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Abstract— PDEs with periodic boundary conditions are fre-
quently used to model processes in large spatial environments,
assuming solutions to extend periodically beyond some bounded
interval. However, solutions to these PDEs often do not converge
to a unique equilibrium, but instead converge to non-stationary
trajectories existing in the nullspace of the spatial differential
operator (e.g. ∂2

∂x2 ). To analyse this convergence behaviour, in
this paper, it is shown how such trajectories can be modeled
for a broad class of linear, 2nd order, 1D PDEs with periodic
as well as more general boundary conditions, using the Partial
Integral Equation (PIE) representation. In particular, it is first
shown how any PDE state satisfying these boundary conditions
can be uniquely expressed in terms of two components, existing
in the image and the nullspace of the differential operator ∂2

∂x2 ,
respectively. An equivalent representation of linear PDEs is then
derived as a PIE, explicitly defining the dynamics of both state
components. Finally, a notion of exponential stability is defined
that requires only one of the state components to converge to
zero, and it is shown how this stability notion can be tested by
solving a linear operator inequality. The proposed methodology
is applied to two examples, demonstrating that exponential
stability can be verified with tight bounds on the rate of decay.

I. INTRODUCTION

Partial Differential Equations (PDEs) are used to model a
variety of processes, including physical, biological, chemical,
etc. For example, the evolution of the temperature distribu-
tion u(t) in a rod can be modeled with the heat equation,

ut(t, x) = uxx(t, x), u(0, x) = u0(x), x ∈ (0, 1). (1)

Of course, in order to obtain a unique solution, any PDE on
a finite domain must be complemented by a set of boundary
conditions. In practice, these boundary conditions are often
chosen to represent behaviour of the system at actual bound-
aries of the physical environment – e.g. imposing Dirichlet
conditions u(t, 0) = u(t, 1) = 0 if the temperature at
the endpoints of the rod is known to be zero. However,
in many applications, the endpoints of the interval do not
correspond to physical boundaries, but instead, the interval
is used to represent an (infinitely) repeating segment of a
larger domain. Assuming solutions in each segment to be
identical, so that u(t, x+ n) := u(t, x) for n ∈ N, this can
be modeled using periodic boundary conditions, setting e.g.
u(t, 0) = u(t, 1) and ux(t, 0) = u(t, 1).

Although periodic boundary conditions offer a crucial tool
for modeling processes in larger spatial domains, analysing
stability of equilibrium solutions for these conditions may be
challenging. For example, any uniform distribution u∗ ≡ β
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for β ∈ R will satisfy the periodic conditions and u∗
xx = 0,

allowing infinitely many equilibrium states for the heat equa-
tion. Moreover, these equilibria are non-isolated, in that any
one equilibrium exists in an arbitrarily small neighborhood
of another. As a result, behaviour of solutions is highly
dependent on the initial conditions, with

∫ 1

0
u0(x)dx = β

implying limt→∞ u(t) ≡ β, complicating stability analysis.
Of course, non-isolated equilibria do not occur exclusively

for periodic boundary conditions. Indeed, the uniform solu-
tions u∗ ≡ β are also equilibria for the heat equation with
Neumann conditions ux(t, 0) = ux(t, 1) = 0. Moreover, any
affine distribution u∗(x) = αx+β will be an equilibrium for
the heat equation when using u(t, 1) = u(t, 0)+ux(t, 0) and
ux(t, 0) = ux(t, 1). The problem with all of these boundary
conditions, of course, is that for u in the space constrained by
these conditions – i.e. the PDE domain – uxx = 0 does not
imply u = 0. More precisely, the nullspace of the differential
operator D := ∂2

∂x2 defining the heat equation is not trivial
on the PDE domain. By contrast, for Dirichlet conditions,
this operator ∂2

∂x2 is actually invertible on the PDE domain,
admitting only a single equilibrium u∗ ≡ 0.

Fortunately, most practical PDE models involve e.g. reac-
tion or nonlinear terms that prohibit non-isolated equilibria,
allowing stability properties to be accurately tested even
for Neumann or periodic boundary conditions. For exam-
ple, stability conditions for reaction-diffusion equations with
Neumann (and Dirichlet) conditions have been derived in [1],
[2], and stabilization of such systems may also be performed
using backstepping [3], [4]. Similarly, stability conditions for
Navier-Stokes equations with periodic boundary conditions
are presented in [5], [6], and stability of these equations with
arbitrary boundary conditions can also be tested using a Sum-
Of-Squares (SOS) approach as in [7]–[9]. More comprehen-
sive frameworks for analysis of linear and nonlinear systems
with general boundary conditions have been developed as
well, using e.g. SOS [10], [11], or occupation measures and
the moment-SOS hierarchy [12]–[14].

Using these various results, stability of equilibrium so-
lutions can be tested for a broad class of PDEs. However,
although analysing stability of a single equilibrium suffices
for most practical applications, in doing so, certain insight on
convergence behaviour of solutions may be lost. For exam-
ple, for the heat equation with periodic boundary conditions,
although the trivial solution u∗ ≡ 0 is merely Lyapunov
stable, each solution does converge asymptotically to an
equilibrium β :=

∫ 1

0
u0(x)dx. Similarly, adding a reaction

term as ut(t, x) = uxx(t, x) + u(t, x), the equilibrium
u∗ ≡ 0 becomes unstable, but solutions do still converge as



∥u(t)− β(t)∥L2
→ 0, where now β(t) := et

∫ 1

0
u0(x)dx.

Of course, this kind of convergence ∥u(t)− β(t)∥L2
→ 0

could be tested by expanding solutions as u(t, x) = β(t) +∑
i∈N ci(t)ϕi(x) for some basis {ϕi} – as done in e.g. [2],

[9], [12] – and analysing the behaviour of u(t) − β(t) =∑
i∈N ci(t)ϕi(x). In this paper, however, we propose a

framework that allows such analysis to be performed without
the need for a basis expansion, by establishing a map T
such that u(t) − β(t) = T uxx(t), and explicitly modeling
the dynamics of T uxx(t). To achieve this, we will use the
framework presented in e.g. [15], in which it was shown that
for a broad class of linear boundary conditions, including
Dirichlet and Robin conditions, the differential operator ∂2

∂x2

admits a unique inverse T on the PDE domain. Moreover,
this inverse is defined by a Partial Integral (PI) operator,
parameterized by polynomials T 1,T 2 as

(T v)(x) =

∫ x

a

T 1(x, θ)v(θ)dθ +

∫ b

x

T 2(x, θ)v(θ)dθ.

Then, for a broad class of linear PDEs, we can define another
PI operator A such that u solves the PDE if and only if
v = uxx solves the Partial Integral Equation (PIE)

∂tT v(t) = Av(t).

In this representation, the fundamental state v(t) ∈ L2 does
not have to satisfy any boundary conditions or regularity con-
straints. Exploiting the algebraic properties of PI operators,
as well as their polynomial parameterization, this allows a va-
riety of problems such as stability analysis, optimal control,
and optimal estimation for linear ODE-PDE systems to be
posed as operator inequalities on PI operator variables [16],
which can be solved using semidefinite programming [17].

Of course, constructing a PIE representation for PDEs
with periodic boundary conditions is complicated by the
fact that the differential operator ∂2

∂x2 is not invertible on
the resulting PDE domain. Indeed, ∂2

∂x2 is not injective on
this PDE domain, since its nullspace includes any uniform
solution u ≡ β. Moreover, ∂2

∂x2 is also not surjective onto
L2, since u(t) will satisfy ux(t, 0) = ux(t, 1) only if∫ 1

0
uxx(t, x)dx = 0, imposing constraints directly on the

fundamental state v(t) = uxx(t).
Extending the PIE representation to support periodic as

well as more general boundary conditions, then, we face sev-
eral challenges. First, given any set of boundary conditions,
how do we define the range of ∂2

∂x2 on the resulting PDE
domain? Secondly, how do we account for the potentially
nontrivial nullspace of ∂2

∂x2 on the PDE domain, identifying
operators T and Q such that for any u(t) in this domain,
∂2

∂x2Qu(t) = 0 and u(t) = T uxx(t) +Qu(t)? Finally, how
do we construct a PIE modeling the dynamics of not only
v(t) = uxx(t) but also Qu(t), and how do we test stability
in this representation?

In the remainder of this paper, we resolve each of these
challenges, extending the PIE representation to support PDEs
with periodic as well as more general boundary conditions.
To this end, in Sec. III we first show how for a general linear

PDE domain X ⊆ W 2,n
2 , we can define the image of ∂2

∂x2

on X as an L2-subspace Y . Next, we show how we can
define a functional F and PI operators T0, T1 such that u =
T0Fu+T1uxx for all u ∈ X – where now ∂2

∂x2 (T0Fu) = 0.
Using this relation, in Sec. IV, we then derive an equivalent
PIE representation of linear PDEs, modeling the fundamental
state v(t) = (Fu(t),uxx(t)) ∈ Rm × Y . Finally, in
Sec. V, we show how stability in this PIE representation
can be tested as a linear PI operator inequality, allowing
convergence of solutions in both the sense ∥u(t)∥L2

→ 0
and ∥u(t)− T0Fu(t)∥L2

→ 0 to be tested. We solve this
operator inequality for two example PDEs in Sec. VI.

II. NOTATION

For a given interval [a, b] ⊂ R, let Ln
2 [a, b] denote the

Hilbert space of Rn-valued square-integrable functions on
[a, b], where we omit the domain when clear from context.
Denote ∂2

x := ∂2

∂x2 , and define the Sobolev subspace

W 2,n
2 [a, b] := {u ∈ Ln

2 [a, b] | ux,uxx ∈ L2[a, b]},

where ux = ∂xu and uxx = ∂2
xu. Let Rm×n[x, θ] denote

the space of m × n matrix-valued polynomials in variables
x, θ. For R,Q ∈ Lm×n

2 [a, b], define the multiplier operator
MR : Rn → Lm

2 and functional ∫ ba[Q] : Ln
2 → Rm by

(MRv)(x) = R(x)v,
b

∫
a
[Q]u =

∫ b

a

Q(x)u(x)dx.

III. A BIJECTION BETWEEN u AND uxx

In this section, we provide the main technical contribution
of the paper, proving that for a PDE domain of the form

X :=
{
u ∈ W 2,n

2

∣∣∣E [
u(a)

u(b)

ux(a)

ux(b)

]
+

∫ b

a

F (x)u(x)dx = 0
}
, (2)

the map ∂2
x : X → Ln

2 is invertible only if {E,F } ∈
R2n×4n × L2n×n

2 is such that the matrix GE,F ∈ R2n×2n

(defined in the Subsec. III-A) is of full rank. Moreover, if
this condition fails, we can still define an L2 subspace,

Y := {v ∈ Rm × Ln
2 | Kv = 0}, (3)

for some functional K : Rm × Ln
2 → Rm, such that X is

isomorphic to Y , with D : X → Y defined by a differential
operator and the inverse T = D−1 : Y → X defined by
an integral operator with semiseparable kernel. This result
allows us to define an equivalent parameterization of the
state of the PDE free of boundary conditions and Sobolev
regularity constraints. We prove the result in three steps:

1) First, in Subsection III-A, we show that for any
{E,F }, we can define K ∈ Lm×n

2 such that u ∈ X
only if uxx ∈ Ŷ := {v ∈ Ln

2 | ∫ ba[K]v = 0}.
2) Next, in Subsection III-B, we show how we can define

a functional F and an integral operator T1 such that
for all v ∈ Ŷ , T1v ∈ X and

[
F
∂2
x

]
T1v =

[
0
v

]
.

3) Finally, in Subsection III-C, we define T0 such that
for all v0 ∈ Rm, T0v0 ∈ X and

[
F
∂2
x

]
T0v0 =

[
v0
0

]
.

Defining D :=
[
F
∂2
x

]
and T :=

[
T0 T1

]
, it follows

that u = T Du for all u ∈ X .



A. The Range of ∂2
x on the PDE Domain

Consider the subspace X ⊆ W 2,n
2 constrained by 2n linear

boundary conditions as in (2). In order to define an inverse
of the differential operator ∂2

x : X → Ln
2 on this subspace,

we first need to define the range of ∂2
x on X , which may

be a proper subspace of Ln
2 . For example, if X imposes

the periodic condition ux(a) = ux(b), then u ∈ X only if∫ b

a
uxx(x)dx = 0, thus restricting the range of ∂2

x on X .
In this subsection we show that, more generally, for any
{E,F }, we can define an associated K ∈ Lm×n

2 such that
u ∈ X implies

∫ b

a
K(x)uxx(x)dx = 0. Naturally, this first

requires representing the boundary conditions in terms of the
second-order derivative, uxx. We define such a representation
of the boundary conditions in terms of a matrix GE,F and
function HE,F as follows.

Definition 1: For given E ∈ Rm×4n and F ∈ Lm×n
2 , we

define GE,F ∈ Rm×2n and HE,F ∈ Lm×n
2 by

GE,F := E

[
In 0n
In (b − a)In
0n In
0n In

]
+

∫ b

a

F (x)
[
In (x− a)In

]
dx,

HE,F (x) := −E

[
0n
(b − x)In
0n
In

]
−
∫ b

x

(θ − x)F (θ)dθ,

and we define the subspace XE,F ⊆ W 2,n
2 by

XE,F :={
u ∈ W 2,n

2

∣∣∣GE,F

[
u(a)
ux(a)

]
=

∫ b

a

HE,F (x)uxx(x)dx
}
.

The following lemma shows that the boundary conditions
defining XE,F are in fact equivalent to those defining X .

Lemma 2: For E ∈ Rm×4n and F ∈ Lm×n
2 , let X be as

in (2), and XE,F as in Defn. 1. Then XE,F = X .
Proof: The result follows using Taylor’s theorem with

integral form of the remainder, by which, for any u ∈ W 2,n
2 ,

u(x) = u(a) + (x− a)ux(a) +

∫ x

a

(x− θ)uxx(θ)dθ.

Using this identity, the values of
[

u(b)

ux(b)

]
and

∫ b

a
F (x)u(x)dx

in the definition of X can all be expressed in terms of only
u(a), ux(a), and uxx(x), yielding the proposed representa-
tion of XE,F in terms of GE,F and HE,F . A full proof is
given in the extended version of the paper [18].

By Lem. 2, the boundary conditions on u ∈ X can be
equivalently expressed in terms of some linear combination
of the lower-boundary values (u(a),ux(a)), and some func-
tional of uxx. Here, if the matrix GE,F is of full rank – as
is the case for e.g. Dirichlet conditions – then all boundary
conditions will involve the boundary values (u(a),ux(a)),
not imposing any constraint directly on uxx. As such, the
differential operator ∂2

x : X = XE,F → Ln
2 is surjective in

this case, and in fact, we can define an inverse T : Ln
2 → X

as in e.g. [15]. However, if GE,F is not of full rank – as
is the case for e.g. periodic conditions – certain boundary
conditions may impose constraints directly on uxx. To isolate
these constraints, we partition the matrix GE,F defining
XE,F into full-rank and zero-rank parts as follows.

Lemma 3: For any E ∈ R2n×4n,F ∈ L2n×n
2 , there exists

0 ≤ m ≤ 2n and an invertible J ∈ R2n×2n such that

JGE,F = GJE,JF = G[
E1
E2

]
,
[
F1
F2

] =

[
GE1,F 1

0m×2n

]
,

where GE1,F 1
has full row rank and X = X[

E1
E2

]
,
[
F1
F2

].

Proof: Let m be such that GE,F ∈ R2n×2n is of rank
2n−m. Using Gauss-Jordan elimination, we can define an
invertible matrix J ∈ R2n×2n such that JGE,F is in reduced
row echelon form, and therefore JGE,F =

[
A
0m×2n

]
for

some A ∈ R2n−m×2n of full row rank. Let {E1,F 1} and
{E2,F 2} be given by the first 2n − m and last m rows
of {JE, JF }, respectively, so that JE =

[
E1

E2

]
and JF =[

F 1

F 2

]
. By definition of GE,F , it follows that GE1,F 1

= A

and GE2,F 2 = 0m×2n. Finally, since J is invertible, we have
u ∈ X if and only if

JE

[
u(a)

u(b)

ux(a)

ux(b)

]
+

∫ b

a

JF (x)u(x)dx = 0,

whence XE,F = XJE,JF = X[
E1
E2

]
,
[
F1
F2

]. By Lem. 2, it

follows that X = X[
E1
E2

]
,
[
F1
F2

].

By Lem. 3, if the boundary conditions defining X are such
that GE,F is rank-defficient, then we can partition the space
as X = XE1,F 1

∩ XE2,F 2
, where now GE1,F 1

is of full
rank whereas GE2,F 2

= 0. Here, the boundary conditions
defined by {E2,F 2} do not involve the boundary values
(u(a),ux(a)) at all, but rather, impose a constraint directly
on uxx. Consequently, the range of ∂2

x on XE2,F 2
will be a

proper subspace of Ln
2 , yielding the following corollary.

Corollary 4: Let E2 ∈ Rm×2n and F 2 ∈ Lm×n
2 [a, b] be

such that GE2,F 2
= 0, and define

Ŷ :=

{
v ∈ Ln

2

∣∣∣ ∫ b

a

HE2,F 2
(x)v(x)dx = 0

}
.

Then u ∈ XE2,F 2
if and only if u ∈ W 2,n

2 and uxx ∈ Ŷ .
Proof: Fix arbitrary u ∈ W 2,n

2 . Since GE2,F 2 = 0,
it follows from Lem. 2 that u ∈ XE2,F 2 if and only if∫ b

a
HE2,F 2(x)uxx(x)dx = 0, and thus uxx ∈ Ŷ .
By Cor. 4, the range of the differential operator ∂2

x on
XE2,F 2

is a subspace Ŷ ⊆ Ln
2 , defined by some functional

constraint. It follows that, unless GE,F is of full rank, the
range of ∂2

x on X = XE1,F 1
∩ XE2,F 2

will be a proper
subspace Ŷ ⊂ Ln

2 as well. In the following subsection, we
show that ∂2

x : X → Ŷ is in fact surjective onto this range,
defining a right-inverse T1 : Ŷ → X to ∂2

x as an integral
operator with semiseparable kernel.

B. A Right-Inverse of ∂2
x on the PDE Domain

Having defined the range Ŷ ⊆ Ln
2 of the differential

operator ∂2
x on X , we now propose an inverse of the

differential operator on this range, as an integral operator
T1 : Ŷ → X . Of course, in general, the (right-)inverse of a
differential operator is not unique. Indeed, letting

(T1v)(x) := α(x− a) + β +

∫ b

a

(x− θ)v(θ)dθ, (4)



for any α, β ∈ Rn, the map T1 : Ln
2 → W 2,n

2 defines a
right-inverse to ∂2

x. The challenge, then, is to choose α and
β in such a manner that T1v ∈ X = XE1,F 1 ∩ XE2,F 2 .
Here, by Cor. 4, we already have T1v ∈ XE2,F 2

if and
only if v ∈ Ŷ , for any α, β. Now, to find α, β such that
T1v ∈ XE1,F 1

, note that u = T1v implies u(a) = β and
ux(a) = α, and therefore u ∈ XE1,F 1

if and only if

GE1,F 1

[
β
α

]
= GE1,F 1

[
u(a)
ux(a)

]
=

∫ b

a

HE1,F 1
(x)v(x)dx.

Given v, these equations could be readily solved for α, β,
were it not for the fact that GE1,F 1 ∈ R2n−m×2n has only
2n−m rows, whereas we have 2n unknowns ([ β

α ] ∈ R2n).
Therefore, unless the matrix GE,F is of full rank, this still
leaves m degrees of freedom when defining the operator T1.
Rather than choosing these variables arbitrarily, we propose
to define a set of m auxiliary boundary conditions, {E3,F 3},
and choose α, β such that T1v ∈ X[

E1
E3

]
,
[
F1
F3

]. Naturally,

this requires choosing {E3,F 3} such that G[
E1
E3

]
,
[
F1
F3

] is

invertible. The following lemma shows how this may be
achieved, proving that in fact we may always let E3 = 0.

Lemma 5: Let {E1,F 1} ∈ R2n−m×4n × L2n−m×n
2 , and

let P :=
[

P11 P12
P21 P22

]
for P11, P21 ∈ Rn×2n−m and P12, P22 ∈

Rn×m be a permutation matrix such that GE1,F 1P =[
I2n−m M

]
for some M ∈ R2n−m×m. Define

F 3(x) :=
2(2b+ a− 3x)

(b− a)2
PT
12 −

6(b+ a− 2x)

(b− a)3
PT
22.

Then, the matrix G[
E1
0

]
,
[
F1
F3

] ∈ R2n×2n is invertible.

Proof: Let f(x) = 2(2b+a−3x)
(b−a)2 and g(x) := 6(b+a−2x)

(b−a)3 .

Then, we note that
∫ b

a
f(x)dx = −

∫ b

a
g(x)(x − a) = 1,

whereas
∫ b

a
f(x)(x − a)dx =

∫ b

a
g(x)dx = 0. By definition

of the function F 3, it follows that∫ b

a

F 3(x)dx = PT
12,

∫ b

a

(x− a)F 3(x)dx = PT
22.

and therefore G0,F 3
=

[
PT
12 PT

22

]
. Since P ∈ R2n×2n is a

permutation matrix, P−1 = PT , and it follows that

G0,F 3
P =

[
PT
12 PT

22

]
P =

[
0m×2n−m Im

]
.

Using this result we find

G[
E1
0

]
,
[
F1
F3

]P =

[
GE1,F 1

G0,F 3

]
P =

[
I2n−m M

0m×2n−m Im

]
.

Since the matrix [ I M
0 I ] is invertible, and the matrix P is

invertible, the matrix G[
E1
0

]
,
[
F1
F3

] is invertible as well.

By Lem. 5, given 2n−m independent boundary conditions
{E1,F 1} such that GE1,F 1

is of full row rank, we can
introduce m additional integral constraints defined by F 3,
such that the the matrix G[

E1
0

]
,
[
F1
F3

] ∈ R2n×2n is invertible.

Note that this choice of F 3 is not unique, and in many
cases (if m = n) it suffices to simply let F 3 = In –
see e.g. Example 10. Given any such F 3, we then have
sufficient conditions to constrain each of the degrees of

freedom [ α
β ] ∈ R2n in the definition of T1 in (4), allowing

us to define an inverse to ∂2
x : X[

E1
0

]
,
[
F1
F3

] → Ln
2 as follows.

Proposition 6: Let [ E1
0 ] ∈ R2n×4n and

[
F1
F3

]
∈ L2n×n

2 be
such that G[

E1
0

]
,
[
F1
F3

] is invertible, and define

T 1(x, θ) :=
[
In (x− a)In

]
G−1[

E1
0

]
,
[
F1
F3

]H[
E1
0

]
,
[
F1
F3

](θ).
Further define T1 : Ln

2 [a, b] → W 2,n
2 [a, b] by

(T1v)(x) =
∫ b

a

T 1(x, θ)v(θ)dθ +

∫ x

a

(x− θ)v(θ)dθ,

for v ∈ Ln
2 [a, b]. Then the following statements hold:

1) For all u ∈ X[
E1
0

]
,
[
F1
F3

], u = T1∂2
xu.

2) For all v∈ Ln
2 , T1v∈ X[

E1
0

]
,
[
F1
F3

], and v = ∂2
xT1v.

Proof: The result follows by defining T1 as in (4),
imposing the boundary conditions defined by {[ E1

0 ] ,
[

F1
F3

]
}

to find α(x − a) + β =
∫ b

a
T 1(x, θ)v(θ)dθ. A full proof is

given in the extended version of the paper [18].
Defining T1 as in Prop. 6, for any v ∈ Ln

2 , we have
T1v ∈ XE1,F 1 , and ∂2

xT1v = v. By Cor. 4, it follows
that for all v ∈ Ŷ , we have T1v ∈ X and ∂2

xT1v = v,
wherefore T1 defines a right-inverse to ∂2

x : X → Ŷ .
Unfortunately, T1 does not quite define a left-inverse to ∂2

x.
Indeed, by construction, T1v ∈ X0,F 3

for all v ∈ Ln
2 , so

that T1∂2
xu corresponds to a projection of u ∈ X onto the

subspace X ∩ X0,F 3 . This leaves the question of how to
recover arbitrary elements of X from their projections onto
X ∩X0,F 3

, which we resolve in the next subsection.

C. A Bijection Between the PDE Domain and a Subspace
of Rm × Ln

2

In the previous subsection, it was shown how we can
define an integral operator T1 : Ŷ → X that acts as a right-
inverse to the differential operator ∂2

x : X → Ŷ , so that ∂2
x ◦

T1 = I . Moreover, the complementary operator T1◦∂2
x acts as

a projection, mapping elements of X onto a subspace defined
by the auxiliary constraint Fu :=

∫ b

a
F 3(x)u(x)dx = 0. In

this subsection, we show how we can recover any u ∈ X
from its projection T1∂2

xu and the value Fu ∈ Rm, defining
T0 : Rm → Ln

2 such that u = T0Fu + T1∂2
xu. In order

for this to be satisfied, we note that T0 must be such that
not only F(T0F)u = Fu but also ∂2

x(T0F)u = 0. The
following lemma shows how this may be achieved.

Lemma 7: Let E1 ∈ R2n−m×4n, F ∈ L2n−m×n
2 , and

F 3 ∈ Lm×n
2 be such that G[

E1
0

]
,
[
F1
F3

] is invertible. Define

T 0(x) :=
[
In (x− a)In

]
G−1[

E1
0

]
,
[
F1
F3

] [02n−m×m

Im

]
and define T0 : Rm → Ln

2 [a, b] and F : Ln
2 [a, b] → Rm by

(T0v)(x) := T 0(x)v, Fu :=

∫ b

a

F 3(x)u(x)dx.

for v ∈ Rm and u ∈ Ln
2 [a, b]. Then, for all v ∈ Rm, we

have T0v ∈ XE1,F 1
, ∂2

xT0v = 0, and FT0v = v.



Proof: Fix arbitrary v ∈ Rm, and let û := T0v.
Then, by definition of the function T0(x), we have ûxx =
∂2
xT0(x)v = 0. Furthermore, we note that[

û(a)
ûx(a)

]
=

[
T0(a)
∂xT0(a)

]
v = G−1[

E1
0

]
,
[
F1
F3

] [02n−m×m

Im

]
v,

from which it follows that

GE1,F 1

[
û(a)
ûx(a)

]
=

[
I2n−m

02n−m×m

]T
G[

E1
0

]
,
[
F1
F3

] [ û(a)
ûx(a)

]
= 0.

We find that GE1,F 1

[
û(a)

ûx(a)

]
= 0 =

∫ b

a
HE1,F 1

(θ)ûxx(θ)dθ,
and therefore û ∈ XE1,F 1 . Finally, by definition of F ,

F û =

∫ b

a

F 3(x)T 0(x)v dx

=

∫ b

a

(
F 3(x)

[
In (x− a)In

])
dx G−1[

E1
0

]
,
[
F1
F3

] [02n−m×m

v

]
= G0,F 3

G−1[
E1
0

]
,
[
F1
F3

] [02n−m×m

v

]
= v.

Defining T0 as in Lem. 7, we can identify any v0 ∈ Rm

with u0 = T0v ∈ X such that Fu0 = v0 and ∂2
xu0 = 0. On

the other hand, defining T1 as in Prop. 6, we can identify
any v1 ∈ Ŷ with u1 = T1v1 ∈ X such that Fu1 = 0
and ∂2

xu1 = v1. Consequently, introducing the augmented
differential operator D :=

[ F
∂2
x

]
, we can define a unique

map T : Du 7→ u by an integral operator T :=
[
T0 T1

]
.

The following theorem proves that these operators D and T
in fact define a bijection between X and Y := Rm × Ŷ .

Theorem 8: For given E ∈ R2n×4n and F ∈ L2n×n
2 , let[

E1

E2

]
and

[
F 1

F 2

]
be as in Lem. 3. Define X and Y as in (2)

and (3), respectively, where we let

(K [
v0
v1 ]) =

∫ b

a

HE2,F 2(x)v1(x)dx.

Further let F 3 ∈ Lm×n
2 be such that G[

E1
0

]
,
[
F1
F3

] is invertible,

and define T1 and {F , T0} as in Prop. 6 and Lem. 7,
respectively. Finally, define D :=

[
F
∂2
x

]
, and let

T v := T0v0 + T1v1, ∀v =
[
v0
v1

]
∈ Rm × Ln

2 [a, b],

Then the following statements hold:
1) For every u ∈ X , Du ∈ Y and u = T Du.
2) For every v ∈ Y , T v ∈ X and v = DT v.

Proof: To prove the first statement, fix arbitrary u ∈ X ,
and let v = Du. By Lem. 2 and Lem. 3, u ∈ XE1,F 1

∩
XE2,F 2

. It follows by Cor. 4 that uxx ∈ Ŷ , and therefore
v ∈ Y . Let now û = u−T0Fu, so that u = û+ T0Fu. By
Lem. 7, FT0v = v and ∂2

xT0v = 0 for all v ∈ Rm. It follows
that ûxx = uxx, and F û = Fu − FT0Fu = 0, whence
û ∈ X ∩X0,F 3

. By Prop. 6, it follows that û = T1ûxx, and
therefore u = T1ûxx + T0Fu = T v.

To prove the second statement, fix arbitrary (v0,v1) ∈ Y ,
so that v1 ∈ Ŷ . By Prop. 6, ∂2

xT1v1 = v1, and T1v ∈
XE1,F 1

∩X0,F 3
, whence FT1v1 = 0. By Lem. 7, ∂2

xT0v0 =

0, and T0v0 ∈ XE1,F 1 , with FT0v0 = v0. Letting u =
T1v1+T0v0, it follows by linearity that Fu = v0, and uxx =
v1. Furthermore, by linearity of the boundary conditions, we
also have u ∈ XE1,F 1

. Finally, since ∂2
xu ∈ Ŷ , by Cor. 4,

u ∈ XE2,F 2
, and so by Lem. 3, u ∈ X .

By Thm. 8, the space X ⊆ W 2,n
2 is isomorphic to

Y ⊆ Ln
2 , with the augmented differential operator D :

X → Y admitting a unique inverse as an integral operator
T : Y → X . Here, although elements v ∈ Y do have to
satisfy a functional constraint Kv = 0, they are free of the
regularity and boundary constraints imposed upon u ∈ X .
In the following sections, we will exploit this fact to show
how we can analyse stability of linear PDEs with domain X ,
by parameterizing a Lyapunov functional on Y . Of course,
since PDEs may also involve lower-order derivatives of the
state, this requires defining a map R : Du 7→ ux as well,
for which we have the following corollary.

Corollary 9: Let [ E1
0 ] ∈ R2n×4n and

[
F1
F3

]
∈ L2n×n

2

satisfy the conditions of Thm. 8, and define D and T as
in that theorem. Let T 1 ∈ Ln×n

2 and T 0 ∈ Ln×m
2 be as in

Prop. 6 and Lem. 7, respectively, and define

(Rv)(x) := ∂xT 0(x)v0+

∫ b

a

∂xT 1(x, θ)v1(θ)dθ+

∫ x

a

v1(θ)dθ,

for v = (v0,v1) ∈ Rm×Ln
2 [a, b]. Then the following holds:

1) For every u ∈ XE1,F 1
, we have ∂xu = RDu.

2) For every v ∈ Rm × Ln
2 , we have Rv = ∂x(T v).

Proof: The result follows from Thm. 8, by applying
Leibniz’ integral rule to the operator T . A full proof is given
in the extended version of the paper [18].

By Thm. 8 and Cor. 9, for any u ∈ X , both u and ux may
be uniquely expressed in terms of a corresponding Du ∈ Y ,
using integral operators T and R. The following example
illustrates what the space Y and the resulting operator T
look like for the simple case of periodic boundary conditions,
letting Fu :=

∫ b

a
u(x)dx.

Example 10: To illustrate an application of Thm. 8, con-
sider the following Sobolev subspace constrained by periodic
boundary conditions,

X =
{
u ∈ W 2,n

2 [−1, 1]
∣∣u(−1) = u(1), ux(−1) = ux(1)

}
.

By Cor. 4, for any u ∈ X we have uxx ∈ Ŷ , where

Ŷ :=
{
v ∈ L2[−1, 1]

∣∣∣ ∫ 1

−1

v(x)dx = 0
}
.

To obtain a unique expression for u in terms of uxx, we
introduce Fu := 1

2

∫ 1

−1
u(x)dx, setting F 3 = 1

2 in Thm. 8.
Then, defining

(T1v)(x) :=
∫ x

−1

(x− θ)v(θ)dθ −
∫ 1

−1

(θ−1)(1−θ+2x)

4
v(θ)dθ,

it follows by Thm. 8 that u ∈ X if and only if u =
1
2

∫ 1

−1
u(x)dx+ T1uxx. Conversely, (v0,v1) ∈ Y := R× Ŷ

if and only if v0 = 1
2

∫ 1

−1
u(x)dx and v1 = uxx, where

u = v0 + T1v1.



IV. A PIE REPRESENTATION OF LINEAR PDES

In the previous section, it was proven that any u ∈ X ⊆
Wn,2

2 [a, b] can be uniquely identified by a corresponding
element v ∈ Y , free of regularity and boundary constraints.
In this section, we use this relation to show that for any
u(t) ∈ X satisfying a given form of linear PDE, we may
uniquely associate a v(t) ∈ Y that satisfies a corresponding
Partial Integral Equation (PIE). To start, we first recall the
definition and some properties of partial integral operators,
used to parameterize such PIEs.

A. PI Operators on Rm × Ln
2 [a, b]

PIEs are parameterized by Partial Integral (PI) operators.
PI operators are an algebra of bounded, linear operators act-
ing on Rm×Ln

2 , parameterized by polynomials. Specifically,
we define the set of 4-PI operators as follows.

Definition 11 (4-PI operator, Π(m,n)×(p,q)): We say that
P : Rp × Lq

2 → Rm × Ln
2 is a 4-PI operator, writing P ∈

Π(m,n)×(p,q), if for some P ∈ Rm×p, Q1 ∈ Rm×q[x], Q2 ∈
Rn×p, R0 ∈ Rn×q[x] and R1,R2 ∈ Rn×q[x, θ],(
P
[
v0
v1

])
(x) :=

[
Pv0 +

∫ b

a
Q1(x)v1(x)

Q2(x)v0 +R0(x)v1(x) + (Rv1)(x)

]
,

for (v0,v1) ∈ Rp × Lq
2[a, b], where

(Rv1)(x) =

∫ x

a

R1(x, θ)v1(θ)dθ +

∫ b

a

R2(x, θ)v1(θ)dθ.

By definition of the operators in Thm. 8 and Cor. 9, if the
space X is defined by polynomial F , then each of the oper-
ators {T ,R,F ,K} defined in the previous section is a 4-PI
operator. This will allow us to construct a PIE representation
of linear PDEs in the following subsection, and test stability
in this PIE representation in Section V, by exploiting the
algebraic properties of PI operators. Specifically, we note that
4-PI operators form a ∗-algebra, being closed under addition,
composition, and adjoint operations, so that

• For any λ, µ ∈ R and A,B ∈ Π(m,n)×(p,q), we have
A+ B ∈ Π(m,n)×(p,q);

• For any A ∈ Π(m,n)×(k,ℓ) and B ∈ Π(k,ℓ)×(p,q), we
have A ◦ B ∈ Π(m,n)×(p,q);

• For any A ∈ Π(m,n)×(p,q), A∗ ∈ Π(p,q)×(m,n).
We refer to e.g. [15] for explicit expressions for the parameter
maps defining each of these operations. These operations
can also be readily performed with the Matlab toolbox
PIETOOLS 2024 [17], using overloaded functions for the
sum (+), product (*), and transpose (’).

B. Converting a PDE to a PIE

Using the class of PI operators from the previous subsec-
tion, we now propose an equivalent representation of linear
PDEs that is parameterized by such PI operators, as a PIE.
Specifically, consider a 2nd-order, linear, 1D PDE of the form

ut(t, x) = A0(x)u(t, x) +A1(x)ux(t, x) +A2(x)uxx(t, x),

u(t) ∈ X, t ≥ 0, (5)

parameterized by A0,A1,A2 ∈ Rn×n[x], E ∈ R2n×4n and
F ∈ R2n×n[x]. We define solutions to the PDE as follows.

Definition 12: For given A0,A1,A2 ∈ Rn×n[x], E ∈
R2n×4n and F ∈ R2n×n[x], we say that u is a solution to the
PDE defined by {Ai, E,F } with initial state u0 ∈ X if u(t)
is Fréchet differentiable, u(0) = u0, and u(t) satisfies (5),
with X as in (2).
Consider now a solution u to the PDE (5). By Thm. 8 and
Cor. 9, the state u(t) ∈ X at every time t ≥ 0 must satisfy
u(t) = T v(t) and ux(t) = Rv(t) for v = Du. Defining
then the PI operator A ∈ Π(0,n)×(m,n) as

A := MA0
◦ T + MA1

◦ R+ MA2
◦ I, (6)

where we let I [
v0
v1 ] := v1, it follows that if u(t) satisfies

the PDE (5), then v(t) = Du(t) = [ Fu
uxx

] satisfies the PIE

∂tT v(t) = Av(t), v(t) ∈ Y, t ≥ 0. (7)

In this representation, the fundamental state v(t) ∈ Y ⊆
Rm×Ln

2 consists of m+n components, but the dynamics are
governed by only n equations. However, recall from Thm. 8
that FT [

v0
v1 ] = v0 for all [ v0

v1 ] ∈ Y . Applying F to both sides
of the PIE in (7), then, it follows that v0(t) must satisfy

v̇0(t) = ∂t(F ◦ T )

[
v0(t)
v1(t)

]
= (F ◦ A)

[
v0(t)
v1(t)

]
, t ≥ 0.

Finally, defining T̂ :=
[
Im
T

]
and Â :=

[
F ◦ A
A

]
, we obtain

a compact representation for the dynamics of v = [
v0
v1 ] as

∂tT̂ v(t) = Âv(t), v(t) ∈ Y, t ≥ 0. (8)

We define solutions to this PIE as follows.
Definition 13: For given T ,A ∈ Π(m,n)×(m,n) and K ∈

Π(m,0)×(m,n), we say that v solves the PIE defined by
{T ,A,K} with initial state v0 ∈ Y for Y as in (3) if v(t)
is Fréchet differentiable, v(0) = v0, and v(t) satisfies (8).

The following result shows that the PDE and PIE repre-
sentations are indeed equivalent, in that for any solution to
the PDE we can define a solution to the PIE, and vice versa.

Theorem 14: For given A0,A1,A2 ∈ Rn×n[x], E ∈
R2n×4n and F ∈ R2n×n[x], define associated operators
{T ,F ,K} and D as in Thm. 8, and A as in (6), and let
T̂ :=

[
Im
T

]
and Â :=

[
F ◦ A
A

]
. Then, the following holds:

1) If u solves the PDE defined by {Ai, E,F } with initial
state u0 ∈ X , then v := Du solves the PIE defined
by {T̂ , Â,K} with initial state v0 := Du0.

2) If v solves the PIE defined by {T̂ , Â,K} with initial
state v0, then u := T v solves the PDE defined by
{Ai, E,F } with initial state u0 := T v0.

Proof: The result follows from the fact that, by Thm. 8
and Cor. 9, any u ∈ X satisfies u = T v and ux = Rv for
v = Du ∈ Y , and conversely, any v ∈ Y satisfies v = Du,
Rv(t) = ux, for u = T v ∈ X . By definition of T̂ and Â,
it follows that u satisfies (5) if and only if v satisfies (8). A
full proof is provided in the extended version [18].

By Thm. 14, any PDE of the form in (5) admits an
equivalent PIE representation of the form in (8), so that for
any solution to either system we can define a solution to
the other. The following example illustrates what this PIE
representation looks like for a simple reaction-diffusion PDE.



Example 15: To illustrate an application of Thm. 14,
consider the reaction-diffusion equation

ut(t, x) = uxx(t, x) + λu(t, x), x ∈ (−1, 1), (9)
u(t,−1) = u(t, 1), ux(t,−1) = ux(t, 1), t ≥ 0.

Let Fu := 1
2

∫ 1

−1
u(x)dx, and define the operator T1 as in

Ex. 10. Then, by Thm. 8, u is a solution to the PDE (9) if
and only if (v0,v1) := (Fu,uxx) is a solution to the PIE

v̇0(t) = λv0(t), (10)
∂t(v0(t) + T1v1(t)) = v1(t) + λ(v0(t) + T1v1(t)),∫ 1

−1
v1(t, x)dx = 0.

Conversely, (v0,v1) will satisfy the PIE (10) if and only if
u := v0+T1v1 satisfies the PDE (9). Note here that, for any
PDE solution u, the trajectory u∗(t) := Fu(t) = v0(t) is a
solution to the PDE as well, satisfying uxx(t) = v1(t) = 0.
In the next section, we show how we can verify stability of
this trajectory, in the sense that limt→∞ ∥u(t)− u∗(t)∥ = 0.

V. STABILITY ANALYSIS IN THE PIE REPRESENTATION

In the previous section, it was shown how a broad class of
linear, 1D PDEs can be equivalently represented as PIEs. In
this section, we use this equivalence to show how stability
of PDE trajectories can be tested by solving an operator
inequality on PI operator variables. In order to do so,
however, we must first define a suitable notion of stability.
For example, for the reaction-diffusion equation in Ex. 15,
solutions u(t) do not converge to any global equilibrium,
but do all satisfy limt→∞ ∥u(t) − Fu(t)∥L2

= 0 for
Fu(t) := 1

2

∫ 1

−1
u(t, x)dx (see Appx. II-A in the extended

version [18]). We define a notion of exponential stability that
encapsulates this kind of convergence as follows.

Definition 16: For a PDE defined by Gpde = {Ai, E,F }
and an operator S : Ln

2 → Ln
2 , we say that trajectories

defined by S are exponentially stable with rate α ≥ 0 if
there exists some M ∈ R such that

∥u(t)− Su(t)∥L2
≤ Meαt ∥u(0)− Su(0)∥L2

, ∀t ≥ 0,

for all solutions u to the PDE defined by Gpde,
Defn. 16 offers a definition of stability that does not

require all solutions to converge to a unique equilibrium
point. Instead, the choice of S offers a lot of freedom in
testing desired convergence behaviour of solutions, with e.g.
S = In posing no constraints on solutions, whilst S = 0
requires global exponential stability of u∗ ≡ 0. Given the
decomposition u(t) = T0F0u(t)+ T1uxx(t) of the PDE so-
lutions, an obvious, moderate choice is S = T0◦F , requiring
limt→∞ ∥T1uxx(t)∥L2

= 0 even if limt→∞ ∥u(t)∥L2
̸= 0.

Having parameterized a notion of stability by operators S ,
we now consider how we may actually verify stability for a
given choice of such S. For simplicity, let S = 0 (testing ex-
ponential stability of u∗ = 0), and parameterize a candidate
Lyapunov functional V (u) = ⟨u,Pu⟩ = ⟨T v,PT v⟩ by a
PI operator P . Taking the Lie derivative V̇ of this functional
along solutions to the PIE (7), we find

V̇ (T v) = ⟨ṽ, [T ∗PA+A∗PT ]v⟩L2
, ∀v ∈ Y.

Here, Q := T ∗PA+A∗PT is again a PI operator, so that
stability can be tested by solving the Linear PI Inequality
(LPI) defined by P ≻ 0 and Q ⪯ 0. However, since
V̇ (T v) ≤ 0 need only hold for v ∈ Y := {v ∈ Rm × L2 |
Kv = 0}, simply imposing Q ≤ 0 may introduce significant
conservatism. The challenge, then, is to enforce ⟨v,Qv⟩L2

≤
0 only for v satisfying Kv = 0. The following proposition
shows how this can be achieved using an approach similar
to Finsler’s lemma, by introducing an operator variable X .

Proposition 17: For any Gpde = {Ai, E,F }, let associ-
ated operators Gpie := {T ,A,K} be as in Thm. 14. Let
S ∈ Π(0,n)×(0,n), and define T̃ := (In − S) ◦ T and Ã :=
(In − S) ◦ T . If there exist ϵ > 0, α ≥ 0, P ∈ Π(0,n)×(0,n)

and X ∈ Π(0,n)×(m,0) such that

P = P∗ ⪰ ϵ2I, (11)(
Ã∗PT̃ + T̃ ∗PÃ

)
⪯ −2αT̃ ∗PT̃ − XK −K∗X ∗,

then, trajectories defined by S are exponentially stable with
rate α for the PDE defined by Gpde.

Proof: Consider the functional V : Rm×Ln
2 [a, b] → R

defined by V (v) := ⟨T̃ v,PT̃ v⟩L2
for v ∈ Rm ×Ln

2 . Since
P ⪰ ϵ2I , this function is bounded as

ϵ2
∥∥T̃ v

∥∥2
L2

≤ V (v) ≤ µ2
∥∥T̃ v

∥∥2
L2
,

where µ := ∥P∥1/2op . Now, let u be an arbitrary solution
to the PDE defined by Gpde, and let v = Du. Then, by
Thm. 14, v is a solution to the PIE defined by Gpie, and
u = T v. It follows that v satisfies

∂tT̃ v(t) = (I − S)∂tT v(t) = (I − S)Av(t) = Ãv(t),

and therefore

∂tV (v(t)) =
〈
∂tT̃ v(t),PT̃ v(t)

〉
L2
+
〈
T̃ v(t),P∂tT̃ v(t)

〉
L2

=
〈
v(t), Ã∗PT̃ + T̃ ∗PÃv(t)

〉
L2

≤ −
〈
v(t), [2αT̃ ∗PT̃ + XK +K∗X ∗]v(t)

〉
L2

= −2α
〈
T̃ v(t),PT̃ v(t)⟩L2

= −2αV (v(t)),

where we remark that Kv(t) = 0 since v(t) ∈ Y , for all
t ≥ 0. Applying the Grönwall-Bellman inequality, we find
V (v(t)) ≤ V (v(0))e−2αt, and therefore ϵ2∥T̃ v(t)∥2L2

≤
µ2∥T̃ v(0)∥2L2

e−2αt. Since T̃ v = (I − S)T v = u − Su, it
follows that trajectories defined by S are exponentially stable
with rate α for the PDE defined by Gpde.

Using Prop. 17, for any PDE as in (5), exponential stability
(as per Defn. 16) of trajectories defined by a PI operator
S can be tested by solving the LPI (11) for the associated
PIE representation. In the following section, we will use this
result to verify stability properties for two PDE examples.

VI. NUMERICAL EXAMPLES

In this section, we apply the proposed methodology to ver-
ify stability of two example PDEs. In each case, the LPI (11)
is implemented in Matlab using PIETOOLS 2024 [17],
numerically parameterizing P using monomials of degree at
most 2d = 6, and solving the resulting semidefinite program
with Mosek [19]. We refer to [15] for more details on how
LPIs can be solved using semidefinite programming.



A. Reaction-Diffusion Equation with Periodic BCs

Consider the reaction-diffusion equation from Ex. 15,

ut(t, x) = uxx(t, x) + λu(t, x), x ∈ (−1, 1), (12)
u(t,−1) = u(t, 1), ux(t,−1) = ux(t, 1), t ≥ 0.

For any λ ∈ [0, π2), the trajectories defined by the operator
Su(t) := 1

2

∫ 1

−1
u(t, x)dx are exponentially stable for this

PDE in the sense of Defn. 16, with rate α = π2 − λ (see
Appx. II-A in [18]). We can verify this using Prop. 17,
setting T =

[
I T1

]
and A =

[
λ I − λT1

]
, for T1 as

in Ex. 10. Using PIETOOLS, exponential stability with rate
α = 0 can be verified up to λ = 9.8695 approaching the
true stability limit λ = π2 ≈ 9.8696. Fixing several values
of λ, exponential stability can be verified with rates α as in
Tab. I, also approaching the true rates αmax = π2 − λ.

λ 0 1.5 3 4.5 6 7.5 9 9.5
α 9.8690 8.3691 6.8692 5.3693 3.8695 2.3695 0.8696 0.3696

αmax 9.8696 8.3696 6.8696 5.3696 3.8696 2.3696 0.8696 0.3696

TABLE I
RATES α FOR WHICH EXPONENTIAL STABILITY OF TRAJECTORIES

DEFINED BY Su := 1
2

∫ 1
−1 u(x)dx FOR THE PDE (12) WAS VERIFIED

WITH PROP. 17, ALONG WITH THE ANALYTIC RATE αmax = π2 − λ.

B. Wave Equation with Neumann BCs

Consider now the following wave equation with stabilizing
feedback and Neumann boundary conditions,

utt(t, x) =uxx(t, x)−2kut(t, x)−k2u(t, x), t ≥ 0, (13)
ux(t, 0) = ux(t, 1) = 0, x ∈ (0, 1).

To convert this PDE to a PIE representation, we introduce
ϕ(t, x) = (u(t, x),ut(t, x))

T , expanding the system as

ϕt(t, x) =

[
0 1

−k2 −2k

]
ϕ(t, x) +

[
0 0
1 0

]
ϕxx(t, x), t ≥ 0.

A PIE representation can then be constructed using
Thm. 14, introducing fundamental state components v0(t) =
(Fϕ)(t) :=

∫ 1

0
(4−6x)ϕ(t, x)dx (as in Lem. 5) and v1(t) =

ϕxx(t). The trivial solution u∗ ≡ 0 can be shown to be
exponentially stable if and only if k ≥ 0, with rate α = k (see
Appx. II-B in [18]). Using PIETOOLS, exponential stability
can be verified for k ≥ 0.0006 with rate α = 0, and with
rates α as in Tab. II for several values of k > 0.

k 1 2 3 4 5 6 7 8
α 0.981 1.997 2.993 3.996 4.994 5.975 6.969 7.957

TABLE II
MAXIMAL RATES α FOR WHICH EXPONENTIAL STABILITY OF ϕ∗ ≡ 0

(S∗ = 0 IN DEFN. 16) FOR THE PDE (13) WAS VERIFIED WITH PROP. 17,
FOR SEVERAL VALUES OF k. THE ANALYTIC RATE IS αmax = k.

VII. CONCLUSION

In this paper, it was shown how for 2nd-order PDEs with
periodic as well as more general linear boundary conditions,
convergence of solutions to trajectories in the nullspace of
∂2
x can be tested. To this end, it was first shown how for

a PDE domain X defined by such boundary conditions, we
can define a functional F : X → Rm and PI operator T1,
such that ∂2

x ◦ T1 = I and F ◦ T1 = 0. Next, a PI operator
T0 : Rm → X was defined such that u = T0Fu+T1uxx for
any u ∈ X , where now ∂2

xT0F0u = 0. This relation was then
used to derive a PIE representation of linear PDEs in terms of
(Fu(t),uxx(t)), and it was shown how exponential stability
(in the sense of Defn. 16) of both the trivial solution u(t) = 0
and of trajectories T0Fu(t) can be tested by solving an LPI.
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