡), 𝑖 = 1… 𝑛𝑠, of the vector 𝐮𝑓 (𝑥, 𝑡), we can associate an index

𝑝 = 𝑝(𝑖), (3.2)

efined as a ‘‘minimum smoothness’’ required from the original 𝑢𝑖(𝑥, 𝑡) function to enter the PDE (2.1). We now look for solutions
𝑓𝑖(𝑥, 𝑡) ∈ P[−1, 1]𝑁−𝑝(𝑖) for each corresponding 𝑢𝑓𝑖(𝑥, 𝑡) component, where P[−1, 1]𝑁−𝑝(𝑖) is the space of all polynomial functions of
egree 𝑁 − 𝑝(𝑖) or less on the domain [−1, 1], i.e. we approximate

𝑢̂𝑓𝑖(𝑥, 𝑡) =
𝑁−𝑝(𝑖)
∑

𝑘=0
𝑎𝑖𝑘(𝑡)𝑇𝑘(𝑥), (3.3)

here 𝑇𝑘(𝑥) are the Chebyshev polynomials of the first kind [8,59], and 𝑎𝑖𝑘(𝑡) ∈ 𝐶1(𝑅+) are the corresponding time-dependent Cheby-
shev coefficients, where the subscript 𝑖 denotes their affiliation with a particular solution component 𝑢̂𝑓𝑖(𝑥, 𝑡). The approximation
or the vector-valued function 𝐮̂𝑓 (𝑥, 𝑡) can then be compactly written as

𝐮̂𝑓 (𝑥, 𝑡) =
𝑛𝑠
∑

𝑖=1

𝑁−𝑝(𝑖)
∑

𝑘=0
𝑎𝑖𝑘(𝑡)𝜙𝜙𝜙𝑖𝑘(𝑥), (3.4)

here the vector-valued Chebyshev basis functions 𝜙𝜙𝜙𝑖𝑘(𝑥) ∶ R → R𝑛𝑠 can be defined as

𝜙𝜙𝜙𝑖𝑘(𝑥) =
[

0 ⋯ ⋯ 𝑇𝑘(𝑥) ⋯ 0
]𝑇

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑛𝑠

, (3.5)

here 𝑇𝑘(𝑥) is in the 𝑖th position of the vector 𝜙𝜙𝜙𝑖𝑘(𝑥) for each vector-valued basis function distinguished by a fixed 𝑖 = 1… 𝑛𝑠,
= 0…𝑁 − 𝑝(𝑖). We denote the polynomial space spanned by the vector-valued basis functions 𝜙𝜙𝜙𝑖𝑘(𝑥) as 𝑌 𝑁𝑝 ∶= P[−1, 1]𝑁𝑝 , where
𝑝 = 𝑛0𝑁 × 𝑛1(𝑁 − 1) × 𝑛2(𝑁 − 2), so that the composite vector-valued approximation 𝐮̂𝑓 (𝑥, 𝑡) ∈ 𝑌 𝑁𝑝 .

We introduce the same approximation for the lumped inhomogeneous term 𝐠(𝑥, 𝑡), see (2.30), i.e. we write

𝐠̂(𝑥, 𝑡) =
𝑛𝑠
∑

𝑖=1

𝑁−𝑝(𝑖)
∑

𝑘=0
𝑏𝑖𝑘(𝑡)𝜙𝜙𝜙𝑖𝑘(𝑥), (3.6)

here 𝑏𝑖𝑘(𝑡) are the corresponding Chebyshev coefficients associated with the inhomogeneous term, 𝐠̂(𝑥, 𝑡) ∈ 𝑌 𝑁𝑝 .
With the expansion (3.4), the action of the 3-PI operator  on the function approximation 𝐮̂𝑓 (𝑥, 𝑡) ∈ 𝑌 𝑁𝑝 can be written as

 𝐮̂𝑓 (𝑥, 𝑡) =
𝑛𝑠
∑

𝑖=1

𝑁−𝑝(𝑖)
∑

𝑘=0
𝑎𝑖𝑘(𝑡)  𝜙𝜙𝜙𝑖𝑘(𝑥) =

𝑛𝑠
∑

𝑖=1

𝑁−𝑝(𝑖)
∑

𝑘=0
𝑎𝑖𝑘(𝑡)Col 𝑖()𝑇𝑘(𝑥), (3.7)
9

here the notation Col 𝑖() stands for the 𝑖th column of the matrix operator  . We now have the following lemma.

Journal of Computational and Applied Mathematics 442 (2024) 115673Y.T. Peet and M.M. Peet
Lemma 3.1. The product 𝑚𝑛𝑇𝑘(𝑥), where 𝑚𝑛 is an element of the matrix operator  , 𝑇𝑘(𝑥) is a Chebyshev polynomial function, can be
evaluated according to the following rules:

1. For 𝑚 ≤ 𝑛0,

𝑚𝑛𝑇𝑘(𝑥) = 𝛿𝑚𝑛𝑇𝑘(𝑥). (3.8)

2. For 𝑛0 < 𝑚 ≤ 𝑛0 + 𝑛1,

𝑚𝑛𝑇𝑘(𝑥) = 𝑏(1)0𝑘𝑚𝑛𝑇0(𝑥) + 𝑏
(1)
1𝑘𝑚𝑛𝑇1(𝑥) + 𝛿𝑚𝑛

(

𝑐−𝑘−1𝑇𝑘−1(𝑥) + 𝑐
+
𝑘+1𝑇𝑘+1(𝑥)

)

, (3.9)

where

𝑐−𝑘 =

{

0, 𝑘 ≤ 1
− 1

2𝑘 , 𝑘 ≥ 2
𝑐+𝑘 =

{

0, 𝑘 ≤ 1
1
2𝑘 , 𝑘 ≥ 2

(3.10)

3. For 𝑚 > 𝑛0 + 𝑛1,

𝑚𝑛𝑇𝑘(𝑥) = 𝑏(2)0𝑘𝑚𝑛𝑇0(𝑥) + 𝑏
(2)
1𝑘𝑚𝑛𝑇1(𝑥) (3.11)

+ 𝛿𝑚𝑛
(

𝑑−𝑘−2𝑇𝑘−2(𝑥) + 𝑑𝑘𝑇𝑘(𝑥) + 𝑑
+
𝑘+2𝑇𝑘+2(𝑥)

)

,

where

𝑑−𝑘 =

⎧

⎪

⎨

⎪

⎩

0, 𝑘 ≤ 1
1

4 𝑘(𝑘+1) , 𝑘 ≥ 2
𝑑+𝑘 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0, 𝑘 ≤ 1
1

2 𝑘(𝑘−1) , 𝑘 = 2
1

4 𝑘(𝑘−1) , 𝑘 ≥ 3

(3.12)

𝑑𝑘 =

{

0, 𝑘 ≤ 1
− 1

2(𝑘2−1) , 𝑘 ≥ 2,

where 𝛿𝑚𝑛 is a Kronecker delta function, 𝑏(𝑖)𝑗𝑘𝑚𝑛, 𝑖 = 1, 2, 𝑗 = 0, 1 are real constants, generally dependent on the boundary conditions, and
𝑐−𝑘 , 𝑐

+
𝑘 , 𝑑

−
𝑘 , 𝑑𝑘, 𝑑

+
𝑘 are real constants independent of the boundary conditions. Constants that depend on the boundary conditions can be found,

given a particular PIE operator, following the polynomial integration rules established in the proof.

Proof. The proof of this lemma is included in the Appendix B. □

As a consequence of this result, it can be concluded that the action of  on functions that belong to the polynomial subspaces,
keeps them in the polynomial subspaces, which allows us to evaluate the action of a partial-integral operator  on the polynomial
functions analytically, using the formulas presented in Lemma 3.1. In fact, we can now prove the following lemma.

Lemma 3.2. If 𝐮̂𝑓 (𝑥, 𝑡) ∈ 𝑌 𝑁𝑝 , 𝑁𝑝 = 𝑛0𝑁 × 𝑛1(𝑁 − 1) × 𝑛2(𝑁 − 2), 𝑡 ∈ R+, 𝑁 ≥ 2, the corresponding function approximation 𝐮̂ℎ(𝑥, 𝑡) to
the primary solution

𝐮̂ℎ(𝑥, 𝑡) = 𝐾(𝑥)𝐵−1
𝑇 𝐡(𝑡) +  𝐮̂𝑓 (𝑥, 𝑡) (3.13)

is in the space P𝑁𝑛𝑠, 𝑡 ∈ R+, i.e. all the components of the primary vector-valued solution are in P𝑁 . Furthermore, for 𝐮̂ℎ(𝑥, 𝑡) ∈ P𝑁𝑛𝑠, the
corresponding fundamental state approximation

𝐮̂𝑓 (𝑥, 𝑡) =  𝐮̂ℎ(𝑥, 𝑡) (3.14)

is in 𝑌 𝑁𝑝 .

Proof. Suppose 𝐮̂𝑓 (𝑥, 𝑡) ∈ 𝑌 𝑁𝑝 . We first note that 𝐾(𝑥)𝐵−1
𝑇 𝐡(𝑡) ∈ P1⋅𝑛𝑠, which, for  𝐮̂𝑓 (𝑥, 𝑡) ∈ P𝑁𝑛𝑠, keeps the composite function in

P𝑁𝑛𝑠. We now proceed to show that  𝐮̂𝑓 (𝑥, 𝑡) ∈ P𝑁𝑛𝑠. Denote

𝐮̂𝑓 (𝑥, 𝑡) =
⎡

⎢

⎢

⎢

⎣

𝐮̂𝑓0(𝑥, 𝑡)
𝐮̂𝑓1(𝑥, 𝑡)
𝐮̂𝑓2(𝑥, 𝑡)

⎤

⎥

⎥

⎥

⎦

, 𝐮̂0(𝑥, 𝑡) =  𝐮̂𝑓 (𝑥, 𝑡) =
⎡

⎢

⎢

⎢

⎣

𝐮̂00(𝑥, 𝑡)
𝐮̂01(𝑥, 𝑡)
𝐮̂02(𝑥, 𝑡)

⎤

⎥

⎥

⎥

⎦

, (3.15)

where 𝐮̂𝑓𝑝(𝑥, 𝑡) is the polynomial approximation of 𝐮𝑓𝑝(𝑥, 𝑡) ∈ 𝐿
𝑛𝑝
2 , and 𝐮̂0𝑝(𝑥, 𝑡) is the polynomial approximation of 𝐮0𝑝(𝑥, 𝑡),

respectively, 𝑝 = 0, 1, 2, 𝐮0(𝑥, 𝑡) ∈ 𝑋0. Noting the structure of the matrix functions 𝐺0, 𝐺1 and 𝐺2, it is easily seen that

⎡

⎢

⎢

⎢

𝐮̂00(𝑥, 𝑡)
𝐮̂01(𝑥, 𝑡)
0

⎤

⎥

⎥

⎥

= {𝐺0 ,0,0}

⎡

⎢

⎢

⎢

𝐮̂𝑓0(𝑥, 𝑡)
0

⎤

⎥

⎥

⎥

+ {0,𝐺1 ,0}

⎡

⎢

⎢

⎢

0

𝐮̂𝑓1(𝑥, 𝑡)
⎤

⎥

⎥

⎥

+ {0,0,𝐺2}

⎡

⎢

⎢

⎢

0

𝐮̂𝑓1(𝑥, 𝑡)
⎤

⎥

⎥

⎥

. (3.16)
10

⎣
𝐮̂2(𝑥, 𝑡)⎦ ⎣

0
⎦ ⎣

𝐮̂𝑓2(𝑥, 𝑡)⎦ ⎣
𝐮̂𝑓2(𝑥, 𝑡)⎦

Journal of Computational and Applied Mathematics 442 (2024) 115673Y.T. Peet and M.M. Peet

o

a

w

The first term in the right-hand side of Eq. (3.16) shows that the first 𝑛0 components of 𝐮̂𝑓 (𝑥, 𝑡) are mapped into the first 𝑛0
components of 𝐮̂0(𝑥, 𝑡), with the corresponding P𝑁 → P𝑁 mapping according to (3.8). Since the matrix 𝐺1 is block-diagonal, and
according to (3.9), (3.11), the second term of (3.16) maps the second group of 𝑛1 components between the vectors 𝐮̂𝑓 (𝑥, 𝑡) and
𝐮̂0(𝑥, 𝑡) as P𝑁−1 → P𝑁 , and the third group of 𝑛2 components as P𝑁−2 → P𝑁 . The last entry of Eq. (3.16) corresponds to an integral
ver an entire domain, and thus, as shown in the proof of Lemma 3.1, produces only the outputs in P 0 or P 1.

Now, let 𝐮̂ℎ(𝑥, 𝑡) be in P𝑁𝑛𝑠. According to the structure of the differentiation operator , see Eq. (2.9), it is easy to see that
 𝐮̂ℎ(𝑥, 𝑡) ∈ 𝑌 𝑛0𝑁×𝑛1(𝑁−1)×𝑛2(𝑁−2), which concludes the proof. □

Define the polynomial space Pℎ as the space of functions from P𝑁𝑛𝑠 that satisfy the boundary conditions on [−1, 1] domain, i.e.

Pℎ ∶=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

⎡

⎢

⎢

⎣

𝐮̂0(𝑥, 𝑡)
𝐮̂1(𝑥, 𝑡)
𝐮̂2(𝑥, 𝑡)

⎤

⎥

⎥

⎦

∈ P𝑁𝑛𝑠 ∩ 𝐵

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐮̂1(−1, 𝑡)
𝐮̂1(1, 𝑡)
𝐮̂2(−1, 𝑡)
𝐮̂2(1, 𝑡)

𝐮̂2𝑥(−1, 𝑡)
𝐮̂2𝑥(1, 𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 𝐡(𝑡), 𝑡 ∈ R+

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

(3.17)

The following important theorem allows us to establish the approximation properties of the primary solution 𝐮̂ℎ(𝑥, 𝑡) of the PDE
(2.1), given by (3.13).

Theorem 3.3. For every 𝐮̂ℎ(𝑥, 𝑡) ∈ Pℎ, with 𝑁 ≥ 2, there exists a corresponding approximation to a fundamental state 𝐮̂𝑓 (𝑥, 𝑡) =  𝐮̂ℎ(𝑥, 𝑡),
𝐮̂𝑓 (𝑥, 𝑡) ∈ 𝑌 𝑁𝑝 , 𝑁𝑝 = 𝑛0𝑁 × 𝑛1(𝑁 − 1) × 𝑛2(𝑁 − 2), 𝑡 ∈ R+, that is mapped into 𝐮̂ℎ(𝑥, 𝑡) according to the transformation (3.13). Moreover,
for every 𝐮̂𝑓 (𝑥, 𝑡) ∈ 𝑌 𝑁𝑝 , 𝐮̂ℎ(𝑥, 𝑡) defined by (3.13) is in Pℎ.

Proof. Let 𝐮̂ℎ(𝑥, 𝑡) ∈ Pℎ. Therefore, 𝐮̂ℎ(𝑥, 𝑡) ∈ P𝑁𝑛𝑠. Suppose 𝐮̂𝑓 (𝑥, 𝑡) satisfies Eq. (3.14). By Lemma 3.2, 𝐮̂𝑓 (𝑥, 𝑡) ∈ 𝑌 𝑁𝑝 . Moreover,
due to Theorem 2.3, we have that, since Pℎ ⊂ 𝑋ℎ, and 𝑌 𝑁𝑝 ⊂ 𝐿𝑛𝑠2 , 𝐮̂𝑓 (𝑥, 𝑡) defined by (3.14) is mapped into 𝐮̂ℎ(𝑥, 𝑡) according to the
transformation (2.18), which is equivalent to (3.13).

Now, consider any 𝐮̂𝑓 (𝑥, 𝑡) ∈ 𝑌 𝑁𝑝 . Again, by Lemma 3.2, 𝐮̂ℎ(𝑥, 𝑡) defined by the transformation (3.13) is in P𝑁𝑛𝑠. We are left to
prove that 𝐮̂ℎ(𝑥, 𝑡) satisfies the boundary conditions at 𝑎 = −1, 𝑏 = 1. Since 𝐮̂𝑓 (𝑥, 𝑡) ∈ 𝐿𝑛𝑠2 [−1, 1], Theorem 2.3 ensures that 𝐮̂ℎ(𝑥, 𝑡)
obtained via (3.13), which is equivalent to (2.18), is in 𝑋ℎ[−1, 1], i.e. satisfies the aforementioned boundary conditions, which
concludes the proof. □

According to Theorem 3.3, 𝐮̂ℎ(𝑥, 𝑡) can be decomposed into a corresponding polynomial approximation as

𝐮̂ℎ(𝑥, 𝑡) =
𝑛𝑠
∑

𝑖=1

𝑁
∑

𝑘=0
𝑎ℎ𝑖𝑘(𝑡)𝜓𝜓𝜓 𝑖𝑘(𝑥), (3.18)

where 𝑎ℎ𝑖𝑘(𝑡) are the Chebyshev coefficients, and 𝜓𝜓𝜓 𝑖𝑘(𝑥) ∈ P𝑁𝑛𝑠 are the basis functions defined as

𝜓𝜓𝜓 𝑖𝑘(𝑥) =
[

0⋯ ⋯ 𝑇𝑘(𝑥) ⋯ 0
]𝑇

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑛𝑠

, (3.19)

where 𝑇𝑘(𝑥) is in the 𝑖th position of the vector 𝜓𝜓𝜓 𝑖𝑘(𝑥), 𝑖 = 1… 𝑛𝑠, 𝑘 = 0…𝑁 .
We note that the property given by Theorem 3.3 could be established due to the fact that the 3-PI operator  is invariant under a

projection onto the polynomial subspace P𝑁 . Such invariance would not necessarily hold true for another choice of an approximation
space (which does not contain a polynomial basis).

To represent the operator  = {𝐻0 ,𝐻1 ,𝐻2} in the right-hand side of Eq. (2.29), which contains the functions 𝐴0(𝑥), 𝐴1(𝑥), and
𝐴2(𝑥) in the Galerkin–Chebyshev approximation framework, we decompose the functions 𝐴𝑗 (𝑥), 𝑗 = 0, 1, 2, into the Chebyshev series
s

𝐴𝑗 (𝑥) =
∞
∑

𝑚=0
𝐴𝑗𝑚𝑇𝑚(𝑥), (3.20)

here 𝐴𝑗𝑚 are the matrix-valued coefficients for a particular function 𝐴𝑗 (𝑥). Correspondingly, the kernel functions 𝐻𝑗 , 𝑗 = 0, 1, 2,
in {𝐻0 ,𝐻1 ,𝐻2} can be decomposed into the matrix-valued Chebyshev expansion series as

𝐻0(𝑥) =
∞
∑

𝑚=0
𝐻𝑗𝑚𝑇𝑚(𝑥), (3.21)

𝐻𝑗 (𝑥, 𝑠) =
∞
∑

𝑚=0

1
∑

𝑖=0
𝐴𝑖𝑚𝑇𝑚(𝑥)𝐺𝑗+3𝑖(𝑥, 𝑠), 𝑗 = 1, 2. (3.22)

To apply the operator  = {𝐻0 ,𝐻1 ,𝐻2} to 𝐮̂𝑓 (𝑥, 𝑡) given by (3.4), we first note that

𝐻0(𝑥)𝑇𝑘(𝑥) =
∞
∑

𝐻0𝑚𝑇𝑚(𝑥)𝑇𝑘(𝑥) =
∞
∑ 1𝐻0𝑚

(

𝑇𝑚+𝑘(𝑥) + 𝑇|𝑚−𝑘|(𝑥)
)

. (3.23)
11

𝑚=0 𝑚=0 2

Journal of Computational and Applied Mathematics 442 (2024) 115673Y.T. Peet and M.M. Peet

a

w
f

w
e
c
𝑁
e
𝑀
t

𝜓𝜓𝜓

w
m

3

v
s
a


w

w

s

T
h

w

P
i
i

For the integral kernels, we note that

∫ 𝐻𝑗 (𝑥, 𝑠) 𝑇𝑘(𝑠) 𝑑𝑠 =
∞
∑

𝑚=0

1
∑

𝑖=0
𝐴𝑖𝑚𝑇𝑚(𝑥)∫ 𝐺𝑗+3𝑖(𝑠)𝑇𝑘(𝑠) 𝑑𝑠, (3.24)

where 𝑗 = 1, 2, upon which the integrals in the right-hand side of Eq. (3.24) can be computed using the integration rules for the
Chebyshev polynomials [8,64] as outlined in Appendix B.

We proceed with applying a method of weighted residuals to Eq. (2.29), i.e., we introduce a space of test functions 𝐯̂(𝑥) ∈ 𝑍𝑁𝑝 ,
nd search for 𝐮̂𝑓 (𝑥, 𝑡) ∈ 𝑌 𝑁𝑝 , 𝑡 ∈ 𝑅+, such that

(


𝜕𝐮̂𝑓 (𝑥, 𝑡)
𝜕 𝑡

, 𝐯̂(𝑥)
)

=
(

 𝐮̂𝑓 (𝑥, 𝑡) + 𝐠̂(𝑥, 𝑡), 𝐯̂(𝑥)
)

, ∀𝐯̂(𝑥) ∈ 𝑍𝑁𝑝 , (3.25)

with (𝐮̂(𝑥, 𝑡), 𝐯̂(𝑥)) , 𝑡 ∈ R+, denoting an inner product on a Hilbert space defined as

(𝐮̂(𝑥, 𝑡), 𝐯̂(𝑥)) = ∫

1

−1
𝐮̂𝑇 (𝑥, 𝑡)𝐯̂(𝑥)𝑤(𝑥)𝑑 𝑥, 𝑤(𝑥) = 1

√

1 − 𝑥2
, (3.26)

here 𝑤(𝑥) is the weight function [8,59]. Following Galerkin approach, we set 𝑍𝑁𝑝 = 𝑌 𝑁𝑝 . Evaluating an inner product in (3.25)
or each 𝐯̂(𝑥) = 𝜙𝜙𝜙𝑚𝑛(𝑥) ∈ 𝑌 𝑁𝑝 , 𝑚 = 1… 𝑛𝑠, 𝑛 = 0…𝑁 − 𝑝(𝑚), and using the orthogonality of the Chebyshev polynomials with respect

to this weight function [8,59], a set of 𝑁𝑑 linear ordinary differential equations (ODEs) is obtained for 𝑁𝑑 unknown Chebyshev
coefficients 𝑎𝑖𝑘(𝑡) in (3.4), 𝑁𝑑 = 𝑛0(𝑁 + 1) × 𝑛1𝑁 × 𝑛2(𝑁 − 1), which can be written in a matrix form as

𝑀
𝑑 𝐚(𝑡)
𝑑 𝑡

= 𝐴 𝐚(𝑡) + 𝐛(𝑡), (3.27)

ith initial conditions 𝐚(0) = 𝑎𝑎𝑎0 consisting of Chebyshev coefficients of 𝐮̂𝑓 (𝑥, 0). Here, 𝐚(𝑡) ∈ R𝑁𝑑 is the vector of the Chebyshev
xpansion coefficients of the unknown function 𝐮̂𝑓 (𝑥, 𝑡) via (3.4), and 𝐛(𝑡) ∈ R𝑁𝑑 is the vector of known Chebyshev coefficients
oming from the series expansion of the lumped inhomogeneous term (2.30) via (3.6). To form the 𝐚(𝑡) and 𝐛(𝑡) vectors, we stack
− 𝑝(𝑖) Chebyshev coefficients 𝑎𝑖𝑘(𝑡), 𝑏𝑖𝑘(𝑡), corresponding to each component 𝑖, prior to proceeding to the next component, i.e. the

ntries 𝑎𝑗 (𝑡), 𝑏𝑗 (𝑡) of 𝐚(𝑡), 𝐛(𝑡) can be expressed as 𝑎(𝑖−1)𝑛𝑠+𝑘+1(𝑡) = 𝑎𝑖𝑘(𝑡), 𝑖 = 1… 𝑛𝑠, 𝑘 = 0…𝑁 − 𝑝(𝑖), same for 𝑏𝑗 (𝑡). Matrices
∈ R𝑁𝑑×𝑁𝑑 , 𝐴 ∈ R𝑁𝑑×𝑁𝑑 are the matrices consisting of the entries of the discretized  and  operators, respectively, multiplying

he corresponding components of the 𝐚(𝑡) vector.
To recover the primary solution 𝐮̂ℎ(𝑥, 𝑡) approximated as (3.18), we take an inner product of (3.13) with each of the basis function

𝑖𝑘(𝑥) ∈ P𝑁𝑛𝑠 to yield

𝐚ℎ(𝑡) =
(

𝑍1𝐾(0) +𝑍2(𝐾(1) − 1)
)

𝐵−1
𝑇 𝐡(𝑡) + 𝑀̃𝐚(𝑡), (3.28)

here 𝐚ℎ(𝑡) ∈ R𝑁𝑛𝑠, 𝑍𝑘 ∈ R(𝑁+1)𝑛𝑠×𝑛𝑠, 𝑘 = 1, 2 are zero matrices with one in the positions {𝑘+ (𝑙 − 1)(𝑁 + 1) × 𝑙}, 𝑙 = 1… 𝑛𝑠, and the
atrix 𝑀̃ ∈ R(𝑁+1)𝑛𝑠×𝑁𝑑 is the corresponding non-square discrete representation of the operator  .

.2. Stability and convergence of a semi-discrete approximation

This section concerns the stability and convergence estimates of a semi-discrete PGC formulation, namely, when a temporal
ariable is not discretized. For the sake of brevity, we will consider the scalar case, while extension to the vector-valued case is
traightforward. Since Eq. (2.29) can represent both parabolic and hyperbolic systems, we consider the most conservative situation
nd, instead of assuming coercivity [8,65], we assume a weaker non-positivity property [8] associated with the integral operators
,  as

( 𝑢𝑓 ,  𝑢𝑓) ≤ 0 for all 𝑢𝑓 ∈ 𝐿2[−1, 1], (3.29)

ith the inner product defined as in (3.26), and its discrete counterpart

( 𝑢̂𝑓 ,  𝑢̂𝑓)𝑁 ≤ 0 for all 𝑢̂𝑓 ∈ P[−1, 1]𝑁 and for all𝑁 > 0, (3.30)

here the inner product in the left-hand side of (3.30) is defined as
( 𝑢̂𝑓 ,  𝑢̂𝑓)𝑁 = (𝑅𝑁 ( 𝑢̂𝑓), 𝑅𝑁 ( 𝑢̂𝑓)), with 𝑅𝑁 ∶ 𝐿2 → P𝑁 being a projection operator. The following theorem concerns the

tability of Galerkin approximation of the PIE equation (2.29).

heorem 3.4. Denote ̂ 𝑢𝑓 = 𝑅𝑁−𝑝( 𝑢𝑓), where 𝑝 = 0, 1 or 2 as defined in (3.2). Under the assumption (3.30), the following inequality
olds

‖̂ 𝑢̂𝑓 (𝑡)‖2 ≤ 𝐶(𝑡)
(

‖̂ 𝑢̂𝑓 (0)‖2 + ∫

𝑡

0
‖𝑔̂(𝑠)‖2 𝑑𝑠

)

for all 𝑡 ≥ 0, (3.31)

ith the constant 𝐶(𝑡) independent of 𝑁 , which yields stability of approximation (3.25).

roof. Estimate (3.31) is readily obtained from (3.25) by using 𝑣̂ = ̂ 𝑢̂𝑓 (𝑡) as a test function, assumption (3.30), Cauchy–Schwarz
nequality to bound the inner product (𝑔̂, ̂ 𝑢̂𝑓) ≤ ‖𝑔̂‖ ‖̂ 𝑢̂𝑓‖, algebraic inequality 𝑎𝑏 ≤ 1∕(4𝜖) 𝑎2+𝜖 𝑏2 with 𝜖 = 1∕2, and, subsequently,
12

nvoking Gronwall’s lemma [8,66,67], yielding 𝐶(𝑡) = exp(𝑡). □

Journal of Computational and Applied Mathematics 442 (2024) 115673Y.T. Peet and M.M. Peet

T

𝐶
o

a

t

s

3

w
b
a

3

L

P

The following theorem establishes the convergence properties of the PGC methodology.

heorem 3.5. If (3.30) is satisfied, the following convergence estimate holds

‖𝑢ℎ(𝑡) −̂̂𝑢ℎ(𝑡)‖ ≤ 𝐶(𝑁 − 𝑝)𝑝−𝑚
{

‖𝑢𝑓 (𝑡)‖+ (3.32)

𝑒𝑥𝑝
(𝑡
2

)

(

∫

𝑡

0

(

‖𝑢̇𝑓 (𝑠)‖2 + ‖𝑢𝑓 (𝑠)‖2 + ‖𝑔(𝑠)‖2
)

𝑑𝑠
)1∕2}

for all 𝑡 ≥ 0,

where 𝑝 is a minimum smoothness of the primary solution as in Theorem 3.4, 𝑚 is the actual number of square-integrable spatial derivatives
of the primary solution, and a dot symbol denotes a partial derivative with respect to time.

Proof. From (2.18), (3.13), we have ‖𝑢ℎ(𝑡) − ̂̂𝑢ℎ(𝑡)‖ = ‖ 𝑢𝑓 (𝑡) − ̂ 𝑢̂𝑓 (𝑡)‖. To obtain a convergence estimate, we define an error
function 𝑒(𝑥, 𝑡) = 𝑅𝑁−𝑝𝑢𝑓 (𝑥, 𝑡) − 𝑢̂𝑓 (𝑥, 𝑡). Taking an inner product of (2.29) with ̂ 𝑒, substituting ̂ 𝑒 as a test function in (3.25), and
a subsequent algebraic manipulation, the following evolution equation for the error can be obtained:

1
2
𝑑
𝑑𝑡

(

̂ 𝑒(𝑥, 𝑡), ̂ 𝑒(𝑥, 𝑡)
)

=
(

̂ 𝑒(𝑥, 𝑡), ̂ 𝑒(𝑥, 𝑡)
)

+
(

𝑅(𝑥, 𝑡), ̂ 𝑒(𝑥, 𝑡)
)

, (3.33)

where the residual term 𝑅(𝑥, 𝑡) is given by

𝑅(𝑥, 𝑡) = −
(

 𝑢̇𝑓 (𝑥, 𝑡) − ̂ 𝑢̇𝑓 (𝑥, 𝑡)
)

+
(

 𝑢𝑓 (𝑥, 𝑡) − ̂ 𝑢𝑓 (𝑥, 𝑡)
)

+ (𝑔(𝑥, 𝑡) − 𝑔̂(𝑥, 𝑡))

−
(

̂ 𝑢̇𝑓 (𝑥, 𝑡) −  𝑅𝑁−𝑝𝑢̇𝑓 (𝑥, 𝑡)
)

+
(

̂ 𝑢𝑓 (𝑥, 𝑡) −𝑅𝑁−𝑝𝑢𝑓 (𝑥, 𝑡)
)

, (3.34)

where the last two terms in (3.34) are the errors due to non-commutativity of the integration and projection operators. Applying
assumption (3.30) to the first term in the right-hand side of (3.33), bounding the inner product

(

𝑅(𝑥, 𝑡), ̂ 𝑒(𝑥, 𝑡)
)

the same way we
bounded (𝑔̂, ̂ 𝑢̂𝑓) in Theorem 3.4 and using the Gronwall’s lemma, we obtain

‖̂ 𝑒(𝑡)‖2 ≤ exp(𝑡)
(

‖̂ 𝑒(0)‖2 + ∫

𝑡

0
‖𝑅(𝑠)‖2 𝑑𝑠

)

for all 𝑡 ≥ 0. (3.35)

We can bound the residual term by noting that, by the properties of the Chebyshev approximation [8,59], ‖ 𝑢̇𝑓 (𝑡) − ̂ 𝑢̇𝑓 (𝑡)‖ ≤

1(𝑁 − 𝑝)−𝑚‖ 𝑢̇𝑓 (𝑡)‖ ≤ 𝐶𝑇 (𝑁 − 𝑝)−𝑚‖𝑢̇𝑓 (𝑡)‖, ‖𝑢𝑓 (𝑡) − ̂𝑢𝑓 (𝑡)‖ ≤ 𝐶2(𝑁 − 𝑝)−𝑚‖𝑢𝑓 (𝑡)‖ ≤ 𝐶𝐴(𝑁 − 𝑝)−𝑚‖𝑢𝑓 (𝑡)‖ due to a boundedness
f the integral operators  , . Additionally, ‖𝑔(𝑡) − 𝑔̂(𝑡)‖ ≤ 𝐶3(𝑁 − 𝑝)−𝑚‖𝑔(𝑡)‖. For the commutation error, we have

‖

̂ 𝑢̇𝑓 (𝑥, 𝑡) −  𝑅𝑁−𝑝𝑢̇𝑓 (𝑥, 𝑡)‖ ≤ (3.36)

‖

̂ 𝑢̇𝑓 (𝑥, 𝑡) −  𝑢̇𝑓 (𝑥, 𝑡)‖ + ‖
(

𝑢̇𝑓 (𝑥, 𝑡) − 𝑅𝑁−𝑝𝑢̇𝑓 (𝑥, 𝑡)
)

‖ ≤ 𝐶4(𝑁 − 𝑝)𝑝−𝑚‖𝑢̇𝑓 (𝑡)‖,

nd, analogously, for the
(

̂ 𝑢𝑓 (𝑥, 𝑡) −𝑅𝑁−𝑝𝑢𝑓 (𝑥, 𝑡)
)

term.

Since  𝑢𝑓 − ̂ 𝑢̂𝑓 = 
(

𝑢𝑓 − 𝑅𝑁−𝑝𝑢𝑓
)

+
(

 𝑅𝑁−𝑝𝑢𝑓 − ̂ 𝑅𝑁−𝑝𝑢𝑓
)

+ ̂ 𝑒, and noting that 𝑒(0) = 0 in the current definition, we obtain
he desired estimate (3.32). □

Note that the estimate (3.32) implies an exponential convergence of a semi-discrete approximation (3.18) with 𝑁 for smooth
olutions.

.3. Temporal treatment

If 𝑀 is invertible, Eq. (3.27) can be rewritten as
𝑑 𝐚(𝑡)
𝑑 𝑡

= 𝐴̃ 𝐚(𝑡) + 𝐵̃ 𝐛(𝑡), (3.37)

here 𝐴̃ = 𝑀−1𝐴, and 𝐵̃ = 𝑀−1. Invertibility of 𝑀 generally follows from its block-diagonal structure and well-posedness of the
oundary conditions. If 𝑀 is not invertible, Eq. (3.27) would admit linear in time eigensolutions irrespective of the right-hand side,
nd this situation will not be considered here.

We now define several approaches to the time integration of (3.37).

.3.1. Exact integration
The following lemma establishes an exact solution to the matrix Eq. (3.37).

emma 3.6. The solution to the matrix Eq. (3.37) with initial conditions 𝐚(0) = 𝑎𝑎𝑎0 is given by [68,69]

𝐚(𝑡) = 𝑒𝐴̃ 𝑡 𝐚0 + ∫

𝑡

0
𝑒𝐴̃(𝑡−𝑠) 𝐵̃ 𝐛(𝑠) 𝑑𝑠. (3.38)
13

roof. Proof can be found in [68,69]. □

Journal of Computational and Applied Mathematics 442 (2024) 115673Y.T. Peet and M.M. Peet

w
r
a
𝑘
𝐛
o
i
𝐛
o

3

i
a
l

L
c

P

Upon substitution 𝐴̃ =𝑀−1𝐴, and 𝐵̃ =𝑀−1 into (3.38), we recover an exact solution to Eq. (3.27) in our original notation

𝐚(𝑡) = 𝑒𝑀
−1𝐴 𝑡 𝐚0 + ∫

𝑡

0
𝑒𝑀

−1𝐴 (𝑡−𝑠)𝑀−1 𝐛(𝑠) 𝑑𝑠. (3.39)

Evaluating Eq. (3.39) in practice is, however, challenging, due to a necessity of computing an integral over the matrix
exponentials, which is computationally expensive for reasonably large matrices. Evaluation of the integral can, however, be
simplified, if the matrix 𝐴̃ =𝑀−1𝐴 is diagonalizable as 𝐴̃ = 𝑆 𝛬𝑆−1, in which case Eq. (3.39) becomes

𝐚(𝑡) = 𝑆 𝑒𝛬 𝑡𝑆−1 𝐚0 + 𝑆 ∫

𝑡

0
𝑒𝛬(𝑡−𝑠)𝑆−1𝑀−1 𝐛(𝑠) 𝑑 𝑠. (3.40)

This allows us to split the integral in (3.40) that involves matrix exponentials into a summation of the scalar integrals of the
form

𝐼𝑘𝑙 = ∫

𝑡

0
𝑒𝜆𝑘(𝑡−𝑠)𝑏𝑙(𝑠)𝑑𝑠, (3.41)

here 𝜆𝑘 and 𝑏𝑙(𝑡) for 𝑘, 𝑙 = 1…𝑁𝑑 , are the eigenvalues of 𝐴̃ (diagonal entries of 𝛬) and components of the vector 𝐛(𝑡),
espectively. Consequently, the entire vector-valued integral 𝐈 = ∫ 𝑡0 𝑒

𝛬(𝑡−𝑠)𝑆−1𝑀−1 𝐛(𝑠) 𝑑 𝑠 in (3.40) can be evaluated componentwise
s 𝐼𝑘 =

∑𝑁𝑑
𝑙=1 𝐼𝑘𝑙[𝑆

−1𝑀−1]𝑘𝑙, where 𝐼𝑘 is the 𝑘th component of 𝐈, [𝑆−1𝑀−1]𝑘𝑙 is the corresponding entry of the matrix 𝑆−1𝑀−1 in the
th row and 𝑙th column, and summation over 𝑘 is not implied. Furthermore, if inputs 𝐛(𝑡) are separable into 𝑚 time-dependent entries
(𝑡) =

∑𝑚
𝑙=1 𝜶𝑙𝑏𝑙(𝑡), 𝑚 < 𝑁𝑑 , 𝜶𝑙 are the vectors independent of time, the evaluation of the integral in (3.40) reduces to a computation

f 𝑚𝑁𝑑 integrals of the form (3.41), and the reconstruction process yields ∫ 𝑡0 𝑒
𝛬(𝑡−𝑠)𝑆−1𝑀−1 𝐛(𝑠) 𝑑 𝑠 =

∑𝑚
𝑙=1𝐷𝑙 𝑆−1𝑀−1𝜶𝑙, where 𝐷𝑙

s a diagonal matrix that, for each 𝑙, consists of the corresponding 𝐼𝑘𝑙 values, such that 𝐷𝑙 = diag(𝐼𝑘𝑙), 𝑘 = 1…𝑁𝑑 . If the inputs
(𝑡) are such that the integrals in (3.41) can be evaluated analytically, the described procedure yields an exact temporal integration
f Eq. (3.37).

.3.2. Alternative exact integration
While Eq. (3.40) and its analytical evaluation via the approach described above provides a robust solution whenever 𝑀 is

nvertible, the ODE system (3.37) is stable, and matrix 𝐴̃ =𝑀−1𝐴 is diagonalizable, in some cases, we can further reduce the errors
ssociated with the inversion of the matrix 𝑀 by employing the alternative form of the solution to (3.27) given by the following
emma.

emma 3.7. If matrix 𝑀 is diagonalizable as 𝑀 = 𝑆 𝛬𝑆−1 and does not have zero eigenvalues, a solution to Eq. (3.27) with initial
onditions 𝐚(0) = 𝑎𝑎𝑎0 is given by

𝐚(𝑡) = 𝑆 𝑒𝛬
−1 𝑆−1 𝐴𝑆 𝑡 𝑆−1𝐚0 + 𝑆 ∫

𝑡

0
𝑒𝛬

−1 𝑆−1 𝐴𝑆 (𝑡−𝑠)𝛬−1 𝑆−1𝐛(𝑠) 𝑑 𝑠. (3.42)

roof. Upon substituting 𝑀 = 𝑆 𝛬𝑆−1 into Eq. (3.27), multiplying both sides by 𝑆−1, and defining 𝐳 = 𝑆−1𝐚, Eq. (3.27) reduces to

𝛬
𝑑 𝐳(𝑡)
𝑑 𝑡

= 𝑆−1𝐴𝑆 𝐳(𝑡) + 𝑆−1𝐛(𝑡). (3.43)

Upon multiplying Eq. (3.43) by the inverse of 𝛬, the solution given by (3.42) follows immediately from (3.38) and substitution
𝐚 = 𝑆 𝐳. □

Note that for the PDEs with constant coefficients, 𝐴 would be a multiple of an identity matrix, so that 𝛬−1 𝑆−1 𝐴𝑆 is by itself
diagonal. Alternatively, its diagonalization similar to a procedure described in Section 3.3.1 needs to be performed for an analytical
evaluation of (3.42).

Unfortunately, the eigenvalues of 𝑀−1𝐴 are different from the eigenvalues of 𝛬−1 𝑆−1 𝐴𝑆, which can render the evaluation of the
integral in (3.42) unstable, even if the integral in (3.40) is stable. This approach, therefore, cannot be advocated as a general-purpose
solution. However, for diffusive problems that are inherently robust, integration via (3.42) significantly reduces approximation errors
associated with the matrix inversion in (3.40). Since one of the purposes of this study is to demonstrate strong spatial convergence
properties of the PGC approximation, ideally decoupled from the temporal errors, we intend to use (3.42) whenever possible.

3.3.3. Gauss integration
The analytical integration procedure described above will fail if

• 𝐴̃ =𝑀−1𝐴 is not diagonalizable, so that (3.39) cannot be reduced to (3.40).
• Inhomogeneous inputs 𝐛(𝑡) have a functional form that does not allow for an analytical evaluation of the integral in (3.40) or

(3.42).

In this case, the integral in (3.39) can be approximated numerically. In this work, we use a high-order Gauss integration to accomplish
this. In particular, the total time interval is partitioned into 𝑁𝑖𝑛𝑡 sub-intervals, and a Gauss–Lobatto quadrature with 𝑁𝑔 points
(including end points) is used for each time interval. This approach alleviates the problems associated with the analytical integration
mentioned above, and also avoids some difficulties attributed to the classical time stepping procedures. First, it does not suffer from
14

Journal of Computational and Applied Mathematics 442 (2024) 115673Y.T. Peet and M.M. Peet

s

3

(
a
s
f
w

w
o
t

3

d
a
w
o
i
s
o
o
f
d
p
P
P

4

p

4

e

the CFL-type instabilities and the associated time step restrictions of the classical time stepping schemes. As long as the ODE system
is physically stable (that is, it does not possess eigenvalues with positive real parts), the Gauss integration approach remains stable.
Second, Gauss integration does not require a sequential approach and can, in principle, be leveraged for developing efficient time-
parallel algorithms [70,71]. Regarding its practical implementation, in some cases it was found beneficial to use a non-uniform
distribution of time intervals, with their clustering towards the end of the time period 𝑡, defined by a geometric progression with a
pecified ratio 𝑟. Within each time interval, the Gauss–Lobatto (GL) integration with the nodes specified by GL quadrature is used.

.3.4. Backward differentiation formula
While the above approaches associated with the approximation of the exact solution to an ODE system (3.37) in the form

3.39) provide inherently low errors due to their high temporal accuracy, their applicability can be sometimes limited. To compare
nalytical and Gauss integration approaches to the conventional time stepping schemes as applied to the ODE Eq. (3.37) and to
how the effect of the temporal discretization errors on the solution convergence, we also implement a backward differentiation
ormula (BDF) for the time integration. Backward differentiation formula of order 𝑘 (BDF𝑘) is an implicit time integration scheme,
hich, as applied to (3.37), is given by

𝑘
∑

𝑝=0
𝛽𝑝 𝐚𝑛−𝑝 = 𝛥 𝑡 (𝐴̃ 𝐚𝑛 + 𝐵̃ 𝐛𝑛), (3.44)

here 𝛥𝑡 is the time step, and the vectors with the superscript 𝑛 correspond to their values at the discrete time level 𝑡𝑛. BDF schemes
f the order 3 and 4, denoted as BDF3 and BDF4, respectively, are considered here. The corresponding BDF coefficients 𝛽𝑝 for these
wo schemes can be found, e.g., in [6,72].

.4. Software

To enable utilization of the presented numerical methodology in a generalized and automated manner, the authors have
eveloped a new general-purpose open-source software PIESIM implemented in MATLAB, available for download at http://control.
su.edu/pietools. PIESIM leverages the capabilities of the open-source package PIETOOLS, previously developed by the authors [73],
hich introduces a new opvar class of objects for efficient construction, manipulation and optimization of the Partial Integral
perators in MATLAB. Within the context of the presented numerical methodology, PIETOOLS converts a user-defined PDE problem
nto a PIE framework and constructs the corresponding 3-PI operators, while PIESIM discretizes the operators, computes a numerical
olution of the PIE problem using the PGC approach, and transforms the PIE solution back to represent a required solution of the
riginal PDE problem. The developed software emerges as a general-purpose high-order PDE solver which ensures an automated high-
rder treatment of arbitrary boundary conditions and is written in a user-friendly manner that requires no user intervention apart
rom declaring an original PDE problem. PIESIM/PIETOOLS utilize a functional graphical user interface for an easy and intuitive
eclaration of the PDE problem and the boundary conditions, while the PDE-PIE transformation, discretization, simulation and
ost-processing are handled automatically by the solver. PIESIM/PIETOOLS can also be used for stability analysis and control of
DEs, DDEs, and coupled PDE-ODE systems and their verification [57,58,63]. All numerical examples below were solved using
IESIM.

. Numerical results

This section demonstrates verification and application of the presented numerical methodology to canonical PDE equation
roblems.

.1. Verification, data processing and error analysis

Numerical examples presented in this section serve verification purposes of the developed methodology. For this purpose, in
ach example, we compute the 𝐿2 error on the basis of the analytical solution, defined as

𝐿2(𝐮)(𝑡) =

√

1
‖𝛺‖

∫𝛺

(

𝐮(𝑥, 𝑡) − ̂̂𝐮(𝑥, 𝑡)
)2, (4.1)

where 𝐮(𝑥, 𝑡) is the analytical solution, ̂̂𝐮(𝑥, 𝑡) is its numerical approximation, 𝛺 is the computational domain, and ‖𝛺‖ is its volume
(length in one dimension). The error in (4.1) consists of a sum of a spatial error, which is due to a projection of the infinite-
dimensional PDE solution onto a space of polynomials of degree 𝑁 in (3.18), and a temporal error, which is due to a temporal
integration of the ODE Eq. (3.27) for the expansion coefficients. The error due to a polynomial projection (spatial error) can be
controlled by the polynomial degree used (𝑁). Bound on the spatial error in the developed PGC formulation arises directly from
the convergence proof in Theorem 3.5 and, in fact, is theoretically shown to decrease exponentially with 𝑁 for smooth solutions.
This propety is verified numerically in the subsequent examples by investigating the 𝐿2 error (4.1) behavior versus 𝑁 . The temporal
error (due to the integration rule) can be controlled by the choice of the temporal scheme and by the time step, 𝛥𝑡. Bound on the
temporal error can be approximated as 𝐶(𝛥𝑡)𝑘, where 𝑘 is the accuracy of the temporal scheme [74].
15

http://control.asu.edu/pietools
http://control.asu.edu/pietools
http://control.asu.edu/pietools

Journal of Computational and Applied Mathematics 442 (2024) 115673Y.T. Peet and M.M. Peet

w
𝐴

p

t
T
o
T
w
i
G
t
e
c
t
a
i
O
v

w

c

Table 1
Analytical and numerical estimates of the temporal error bound in Example 1a based on 𝛥 𝑡 = 10−3

and a value of empirical constant 𝐶 = 100.
Numerical Scheme Estimate temporal error Actual final error

BDF3 10−7 10−7

BDF4 10−10 10−10

Gauss N/A 10−12

Analytical Eq. (3.40) N/A 10−12

Analytical Eq. (3.42) 10−16 10−15

4.2. Numerical examples with PIEs: Parabolic problems

4.2.1. Example 1: Diffusion equation
Example 1a: Constant viscosity. We consider a diffusion equation

𝑢𝑡 = 𝜈 𝑢𝑥𝑥, (4.2)

hit 𝜈 a scalar, defined on a domain 𝑥 ∈ [−1, 1]. In terms of a standardized representation given in Section 2.1, Eq. (4.2) yields
0(𝑥) = 𝐴1(𝑥) = 0, 𝐴2(𝑥) = 𝜈, 𝑛0 = 𝑛1 = 0, 𝑛2 = 1. Furthermore, 𝑢2(𝑥, 𝑡) = 𝑢(𝑥, 𝑡) is a primary state, while from (2.7), 𝑢𝑓2(𝑥, 𝑡) = 𝑢𝑥𝑥(𝑥, 𝑡)

is a fundamental state. We consider Dirichlet–Neumann boundary conditions, defined as 𝑢(−1, 𝑡) = ℎ1(𝑡), 𝑢𝑥(1, 𝑡) = ℎ2(𝑡), with the
corresponding boundary conditions matrix

𝐵 =
[

1 0 0 0
0 0 0 1

]

. (4.3)

With this value of 𝐵, the 3-PI operators  and  in (2.15) for Eq. (4.2) are parameterized by 𝐺0 = 0, 𝐺1(𝑥, 𝑠) = 𝑥−𝑠, 𝐺2(𝑥, 𝑠) = −𝑥−1,
and 𝐻0(𝑥) = 𝜈, 𝐻1 = 𝐻2 = 0, respectively, so that the corresponding PIE representation of (4.2) reads

∫

𝑥

−1
(𝑥 − 𝑠) 𝑢̇𝑓2(𝑠, 𝑡) 𝑑𝑠 − (𝑥 + 1)∫

1

−1
𝑢̇𝑓2(𝑠, 𝑡) 𝑑𝑠 = 𝜈 𝑢𝑓2(𝑥, 𝑡), (4.4)

where a dot above the function denotes a partial derivative in time.
Applying the discretization procedure described in Section 3, we obtain a discrete 𝑁𝑑 × 𝑁𝑑 matrix 𝑀 , which, given that

𝑛0 = 𝑛1 = 0, 𝑛2 = 1, reduces to a (𝑁 − 1) × (𝑁 − 1) matrix, while the matrix 𝐴 = 𝜈 ⋅ 𝐼 . The graphical illustration of the physical
process governed by the considered PDE problem with 𝜈 = 0.5 is given in Fig. 1. The solution decays in time due to the influence of
diffusion process. The solution and the convergence plots with 𝑁 for this test case with different time integration approaches are
resented for 𝜈 = 0.5, time step 𝛥 𝑡 = 10−3, and 𝑡 = 0.1 in Fig. 2.

As discussed in Section 4.1, the 𝐿2 error estimated by Eq. (4.1) consists of a spatial and a temporal error. Fig. 2 demonstrates
hat the error for all the schemes initially decays exponentially with 𝑁 while the exponential decay stops at some finite value of 𝑁 .
his is due to the temporal error beginning to dominate the spatial error and to halt the convergence. We can estimate the bound
n a temporal error invoking the arguments presented in Section 4.1 and compare it to the actual final error for this example in
able 1 (we define the actual final error as the error attained by each numerical scheme at the highest value of 𝑁 investigated,
hich is 𝑁 = 48 in this study). Since precise value of a constant in the temporal error bound estimate is unknown, we estimate

t based on a value of 𝐶 = 100, which gives a good agreement with the actual final error. Note that the temporal error in the
auss integration and in the analytical integration based on Eq. (3.40) is difficult to estimate, since this error is associated with

he inaccuracies of computing the matrix exponential containing the matrix inverse; however, the numerical example shows this
rror to be on the order of 10−12. The important implication of this analysis is that: (1) The plots demonstrate the exponential
onvergence of the error with 𝑁 for all the integration schemes before the temporal error starts to dominate, as predicted by the
heoretical analysis in Section 3.1, and (2) PIE methodology with the analytical evaluation of the integral based on (3.42) provides
n unprecedentedly low error close to a machine precision 𝑂(10−15) in a solution of an unsteady PDE problem with time-dependent
nputs. The analytical approach is followed behind just slightly by a Gauss integration of Eq. (3.39), with a final error of 𝑂(10−12).
ther numerical examples discussed below demonstrate a similar error behavior, albeit a constant in the temporal error bounds
aries.

Example 1b: Variable viscosity. We consider a diffusion equation with a variable viscosity,

𝑢𝑡 = 𝜈(𝑥) 𝑢𝑥𝑥, (4.5)

ith 𝜈(𝑥) = 𝑥.
We use the domain 𝑥 ∈ [0, 2] to ensure a non-negative value of viscosity for a physically stable solution. We define initial

onditions as 𝑢(𝑥, 0) = −𝑥2, boundary conditions as Dirichlet–Dirichlet with 𝑢(0, 𝑡) = 0, 𝑢(2, 𝑡) = −4 𝑡 − 4, so that the boundary
conditions matrix is

𝐵 =
[

1 0 0 0
]

. (4.6)
16

0 1 0 0

Journal of Computational and Applied Mathematics 442 (2024) 115673Y.T. Peet and M.M. Peet
Fig. 1. Spatio-temporal behavior of the solution to the Example 1a for (𝑥, 𝑡) ∈ [−1, 1] × [0, 0.1): diffusion problem with Dirichlet-Neumann boundary conditions
and a constant viscosity 𝜈 = 0.5. The solution decays in time due to the influence of diffusion process.

Fig. 2. Solution (a) and convergence plots (b) for Example 1a: diffusion equation with constant viscosity 𝜈 = 0.5 and Dirichlet–Neumann boundary conditions at
a time 𝑡 = 0.1. In (a): a brown thick line represents a solution domain, and the letters ‘‘D, N’’ on the left and right indicate the specified boundary conditions.
Orange solid line with asterisks, analytical evaluation of Eq. (3.42); black solid line with circles, analytical evaluation of Eq. (3.40); blue dash-dotted line with
crosses, Gauss integration of Eq. (3.39) with 𝑁𝑔 = 10 and 𝑁𝑖𝑛𝑡 = 10 non-uniform time intervals with the geometric progression ratio 𝑟 = 0.25; magenta dashed
line with squares, BDF3 with 𝛥 𝑡 = 10−3; red dotted line with diamonds, BDF4 with 𝛥 𝑡 = 10−3.

In this case, the analytical solution exists, which is given by 𝑢(𝑥, 𝑡) = −2 𝑥 𝑡 − 𝑥2. When the physical domain does not coincide with
[−1, 1], a mapping of the physical domain 𝑥 ∈ [𝑎, 𝑏] into the computational domain 𝑥(𝑐) ∈ [−1, 1] must be performed as discussed in
Section 3.1. In this case, for the 3-PI operators, we have 𝐺(𝑐)

0 = 0, 𝐺(𝑐)
1 (𝑥(𝑐), 𝑠(𝑐)) = 𝑥(𝑐) − 𝑠(𝑐), 𝐺(𝑐)

2 (𝑥(𝑐), 𝑠(𝑐)) = 1
2 (𝑥

(𝑐) + 1)(𝑠(𝑐) − 1), and
𝐻 (𝑐)

0 (𝑥(𝑐)) = 𝑥(𝑐) + 1, 𝐻 (𝑐)
1 = 𝐻 (𝑐)

2 = 0, where the superscript (𝑐) indicates that the functions and 3-PI operators are evaluated in the
computational domain. The solution and the convergence plots for this test case are presented for 𝑡 = 0.1 in Fig. 3. Note, since the
exact solution is a second-order polynomial, which is resolved with Chebyshev approximation starting with 𝑁 = 2, the error at the
lowest 𝑁 investigated (𝑁 = 8) is already at a machine precision in this test case.

4.2.2. Example 2: Euler–Bernoulli beam
Euler–Bernoulli beam model is represented by a fourth-order PDE

𝑢𝑡𝑡 = −𝑐 𝑢𝑥𝑥𝑥𝑥, (4.7)

on the domain 𝑥 ∈ [0, 𝐿], where 𝐿 is the length of the beam, 𝑐 = 𝐸𝐼∕𝜇, 𝐸 is the elastic modulus, 𝐼 is the second moment of area
of the beam’s cross-section, and 𝜇 is the mass per unit length. In a cantilevered state described by the boundary conditions

𝑢(0, 𝑡) = 𝑢𝑥(0, 𝑡) = 𝑢𝑥𝑥(𝐿, 𝑡) = 𝑢𝑥𝑥𝑥(𝐿, 𝑡) = 0, (4.8)

a free vibration solution exists given by the following harmonic modes 𝑢𝑛(𝑥, 𝑡) = Re
[

𝑢̃𝑛(𝑥) 𝑒−𝑖𝜔𝑛𝑡
]

[75], with eigenmodes

𝑢̃𝑛(𝑥) = 𝐴𝑛[cosh(𝛽𝑛𝑥) − cos(𝛽𝑛 𝑥) +
cos(𝛽𝑛𝑥) + cosh(𝛽𝑛 𝑥)
sin(𝛽𝑛𝑥) + sinh(𝛽𝑛 𝑥)

(sin(𝛽𝑛𝑥) − sinh(𝛽𝑛 𝑥))], (4.9)

and the eigenvalues 𝛽𝑛 being a solution of the following eigenvalue problem

cosh(𝛽𝑛 𝐿) cos(𝛽𝑛 𝐿) + 1 = 0, (4.10)

and the vibration frequencies defined as 𝜔 = 𝛽2
√

𝐸𝐼∕𝜇 = 𝛽2
√

𝑐.
17

𝑛 𝑛 𝑛

Journal of Computational and Applied Mathematics 442 (2024) 115673Y.T. Peet and M.M. Peet

a
O
c
l

Fig. 3. Solution (a) and convergence plots (b) for Example 1b: diffusion equation with variable viscosity 𝜈(𝑥) = 𝑥 with Dirichlet-Dirichlet boundary conditions
t a time 𝑡 = 0.1. In (a): a brown thick line represents a solution domain, and the letters ‘‘D, D’’ on the left and right indicate the specified boundary conditions.
range solid line with asterisks, analytical evaluation of Eq. (3.42); black solid line with circles, analytical evaluation of Eq. (3.40); blue dash-dotted line with
rosses, Gauss integration of Eq. (3.39) with 𝑁𝑔 = 10 and 𝑁𝑖𝑛𝑡 = 10 non-uniform time intervals with the geometric progression ratio 𝑟 = 0.25; magenta dashed
ine with squares, BDF3 with 𝛥 𝑡 = 10−3; red dotted line with diamonds, BDF4 with 𝛥 𝑡 = 10−3.

To cast Eq. (4.7) into a state-space representation of (2.1), we define the following states 𝑣1(𝑥, 𝑡) = 𝑢𝑡(𝑥, 𝑡), 𝑣2(𝑥, 𝑡) = 𝑢𝑥𝑥(𝑥, 𝑡), so
that (4.7) transforms into

𝐯𝑡 =
[

0 − 𝑐
1 0

]

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
𝐴2

𝐯𝑥𝑥, (4.11)

where the state vector 𝐯 = [𝑣1 𝑣2]𝑇 , 𝑛0 = 𝑛1 = 0, 𝑛2 = 2, which represents an example of a vector-valued state. Thus, the fundamental
state is 𝐯𝑓 = [𝑣1𝑥𝑥 𝑣2𝑥𝑥]𝑇 , 𝐴0 = 𝐴1 = 0, and 𝐴2 is as given by Eq. (4.11). For the boundary conditions defined by (4.8), the
last two equations can be restated in terms of the state 𝑣2(𝑥, 𝑡) as 𝑣2(𝐿, 𝑡) = 0, 𝑣2𝑥(𝐿, 𝑡) = 0. The first two boundary conditions can
be differentiated in time to give boundary constraints for the state 𝑣1(𝑥, 𝑡) as 𝑣1(0, 𝑡) = 0, 𝑣1𝑥(0, 𝑡) = 0. With these, the boundary
conditions matrix 𝐵 reads

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1

⎤

⎥

⎥

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐵

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑣1(0, 𝑡)
𝑣2(0, 𝑡)
𝑣1(𝐿, 𝑡)
𝑣2(𝐿, 𝑡)
𝑣1𝑥(0, 𝑡)
𝑣2𝑥(0, 𝑡)
𝑣1𝑥(𝐿, 𝑡)
𝑣2𝑥(𝐿, 𝑡)

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

= 0. (4.12)

To reconstruct the original variable 𝑢(𝑥, 𝑡) from the state-space variables 𝑣1(𝑥, 𝑡), 𝑣2(𝑥, 𝑡), we can utilize Eq. (2.12) to recover 𝑢(𝑥, 𝑡)
from its second-derivative 𝑢𝑥𝑥(𝑥, 𝑡) = 𝑣2(𝑥, 𝑡). In the PIE framework, this effectively can be done by a transformation (2.18) applied
to 𝑣2(𝑥, 𝑡), with  = {0, 𝑥 − 𝑠, 0}, 𝐾(𝑥)𝐵−1

𝑇 =
[

1 𝑥 − 𝑎
]

, and 𝐡(𝑡) =
[

𝑢(𝑎, 𝑡) 𝑢𝑥(𝑎, 𝑡)
]𝑇 , with 𝑎 = 0.

In the following, we choose 𝐿 = 2 and keep our solution domain at 𝑥(𝑐) ∈ [−1, 1] while recovering the original solution in 𝑥 ∈ [0, 2]
by the transformation 𝑥 = 𝑥(𝑐) +1. The solution and the convergence plots for the second to fourth eigenmodes of a cantilever beam
are shown in Fig. 4 at 𝑡 = 0.1 obtained with 𝑐 = 2, 𝛥 𝑡 = 10−3. To compute these solutions, we set the initial conditions corresponding
to an eigenmode shape (4.9) with the amplitude 𝐴𝑛 = 1 for each eigenmode, which is an exact solution at 𝑡 = 0. It can be noted that
the first (not shown here) and the second eigenmodes are well captured with 𝑁 = 8. The third eigenmode has a slight deviation near
the free boundary at 𝑁 = 8, but a correct shape starting with 𝑁 = 16. The fourth eigenmode shows a vastly incorrect deflection
with 𝑁 = 8, while recovering a correct shape starting with 𝑁 = 16. Note that the tolerance in solving a nonlinear eigenvalue
problem (4.10) must be set to a very low value (10−16 was used in the current work) to obtain these convergence plots, otherwise
the convergence will be limited by the value of the set tolerance.

4.3. Numerical examples with PIEs: hyperbolic problems

4.3.1. Example 3: Transport equation
Example 3a: Propagating Gaussian bump. Here, we consider a transport equation of the form

𝑢𝑡 + 𝑐 𝑢𝑥 = 0, (4.13)

on the domain 𝑥 ∈ [−1, 1], with 𝐴0(𝑥) = 0, 𝐴1(𝑥) = −𝑐, 𝐴2(𝑥) = 0. We have 𝑛0 = 𝑛2 = 0, 𝑛1 = 1, leading to a primary state
18

𝑢1(𝑥, 𝑡) = 𝑢(𝑥, 𝑡), and a fundamental state 𝑢𝑓1(𝑥, 𝑡) = 𝑢𝑥(𝑥, 𝑡). The transport equation admits solutions in the form of right- (for

Journal of Computational and Applied Mathematics 442 (2024) 115673Y.T. Peet and M.M. Peet

i
𝛥

𝑐
𝑢

D
t
c
b

w
o
c
w

Fig. 4. Solution (a)–(c) and convergence plots (d)–(e) for Example 2: Euler–Bernoulli beam equation with 𝑐 = 2 at a time 𝑡 = 0.1. In (a)–(c): a brown thick line
represents a solution domain, with the specified boundary conditions at the left and right ends of the beam indicated in brown letters. Black solid line with
circles, analytical evaluation of Eq. (3.40); blue dash-dotted line with crosses, Gauss integration of Eq. (3.39) with 𝑁𝑔 = 10 and 𝑁𝑖𝑛𝑡 = 10 non-uniform time
ntervals with the geometric progression ratio 𝑟 = 0.25; magenta dashed line with squares, BDF3 with 𝛥 𝑡 = 10−3; red dotted line with diamonds, BDF4 with
𝑡 = 10−3 .

> 0), or left- (for 𝑐 < 0) propagating waves. We consider a test case of a propagating Gaussian bump given by the exact solution
(𝑥, 𝑡) = 1

𝜎
√

2𝜋
𝑒−

1
2 (

𝑥−𝑐𝑡−𝜇
𝜎)2 , with the corresponding initial condition and a Dirichlet boundary condition. For 𝑐 > 0, we specify a

irichlet boundary condition at the left at 𝑥 = −1. The matrix 𝐵 in this case reduces to 𝐵 = [1 0], 𝐾(𝑥) = 1, 𝐾(𝑥)𝐵−1
𝑇 = 1, and

he 3-PI operators are 𝐺0 = 0, 𝐺1 = 1, 𝐺2 = 0, and 𝐻0 = −𝑐,𝐻1 = 𝐻2 = 0. Choosing 𝜎 = 0.2, 𝜇 = 0 and 𝑐 = 4, the solution and the
onvergence plots are presented in Fig. 5 at a time 𝑡 = 0.1. As with the Euler–Bernoulli beam example, it is seen that the Gaussian
ump is not well resolved with 𝑁 = 8 points, while a correct solution profile is recovered starting at 𝑁 = 16.

Example 3b: Long-term stability: Traveling Sine wave. We demonstrate long term stability and strong conservation properties of the
PGC methodology on the example of a traveling sine wave in the form of 𝑢(𝑥, 𝑡) = sin(𝑥− 𝑐 𝑡), where initial conditions 𝑢(𝑥, 0) = sin(𝑥)
and boundary conditions 𝑢(−1, 𝑡) = sin(−1−𝑐 𝑡) are specified. The results of a long-time integration at 𝑡 = 100 and 𝑐 = 4 are presented
in Fig. 6. It is seen that the traveling sine wave is well recovered with 𝑁 = 8 points, and the solution is perfectly conserved even
after 𝑡 = 100 time units.

4.3.2. Example 4: Wave equation
Example 4a: Dirichlet-Neumann boundary conditions. We now proceed to solving a wave equation of the form

𝑢𝑡𝑡 = 𝑐2 𝑢𝑥𝑥 (4.14)

on the domain 𝑥 ∈ [−1, 1] with Dirichlet-Neumann boundary conditions 𝑢(−1, 𝑡) = ℎ1(𝑡), 𝑢𝑥(1, 𝑡) = ℎ2(𝑡) and initial conditions

𝑢(𝑥, 0) = 𝑓 (𝑥), 𝑢𝑡(𝑥, 0) = 𝑔(𝑥). (4.15)

The exact solution to the wave equation is given by the d’Alembert’s formula [1,2] and depends on the initial conditions for both
the function 𝑢(𝑥, 0) and its time derivative 𝑢𝑡(𝑥, 0),

𝑢(𝑥, 𝑡) = 1
2
[𝑓 (𝑥 − 𝑐𝑡) + 𝑓 (𝑥 + 𝑐𝑡)] + 1

2𝑐 ∫

𝑥+𝑐𝑡

𝑥−𝑐𝑡
𝑔(𝜉) 𝑑 𝜉, (4.16)

here the functions 𝑓 (𝑥) and 𝑔(𝑥) come from the initial conditions (4.15). Thus, in general, the solution to the wave equation consists
f the left- and right-propagating waves. However, in certain situations, depending on the initial conditions, one of the waves can
ancel out due to a contribution from the initial conditions on the time derivative, which results in a single left- or right-traveling
ave solution.
19

Journal of Computational and Applied Mathematics 442 (2024) 115673Y.T. Peet and M.M. Peet

b
b
w

d

n
t

T
e
𝑢

b

Fig. 5. Solution (a) and convergence plots (b) for Example 3a: transport equation for a propagating Gaussian bump with 𝑐 = 4, 𝜎 = 0.2, 𝜇 = 0 and Dirichlet
oundary condition at the left at a time 𝑡 = 0.1. In (a): a brown thick line represents a solution domain, and the letter ‘‘D’’ on the left indicates the specified
oundary condition. Blue dash-dotted line with crosses, Gauss integration of Eq. (3.39) with 𝑁𝑔 = 100 and 𝑁𝑖𝑛𝑡 = 1; magenta dashed line with squares, BDF3
ith 𝛥 𝑡 = 10−3; red dotted line with diamonds, BDF4 with 𝛥 𝑡 = 10−3.

Fig. 6. Solution (a) and convergence plots (b) for Example 3b: transport equation for a traveling sine wave with 𝑐 = 4 and Dirichlet boundary condition at the
left at a time 𝑡 = 100. In (a): a brown thick line represents a solution domain, and the letter ‘‘D’’ on the left indicates the specified boundary condition. Blue
ash-dotted line with crosses, Gauss integration of Eq. (3.39) with 𝑁𝑔 = 100 and 𝑁𝑖𝑛𝑡 = 100 uniform time intervals; magenta dashed line with squares, BDF3

with 𝛥 𝑡 = 10−3; red dotted line with diamonds, BDF4 with 𝛥 𝑡 = 10−3. This example demonstrates long-term stability and conservation properties of the method.

To reduce a wave equation to its standardized state-space form given by (2.1), we introduce two states 𝑣1(𝑥, 𝑡) = 𝑢𝑡(𝑥, 𝑡),
𝑣2(𝑥, 𝑡) = 𝑢𝑥(𝑥, 𝑡), with the corresponding boundary conditions on the states 𝑣1(−1, 𝑡) = 𝑔′1(𝑡), 𝑣2(1, 𝑡) = 𝑔2(𝑡), i.e., in terms of the
ew state vector 𝐯 =

[

𝑣1 𝑣2
]𝑇 , we have Dirichlet boundary conditions (albeit at different ends) on both (first-order) states. With

his state vector, Eq. (4.14) now looks

𝐯𝑡 =
[

0 𝑐 2

1 0

]

⏟⏞⏞⏟⏞⏞⏟
𝐴1

𝐯𝑥. (4.17)

he fundamental state is, therefore, 𝐯𝑓 =
[

𝑣1𝑥 𝑣2𝑥
]𝑇 , and we have 𝑛0 = 𝑛2 = 0, 𝑛1 = 2. As in the Euler–Bernoulli beam

xample, to recover the original variable 𝑢(𝑥, 𝑡) from a state-space variable 𝑢𝑥(𝑥, 𝑡), we need to perform an additional transformation
(𝑥, 𝑡) =  𝑢𝑥(𝑥, 𝑡) +𝐾(𝑥)𝐵−1

𝑇 𝐡(𝑡), with  = {0, 1, 0}, 𝐾(𝑥)𝐵−1
𝑇 = 1,𝐡(𝑡) = 𝑢(−1, 𝑡) which corresponds to the formula (2.11).

As discussed above, the exact solution to the wave equation depends on the initial conditions on both the functions 𝑢(𝑥, 𝑡) and
𝑢𝑡(𝑥, 𝑡). We first show how, depending on the initial conditions on the derivative 𝑢𝑡(𝑥, 0), the same initial shape in a form of a Gaussian
ump given by the function 𝑢(𝑥, 0) = 1

𝜎
√

2𝜋
𝑒−

1
2 (

𝑥−𝜇
𝜎)2 , can either propagate in one direction, or split in half and give rise to the left-

and right-propagating waves.

Splitting case. According to the d’Alembert’s formula (4.16), a splitting case is realized if the initial time derivative 𝑢𝑡(𝑥, 0) = 𝑔(𝑥) = 0,
and we have the following exact solution

𝑢(𝑥, 𝑡) = 1
√

[

𝑒−
1
2 (

𝑥−𝑐 𝑡−𝜇
𝜎)2 + 𝑒−

1
2 (

𝑥+𝑐𝑡−𝜇
𝜎)2

]

. (4.18)
20

2 𝜎 2𝜋

Journal of Computational and Applied Mathematics 442 (2024) 115673Y.T. Peet and M.M. Peet

d
b
d

R

a

C
i

t
d
T
b

Fig. 7. Solution (a),(b) and convergence plots (c),(d) for Example 4a: wave equation for a Gaussian bump with Dirichlet-Neumann boundary conditions with
𝑐 = 4, 𝜎 = 0.2, 𝜇 = 0 at a time 𝑡 = 0.1 for the splitting case (left), and the right-propagating case (right). In (a),(b): a brown thick line represents a solution
omain, and the letters ‘‘D, N’’ on the left and right indicate the specified boundary conditions. Black solid line with circles, analytical evaluation of Eq. (3.40);
lue dash-dotted line with crosses, Gauss integration of Eq. (3.39) with 𝑁𝑔 = 100 and 𝑁𝑖𝑛𝑡 = 1; magenta dashed line with squares, BDF3 with 𝛥 𝑡 = 10−3; red
otted line with diamonds, BDF4 with 𝛥 𝑡 = 10−3.

ight-propagating case. In this case, the initial time derivative is specified as

𝑢𝑡(𝑥, 0) = 𝑔(𝑥) = 𝑐
(

𝑥 − 𝑐 𝑡 − 𝜇
𝜎2

)

⋅
1

𝜎
√

2𝜋
𝑒−

1
2 (

𝑥−𝑐𝑡−𝜇
𝜎)2 , (4.19)

nd the exact solution is

𝑢(𝑥, 𝑡) = 1

𝜎
√

2𝜋
𝑒−

1
2 (

𝑥−𝑐𝑡−𝜇
𝜎)2 . (4.20)

hoosing 𝜎 = 0.2, 𝜇 = 0, and 𝑐 = 4, the numerical solution obtained with the PGC framework and the convergence plots are shown
n Fig. 7 at 𝑡 = 0.1 with 𝛥 𝑡 = 10−3 for both splitting and right-propagating cases.

Example 4b: Dirichlet-characteristic boundary conditions. Since the exact value of the function derivative at the domain outflow is
ypically not available, we are now considering a characteristic, or a ‘‘non-reflecting’’, boundary condition at the right end of the
omain given by a characteristic equation 𝑢𝑡 + 𝑐 𝑢𝑥 = 0, while keeping a Dirichlet boundary condition at the left end of the domain.
he advantage of the PIE framework is that the characteristic boundary condition, which is an optimum choice for an outflow
oundary condition in hyperbolic problems [76,77], can now be enforced exactly in a strong form. For that, the matrix 𝐵 is given

by

𝐵 =
[

1 0 0 0
0 0 1 𝑐

]

. (4.21)

The implemented built-in characteristic outflow boundary condition demonstrates robustness and ensures conservation and long
term stability of the solution to the wave equation with all the time stepping schemes considered. The results for the traveling sine
wave of the form 𝑢(𝑥, 𝑡) = sin(𝑥 − 𝑐𝑡) with 𝑐 = 4 are presented in Fig. 8 for the time 𝑡 = 100. As with the transport equation, no
numerical dissipation or dispersion of the solution is observed at time 𝑡 = 100.
21

Journal of Computational and Applied Mathematics 442 (2024) 115673Y.T. Peet and M.M. Peet

c
s
p

4

s
a
t
c
l
b
c
p
4

4

C
d
b
s

w
E
𝑛
c

Fig. 8. Solution (a) and convergence plots (b) for Example 4b: wave equation for a traveling sine wave with Dirichlet-Characteristic boundary conditions with
𝑐 = 4 at a time 𝑡 = 100. In (a): a brown thick line represents a solution domain, and the letters ‘‘D, C’’ on the left and right indicate the specified boundary
onditions. Blue dash-dotted line with crosses, Gauss integration of Eq. (3.39) with 𝑁𝑔 = 100 and 𝑁𝑖𝑛𝑡 = 100 uniform time intervals; magenta dashed line with
quares, BDF3 with 𝛥 𝑡 = 10−3; red dotted line with diamonds, BDF4 with 𝛥 𝑡 = 10−3. This example demonstrates long-term stability and strong conservation
roperties of the PGC method with the enforcement of characteristic outflow boundary conditions for the wave equation through the PIE framework.

.4. Comparison of PIEs with direct PDE solution methods

In this section, we compare the presented numerical methodology based on a transformation of a PDE to a PIE system with
ome classical methods of a direct PDE solution. To keep the comparison fair, we discretize the PDE system with a Chebyshev-tau
pproach [8,12], so that both the PIE and PDE discretizations are spectrally-convergent in space (for smooth solutions) and employ
he same set of basis functions, which are Chebyshev polynomials of the first kind. The difference is in satisfying the boundary
onditions: in PIE methodology, the boundary conditions are embedded into the equation dynamics by the PIE transformation,
eaving the solution (in its fundamental state) to be free of constraints; in a direct PDE solution, the boundary conditions need to
e satisfied at the solution level, which is accomplished in the tau method by constraining the corresponding Chebyshev expansion
oefficients through the algebraic relations [8,12,14]. We present a comparison for the two representative problems: a parabolic
roblem represented by a diffusion equation of Example 1a, and a hyperbolic problem represented by a wave equation of Example
b.

.4.1. Comparison case 1: Diffusion equation
We consider a numerical setup of Example 1a and discretize the PDE diffusion Eq. (4.2) with a constant viscosity with the

hebyshev-tau methodology by projecting the solution 𝑢(𝑥, 𝑡) onto a set of Chebyshev polynomial basis functions 𝑇𝑘(𝑥) up to a
egree 𝑁 as 𝑢̂(𝑥, 𝑡) = ∑𝑁

𝑘=0 𝑎𝑘(𝑡)𝑇𝑘(𝑥), where 𝑢̂(𝑥, 𝑡) represents the corresponding orthogonal projection of 𝑢(𝑥, 𝑡) onto the polynomial
asis. After applying a method of weighted residuals to Eq. (4.2) in a similar manner as was done with Eq. (3.25), we obtain a
ystem of ODEs as

𝑑 𝐚(𝑡)
𝑑 𝑡

= 𝐷2𝐚(𝑡), (4.22)

here 𝐚(𝑡) is the vector of Chebyshev coefficients, and 𝐷2 is the Chebyshev differentiation matrix of the second order [8,59].
q. (4.22) can then be solved in time by any temporal integration method of choice. To enforce the boundary conditions, the last
𝑏 rows of the system (4.22), where 𝑛𝑏 is the number of boundary conditions, need to be replaced with the corresponding algebraic
onstraint equations on the expansion coefficients 𝑎𝑘(𝑡). For example, we have ∑𝑁

𝑘=0 𝑎𝑘(𝑡)𝑇𝑘(𝑥𝑏) = 𝑢(𝑥𝑏, 𝑡) for a Dirichlet constraint,
and ∑𝑁

𝑘=0(𝐷1𝐚(𝑡))𝑘𝑇𝑘(𝑥𝑏) = 𝑢𝑥(𝑥𝑏, 𝑡) for a Neumann constraint, where 𝐷1 is the Chebyshev differentiation matrix of the first order,
𝑥𝑏 = ±1 is the location of the boundary in question, 𝑇𝑘(1) = 1, and 𝑇𝑘(−1) = (−1)𝑘.

A comparison of the PIE and PDE solution convergence properties for this example is shown in Fig. 9(a). First of all, we note that
since boundary conditions in the direct PDE solution approaches are no longer embedded into the equation dynamics, the integral in
Eqs. (3.38)–(3.42) vanishes. However, the matrix 𝐷2 in (4.22), being a differentiation matrix on the expansion coefficients, is both
rank-deficient and non-diagonalizable. As a result, computing a matrix exponential in Eq. (3.38) results in highly inaccurate and
unstable results that blow up with high 𝑁 . This precludes direct PDE methods from a possibility of providing solutions to unsteady
partial-differential equations that are integrated exactly in time, contrary to the PIE methods, which are capable of providing such
solutions. As a result, direct PDE solution approaches will be dominated by the errors resulting from a temporal integration of the
solution even when a high-order spatial discretization is employed. PIE methods have a potential to overcome this limitation. We
remark that a discrete time integration of Eqs. (3.37) and (4.22) with BDF schemes results in a similar accuracy between the PDE
22

and the PIE methods.

Journal of Computational and Applied Mathematics 442 (2024) 115673Y.T. Peet and M.M. Peet

t
c
c
𝑢

w
i

P
w
f

u
t
l
a
t
a
d
m
t
k

4

T
C

t
B
L
c
s

F
C
a

Fig. 9. Comparison of PIE and PDE solution methods with Chebyshev–Galerkin and Chebyshev-tau approximations, respectively, for (a) heat equation with 𝜈 = 0.5,
and (b) wave equation with 𝑐 = 4. 𝐿2 error versus the polynomial order 𝑁 is presented for different temporal integration schemes. The plots corresponding to
he PDE methods are labeled as ‘‘PDE’’ in the legend; all other plots correspond to PIE methods. In (a): both PDE and PIE methods utilize Dirichlet boundary
onditions on the left, and Neumann on the right. In (b): PIE methods use Dirichlet on the left (inflow) and characteristic on the right (outflow) boundary
onditions, and PDE methods use Dirichlet on the left (inflow) and Neumann on the right (outflow) boundary conditions. The plot labeled ‘‘Newmark PDE’’ uses
𝑥 from the exact solution, while ‘Newmark PDE 𝑢𝑥 = 0’’ sets the outflow gradient to zero.

4.4.2. Comparison case 2: Wave equation
Here, we assess the ability of the PDE and the PIE methods to perform long-time integration of the wave equation, which is a

stringent test for numerical stability and accuracy due to a non-dissipative feature of the solution and the necessity to satisfy the
conservation laws [31–33]. We consider a sine wave propagation problem of Example 4b, with an exact solution 𝑢(𝑥, 𝑡) = sin(𝑥− 𝑐 𝑡)

ith 𝑐 > 0. For a direct PDE solution, we discretize the wave Eq. (4.14) using a Chebyshev polynomial approximation in space, as
n Section 4.4.1, yielding the ODE system for the Chebyshev coefficients

𝑑2𝐚(𝑡)
𝑑 𝑡2

= 𝑐2𝐷2𝐚(𝑡). (4.23)

reviously employed BDF schemes, which approximate the first temporal derivative, are not immediately applicable to Eq. (4.23),
hich is a second order in time. Thus, we invoke a Newmark 𝛽-method [78,79] to discretize Eq. (4.23), which is a standard approach

or a temporal integration of second-order equations. With the employed parameters (𝛽, 𝛾) = (0.25, 0.5), the method is implicit and
second-order accurate [78]. For both PDE and PIE methods, we specify Dirichlet boundary conditions at the left end of the domain.
At the right end, for the PIE formulation, we use characteristic outflow conditions (𝑢𝑡 + 𝑐𝑢𝑥 = 0) as described in Example 4b in
Section 4.3.2. For the PDE Newmark method, a Neumann boundary condition with 𝑢𝑥(1, 𝑡) = cos(1 − 𝑐 𝑡), corresponding to the
exact derivative, is originally employed at the right end of the domain. An imposition of the characteristic outflow condition in
the Newmark method was infeasible. Since the displacement coefficients (𝐚) are updated first, and the velocity coefficients (𝐚𝑡) are
pdated next, this results in an explicit treatment of the characteristic outflow condition, which leads to instability. A comparison of
he PIE and PDE solutions is presented in Fig. 9(b). We see that the accuracy of the PDE solution is inferior in this example due to a
ower accuracy of the Newmark scheme as compared to the other methods. Furthermore, an exact spatial derivative of the solution
t the outflow is typically not known; a standard way (unless characteristic condition is employed) is to specify a zero gradient at
he outflow, i.e. 𝑢𝑥 = 0. Comparison of the outflow with 𝑢𝑥 = 0 in a PDE method is also presented in Fig. 9(b). One can see that the
ccuracy of the outflow condition with 𝑢𝑥 = 0 is significantly low, with the error of the order of 𝑂(1) independent on 𝑁 . This example
emonstrates the beneficial properties of the PIE methodology in enforcing physically-relevant boundary conditions in a consistent
anner. For example, a strong imposition of physically-consistent characteristic outflow condition with the PIE formulation leads

o a long-term stability, conservation, and a high accuracy of the solution to the wave equation; outflow conditions have long been
nown as a grand challenge in development of accurate and stable numerical methodologies of physically-relevant problems [76,77].

.4.3. Comparison of CPU time and operation count
Comparison of the operation count taken by different time integration schemes in the PIE and PDE methods is presented in

able 2. The comparison is performed in MATLAB R2023b using the function ‘‘socFunctionAnalyzer ’’ available in a System on
hip (SoC) Blockset of MATLAB.

While operation count represents an important metric, it may be misleading, since the operations themselves may range in
erms of their computational complexity. For example, the Gauss method shows on the order of 𝑂(102) more operations than the
DF methods; however, a majority of the operations in the Gauss method are composed of fast integer additions and subtractions.
ikewise, PIE BDF methods show approximately 30%–40% higher operation count than PDE BDF methods. However, one needs to
onsider that PIE methods operate on smaller matrices for the equivalent approximation accuracy of the primary solution, since PIEs
earch for the fundamental state (composed of the function derivatives), which resides in a lower-degree polynomial subspace.

To account for these considerations, we compare the CPU time taken by different numerical schemes in PIE and PDE methods in
ig. 10. Timing comparison is performed utilizing the ‘‘tic-toc ’’ function in MATLAB R2023b running on a desktop with a 2.3 GHz 8-
ore Intel Core i9 processor. First, it can be noted that, despite of the aforementioned issues, the operation count in Table 2 is a fairly
23

ccurate indicator of the actual timing performance scaling between different methods. Second, it can be remarked that analytical

Journal of Computational and Applied Mathematics 442 (2024) 115673Y.T. Peet and M.M. Peet
Table 2
Comparison of the operation count between different schemes in PIE and PDE methods in MATLAB R2023b. Operation count is invariant of the polynomial
degree 𝑁 , since matrix operations are counted separately from scalar operations. The number of time steps 𝑁𝑠𝑡𝑒𝑝𝑠 = 100 is used in all the methods.

Numerical Scheme Total operations Scalar multiplications Matrix multiplications Other

PIE BDF3 9816 2231 1372 matrix N − 1 6213
PIE BDF4 10 303 2236 1552 matrix N − 1 6515
PIE Gauss 1 052 699 50 046 3942 matrix N − 1 998 711

PDE BDF3 7087 1484 786 matrix N + 1 4817
PDE BDF4 7545 1475 972 matrix N + 1 5098
PDE Newmark 10 364 1502 602 matrix N + 1 8260

Fig. 10. CPU time taken by different numerical schemes for the PIE and PDE methods versus the polynomial degree of approximation, 𝑁 . The plots corresponding
to the PDE methods are labeled as ‘‘PDE’’ in the legend; all other plots correspond to PIE methods. Comparison is performed in MATLAB R2023b on a desktop
with a 2.3 GHz 8-Core Intel Core i9 processor. The number of time steps 𝑁𝑠𝑡𝑒𝑝𝑠 = 100 is used in all the methods.

methods that require a symbolic integration in MATLAB take considerably longer, which is not unexpected. High computational
cost of these methods is however compensated by an unprecedented accuracy close to machine precision that they yield across a
large class of PDE problems as demonstrated in the examples in Section 4. Use of these methods thus can be recommended only
if an extremely high accuracy is required in critical applications. Gauss methods, which feature significantly faster performance,
yet provide the errors almost as small as the analytical methods do, and certainly smaller than the conventional time discretization
techniques, may be a reasonable compromise.

5. Discussion and conclusions

The current paper presents a novel methodology for a solution of Partial Differential Equations, in which the boundary constraints
are removed from the solution state and are embedded into the equation dynamics via an analytical transformation that transforms a
PDE into an equivalent PIE representation. Unlike in a PDE, whose solution does not necessarily satisfy the boundary conditions and
needs to be specifically adjusted in order to fit the constraints, any solution of a PIE (together with a well-defined inverse PIE-PDE
solution map) automatically satisfies the boundary conditions by construction! This property of the PIE representation allows one to
minimize the errors associated with the imposition of the boundary conditions during the solution procedure and develop automated
and generalizable methodologies for solution of a large class of PDE systems irrespective of the nature of the boundary conditions.

While the presented framework is certainly appealing from the theoretical perspective, the current paper seeks to assess what
are the specific advantages of this framework, if any, as applied to a numerical solution of PDEs, and how it compares with the
existing direct PDE solution methods. For this purpose, we choose to discretize the PIE equation with Galerkin projection techniques
employing Chebyshev polynomials of the first kind as the basis functions. This allows for a comparison of the developed PIE
methodology with a direct PDE solution procedure that employs classical Chebyshev-tau methods [8,14,59].

Comparison of the PIE and PDE solution properties demonstrates several specific advantages of the PIE methodology: (1) With
PIEs, an analytical integration in time of the resulting ODE system for the function expansion coefficients is possible, which allows
one to obtain an unprecedentedly low error, close to machine precision, while solving unsteady PDE equations with generic boundary
conditions. This, to the authors’ knowledge, so far has not been possible with other techniques. The possibility of an analytical
integration is due to the fact that the matrix operator in the ODE with PIEs results from the integral operators and is of full rank, while
in a PDE solution it results from the differential operators and is of reduced rank. The ill-conditioning of the ODE matrix operator
with the PDE approaches precludes an analytical evaluation of the temporal behavior of the solution. (2) PIE methodology shows
clear advantages in regard to a treatment of the outflow boundary conditions, which are known to be a bottleneck in development
of stable, accurate and conservative methods for solution of hyperbolic and convection-dominated problems [76,77]. (3) Due to
an existence of a well-defined analytical PDE-to-PIE conversion procedure, the entire PDE-PIE solution process with its benefits
of enabling a strong enforcement of the boundary conditions through the PIE framework can be automated. The methodology
24

was implemented in a newly developed software PIESIM, which emerges as a new generalized high-order PDE solver capable of

Journal of Computational and Applied Mathematics 442 (2024) 115673Y.T. Peet and M.M. Peet

w
i
o
i
t
t
e
a
e
o
m
P
m

providing robust and accurate solutions to a large class of PDE problems with no user intervention apart from declaring an original
PDE problem.

The advantages of PIEs, especially in a possibility of obtaining exceptionally accurate solutions featuring a near zero error, come
ith certain limitations. For example, an analytical integration in time, employed using a symbolic integration capability of MATLAB,

s fairly slow, and can only be recommended if the size of the problem is relatively small. In this respect, a numerical approximation
f the exact time integral in Eq. (3.39) with a high-accurate Gauss quadrature can be recommended as a viable alternative. Gauss
ntegration is significantly faster than an analytical integration, and nonetheless yields several orders of magnitude lower errors than
he conventional discrete time stepping techniques, as demonstrated in numerical examples presented in this paper. We remark that
he aforementioned Gauss integration is not possible with direct PDE solvers, since representation of the boundary inputs in the
quation dynamics is not explicitly defined, as in a PIE formulation. Gauss integration enabled by the PIE methodology emerges
s an interesting alternative to conventional, sequential, time stepping algorithms and potentially offers a possibility of developing
fficient time-parallel techniques for PDE solutions [70,71]. Future work shall be devoted to further understanding of the properties
f the Gauss integration, its accuracy with respect to a choice of the quadrature points, and the influence of the structure of the
atrix operators on the result, as well as further improvements in computational efficiency. We remark that solution of both PDE and
IE problems with conventional time stepping approaches results in a similar computational efficiency. Another limitation of the PIE
ethodology is that it currently relies on the new opvar class of objects for constructing and manipulating the PI operators [24,73],

which is presently tied to MATLAB. Portability and extension to other programming languages will be addressed in a future work.
Analytical treatment of boundary conditions through embedding their influence on the physical processes into the equation

dynamics is useful not only for developing advanced PDE solution techniques, but also for stability analysis and control of PDEs,
previously obfuscated by the need to enforce boundary constraints on the PDE solution state [24,63]. Thus, the developed numerical
discretization procedure of PIE systems is also useful for designing and simulating real-time controllers for physical systems governed
by PDE models [55,56]. Future work will involve extension of the numerical discretization methodology based on PIEs to problems
with multiple spatial dimensions and to nonlinear problems. In fact, some preliminary work regarding these topics is already on
the way [80,81]. As an outlook and the future perspectives of the developed methodology, we envision that PIE representation may
be especially useful in developing accurate and stable numerical techniques that involve coupling of physical processes across the
interfaces, such as in domain decomposition methods [82,83] and in multi-physics problems, e.g., fluid–structure interaction [79,84].
Available numerical techniques for these problems often suffer from instabilities related to numerical difficulties associated with
the enforcement of continuity of variables across interfaces [82,84,85]. PIE methodology, which can address this problem at a
continuous level, i.e. prior to discretization, may be beneficial. This hypothesis will be further explored in the future work.

To conclude, the most important result of the presented research is the verified advantage in accuracy of the developed PDE-PIE
solution methodology as applied to linear unsteady PDEs with variable coefficients. The existing issues related to the difficulties
of imposing boundary conditions in convection-dominated and multi-physics problems can be effectively solved by the presented
methodology. By providing robust and accurate solutions to a wide class of PDE equation models in a generalized and automated
manner, the developed methodology will enable solutions to pressing technological problems by offering advanced simulation,
analysis and control capabilities for a wide range of applications in engineering and science.

Data availability

Data will be made available on request.

Acknowledgments

This work has been supported by the National Science Foundation grant numbers NSF CMMI-1935453 and NSF CAREER
CBET-1944568.

Appendix A. Definition of 3-PI operators in the PIE representation

This appendix gives a definition of the functions 𝐺𝑖(𝑥, 𝑠), 𝑖 = 0…5, appearing in the composition of 3-PI operators in (2.15).

𝐺0 =
⎡

⎢

⎢

⎣

𝐼𝑛0 0 0
0 0 0
0 0 0

⎤

⎥

⎥

⎦

, 𝐺1(𝑥, 𝑠) =
⎡

⎢

⎢

⎣

0 0 0
0 𝐼𝑛1 0
0 0 (𝑥 − 𝑠)𝐼𝑛2

⎤

⎥

⎥

⎦

,

𝐺2(𝑥, 𝑠) = −𝐾(𝑥)𝐵−1
𝑇 𝐵𝑄(𝑠),

𝐺3 =
[

0 𝐼𝑛1 0
0 0 0

]

, 𝐺4 =
[

0 0 0
0 0 𝐼𝑛2

]

,

𝐺5(𝑠) = −𝑉 𝐵−1
𝑇 𝐵𝑄(𝑠), (A.1)

𝑇 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

𝐼𝑛1 0 0
𝐼𝑛1 0 0
0 𝐼𝑛2 0
0 𝐼𝑛2 (𝑏 − 𝑎)𝐼𝑛2
0 0 𝐼𝑛2

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

, 𝑄(𝑠) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

0 0 0
0 𝐼𝑛1 0
0 0 0
0 0 (𝑏 − 𝑠)𝐼𝑛2
0 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

,

25

⎣

0 0 𝐼𝑛2 ⎦ ⎣

0 0 𝐼𝑛2 ⎦

Journal of Computational and Applied Mathematics 442 (2024) 115673Y.T. Peet and M.M. Peet
𝐾(𝑥) =
⎡

⎢

⎢

⎣

0 0 0
𝐼𝑛1 0 0
0 𝐼𝑛2 (𝑥 − 𝑎)𝐼𝑛2

⎤

⎥

⎥

⎦

, 𝑉 =
[

0 0 0
0 0 𝐼𝑛2

]

,

with matrix 𝐵𝑇 defined in (2.16).

Appendix B. Proof of Lemma 3.1

Proof.

1. To prove the first case: if 𝑚𝑛 is such that 𝑚 ≤ 𝑛0, according to the structure of 𝐺0, 𝐺1 and 𝐺2, it must have the form
𝑚𝑛 = {𝛿𝑚𝑛 ,0,0}, and thus it is easily computed that 𝑚𝑛𝑇𝑘(𝑥) = 𝛿𝑚𝑛𝑇𝑘(𝑥).

2. To prove the second case, we first need to recall some useful recursive relations for Chebyshev polynomials [8,64]:

∫ 𝑇𝑘(𝑥) 𝑑𝑥 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑇1(𝑥) + 𝐶0, 𝑘 = 0
1
4

[

𝑇0(𝑥) + 𝑇2(𝑥)
]

+ 𝐶1, 𝑘 = 1
1
2

[

𝑇𝑘+1(𝑥)
𝑘+1 − 𝑇𝑘−1(𝑥)

𝑘−1

]

+ 𝐶𝑘, 𝑘 ≥ 2

(B.1)

𝑥 𝑇𝑘(𝑥) =

⎧

⎪

⎨

⎪

⎩

𝑇1(𝑥), 𝑘 = 0
1
2

[

𝑇𝑘−1(𝑥) + 𝑇𝑘+1(𝑥)
]

, 𝑘 ≥ 1
(B.2)

Let us now consider 𝑚𝑛 such that 𝑛0 < 𝑚 ≤ 𝑛0 + 𝑛1. According to the structure of 𝐺0, 𝐺1 and 𝐺2, it has the form of
𝑚𝑛 = {0,𝛿𝑚𝑛 ,𝐺2𝑚𝑛}, such that

{0,𝛿𝑚𝑛 ,𝐺2𝑚𝑛}𝑇𝑘(𝑥) = 𝛿𝑚𝑛 ∫

𝑥

−1
𝑇𝑘(𝑠) 𝑑 𝑠 + ∫

1

−1
𝐺2𝑚𝑛(𝑥, 𝑠)𝑇𝑘(𝑠) 𝑑 𝑠. (B.3)

The first integral in the right-hand side can be evaluated according to (B.1). Let us now consider the second integral. According
to the composition of the operator 𝐺2, its general entry 𝐺2𝑚𝑛 would be of the form 𝐺2𝑚𝑛 = 𝛽0𝑚𝑛 + 𝛽1𝑚𝑛 𝑠 + 𝛽2𝑚𝑛 𝑥 + 𝛽3𝑚𝑛 𝑥𝑠,
where 𝛽𝑗𝑚𝑛, 𝑗 = 0…3, are some real constants. Taking an integral yields

∫

1

−1
𝐺2𝑚𝑛(𝑥, 𝑠)𝑇𝑘(𝑠) 𝑑 𝑠 = ∫

1

−1

(

𝛽0𝑚𝑛 + 𝛽1𝑚𝑛 𝑠 + 𝛽2𝑚𝑛 𝑥 + 𝛽3𝑚𝑛 𝑥𝑠
)

𝑇𝑘(𝑠) 𝑑 𝑠

= ∫

1

−1

(

𝛽0𝑚𝑛 + 𝛽1𝑚𝑛 𝑠
)

𝑇𝑘(𝑠) 𝑑 𝑠 + 𝑥∫

1

−1

(

𝛽2𝑚𝑛 + 𝛽3𝑚𝑛 𝑠
)

𝑇𝑘(𝑠) 𝑑 𝑠. (B.4)

The two integrals in (B.4) evaluate to 𝛾𝑗𝑘𝑚𝑛𝑇0(𝑥), due to the constant limits of integration, where 𝛾𝑗𝑘𝑚𝑛, 𝑗 = 0, 1, are some real
constants for the first and second integrals, respectively. The multiplication by 𝑥 in the second integral produces the result
𝑥 ⋅ 𝛾1𝑘𝑚𝑛𝑇0(𝑥) = 𝛾1𝑘𝑚𝑛𝑇1(𝑥). Combining the two integral contributions, (B.3) can be rewritten as

{0,𝛿𝑚𝑛 ,𝐺2𝑚𝑛}𝑇𝑘(𝑥) = 𝛾0𝑘𝑚𝑛𝑇0(𝑥) + 𝛾1𝑘𝑚𝑛𝑇1(𝑥) (B.5)

+ 𝛿𝑚𝑛

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑇1(𝑥) − 𝑇1(−1), 𝑘 = 0
1
4

[

𝑇0(𝑥) + 𝑇2(𝑥)
]

− 1
4

[

𝑇0(−1) + 𝑇2(−1)
]

, 𝑘 = 1
1
2

[

𝑇𝑘+1(𝑥)
𝑘+1 − 𝑇𝑘−1(𝑥)

𝑘−1

]

− 1
2

[

𝑇𝑘+1(−1)
𝑘+1 − 𝑇𝑘−1(−1)

𝑘−1

]

, 𝑘 ≥ 2

(B.6)

= 𝑏(1)0 𝑘𝑚𝑛𝑇0(𝑥) + 𝑏
(1)
1𝑘𝑚𝑛𝑇1(𝑥) + 𝛿𝑚𝑛

⎧

⎪

⎨

⎪

⎩

1
2

[

𝑇𝑘+1(𝑥)
𝑘+1

]

, 𝑘 = 1, 2

1
2

[

𝑇𝑘+1(𝑥)
𝑘+1 − 𝑇𝑘−1(𝑥)

𝑘−1

]

, 𝑘 ≥ 3,
(B.7)

since 𝑇𝑘(−1) = (−1)𝑘 = (−1)𝑘𝑇0(𝑥), leading to (3.9), (3.10).
3. For the third case, we have that 𝑚𝑛, 𝑚 > 𝑛0 + 𝑛1 has the form of 𝑚𝑛 = {0,𝛿𝑚𝑛(𝑥−𝑠),𝐺2𝑚𝑛} and

{0,𝛿𝑚𝑛(𝑥−𝑠),𝐺2𝑚𝑛}𝑇𝑘(𝑥) = 𝛿𝑚𝑛 ∫

𝑥

−1
(𝑥 − 𝑠)𝑇𝑘(𝑠) 𝑑 𝑠 + ∫

1

−1
𝐺2𝑚𝑛(𝑥, 𝑠)𝑇𝑘(𝑠) 𝑑 𝑠. (B.8)

The last integral in Eq. (B.8) is evaluated analogously to the previous case. The first integral yields

∫

𝑥
(𝑥 − 𝑠)𝑇𝑘(𝑠) 𝑑 𝑠 = 𝑥∫

𝑥
𝑇𝑘(𝑠) 𝑑 𝑠 − ∫

𝑥
𝑠 𝑇𝑘(𝑠) 𝑑 𝑠. (B.9)
26

−1 −1 −1

Journal of Computational and Applied Mathematics 442 (2024) 115673Y.T. Peet and M.M. Peet
Considering the first contribution, we have

𝑥∫

𝑥

−1
𝑇𝑘(𝑠) 𝑑 𝑠

= 𝑥

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑇1(𝑥) − 𝑇1(−1), 𝑘 = 0
1
4

[

𝑇0(𝑥) + 𝑇2(𝑥)
]

− 1
4

[

𝑇0(−1) + 𝑇2(−1)
]

, 𝑘 = 1
1
2

[

𝑇𝑘+1(𝑥)
𝑘+1 − 𝑇𝑘−1(𝑥)

𝑘−1

]

− 1
2

[

𝑇𝑘+1(−1)
𝑘+1 − 𝑇𝑘−1(−1)

𝑘−1

]

, 𝑘 ≥ 2

= 𝛼̃1𝑘𝑇1(𝑥) + 𝑥

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑇1(𝑥), 𝑘 = 0
1
4

[

𝑇0(𝑥) + 𝑇2(𝑥)
]

, 𝑘 = 1
1
2

[

𝑇𝑘+1(𝑥)
𝑘+1 − 𝑇𝑘−1(𝑥)

𝑘−1

]

, 𝑘 ≥ 2,

(B.10)

= 𝛼̃1𝑘𝑇1(𝑥) +

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
2

[

𝑇0(𝑥) + 𝑇2(𝑥)
]

, 𝑘 = 0
1
4

[

𝑇1(𝑥) +
1
2

[

𝑇1(𝑥) + 𝑇3(𝑥)
]

]

, 𝑘 = 1

1
2

[1
2 [𝑇𝑘(𝑥)+𝑇𝑘+2(𝑥)]

𝑘+1 −
1
2 [𝑇𝑘−2(𝑥)+𝑇𝑘(𝑥)](𝑥)

𝑘−1

]

, 𝑘 ≥ 2,

= ̃̃𝛼0𝑘𝑇0(𝑥) + ̃̃𝛼1𝑘𝑇1(𝑥) +

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
2

[

𝑇𝑘+2(𝑥)
𝑘+1

]

, 𝑘 = 0

1
4

[

𝑇𝑘+2(𝑥)
𝑘+1

]

, 𝑘 = 1

1
4

[

𝑇𝑘+2(𝑥)
𝑘+1 − 2 𝑇𝑘(𝑥)

𝑘2−1

]

, 𝑘 = 2, 3

1
4

[

𝑇𝑘+2(𝑥)
𝑘+1 − 2 𝑇𝑘(𝑥)

𝑘2−1 − 𝑇𝑘−2(𝑥)
𝑘−1

]

, 𝑘 ≥ 4.

Considering the second contribution, we have

− ∫

𝑥

−1
𝑠 𝑇𝑘(𝑠) 𝑑 𝑠 = −∫

𝑥

−1
𝑑𝑠

⎧

⎪

⎨

⎪

⎩

𝑇1(𝑠), 𝑘 = 0
1
2

[

𝑇𝑘−1(𝑠) + 𝑇𝑘+1(𝑠)
]

, 𝑘 ≥ 1

= 𝛽0𝑘𝑇0(𝑥) −

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
4

[

𝑇0(𝑥) + 𝑇2(𝑥)
]

, 𝑘 = 0
1
2𝑇1(𝑥) +

1
4

[

𝑇3(𝑥)
3 − 𝑇1(𝑥)

]

, 𝑘 = 1

1
8

[

𝑇0(𝑥) + 𝑇2(𝑥)
]

+ 1
4

[

𝑇4(𝑥)
4 − 𝑇2(𝑥)

2

]

, 𝑘 = 2

1
4

[

𝑇𝑘(𝑥)
𝑘 − 𝑇𝑘−2(𝑥)

𝑘−2

]

+ 1
4

[

𝑇𝑘+2(𝑥)
𝑘+2 − 𝑇𝑘(𝑥)

𝑘

]

, 𝑘 ≥ 3

(B.11)

= ̃̃𝛽0𝑘𝑇0(𝑥) + ̃̃𝛽1𝑘𝑇1(𝑥) −

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1
2

[

𝑇𝑘+2(𝑥)
𝑘+2

]

𝑘 = 0

1
4

[

𝑇𝑘+2(𝑥)
𝑘+2

]

, 1 ≤ 𝑘 ≤ 3

1
4

[

𝑇𝑘+2(𝑥)
𝑘+2 − 𝑇𝑘−2(𝑥)

𝑘−2

]

, 𝑘 ≥ 4

Combining Eqs. (B.4), (B.8), (B.10) and (B.11) yields Eq. (3.11) with (3.12).

Dependence of the constants 𝑏(𝑖)𝑗𝑘𝑚𝑛, 𝑖 = 1, 2, 𝑗 = 0, 1, on the boundary conditions comes from the dependence of the operator entries
𝐺2𝑚𝑛 on the boundary conditions defined by the matrix 𝐵. This concludes the proof. □

References

[1] H. Brezis, F. Browder, Partial differential equations in the 20th century, Adv. Math. 135 (1) (1998) 76–144.
[2] A.N. Tikhonov, A.A. Samarskii, Equations of Mathematical Physics, Dover Publications, 2011.
[3] J.D. Logan, Applied Partial Differential Equations, Springer, 2015.
[4] R.C. McOwen, Partial Differential Equations: Methods and Applications, Prentice Hall, 2003.
[5] J. Nordström, A roadmap to well-posed and stable problems in computational physis, J. Sci. Comput. 71 (2017) 365–385.
[6] M.O. Deville, P.F. Fischer, E.H. Mund, High-Order Methods for Incompressible Fluid Flow, Cambridge University Press, Cambridge, UK, 2002.
[7] V. Grigoryan, Partial differential equations, 2010, web.math.ucsb.edu/~grigoryan/124A.pdf.
[8] C. Canuto, M.Y. Hussaini, A. Quarteroni, T.A. Zang, Spectral Methods in Fluid Dynamics, Springer–Verlag, 1988.
[9] D. Gottlieb, S.A. Orszag, Numerical Analysis of Spectral Methods: Theory and Applications, SIAM Press, 1977.

[10] J. Shen, Efficient spectral-Galerkin method I. Direct solvers for the second and fourth order equations using Legendre polynomials, SIAM J. Numer. Anal.
15 (6) (1994) 1489–1505.
27

http://refhub.elsevier.com/S0377-0427(23)00617-9/sb1
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb2
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb3
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb4
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb5
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb6
http://web.math.ucsb.edu/~grigoryan/124A.pdf
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb8
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb9
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb10
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb10
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb10

Journal of Computational and Applied Mathematics 442 (2024) 115673Y.T. Peet and M.M. Peet
[11] J. Shen, A new dual-Petrov-Galerkin method for third and higher odd-order differential equations: application to the KdV equation, SIAM J. Numer. Anal.
41 (5) (2003) 1595–1619.

[12] D.B. Haidvogel, T. Zang, The accurate solution of Poisson’s equation by expansion in Chebyshev polynomials, J. Comput. Phys. 30 (2) (1979) 167–180.
[13] C. Canuto, Boundary conditions in Chebyshev and Legendre methods, SIAM J. Numer. Anal. 23 (4) (1986) 815–831.
[14] H.I. Siyyam, M.I. Syam, An accurate solution of the Poisson equation by the Chebyshev-Tau method, J. Comput. Appl. Math. 85 (1) (1997) 1–10.
[15] J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen

sind, in: Abhandlungen Aus Dem Mathematischen Seminar Der Universität Hamburg, Vol. 36, Springer, 1971, pp. 9–15.
[16] Y. Bazilevs, T.J.R. Hughes, Weak imposition of Dirichlet boundary conditions in fluid mechanics, Comput. & Fluids 36 (1) (2007) 12–26.
[17] V. Jovanovic, S. Koshkin, The Ritz method for boundary problems with essential conditions as constraints, Adv. Math. Phys. 2016 (2016).
[18] B.-Y. Guo, J. Shen, L.-L. Wang, Generalized Jacobi polynomials/functions and their applications, Appl. Numer. Math. 59 (5) (2009) 1011–1028.
[19] X. Yu, Z. Wang, H. Li, Jacobi-Sobolev orthogonal polynomials and spectral methods for elliptic boundary value problems, Commun. Appl. Math. Comput.

1 (2019) 283.
[20] P.F. Fischer, An overlapping Schwarz method for spectral element solution of the incompressible Navier–Stokes equations, J. Comput. Phys. 133 (1) (1997)

84–101.
[21] G. Karniadakis, S.J. Sherwin, Spectral/Hp Element Methods for Computational Fluid Dynamics, Oxford University Press, USA, 2005.
[22] A. Smyshlyaev, M. Krstic, Backstepping observers for a class of parabolic PDEs, Systems Control Lett. 54 (7) (2005) 613–625.
[23] E. Fridman, Y. Orlov, An LMI approach to 𝐻∞ boundary control of semilinear parabolic and hyperbolic systems, Automatica 45 (9) (2009) 2060–2066.
[24] M.M. Peet, A partial integral equation (PIE) representation of coupled linear PDEs and scalable stability analysis using LMIs, Automatica 125 (2021)

109473, 1–14.
[25] D. Lehotzky, T. Insperger, A pseudospectral tau approximation for time delay systems and its comparison with other weighted-residual-type methods,

Internat. J. Numer. Methods Engrg. 108 (6) (2016) 588–613.
[26] E. Boström, Boundary Conditions for Spectral Simulations of Atmospheric Boundary Layers (Ph.D. thesis), KTH Royal Institute of Technology, 2017.
[27] M. Ruess, D. Schillinger, Y. Bazilevs, V. Varduhn, E. Rank, Weakly enforced essential boundary conditions for NURBS-embedded and trimmed NURBS

geometries on the basis of the finite cell method, Internat. J. Numer. Methods Engrg. 95 (10) (2013) 811–846.
[28] M. Vymazal, D. Moxey, C.D. Cantwell, S.J. Sherwin, R.M. Kirby, On weak Dirichlet boundary conditions for elliptic problems in the continuous Galerkin

method, J. Comput. Phys. 394 (2019) 732–744.
[29] J. Freund, R. Stenberg, On weakly imposed boundary conditions for second order problems, in: Proceedings of the Ninth Int. Conf. Finite Elements in

Fluids, Venice, 1995, pp. 327–336.
[30] M. Juntunen, R. Stenberg, Nitsche’s method for general boundary conditions, Math. Comp. 78 (267) (2009) 1353–1374.
[31] R.J. LeVeque, Numerical Methods for Conservation Laws, Vol. 214, Springer, 1992.
[32] E. Tadmor, A review of numerical methods for nonlinear partial differential equations, Bull. Amer. Math. Soc. 49 (4) (2012) 507–554.
[33] H. Bansal, S. Weiland, L. Iapichino, W.H.A. Schilders, N. van de Wouw, Structure-preserving spatial discretization of a Two-Fluid model, in: IEEE-CDC,

2020, pp. 5062–5067.
[34] I. Stakgold, M.J. Holst, Green’s Functions and Boundary Value Problems, John Wiley & Sons, 1979.
[35] G.F. Roach, Green’s Functions, second ed., Cambridge University Press, Cambridge, Great Britain, 1982.
[36] Green’s function library, 2020, http://www.greensfunction.unl.edu/home/index.html.
[37] K.E. Atkinson, The numerical solution of boundary integral equations, in: Institute of Mathematics and Its Applications Conference Series, Vol. 63, Oxford

University Press, 1997, pp. 223–260.
[38] O. Marin, K. Gustavsson, A.-K. Tornberg, A highly accurate boundary treatment for confined Stokes flow, Comput. & Fluids 66 (2012) 215–230.
[39] C. Carvalho, S. Khatri, A.D. Kim, Asymptotic approximations for the close evaluation of double-layer potentials, SIAM J. Sci. Comput. 42 (1) (2020)

A504–A533.
[40] Fundamental solution, in: Encyclopaedia of Mathematics, Kluwer, 1994.
[41] P. Kythe, Fundamental Solutions for Differential Operators and Applications, Springer Science & Business Media, 2012.
[42] S.G. Johnson, Notes on Green’s functions in inhomogeneous media, 2010, math.mit.edu/~stevenj/18.303/inhomog-notes.pdf.
[43] D.-J. van Manen, J.O.A. Robertsson, A. Curtis, Modeling of wave propagation in inhomogeneous media, Phys. Rev. Lett. 94 (16) (2005) 164301.
[44] F.J. Sánchez-Sesma, R. Madariaga, K. Irikura, An approximate elastic two-dimensional Green’s function for a constant-gradient medium, Geophys. J. Int.

146 (1) (2001) 237–248.
[45] L. Greengard, Spectral integration and two-point boundary value problems, SIAM J. Numer. Anal. 28 (4) (1991) 1071–1080.
[46] M. Hiegemann, Chebyshev matrix operator method for the solution of integrated forms of linear ordinary differential equations, Acta Mech. 122 (1997)

231–242.
[47] T.A. Driscoll, Automatic spectral collocation for integral, integro-differential, and integrally reformulated differential equations, J. Comput. Phys. 229 (17)

(2010) 5980–5998.
[48] A.S. Fokas, A unified transform method for solving linear and certain nonlinear PDEs, Proc. R. Soc. Lond. Ser. A 453 (1997) 1411–1443.
[49] A.S. Fokas, Lax pairs and a new spectral method for linear and integrable nonlinear PDEs, Selecta Math. 4 (1998) 31–68.
[50] P.A. Treharne, A.S. Fokas, Initial-boundary value problems for linear PDEs with variable coefficients, Math. Proc. Cambridge Philos. Soc. 143 (2007)

221–242.
[51] B. Deconinck, T. Trogdon, V. Vasan, The method of Fokas for solving linear partial differential equations, SIAM Rev. 56 (1) (2014) 159–186.
[52] E. Kesici, B. Pelloni, T. Pryer, D. Smith, A numerical implementation of the unified Fokas transform for evolution problems on a finite interval, EJAM 29

(3) (2018) 543–567.
[53] J.C. Strikwerda, Finite Difference Schemes and Partial Differential Equations, SIAM, 2004.
[54] P.D. Lax, R.D. Richtmyer, Survey of the stability of linear finite difference equations, Comm. Pure Appl. Math. 9 (2) (1956) 267–293.
[55] S. Shivakumar, A. Das, S. Weiland, M.M. Peet, Duality and 𝐻∞ optimal control of coupled ODE-PDE systems, in: 59th Conference on Decision in Control

(CDC), 2020.
[56] A. Das, S. Shivakumar, S. Weiland, M.M. Peet, 𝐻∞ optimal estimation for linear coupled PDE systems, in: 2019 IEEE 58th Conference on Decision and

Control (CDC), IEEE, 2019, pp. 262–267.
[57] C. Edwards, Y. Peet, Linear stability of plane Poiseuille flow in the sense of Lyapunov, in: Proceedings of 62nd IEEE Conference on Decision and Control,

Marina Bay Sands, Singapore, 2023.
[58] M.M. Peet, Representation of networks and systems with delay: DDEs, DDFs, ODE–PDEs and PIEs, Automatica 127 (2021) 109508.
[59] L.N. Trefethen, Approximation Theory and Approximation Practice, SIAM, 2013.
[60] M.M. Peet, A new state-space representation for coupled PDEs and scalable Lyapunov stability analysis in the SOS framework, in: Proc. IEEE Conf. on

Decision and Control, 2018.
[61] M.M. Peet, A partial integral equation (PIE) representation of coupled linear PDEs and scalable stability analysis using LMIs, 2018, arxiv.org/abs/1812.

06794.
[62] D.A. Smith, Well-posed two-point initial-boundary value problems with arbitrary boundary conditions, Math. Proc. Cambridge Philos. Soc. 152 (2012)
28

473–496.

http://refhub.elsevier.com/S0377-0427(23)00617-9/sb11
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb11
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb11
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb12
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb13
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb14
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb15
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb15
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb15
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb16
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb17
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb18
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb19
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb19
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb19
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb20
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb20
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb20
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb21
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb22
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb23
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb24
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb24
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb24
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb25
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb25
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb25
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb26
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb27
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb27
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb27
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb28
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb28
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb28
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb29
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb29
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb29
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb30
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb31
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb32
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb33
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb33
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb33
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb34
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb35
http://www.greensfunction.unl.edu/home/index.html
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb37
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb37
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb37
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb38
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb39
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb39
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb39
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb40
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb41
http://math.mit.edu/~stevenj/18.303/inhomog-notes.pdf
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb43
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb44
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb44
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb44
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb45
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb46
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb46
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb46
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb47
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb47
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb47
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb48
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb49
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb50
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb50
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb50
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb51
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb52
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb52
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb52
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb53
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb54
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb55
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb55
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb55
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb56
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb56
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb56
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb57
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb57
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb57
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb58
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb59
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb60
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb60
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb60
http://arxiv.org/abs/1812.06794
http://arxiv.org/abs/1812.06794
http://arxiv.org/abs/1812.06794
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb62
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb62
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb62

Journal of Computational and Applied Mathematics 442 (2024) 115673Y.T. Peet and M.M. Peet
[63] S. Shivakumar, A. Das, S. Weiland, M. Peet, Extension of the Partial Integral Equation representation to GPDE input-output systems, in: Transactions on
Automatic Control, 2023, submitted for publication.

[64] P. Moin, Fundamentals of Engineering Numerical Analysis, Cambridge University Press, 2001.
[65] N. Bressan, A. Quarteroni, Analysis of Chebyshev collocation methods for parabolic equations, SIAM J. Numer. Anal. 23 (6) (1986) 1138–1154.
[66] C. Canuto, A. Quarteroni, Error estimates for spectral and pseudospectral approximations of hyperbolic equations, SIAM J. Numer. Anal. 19 (3) (1982)

629–642.
[67] E. Tadmor, Spectral Methods for Hyperbolic Problems, in: Lecture Notes Delivered at Ecole Des Ondes, Inria-Rocquencort, France, 1994.
[68] G.F. Dullerud, F. Paganini, A Course in Robust Control Theory, Springer–Verlag, 2000.
[69] R.L. Williams II., D.A. Lawrence, Linear State-Space Control Systems, John Wiley & Sons, Inc., 2007.
[70] M. Emmett, M. Minion, Toward an efficient parallel in time method for partial differential equations, Commun. Appl. Math. Comput. Sci. 7 (1) (2012)

105–132.
[71] B.W. Ong, J.B. Schroder, Applications of time parallelization, Comput. Vis. Sci. 23 (2020) 1–15.
[72] Y.T. Peet, P.F. Fischer, Stability analysis of interface temporal discretization in grid overlapping methods, SIAM J. Numer. Anal. 50 (6) (2012) 3375–3401.
[73] S. Shivakumar, A. Das, M.M. Peet, PIETOOLS: A MATLAB toolbox for manipulation and optimization of partial integral operators, in: Proceedings of 2020

American Control Conference (ACC), Denver, CO, USA, 2020, pp. 2667–2672.
[74] U.M. Ascher, L.R. Petzold, Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations, Vol. 61, SIAM, 1998.
[75] E. Volterra, E. Zachmanoglou, Dynamics of Vibrations, Charles E. Merrill Books, 1965.
[76] D.H. Rudy, J.C. Strikwerda, A nonreflecting outflow boundary condition for subsonic Navier-Stokes calculations, J. Comput. Phys. 36 (1) (1980) 55–70.
[77] T. Colonius, Modeling artificial boundary conditions for compressible flow, Annu. Rev. Fluid Mech. 36 (2004) 315–345.
[78] N.M. Newmark, A method of computation for structural dynamics, J. Eng. Mech. Div. 85 (3) (1959) 67–94.
[79] Y. Xu, Y.T. Peet, Verification and convergence study of a spectral-element numerical methodology for fluid-structure interaction, J. Comput. Phys.: X 10

(2021) 100084.
[80] D.S. Jagt, M.M. Peet, A PIE representation of coupled linear 2D PDEs and stabiity analysis using LPIs, in: Proc. 2022 American Control Conference (ACC),

Atlanta, USA, 2022.
[81] D. Jagt, P. Seiler, M. Peet, A PIE representation of scalar quadratic PDEs and global stability analysis using SDP, in: Proc. IEEE Conference on Decision

Control, 2023.
[82] C.N. Dawson, Q. Du, T.F. Dupont, A finite difference domain decomposition algorithm for numerical solution of the heat equation, Math. Comp. 57 (195)

(1991) 63–71.
[83] B. Smith, P. Bjørstad, W. Gropp, Domain Decomposition: Parallel Methods for Elliptic Partial Differential Equations, Cambridge University Press, 2004.
[84] C. Förster, W.A. Wall, E. Ramm, Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous

flows, Comput. Methods Appl. Mech. Engrg. 196 (7) (2007) 1278–1293.
[85] M.A. Fernández, J. Mullaert, M. Vidrascu, Generalized Robin–Neumann explicit coupling schemes for incompressible fluid-structure interaction: Stability

analysis and numerics, Internat. J. Numer. Methods Engrg. 101 (3) (2015) 199–229.
29

http://refhub.elsevier.com/S0377-0427(23)00617-9/sb63
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb63
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb63
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb64
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb65
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb66
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb66
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb66
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb67
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb68
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb69
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb70
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb70
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb70
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb71
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb72
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb73
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb73
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb73
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb74
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb75
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb76
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb77
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb78
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb79
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb79
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb79
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb80
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb80
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb80
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb81
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb81
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb81
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb82
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb82
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb82
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb83
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb84
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb84
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb84
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb85
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb85
http://refhub.elsevier.com/S0377-0427(23)00617-9/sb85

	A new treatment of boundary conditions in PDE solution with Galerkin methods via Partial Integral Equation framework
	Introduction
	Partial Integral Equations PIE Framework
	Standardized PDE Representation
	Conversion to a Partial Integral Equation (PIE) Representation
	Some Useful Preliminaries
	PIE Representation
	Note on Invertibility of BT

	Solution of the PDEs in the PIE Framework: PIE-Galerkin- Chebyshev (PGC) Approximation
	Spatial Treatment
	Stability and Convergence of a Semi-Discrete Approximation
	Temporal treatment
	Exact Integration
	Alternative Exact Integration
	Gauss Integration
	Backward Differentiation Formula

	Software

	 Numerical Results
	 Verification, Data Processing and Error Analysis
	 Numerical Examples with PIEs: Parabolic Problems
	Example 1: Diffusion Equation
	Example 2: Euler–Bernoulli Beam

	 Numerical Examples with PIEs: Hyperbolic Problems
	Example 3: Transport Equation
	Example 4: Wave Equation

	 Comparison of PIEs with Direct PDE Solution Methods
	 Comparison Case 1: Diffusion Equation
	 Comparison Case 2: Wave Equation
	 Comparison of CPU Time and Operation Count

	 Discussion and Conclusionssec:conclude
	Data availability
	Acknowledgments
	Appendix A. Definition of 3-PI Operators in the PIE Representation
	Appendix B. Proof of Lemma 3.1
	References

