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1

CHAPTER 1

INTRODUCTION

1.1 Research goals and prior work

In the year 2011, fossil fuel energy accounted for 83% of the total global con-

sumption. Despite the fact that renewable energy and nuclear fission power are the

world’s fastest growing energy sources, fossil fuels will continue to supply almost 80%

of the global demand through 2040 [1]. It is because of this dependence on fossil

fuels that the total carbon emissions are expected to rise by 29% during the same

time period [2]. Moreover, before the end of the 21st century, an energy shortfall

is expected to occur if only the present energy sources like fossil fuels, hydro and

nuclear fission are used [3]. Although renewable energy sources like solar, wind and

geothermal energy are safe and cause a minimal environmental impact (green house

gases emission and ecological damage), they do not posses the desired energy pro-

duction density (rate of energy produced divided by the area of the land required to

produce it). Thus, an energy source is required which has abundant fuel, possesses

high energy density, causes a minimal environmental impact and is safe.

A possible energy source that satisfies all the requirements highlighted in the

previous paragraph is nuclear fusion [4]. Nuclear fusion is the process in which two

nuclei fuse to form a single nucleus and possibly additional neutrons and protons.

Consider the reaction

H2 +H3 → He4 + n,

where H2 denotes a Deuterium nucleus (one proton and one neutron), H3 is the

Tritium nucleus (one proton and two neutrons), He4 is the Helium nucleus (two

protons and two neutrons) and n is a neutron. In order for the Deuterium and

Tritium particles to overcome the electrostatic force of repulsion and fuse, they must

possess significant energy. This energy may be provided by heating up the Deuterium-



2

Tritium gas to a temperature of a 100 million degrees Celsius. At a temperature of 100

million degrees Celsius, the Deuterium-Tritium gas is in a completely ionized state,

also known as a plasma. Since the Deuterium-Tritium plasma has free electrons and

ions, the plasma can be confined by a magnetic field. This is because a charged

particle moving through a magnetic field experiences a force (Lorentz force) that

causes it to gyrate about the magnetic field lines [5]. A tokamak is a toroidal vessel

that uses magnetic fields to confine plasmas using a toroidal magnetic fiend BT and

a poloidal magnetic field BP [6], [7].

To explain the requirement of feedback control in tokamaks, we will now pro-

vide an example of instability in the vertical position of a tokamak plasma. We begin

by explaining the importance of tokamak plasmas with an elongated cross-section.

Energy confinement time τE is a performance metric used for the operation of a

tokamak. It is defined as

τE =
W

PL
,

where W is the total thermal energy of the plasma and PL is the rate at which the

plasma loses energy [7]. According to empirical scaling laws, an increase in plasma

current Ip leads to a proportional increase in τE [8]. Moreover, Ip ∝ κ2, where κ is the

elongation of the plasma cross-section and is defined as the ratio of the vertical and

horizontal minor-axes of the plasma cross-section [9]. Thus, a plasma cross-section

which is elongated in the vertical direction has a higher energy confinement time than

one with a circular cross-section.

Another performance metric is the plasma beta which is defined as

β =
2µ0〈P 〉
B2

T

,

where 〈P 〉 is the plasma kinetic pressure averaged over the plasma volume and µ0

is the magnetic permeability of vacuum [7]. Since economic and cost considerations

imply that BT must be kept low (current in external coils, magnetic stresses on
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conductors), a high β is desirable. An increase in plasma vertical elongation κ and

hence, in the plasma current Ip, leads to a higher β [10], [11], [12]. Unfortunately,

elongating the plasma can cause instability as explained below.

To achieve the vertical elongation of the plasma cross-section, a tokamak is

equipped with current carrying coils at the top and bottom of the toroidal vessel which

run parallel to the plasma [6]. If there is a current running in both the upper and

lower coils and in the same direction as Ip, the plasma will experience a tensile force

in both the upward and downward directions which will cause a vertical elongation.

This is due to the Biot-Savart law and the Lorentz force which explain repulsion

and attraction between two current carrying conductors [5]. To explain the vertical

instability induced by this elongation mechanism, let us consider the plasma as a

conducting wire carrying the plasma current Ip. Additionally, let there be one coil

on the top and one coil on the bottom which can both be considered as parallel

conducting wires with a current Iv running through them in the same direction as Ip.

Suppose that the plasma wire is maintained at a distance h from both the top and

bottom wires. Then, the top wire pulls the plasma wire upwards with a force given

by

Ft =
µ0

2π

IvIp
h
.

Similarly, the bottom wire pulls the plasma wire down with a force Fb equal to Ft.

Since Fb and Ft are equal and opposite, the plasma wire is held at a desired distance

of h from both top and bottom. Now, consider a slight perturbation of the plasma

wire by δ towards the top. Now the opposite forces are given by

Ft =
µ0

2π

IvIp
(h− δ)

and Fb =
µ0

2π

IvIp
(h + δ)

.

Since Ft > Fb, there is a net force on the plasma wire pushing it to the top with a

magnitude

FN(net force) =
µ0

2π

IvIp
(h− δ)

− µ0

2π

IvIp
(h+ δ)

.
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Since the net force FN is inversely proportional to displacement of the plasma wire

from the center, an initial perturbation will lead to an ever increasing displacement

of the plasma wire in the vertical direction.

To suppress this vertical instability, a feedback controller could be used which

utilizes the plasma off-center displacement δ(t) and its rate of change δ̇(t) to alter the

current in the top coil by δIT (t) and in the bottom by δIB(t). This change in current

would generate a restoration force which would push the plasma center towards the

desired position. One such example of simple feedback controller commands is

δIT (t) =
2δ(t)

h
and δIB(t) =

hδ̇(t)

kIpIv
.

Some of the proposed controllers for the vertical stabilization of tokamak plasmas can

be found in [13], [14], [15].

The suppression of the vertical instability highlights an example of how feed-

back control could be utilized to achieve desired plasma properties in a tokamak.

Feedback control can be used to improve the safety and efficiency of tokamaks. A few

examples of feedback control applications in a tokamak include, plasma shape [16],

[17], safety factor [18], [19] and plasma pressure and current [20], [21]. Moreover, the

iter tokamak [4] will be operating under the Advanced Tokamak (AT) regime [22].

The AT regime requires plasma shapes with a high degree of accuracy, high plasma

pressures, increased plasma confinement efficiency and a reduction in the dependence

on external energy input. Due to the importance of feedback control, large tokamaks

like JET [23] and DIII-D [24] have ongoing programs dedicated to the design and

validation of controllers for the AT regime [25], [26], [27], [28].

A tokamak plasma interacts with currents, magnetic fields and forces exerted

on and by it. In order to quantitatively predict the behavior of tokamak plasmas,

mathematical models are required. One way is to use Magneto-Hydro-Dynamics
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(MHD) models. MHD is a branch of physics that studies the behavior of plasma under

the effects of electric and magnetic fields [8]. A sub-branch of MHD is ideal MHD [29],

wherein we make the assumption that the plasma has zero resistivity. However, ideal

MHD is sufficiently accurate in predicting certain plasma instabilities and its models

can be used to construct plasma evolution equations for control design [7]. Ideal MHD

models of plasmas are derived using Maxwell’s equations and conservation of mass,

momentum and energy [30]. Recall, Maxwell’s equations are a set of four equations

(Gauss’ law for electricity, Gauss’ law for magnetism, Faraday’s laws of induction and

Ampere’s law) which describe how electric and magnetic fields interact, propagate,

influence and get influenced by objects.

Maxwell’s equations, and hence models of MHD, are described by Partial

Differential Equations (PDEs). To understand what a PDE is, consider n variables

x1, · · · , xn, xj ∈ Ω ⊂ R, j ∈ {1, · · · , n}, and quantity w(x1, · · · , xn), w : Ω×· · ·×Ω →

R. A general one dimensional PDE model is of the form [31]:

F

(

x1, · · · , xn,
∂w

∂x1
, · · · , ∂w

∂xn
,
∂2w

∂x1x2
, · · · , ∂

(i)w

∂x
(i)
1

, · · ·
)

= 0, (1.1)

where F : Ω × · · · × Ω × R × · · · × R → R, ∂w
∂xj

, j ∈ {1, · · · , n}, denote the partial

derivative of w(x1, · · · , xn) with respect to xj and i ∈ N. In this work, we consider

PDEs of the form

wt(x, t) = a(x)wxx(x, t) + b(x)wx(x, t) + c(x)w(x, t), (1.2)

where x ∈ [0, 1], t ≥ 0 and a, b and c are continuous functions of the independent

variable x. Such types of PDEs are known as second order parabolic PDEs. Parabolic

PDEs are used to model processes such as diffusion, transport and reaction.

The first question to be asked of a parabolic PDE, or in fact any type of PDE,

is if it is well-posed. A parabolic PDE is well-posed if the PDE has a unique solution.

The definition of a solution of a PDE is non-trivial [31], [32], [33], [34]. To keep the
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introduction simple, we will use the ‘classical definition of the solution’. Rigorous

definitions of solutions of PDEs and their types will be presented in subsequent chap-

ters. Consider the parabolic PDE given in Equation (1.2). Intuitively, it can be seen

that a solution w to this second order PDE is one which is atleast twice continuously

differentiable in x and continuously differentiable in t, such that all the derivatives are

well-defined, and w satisfies the equation. These requirements lead to the definition

of a classical solution.

Definition 1.1. [31] For the PDE given in (1.2), a function which is at least twice

continuously differentiable in x, continuously differentiable in t and satisfies the PDE

is known as a solution. If in addition, the solution is unique, it is defined as a classical

solution.

Since the concept of classical solution is the easiest to understand, we will use

it throughout the introduction.

We now consider the problem of stability analysis. To this end, we will start

by defining a set of real valued functions known as L2(Ω), Ω ⊂ R, given as

L2(Ω) := {f : Ω → R : ‖f‖L2 =

(
∫

Ω

f 2(x)dx

)
1
2

<∞}. (1.3)

The set L2(Ω) is widely used in the analysis of PDEs and thus, we will use it in the

subsequent discussion. The functional ‖·‖L2 : L2(Ω) → R is known as the norm on

the set L2(Ω). The definition and properties of norms can be found in [35]. For any

f ∈ L2(Ω), the norm ‖f‖L2 formalizes the concept of ‘the size’ of f . Similarly, for

f, g ∈ L2(Ω), the norm ‖f − g‖L2 quantifies the ‘closeness’ of f and g. With the

understanding of L2 and its norm ‖·‖L2, we can now define the stability of solutions

of PDEs. In particular, we are interested in exponential stability defined as following.

Definition 1.2. The PDE given in Equation (1.2) is exponentially stable in the
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sense of L2(Ω) if there exist scalars M > 0 and α > 0 such that

‖w(·, t)‖L2 ≤Me−αt for all t > 0.

As an example, consider the stability of the one dimensional heat conducting

rod whose temperature w(x, t), x ∈ [0, 1], t > 0, is governed by the parabolic PDE 4.12

wt(x, t) = κwxx(x, t),

where κ > 0 is the thermal conductivity of the rod. Additionally, suppose that the

temperature of the rod is zero at both ends. This results in the following boundary

conditions

w(0, t) = 0 and w(1, t) = 0, for all t > 0.

The solution to this PDE is given by [36]:

w(x, t) = 2κ
∞
∑

n=1

e−π2n2t sin(πnx)

∫ 1

0

sin(πnz)w(z, 0)dz.

It is easy to show that

‖w(·, t)‖ ≤Me−αt, for all t > 0,

where

M = 2κ

(

∫ 1

0

∞
∑

n=1

sin2(πnx)

∫ 1

0

sin2(πnz)w2(z, 0)dzdx

)
1
2

and α = π2.

Thus, using Definition 1.2 it can be seen that the heat equation is exponentially

stable.

Consider the following extension of the PDE given in Equation (1.2):

wt(x, t) =a(x)wxx(x, t) + b(x)wx(x, t) + c(x)w(x, t) + d(x)u1(x, t), (1.4)

with boundary conditions

w(0, t) = 0 and wx(1, t) = βu2(t),
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where a, b, c and d are known continuously differentiable coefficients, β is a known

scalar and w(·, t) ∈ L2(0, 1). The functions u1 : (0, 1)×(0,∞) → R and u2 : (0,∞) →

R, which appear in the PDE in addition to the dependent variables and the unknown

function w, are known as inputs. The distributed function of x, u1(x, t), is known as

a distributed input. The function u2(t) which appears in the boundary conditions

is known as a boundary input. The case when d(x) = 0 is an example of the

system with only boundary input. Similarly, the system only has distributed input

when β = 0.

For PDEs with input, we consider exponential stabilization and regulation

defined as follows:

Definition 1.3 (Stabilization). For the PDE 1.4, the stabilization problem is:

Find: u1(x, t) and u2(t)

such that: there exist M,α > 0 with ‖w(·, t)‖ ≤Me−αt, t ≥ 0.

Definition 1.4 (Regulation). Given a function v(x), the regulation problem is:

Find: u1(x, t) and u2(t)

such that: there exist M,α > 0 with ‖w(·, t)− v(·)‖ ≤Me−αt, t ≥ 0.

Some examples of stabilization and regulation of parabolic PDEs can be found

in [37], [38], [39].

Consider the autonomous (without inputs) parabolic PDE for x ∈ [0, 1] and

t ∈ (0,∞),

wt(x, t) = a(x)wxx(x, t) + b(x)wx(x, t) + c(x)w(x, t),

w(0, t) = 0, wx(1, t) = 0, y1(x, t) = d(x)w(x, t), y2(t) = γw(1, t), (1.5)

where a, b, c, d are known continuously differentiable functions and γ is a known

scalar. Assume that y1(x, t) and y2(t) are known functions. These known functions
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which provide a complete or partial knowledge of w are known as the outputs. When

the output provides the knowledge of w over a non-zero Lebesgue measure subset of

[0, 1], it is known as distributed output. When the output provides the knowledge

of w over the boundary of the set [0, 1], it is known as boundary output. In

Equation (1.5), y1(x, t) is the distributed output and y2(t) is the boundary output.

Since in most cases, the outputs provide only a partial knowledge of the solu-

tion, it is desirable to use the outputs to estimate the complete solution of the PDEs.

The estimates may be used for the design of stabilizing control laws, for example.

To estimate the solution, an artificial PDE is constructed that uses the output of

the actual PDE as its input. This artificial PDE whose output is the estimate of

the solution of the actual PDE is known as the observer. For the PDE given by

Equation (1.5), an observer of the following type can be designed

ŵt(x, t) = â(x)ŵxx(x, t) + b̂(x)ŵx(x, t) + ĉ(x)ŵ(x, t) + d̂(x)y1(x, t),

ŵ(0, t) = 0, ŵx(1, t) = γ̂y2(t), (1.6)

where the search for the unknown coefficients â, b̂, ĉ, d̂ and γ̂ is known as the observer

synthesis problem and can be stated as follows.

Definition 1.5 (Observer synthesis). Given the linear second order PDE 1.5 with

outputs y1 and y2, the observer synthesis problem is

Find: â(x), b̂(x), ĉ(x), d̂(x) and γ̂ for the System 1.6

such that: there exist M,α > 0 with

‖w(·, t)− ŵ(·, t)‖ ≤Me−αt, t ≥ 0.

A few examples of observer synthesis for parabolic PDEs can be found in [40],

[41], [42].

The stabilization problem can be restated as a question of feasibility. A general
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optimization problem is of the form

Minimizexi∈R : f(x1, · · · , xn)

subject to : |g(x1, · · · , xn)| ≤ b and

|x1| ≤ c, · · · , |xn| ≤ c,

where f, g : Rn → R, b, c > 0. The related feasibility problem would be to find xi ∈ R,

i ∈ {1, · · · , n}, which satisfy the constraints of the optimization problem.

An important type of optimization is convex optimization [43].

Definition 1.6 (Convex function). A real valued function f : Rn → R is convex if

f(αx+ βy) ≤ αf(x) + βf(y) (1.7)

for all x, y ∈ R
n and all α, β ∈ R with α + β = 1, α ≥ 0, β ≥ 0.

This convexity condition means that a line joining any two points on the

function always lies on or above the function. For convex functions, we define the

following class of optimization problems.

Definition 1.7 (Convex optimization problem). A convex optimization problem

is of the form

Minimizex∈Rn : f0(x)

subject to : fi(x) ≤ ci, ci ∈ R, i ∈ {1, · · · , m},

where the functions f0 and fi are all convex.

Constrained optimization problems, for most cases, cannot be solved analyt-

ically. However, convex optimization problems can be efficiently solved algorithmi-

cally [44]. An important class of convex optimization is a Semi-Definite Programming

(SDP).
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Definition 1.8. An SDP problem is an optimization problem of the form

Minimizex∈Rn : cTx

subject to : F0 +

n
∑

i=1

xiFi ≤ 0 and

Ax = b,

where c ∈ Rn, b ∈ Rk, A ∈ Rk×n and symmetric matrices Fi ∈ Sm are given.

We use SDP to perform stability analysis, stabilization and observer synthesis

for parabolic PDEs. To explain how we accomplish these tasks, we will change the

way we represent parabolic PDEs. Consider the following equation

wt(x, t) = a(x)wxx(x, t) + b(x)wx(x, t) + c(x)w(x, t),

w(0, t) = 0, wx(1, t) = 0, (1.8)

where t ∈ (0,∞), x ∈ (0, 1) and the coefficients a, b and c are continuously differen-

tiable. Consider the mapping

w : (0,∞) → L2(0, 1)

defined by

(w(t))(x) = w(x, t) (x ∈ (0, 1), t ∈ (0,∞)).

Additionally, let

Az(x) = a(x)zxx(x) + b(x)zx(x) + c(x)z(x), for z ∈ DA,

where

DA = {z ∈ L2(0, 1) : z, zx are absolutely continuous , zxx ∈ L2(0, 1),

z(0) = 0 and zx(1) = 0}
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With these definitions, Equation (1.8) can be written as

ẇ(t) = Aw(t), w(t) ∈ DA. (1.9)

With this representation, we can provide Lyapunov inequalities for linear

PDEs. We begin by providing the following definitions

Definition 1.9. A mapping P : L2(Ω) → L2(Ω), Ω ⊂ R, is a bounded linear

operator if for all y, z ∈ L2(Ω) and ω ∈ R there exists a scalar ξ > 0 such that

P(y + z) = Py + Pz, P(ωy) = ωPy, ‖Py‖L2 ≤ ξ‖y‖L2.

The set of all such operators is denoted by L(L2(Ω)).

Definition 1.10. An operator P ∈ L(L2(Ω)) is positive if for all y, z ∈ L2(Ω)

〈Py, z〉L2
= 〈y,Pz〉L2

, 〈Py, y〉L2
≥ 0.

With these definitions, we now provide the Lyapunov inequalities for the sta-

bility analysis of linear PDEs.

Theorem 1.11. [45] A given linear PDE

ẇ(t) = Aw(t)

is exponentially stable if and only if there exists a P ∈ L(L2(Ω)) and a scalar α > 0

such that

〈Pz, z〉L2
≥ 0, and

〈Az,Pz〉L2
+ 〈Pz,Az〉L2

≤ −α 〈z, z〉L2
, for all z ∈ DA.

There is no single method that can search over the set of positive operators

to find a solution of the Lyapunov inequalities for PDEs given in Theorem 1.11.



13

We use Sum-of-Squares (SOS) polynomials to parametrize positive operators. By

definition, an SOS polynomial is non-negative. Moreover, an SOS polynomial can be

represented using a PSD matrix [46]. Thus, a positive operator parametrized by an

SOS polynomial can be represented by a PSD matrix. This implies that the search

for a solution of the Lyapunov inequalities for linear PDEs can be performed over

the set of PSD matrices. Hence, the problem of searching for a positive operator

satisfying the Lyapunov inequalities can be cast as an SDP feasibility problem. The

parametrization of operators using SOS polynomials and the setup of the Lyapunov

inequalities as SDPs are discussed in subsequent chapters. Similarly, the search for

controllers and observers can be cast as SDP feasibility problems.

The gradient of poloidal magnetic flux is an important physical quantity for

the safe and efficient operation of tokamaks since it is related to the magnetic field line

pitch, known as the safety factor profile, and the self-generated bootstrap current in

the plasma. The dynamics of the gradient of poloidal magnetic flux are governed by

a parabolic PDE [47]. The control is exercised using distributed input. The actuators

available to administer the input use electromagnetic waves at the cyclotron frequency

of electrons and ions. Unfortunately, the control input is shape constrained and the

best estimates for the allowable control inputs are empirical. Nevertheless, we are

able to apply similar methodologies which we develop for a general class of parabolic

PDEs.

1.2 Notation

The following notation and definitions are used throughout the Thesis. For a

detailed discussion of the definitions used, refer to [35], [48] or the appendix of [45].

Function Spaces The following are defined for −∞ < a < b <∞
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• The Hilbert space L2(a, b) is defined as

L2(a, b) := {f : (a, b) → R : ‖f‖L2 =

(
∫ b

a

f 2(x)dx

)

1
2

<∞}.

• For any Hilbert space X and scalar 0 < τ <∞, we denote

L2([0, τ ];X) := {f : [0, τ ] → X : ‖f‖L2([0,τ ];X) =

(
∫ τ

0

]‖f(t)‖2L2
dt

)
1
2

<∞.}.

Similarly, a function f ∈ Lloc
2 ([0,∞];X) if f ∈ L2([0, τ ];X) for every τ ≥ 0.

• For any f, g ∈ L2(a, b), 〈f, g〉L2
=
∫ b

a
f(x)g(x)dx.

• Unless otherwise indicated, 〈·, ·〉 denotes the inner product on L2 and ‖·‖ = ‖·‖L2

denotes the norm induced by the inner product.

• A function f : (a, b) → R is absolutely continuous if for any integer N

and any sequence t1, · · · , tN , we have
∑N−1

k=1 |x(tk) − x(tk+1)| → 0 whenever

∑N−1
k=1 |tk − tk+1| → 0.

• The Sobolev space Hm(a, b) is defined as

Hm(a, b) := {f ∈ L2(a, b) : f, · · · ,
dm−1f

dxm−1
are absolutely continuous

on (a, b) with
dmf

dxm
∈ L2(a, b)}.

• For any f, g ∈ Hm(a, b),

〈f, g〉Hm =
m
∑

n=0

〈

dnf

dxn
,
dng

dxn

〉

L2

.

• The set of n times continuously differentiable functions is defined as

Cn(a, b) := {f : (a, b) → R : f, · · · , d
nf

dxn
exist and are continuous}.

• The set of smooth functions is defined as

C∞(a, b) := {f : (a, b) → R : f ∈ Cn(a, b) for any n ∈ N}.
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• For a set X and scalar 0 < τ <∞, we denote

Cn([0, τ ];X) := {f : [0, τ ] → X : f is n-times continuously

differentiable on[0, τ ]}.

Similarly, a function f ∈ Cn
loc([0,∞];X) if f ∈ Cn([0, τ ];X) for every τ ≥ 0.

• The direct sum of n Hilbert spaces X is denoted by Xn.

Operators on Hilbert Spaces The following are defined for any two Hilbert

spaces X and Y with respective norms ‖·‖X and ‖·‖Y and inner products 〈·, ·〉X and

〈·, ·〉Y .

• A mapping P : X → Y is a linear operator is for all f, g ∈ X and scalars β,

it holds that P(f + g) = Pf + Pg and P(βf) = βPf .

• A linear operator P : X → Y is a bounded linear operator if for all f ∈ X ,

there exists a scalar ω > 0 such that ‖Pf‖Y ≤ ω‖f‖X.

• We say that P ∈ L(X, Y ) if P : X → Y is a bounded linear operator. Similarly,

we denote by L(X) the set of all bounded linear operator mapping the elements

of X back to itself.

• For P ∈ L(X, Y ), we define

‖P‖L(X,Y ) = sup
f∈X,‖f‖X=1

= ‖Pf‖Y .

• For any P ∈ L(X, Y ), there exists a unique P⋆ ∈ L(Y,X) that satisfies

〈Pf, g〉Y = 〈f,P⋆g〉X for all f ∈ X, g ∈ Y.

The operator P⋆ is called the adjoint operator of P.

• The operator P ∈ L(X, Y ) is known as self-adjoint if P = P⋆.
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• A self-adjoint operator P ∈ L(X) is known as a positive operator, denoted

by P > 0, if there exists a scalar ǫ > 0 such that 〈Pf, f〉X ≥ ǫ 〈f, f〉X , for all

f ∈ X .

Similarly, a self-adjoint operator P ∈ L(X) is known as a positive semidefi-

nite operator, denoted by P ≥ 0, if 〈Pf, f〉X ≥ 0, for all f ∈ X .

• For any two self-adjoint operators P,R ∈ L(X), by P > R we mean that P −R

is a positive operator.

Similarly, by P ≥ R we mean that P − R is a positive semidefinite operator.

• The identity operator is denoted by I.

• A linear operator T : D ⊂ X → Y is said to be closed if whenever

xn ∈ D, n ∈ N and lim
n→∞

xn = x, lim
n→∞

T xn = T x.

Vector Spaces and Real Algebra

• The set of non-negative real numbers is denoted by R+.

• The set of real matrices of dimension m× n is denoted by R
m×n.

• The set of symmetric matrices of dimension n× n is denoted by Sn.

• A symmetric matrix A ∈ Sn is a positive definite matrix , denoted by A > 0,

if there exists a scalar ǫ > 0 such that xTAx ≥ ǫxTx, for all x ∈ Rn.

Similarly, a symmetric matrix A ∈ Sn is a positive semidefinite matrix ,

denoted by A ≥ 0, if xTAx ≥ 0, for all x ∈ Rn.

• For any two symmetric matrices A,B ∈ Sn, by A > B we mean that A− B is

a positive definite matrix.

Similarly, by A ≥ B we mean that A− B is a positive semidefinite matrix.
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• The identity matrix of dimension n× n is denoted by In.

• We denote by Zd(x) the vector of monomials up to degree d.

• We denote by Zn,d(x) the Kronecker product In ⊗ Zd(x).
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CHAPTER 2

CONVEX OPTIMIZATION, SEMI-DEFINITE PROGRAMMING AND
SUM-OF-SQUARES POLYNOMIALS

Given the functions fi : Rn → R, i ∈ {0, · · · , m} and hi : Rn → R, i ∈

{1, · · · , p}, a constrained optimization problem can be stated as

Minimizex∈Rn : f0(x)

subject to : fi(x) ≤ 0, i ∈ {1, · · · , m}, (2.1)

hi(x) = 0, i ∈ {1, · · · , p}.

The function f0(x) is the cost function or the objective function. The inequalities

fi(x) ≤ 0 are called inequality constraints and the functions fi(x) are called the

inequality constraint functions. Similarly, hi(x) = 0 are the equality constraints and

hi(x) are the equality constraint functions. The optimal value p⋆ of the Problem (2.1)

is given as

p⋆ = inf{f0(x) : fi(x) ≤ 0, i = 1, · · · , m, hi(x) = 0, i = 1, · · · , p}

and x⋆ for which f0(x
⋆) = p⋆ is the optimal point.

For a point x̃ to be an optimal point of a differentiable function f(x), the

necessary condition is that [∇xf(x)]x=x̃ = 0, where ∇x denotes the gradient with

respect to x. The Karush-Kuhn-Tucker (KKT) conditions generalize this necessary

condition for constrained optimization problems. The KKT conditions can be stated

as follows [49, 50]: for the optimization Problem (2.1), with differentiable fi and gi,

a point x⋆ ∈ Rn is optimal (f(x⋆) = p⋆) only if there exist scalars λ⋆i and ν⋆i , known

as Lagrange multipliers, such that

1) fi(x
⋆) ≤ 0, i ∈ {1, · · · , m}, hi(x

⋆) = 0, i ∈ {1, · · · , p}. (2.2)

2) λ⋆i ≥ 0, i ∈ {1, · · · , m}. (2.3)
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3) λ⋆i fi(x
⋆) = 0, i ∈ {1, · · · , m}. (2.4)

4)

[

∇xf0(x) +

m
∑

i=1

λ⋆i∇xfi(x) +

p
∑

i=1

ν⋆i ∇xhi(x)

]

x=x⋆

= 0. (2.5)

The solution to the equations yielded by the KKT conditions are known as KKT

points. The KKT points are the candidate optimal points for the opimization Prob-

lem (2.1). Equations (2.2)-(2.5) can be solved numerically, although for a few cases,

they can be solved analytically as well.

For a few types of optimization problems, the KKT conditions are necessary

and sufficient. For example, under certain conditions, KKT conditions are neces-

sary and sufficient for convex optimization problems. We begin by defining convex

functions. A function f : Rn → R is convex if

f(αx+ βy) ≤ αf(x) + βf(y),

for all x, y ∈ Rn and all α, β ∈ R with α+β = 1, α ≥ 0, β ≥ 0. A convex optimization

problem can be stated as

Minimizex∈Rn : f0(x)

subject to : fi(x) ≤ 0, i ∈ {1, · · · , m}, (2.6)

Ax = b, A ∈ R
p×n, b ∈ R

p,

where the functions fi, i ∈ {0, · · · , m} are convex. Thus, a convex optimization

problem has a convex cost function, convex inequality constraint functions and affine

equality constraint functions.

Let Problem (2.6) be strictly feasible, i.e., there exists a point x̃ ∈ Rn such

that

fi(x̃) < 0, i ∈ {1, · · · , m}, Ax̃ = b. (2.7)

Then, a point x⋆ ∈ Rn is the optimal point if and only if there exist Lagrange

multipliers λ⋆i and ν⋆i satisfying the KKT conditions [43]. Thus, for strictly feasible
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convex optimization problems, the KKT conditions are necessary and sufficient for

optimality.

To solve convex optimization problems, descent algorithms may be used. For

the convex optimization Problem (2.6), descent algorithms produce a sequence x(k)

satisfying f0(x
(k)) ≥ f0(x

(k+1)) ≥ f(x(k+2)) ≥ · · · , where each element of the sequence

satisfies the constraints. Given a feasible starting point x(0), the descent sequence is

defined recursively as

x(k+1) = x(k) + t(k)∆x(k),

where t(k) ≥ 0. Here ∆x(k) is defined as the search direction and the scalar t(k) is the

step length. A valid search direction ∆x(k) is one such that for x(k+1) = x(k)+t(k)∆x(k),

f0(x
(k+1)) ≤ f0(x

(k)). For equality constrained optimization, Newton’s method may

be used. The Newton’s method, at each iterate, calculates the valid descent direction

by minimizing the quadratic approximation of the cost function subject to the equality

constraints. Calculation of this minimizer is equivalent to solving the necessary KKT

conditions, which for equality constrained optimization problems, is a system of linear

equations. A detailed discussion on Newton’s method can be found in [43].

To solve the constrained optimization Problem (2.6), the inequality constraints

are incorporated into the cost function using a barrier function. Problem (2.6) can

be written as

Minimizex∈Rn : f0(x)−
m
∑

i=1

(

1

h

)

log(−fi(x))

subject to : Ax = b, A ∈ R
p×n, b ∈ R

p, (2.8)

where the function φ(u) = −
(

1
h

)

log(−u), for some h > 0, is the logarithmic barrier

function. Note that this approximate problem is convex due to the convexity of the

logarithmic barrier functions. The Newton’s method may now be applied to obtain

the optimal point, denoted by x⋆(h), for this problem. The interesting property of
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x⋆(h) is that

f0(x
⋆(h))− p⋆ ≤ m

h
,

where p⋆ is the optimal value of the original Problem (2.6). Thus, as h → ∞,

f(x⋆(h)) → p⋆. This fact is exploited by the barrier method and can be summarized

as:

Given a feasible starting point x(0) ∈ R
n, h > 0, µ > 1 and tolerance ǫ > 0

repeat

1. Formulate Problem (2.6) as Problem (2.8).

2. Apply Newton’s method for equality constrained convex optimization prob-

lems to Problem (2.8) to obtain x⋆(h).

3. Update: h = µh and x(0) = x⋆(h).

until The stopping criteria ‖∇f0(x)‖2 ≤ ǫ is reached.

The stopping criteria chosen is the simplest one because ∇f0(x⋆) = 0.

2.1 Semi-Definite Programming

We use Lyapunov functions parametrized by sum-of-squares polynomials for

the analysis and control of parabolic PDEs. The search for such Lyapunov functions

can be represented as Semi-Definite Programming (SDP) problems.

An SDP problem is an optimization problem of the form

Minimizex∈Rn : cTx

subject to : F (x) = F0 +
n
∑

i=1

xiFi ≤ 0 and (2.9)

Ax = b,

where c ∈ Rn, b ∈ Rk, A ∈ Rk×n and symmetric matrices Fi ∈ Sm are given. Since

the cost function is linear and the the constraints are affine, an SDP problem is a
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convex optimization problem. This allows SDP problems to be solved efficiently, for

example, using interior point methods. A survey of the theory and applications of

SDP problems can be found in [51].

Usually, SDP problems are used to solve the feasibility problem: does there

exist an x ∈ Rn such that F (x) ≤ 0? The inequality F (x) ≤ 0 is linear in the search

variables. Thus, the feasibility problem is known as a Linear Matrix Inequality (LMI).

Any number of given LMIs can be cast as a single LMI. For example, LMIs F (x) ≤ 0

and G(x) ≤ 0 can be rewritten as









F (x) 0

0 G(x)









=









F0 0

0 G0









+
n
∑

i=1

xi









Fi 0

0 Gi









≤ 0.

Another example of LMIs arise in finite-dimensional control theory. The linear

time invariant system

ẋ(t) = Ax(t), A ∈ R
n×n

is stable if and only if there exists a symmetric matrix X ∈ Sn such that [52, Corol-

lary 4.3]

X > 0 and ATX +XA < 0. (2.10)

The search for the positive definite X can be cast as an LMI. Let

X =









x1 x2

x2 x3









.

Then

X = x1e11 + x2(e12 + e21) + x3e22,

where eij ∈ S2 are matrices with e(i, j) = 1 and zeros everywhere else. Thus, the
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conditions in Equation (2.10) can be cast as the following LMI

F (x) = ǫ









1 0

0 1









+
3
∑

i=1

xiFi ≤ 0,

where

F1 =









−e11 0

0 AT e11 + e11A









, F2 =









−(e12 + e21) 0

0 AT (e12 + e21) + (e12 + e21)A









,

F3 =









−e22 0

0 AT e22 + e22A









and ǫ > 0.

Since SDP problems are convex, they can be solved efficiently using convex

optimization algorithms. For example, interior point methods are widely used for

solving SDPs [53], [54], [44].

2.2 Sum-of-Squares Polynomials

Sum-of-Squares (SOS) is an approach to the optimization of positive polyno-

mial variables. A typical formalism for the polynomial optimization problem is given

by

max
x

cTx, subject to

m
∑

i=1

xifi(y) + f0(y) ≥ 0,

for all y ∈ Rn, where the fi are real polynomial functions. The key difficulty is that the

feasibility problem of determining whether a polynomial is globally positive (f(y) ≥ 0

for all y ∈ Rn) is NP-hard [55]. This means that there are no algorithms which can

determine the global positivity of polynomials in polynomial time. Thus, relaxations

that are tractable for such problems are required. A particularly important such

condition is that the polynomial be sum-of-squares.
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Definition 2.1. A polynomial p : Rn → R is Sum-of-Squares (SOS) if there exist

polynomials gi : R
n → R such that

p (x) =
∑

i

g2i (x).

We use p ∈ Σs to denote that p is SOS.

The importance of the SOS condition lies in the fact that it can be readily

enforced using semidefinite programming. This fact is attributed to the following

theorem.

Theorem 2.2. A polynomial p : Rn → R of degree 2d is SOS if and only if there

exists a Positive Semi-Definite (PSD) matrix Q such that

p(x) = ZT
d (x)QZd(x), (2.11)

where Zd(x) is a vector of monomials up to degree d.

Proof. If: Since Q is PSD, there exists a matrix A such that Q = A⋆A, where A⋆ is

the conjugate transpose of A. Hence, we have

p(x) = ZT
d (x)A

⋆AZd(x) = (AZd(x))
⋆AZd(x).

It can be easily seen that AZd(x) = G(x) is a vector of polynomials. Thus

p(x) = G(x)⋆G(x) ∈ Σs.

Only if: Since p ∈ Σs, there exist polynomials gi : R
n → R satisfying

p(x) =
∑

i

g2i (x).

Let GT (x) = [g1(x), · · · , gi(x)]. Then,

p(x) = GT (x)G(x).
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Now, gi(x) = aTi Zd(x), where ai is the vector containing the coefficients of the poly-

nomial gi(x). Thus

G(x) =



















aT1

...

aTi



















Zd(x) = ATZd(x).

Hence

p(x) = GT (x)G(x) = ZT
d (x)AA

TZd(x) = ZT
d (x)QZd(x).

The observation that Q = AAT , and hence is a PSD matrix, completes the proof.

A proof similar to the one we present can be found in [46].

As a simple example consider the polynomial p(x) = a2 + b2x2 + 2abx, for

arbitrary scalars a and b. Then, p ∈ Σs since p(x) = (a + bx)2. Additionally, for

ZT
1 (x) = [1 x], we have

p(x) = ZT
1 (x)









a2 ab

ab b2









Z1(x) = ZT
1 (x)QZ1(x),

where Q is PSD for any a, b ∈ R.

Theorem 2.2 establishes the link between SOS polynomials and PSD matrices.

In this way optimization of positive polynomials can be converted to SDP. The SDP

approach to polynomial positivity was described in the thesis work of [46] and also

in [56]. See also [57] and [58] for contemporaneous work. MATLAB toolboxes for

manipulation of SOS variables have been developed and can be found in [59] and [60].

Note that the condition that a polynomial is globally positive if it is SOS is

conservative. This is because not all globally positive polynomials are SOS. A detailed

discussion on this topic can be found in [46]. A well known example of a positive
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polynomial which is not SOS is the Motzkin polynomial x41x
2
2 + x21x

4
2 + x63 − 3x21x

2
2x

2
3.

Proof of the Motzkin polynomial’s global positivity can be found in literature. It was

demonstrated in [46] that there exists no PSD matrix satisfying Equation (2.11) for

the Motzkin polynomial.

SOS polynomials can be used for the stability analysis of non-linear systems

of the type

ẋ(t) = f(x(t)), (2.12)

where f : Rn → Rn is a polynomial satisfying f(0) = 0. The condition for the global

asymptotic stability of x = 0 is that there exist a Lyapunov function V : Rn → R,

for some ǫ > 0, satisfying

V (x(t))− ǫx(t)Tx(t) ≥ 0,

∇V (x(t))T f(x)− ǫx(t)Tx(t) ≤ 0.

As previously stated, showing the global positivity of polynomials is intractable. How-

ever, we can use SOS polynomials to relax the conditions to [46]:

V (x(t))− ǫx(t)Tx(t) ∈ Σs

−∇V (x(t))T f(x)− ǫx(t)Tx(t) ∈ Σs,

for some ǫ > 0. This membership can be now tested in polynomial time using, for

example, SOSTOOLS [59].

2.2.1 Postivstellensatz. A positivstellensatz is a theorem from real algebraic

geometry which provides a means to verify polynomial positivity over semialgebraic

sets.

Definition 2.3. A semialgebraic set is a set of the form

S = {x ∈ R
n : gi(x) ≥ 0, i ∈ {1, · · · , m}, hi(x) = 0, i ∈ {1, · · · , p}},

where each gi and hi is a real valued polynomial.
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The closed unit disc in R2 is a straightforward example of a semialgebraic set

defined as

S = {x ∈ R
2 : −x21 − x22 + 1 ≥ 0}.

We are asking the following feasibility question: Given a semialgebraic set S,

is there a polynomial f(x) such that f(x) ≥ 0, for all x ∈ S? Of course, if the

polynomials f and gi are convex, and hi are affine, then we have a convex feasibility

problem.

Theorem 2.4 (Stengle’s positivstellensatz, [61]). Given the polynomials gi(x), i ∈

{1, · · · , m}, let

S = {x ∈ R
n : gi(x) ≥ 0, i ∈ {1, · · · , m}}.

Then, S = ∅ if and only if there exist si, sij, sijk, · · · , sijk···m ∈ Σs such that

−1 =s0(x) +
∑

i

si(x)gi(x) +
∑

i 6=j

sij(x)gi(x)gj(x)

+
∑

i 6=j 6=k

sijk(x)gi(x)gj(x)gk(x) + · · ·+ sijk···m(x)gi(x)gj(x)gk(x) · · · gm(x).

The following corollary expresses the conditions of polynomial positivity on a

semialgebraic set.

Corollary 2.5. Given the polynomials f(x) and gi(x), i ∈ {1, · · · , m}, f(x) > 0, for

all x ∈ {x ∈ Rn : gi(x) ≥ 0}, if and only if there exist

p0, si, pij, sij, pijk, sijk, · · · , pijk···m, sijk···m ∈ Σs

such that

f(x)

(

p0 +
∑

i 6=j

pij(x)gi(x)gj(x) +
∑

i 6=j 6=k

pijk(x)gi(x)gj(x)gk(x)

+ · · ·+ pijk···m(x)gi(x)gj(x)gk(x) · · · gm(x)
)
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= 1 + s0(x) +
∑

i

si(x)gi(x) +
∑

i 6=j

sij(x)gi(x)gj(x)

+
∑

i 6=j 6=k

sijk(x)gi(x)gj(x)gk(x) + · · ·+ sijk···m(x)gi(x)gj(x)gk(x) · · · gm(x).

Proof. The condition that f(x) > 0, for all x ∈ {x ∈ Rn : gi(x) ≥ 0}, is equivalent

to the emptiness of the set

S = {x ∈ R
n : −f(x) ≥ 0, gi(x) ≥ 0, i ∈ {1, · · · , m}}.

Thus, the result is obtained by applying Theorem 2.4 to the semialgebraic set S.

This corollary can be used to test polynomial positivity on a semialgebraic

set. However, although the search of the SOS multipliers can be cast as an LMI, the

equality constraint is no longer affine in the search variables f , s and p. In fact, it is

bilinear. Hence, this check cannot be performed using semidefinite programming.

When the semialgebraic sets are compact, the following positivstellensatz con-

ditions hold.

Theorem 2.6 (Schmudgen’s positivstellensatz, [62]). Given the polynomials f(x)

and gi(x), i ∈ {1, · · · , m}, let

S = {x ∈ R
n : gi(x) ≥ 0, i ∈ {1, · · · , m}}

be compact. If f(x) > 0, for all x ∈ S, then there exist si, sij, sijk, · · · , sijk···m ∈ Σs

such that

f(x) =1 + s0(x) +
∑

i

si(x)gi(x) +
∑

i 6=j

sij(x)gi(x)gj(x)

+
∑

i 6=j 6=k

sijk(x)gi(x)gj(x)gk(x) + · · ·+ sijk···m(x)gi(x)gj(x)gk(x) · · · gm(x).

Now, the equality constraint is affine in f and s. Thus, Schmudgen’s posi-

tivstellensatz can be tested using semidefinite programming.
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Definition 2.7. Given the polynomials gi(x), i ∈ {1, · · · , m}, the set

M(gi) = {p0(x) +
m
∑

i=1

pi(x)gi(x), p0, pi ∈ Σs}

is called the quadratic module generated by gi.

Theorem 2.8 (Putinar’s positivstellensatz, [63]). Given the polynomials gi(x), i ∈

{1, · · · , m}, suppose there exists a polynomial h ∈ M(gi) such that

{x ∈ R
n : h(x) ≥ 0} (2.13)

is a compact set. Then, if f(x) ≥ 0, for all x ∈ S, where

S = {x ∈ R
n : gi(x) ≥ 0, i ∈ {1, · · · , m}},

there exist s0, si ∈ Σs such that

f(x) = s0(x) +
∑

i

si(x)gi(x).

Equivalent conditions, which are also semidefinite programming verifiable, for

the one in Equation (2.13) can be found in [64]. Similar to Theorem 2.6, the con-

ditions of Theorem 2.8 can be checked using semidefinite programming. In terms of

computational complexity, it can be seen that Putinar’s positivstellensatz requires

a much smaller number of SOS multipliers compared to Schmudgen’s and Stengle’s

positivstellensatz.

A summary of positivstellensatz results can be found in [65].

We can use positivstellensatz results for the local stability analysis of the

system given by

ẋ(t) = f(x(t)),

with polynomial f , on the semialgebraic set given by

S = {x ∈ R
n : gi(x) ≥ 0, i ∈ {1, · · · , m}}.
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We can now search for a polynomial Lyapunov function V (x(t)), scalar ǫ > 0 and

SOS polynomials s0, p0, si and pi such that

V (x(t))− ǫx(t)Tx(t) = s0(x) +
∑

i

si(x)gi(x),

−∇V (x(t))Tf(x)− ǫx(t)Tx(t) = p0(x) +
∑

i

pi(x)gi(x).
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CHAPTER 3

THERMONUCLEAR FUSION AND TOKAMAKS

NOTE: This chapter is missing illustrations.

Nuclear fusion is the process in which two nuclei fuse to form a single nucleus

and possibly additional neutrons and protons. Consider the reaction

H2 +H3 → He4 + n,

where H2 denotes a Deuterium nucleus (one proton and one neutron), H3 is the

Tritium nucleus (one proton and two neutrons), He4 is the Helium nucleus (two

protons and two neutrons) and n is a neutron. The mass of the reactants and products

are

H2
1.999mp

+H3
2.9937mp

→ He43.9726mp
+ n1.0014mp

,

where mp is the mass of a proton (1.6726×10−27 kg). Hence, the total reactant mass

is mR = 4.9927mp and the total product mass is mP = 4.9740mp. Thus, there is a

mass deficit given by ∆m = mR −mP = 0.0187mp. This mass deficit is converted to

kinetic energy given by E = ∆mc2 = 2.7963× 10−12 joules = 17.5 MeV.

Since the nuclei of Deuterium and Tritium are positively charged, an electro-

static force of repulsion, given by Coulomb’s law, exists between them which increases

as their separation decreases. However, a force of attraction also exists between the

nuclei due to the strong nuclear interaction. The distance at which the electrostatic

repulsion equals nuclear attraction is known as the critical nuclear separation rm. For

the nuclei of Deuterium and Tritium rm = 3× 10−15m. Thus, the potential energy at

the critical nuclear separation can be calculated as

E =
1

4πǫ0

e2

r
= 479keV,

where ǫ0 = 8.854 × 10−12F/m is the vacuum permittivity, e = 1.6 × 10−19C is the

proton charge and r is the nuclear separation. This critical potential energy is also
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known as the Coulomb barrier. A plot of potential energy as a function of nuclear

separation is presented in Figure 3.1.
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Figure 3.1. Potential Energy as a function of nuclear separation r

Thus, in order for the nuclei to fuse, they must possess energy which is greater

than or equal to 479keV . However, due to quantum tunneling, the actual energy

which must be possessed by particles is about 100keV [6]. For the fusion fuel, which

is a gas consisting of Deuterium and Tritium, an average particle kinetic energy as

low as 15keV (temperature of 100 million degrees Celsius) is sufficient to initiate

fusion. The reason for the requirement of an average particle energy of 15keV can be

understood by considering the distribution of particle speeds in a Deuterium-Tritium

gas at 100 million degrees Celsius illustrated in Figure 3.2.

The distribution shows that some particles will have speeds in excess of 2.53×

106m/s and a few will be moving at a speed greater than or equal to 3.1×106m/s. At



33

0 0.5 1 1.5 2 2.5 3 3.5
x 10

6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ar

tic
le

 S
pe

ed
 D

is
tr

ib
ut

io
n 

fu
nc

tio
n

Speed m\s

2.53 × 106 m/s 3.1 × 106 m/s

Figure 3.2. Particle speed distribution in a Deuterium-Tritium gas at 100× 106C.

3.1× 106m/s the kinetic energy of the Deuterium nucleus will be K.E.D = 100.2keV ,

and for the Tritium nucleus at 2.53×106m/s K.E.T = 100.02keV . Thus, at a tempera-

ture of 100 million degrees Celsius, even though the average particle energy is 15keV ,

there are a few particles which posses 100keV or more to overcome the Coulomb

barrier and initiate fusion.

3.1 Tokamaks

At a temperature of 100 million degrees Celsius, the Deuterium-Tritium gas is

in a completely ionized state, also known as a plasma. Since the Deuterium-Tritium

plasma has free electrons and ions, the plasma can be confined by a magnetic field.

This is because a charged particle moving through a magnetic field experiences a

force (Lorentz force) that causes it to gyrate about the magnetic field lines [5]. A

tokamak is a toroidal vessel that uses magnetic fields to confine plasmas. A tokamak
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is equipped with current carrying coils arranged around the toroid [figure]. These

current carrying coils create a magnetic field BT which lies in the toroidal plane

[figure]. Additionally, a tokamak has a current carrying core which is charged before

the initiation of the fusion and then is commanded to discharge. This discharge gen-

erates a varying magnetic field around the plasma. Since the plasma is a conductor,

a current Ip is generated described by Faraday’s laws of induction. The plasma cur-

rent Ip generates a magnetic field BP in a plane normal to the toroidal plane. The

combination of BP and BT produces a helical magnetic field that confines the plasma

[6], [7] [figure].

The word ‘tokamak’ is derived from the Russian for ‘toroidal chamber’ and

‘magnetic coil’. The T-1 tokamak, built in the former USSR, for the first time since

research in fusion devices began, achieved temperature and confinement times re-

quired for the initiation of fusion [66]. It was soon realized that an improvement in

the plasma confinement time could be achieved by increasing the plasma minor ra-

dius [6]. Thus, many countries undertook the project of designing and building larger

tokamaks. The largest of these was the Joint European Torus (JET) tokamak [67].

The JET tokamak, and others like the Tore Supra [68], have been used for a bet-

ter understanding of tokamak plasma physics and simulating conditions for future

tokamaks. One such future tokamak is the iter tokamak [4]. Iter is a large tokamak

currently under construction in southern France and is jointly funded by China, the

European Union, India, Japan, South Korea, Russia and the United States. The goal

of iter is to demonstrate the technology for electricity generation using thermonuclear

fusion.

The plasma in a tokamak suffers from various instabilities. For example, an

important instability which occurs at the plasma center is the sawtooth instability [69]

[Illustration]. The sawtooth instability causes the temperature and pressure at
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the center of the plasma to rise and crash in a periodic fashion. The crash in the

temperature and pressure results from a fast outward transport of particles and energy

from the center. This transport removes the energetic particles from the plasma center

which are required for the fusion to continue. Additionally, large sawteeth can trigger

other instabilities in the plasma [70].

Another example of a plasma instability is the Neoclassical Tearing Mode

(NTM) instability [Illustration]. The magnetic field confining a tokamak plasma

can be thought of as nested iso-flux toroids. The NTM instability occurs when the

iso-flux surfaces tear and rejoin to form structures known as magnetic islands [71].

The presence of the magnetic islands adversely affects the energy confinement and

reduces the plasma pressure. For example, if the NTM instabilities were allowed to

grow in the ITER tokamak, the magnetic islands would cover a third of the total

plasma volume and reduce the fusion power production by a factor of four [72].

3.1.1 Model for the poloidal magnetic flux.

The critical physical quantity in a tokamak is the magnetic field which is a

combination of the toroidal magnetic field BT and the poloidal magnetic field BP . The

toroidal magnetic field BT is controlled by powerful external current carrying coils.

Whereas, the poloidal magnetic field is generated by the plasma current Ip. Conse-

quently, the polidal magnetic field is an order of magnitude smaller than the toroidal

magnetic field [6]. The coupling with the plasma current makes the poloidal magnetic

field vulnerable to changes in the plasma. Additionally, regulating a suitable plasma

current profile by regulating the poloidal magnetic flux has been demonstrated as

an important condition for improved plasma confinement and steady state operation

[73].

Let ψ(R,Z) denote the flux of the magnetic field passing through a disc cen-
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tered on the toroidal axis at a height Z with the surface area πR2 as depicted in

Figure 3.3 (this figure has to be changed as it is not mine). The simplified dynamics

of the poloidal flux ψ(ρ, t) are given by [74]:

ψt(ρ, t) =
η‖C2

µ0C3
ψρρ +

η‖ρ

µ0C2
3

∂

∂ρ

(

C2C3

ρ

)

ψρ +
η‖VρBφ0

FC3
jni, (3.1)

where the spatial variable ρ :=
(

φ
πBφ0

)
1
2
(φ being the toroidal magnetic flux and Bφ0

the toroidal magnetic flux at the center of the vacuum vessel of the tokamak) is the

radius indexing the magnetic surfaces, η‖ is the parallel resistivity of the plasma, jni

is the non-inductively deposited current density, µ0 is the permeability of free space,

F is the diamagnetic function, C2 and C3 are geometric coefficients, Vρ is the spatial

derivative of the plasma volume and Bφ0 is the toroidal magnetic field at the geometric

center of the plasma. The various variable definitions are provided in Table 3.1.

Figure 3.3. Coordinates (R,Z) and surface S used to define the poloidal magnetic
flux ψ(R,Z).

Neglecting the diamagnetic effect applying cylindrical approximation of the

plasma geometry (ρ << R0, where R0 is the major plasma radius) the coefficients in

Equation (3.1) simplify as follows:

F ≈ R0Bφ0 , C2 = C3 = 4π2 ρ

R0
, Vρ = 4π2ρR0.

Defining a normalized spatial variable x = ρ/a, where a is the radius of the last closed

magnetic surface and is assumed to be constant, the simplified model is obtained as
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in [47]:

ψt(x, t) =
η‖(x, t)

µ0a2

(

ψxx +
1

x
ψx

)

+ η‖(x, t)R0jni(x, t) (3.2)

with boundary conditions

ψx(0, t) = 0 and ψx(1, t) = −R0µ0Ip(t)

2π
. (3.3)

The diffusion coefficient in Equation (3.2) is the plasma parallel resistivity

η‖. The plasma resistivity introduces a coupling between the poloidal magnetic flux

ψ, the electron temperature profile Te and the electron density profile ne as follows.

The expression for the resistivity is computed using the results in [75] by using the

expressions for the electron thermal speed αe and the electron collision time τe, given

in [6], as

αe(x, t) =

√

eTe
me

and τe(x, t) =
12π3/2m

1/2
e ǫ20

e5/2
√
2

T
3/2
e

ne log Λ
,

where e = 1.6022×10−19C is the electron charge, me = 9.1096×1031kg is the electron

mass and ǫ0 = 8.854 × 10−12Fm−1 is the permittivity of free space. Additionally,

Λ(x, t) = 31.318+log(Te/
√
ne). Using these two expressions, the parallel conductivity

can be calculated as [47]:

σ‖(x, t) = σ0ΛE

(

1− ft
1 + ξν

)(

1− CRft
1 + ξν

)

,

where

σ0(x, t) =
nee

2τe
me

, ΛE(Z̄) =
3.40

Z̄

(

1.13 + Z̄

2.67 + Z̄

)

, ν(x, t) =
R0Bφ0a

2x

(xǫ)3/2αeτeψx
,

ft(x) = 1− (1− xǫ)2(1− (xǫ)2)−1/2(1 + 1.46
√
xǫ)−1,

ξ(Z̄) = 0.58 + 0.20Z̄, CR(Z̄)
0.56

Z̄

(

3− Z̄

3 + Z̄

)

,

and Z̄ is the effective value of the plasma charge. With the expression for the parallel

conductivity σ‖, the expression for the parallel resistivity η‖ and be calculated as

η‖(x, t) =
1

σ‖(x, t)
.
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Variables Description Units

ψ Poloidal magnetic flux profile Tm2

φ Toroidal magnetic flux profile Tm2

q Safety factor profile

R0 Location of magnetic center m

Bφ0 Toroidal magnetic field at the plasma center T

ρ Equivalent radius of the magnetic surfaces m

a Location of the last closed magnetic surface m

x Normalized spatial variable x=̇ρ/a

V Plasma volume m3

F Diamagnetic function Tm

C2, C3 Geometric coefficients

η‖ Parallel resistivity Ωm

µ0 Permeability of free space: 4π × 10−7 Hm−1

jni Non-inductive effective current density Am−2

jlh LHCD current density Am−2

jbs Bootstrap current density Am−2

Ip Total plasma current A

Plh Lower hybrid antenna power A

N‖ Hybrid wave parallel refractive index

me Electron mass, 9.1096× 1031 kg

ne Electron density profile m−3

ni Electron density profile m−3

n̄ Electron line average density m−2

Te Electron temperature profile eV

Ti Ion temperature profile eV

τe Electron collision time s

Z̄ Effective value of plasma charge C

αe Electron thermal speed ms−1

αi Ion thermal speed ms−1

Table 3.1. Tokamak plasma variable definitions.
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The plasma current Ip is generated by the electromagnetic induction by the

central ohmic coil. In addition, plasma current is also generated by non-inductive

sources. The current generated by non-inductive means is known as the current

drive (jni in Equation (3.2)). The non-inductive current has two main components:

the internally generated bootstrap current density jbs and the external non-inductive

current density jeni. We will discuss these current drive sources briefly.

The magnetic field strength in a tokamak, due to the vessel being toroidal,

is proportional to 1/R as given by Ampere’s law. Thus, the magnetic field strength

is stronger on the inside of the tokamak vessel as compared to the outside. Since

the ions and electrons follow the helical magnetic field lines around the toroid, they

transition from the weak magneic field side to the strong side and vice-versa. In the

absence of enough particle velocity parallel to the magnetic lines, a particle undergoes

a magnetic mirror reflection [6]. Such particles remain trapped in the weak field side

of the tokamak and thus, instead of going around in the poloidal plane, are forced

to orbit the weaker magnetic side of the poloidal plane in what is known as banana

orbits. The trapping of a few particles leads to collision between the trapped and free

particles owing to their different orbits. These collisions lead to a momentum transfer

between the trapped and free particles generating a current density which is known

as the bootstrap current density [30], [76].

The model for the bootstrap current density is given in [77] as

jbs(x, t) =
peR0

ψx

[

A1

[

1

pe

∂pe
∂x

+
pi
pe

(

1

pi

∂pi
∂x

− αi
1

Ti

∂Ti
∂x

)]

− A2
1

Te

∂Te
∂x

]

,

where pe and pi are the electron and ion pressure profiles respectively, Te and Ti are

the electron and ion temperature profiles respectively, αi is the ion thermal speed and

the A1 and A2 are functions of the ratio of trapped to free particles. We can use the

expressions pe = eneTe and pi = eniTi to express the bootstrap current density in
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terms of temperature and density profiles as

jbs(x, t) =
eR0

ψx

(

(A1 −A2)ne
∂Te
∂x

+ A1Te
∂ne

∂x
+ A1(1− αi)ni

∂Ti
∂x

+ A1Ti
∂ni

∂x

)

.

(3.4)

The fraction of the total current due to bootstrap current can also be estimated using

the empirical expression derived in [78].

The externally generated current density jeni has two components: the Lower

Hybrid Current Density (LHCD) denoted by jlh, and the Electron Cyclotron Current

Density (ECCD) denoted by jec. The actuators for these current density deposits

are Radio Frequency (RF) antennas. The ECCD actuator is tuned to the electron

cyclotron resonant frequency and the LHCD actuator is tuned to a frequency which

lies between the electron and ion cyclotron resonant frequencies [6]. We only consider

the LHCD current density deposit jlh, although, the work presented can easily be

extended to include ECCD as well.

There does not exist any analytical expression which expresses the LHCD

input jlh(x, t) as an input of the control actuator parameters N‖, the hybrid wave

parallel refractive index, and Plh, the lower hybrid antenna power. The development

of such an expression is particularly difficult since the LHCD deposit depends on

the operating conditions [79]. One way of estimating the LHCD deposit profile is to

use X-ray measurements of electrons to develop an empirical expression [80]. Using

the X-ray measurements from the Tore Supra tokamak, an empirical model of the

LHCD current density deposition was developed in [47]. This model uses a Gaussian

deposition pattern with control authority over certain scaling parameters. The width

w(t) and center µ(t) of the deposit can be estimated as [47]:

w(t) =0.53B−0.24
φo

I0.57p n̄−0.08P 0.13
LH N0.39

‖

µ(t) =0.20B−0.39
φo

I0.71p n̄−0.02P 0.13
LH N1.20

‖ .
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The total current deposit can be established using the empirical laws presented in [81]

as

ILH(t) =
ηLHPLH

n̄R0

,

where ηLH(t) = 1.18D0.55
n I0.43p Z̄−0.24 and Dn(t) ≈ 2.03 − 0.63N‖. The expression for

jLH can now be given as

jLH(x, t) = vLH(t)e
−(µ(t)−x)2/2σLH (t),

where

vLH(t) = ILH(t)

(

2πa2
∫ 1

0

xe−(µ(t)−x)2/2σLH (t)dx

)−1

and σLH(t) =
(µ(t)− w(t))2

2 log 2
.

The safety factor profile, or the q-profile, is the magnetic field line pitch [6]. The

q-profile is a common heuristic for setting operating conditions that avoid Magneto-

Hydro-Dynamic (MHD) instabilities [82]. Additionally, q-profile helps in triggering

Internal Transport Barriers (ITBs) [83], which significantly improve the energy con-

finement and assist in generating sawteeth that allow the removal of Helium, the

fusion reaction product. The q-profile is defined as the ratio of the toroidal and

poloidal magnetic flux gradients. The safety factor profile is defined in terms of the

gradient of the poloidal magnetic flux ψx as [47]:

q(x, t) =
φx

ψx
= −Bφ0a

2x

ψx
, (3.5)

where Bφ0 is the toroidal magnetic flux at the plasma center. Thus, to control the

q-factor profile, gradient of the poloidal magnetic flux ψx(x, t) may be controlled. The

model for the evolution of Z = ψx can be obtained by differentiating Equation (3.2)

in x to get

∂Z

∂t
(x, t) =

1

µ0a2
∂

∂x

(

η‖(x, t)

x

∂

∂x
(xZ(x, t))

)

+R0
∂

∂x

(

η‖(x, t)jni(x, t)
)

(3.6)

with boundary conditions

Z(0, t) = 0 and Z(1, t) = −R0µ0Ip(t)/2π. (3.7)
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Note that the control of Z = ψx also facilitates in the control of the bootstrap current

density since, from Equation (3.4), jbs ∝ 1/ψx.

In Chapters 8 and 9 we will devise methodologies to control the gradient of

the poloidal magnetic flux. We control ψx to regulate the safety factor profile q and

maximize the bootstrap current density jbs.
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CHAPTER 4

PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

Partial Differential Equations: Consider n variables x1, · · · , xn, xj ∈ Ω ⊂

R, j ∈ {1, · · · , n}, and quantity w(x1, · · · , xn), w : Ω× · · · × Ω → R. A general one

dimensional Partial Differential Equation (PDE) model is of the form [31]:

F

(

x1, · · · , xn,
∂w

∂x1
, · · · , ∂w

∂xn
,
∂2w

∂x1x2
, · · · , ∂

(i)w

∂x
(i)
1

, · · ·
)

= 0, (4.1)

where F : Ω × · · · × Ω × R × · · · × R → R, ∂w
∂xj

, j ∈ {1, · · · , n}, denote the partial

derivative of w(x1, · · · , xn) with respect to xj and i ∈ N. PDEs are classified in three

ways: order, (non)linearity and type. The order of a PDE is defined by the highest

order partial derivative appearing in F . For example, Equation (4.1) illustrates an

ith order PDE. PDEs can be further classified as linear or nonlinear [32]. To explain

this classification, consider a first order PDE in two independent variables x and t

and a dependent variable w(x, t) given by

F (x, t, w, wx, wt) = 0, (4.2)

where wx and wt denote
∂w
∂x

and ∂w
∂t

respectively. If F is linear, it can be written as

F (x, t, w, wx, wt) = a(x, t)wt(x, t)+ b(x, t)wx(x, t)+ c(x, t)w(x, t)+ d(x, t) = 0. (4.3)

Hence, PDE (4.2) is linear if it is linear in the dependent variable and its partial

derivatives but not necessarily in the independent variables. If F is not linear in the

dependent variable or in its partial derivatives, PDE (4.2) is nonlinear. Nonlinear

PDEs can be further classified as semi-linear or quasi-linear [31], [32]. A PDE of the

form

F (x, t, w, wx, wt) = a(x, t)wt(x, t) + b(x, t)wx(x, t) + c(x, t, w) = 0, (4.4)

where c is non-linear in w, is known as a semi-linear PDE. The function F is linear

in wt and wx but non-linear in w. An equation of the form

F (x, t, w, wx, wt) = a(x, t, w)wt(x, t) + b(x, t, w)wx(x, t) + c(x, t, w) = 0, (4.5)
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is called quasi-linear. Thus, a quasi-linear PDE has coefficients which are functions

of both the independent and dependent variables.

Classification of PDEs by type: To explain the classification of PDEs by

type, consider the following general second order PDE in two independent variables

F (x, t, w, wx, wt, wxt, wxx, wtt) = awtt + bwxt + cwxx + dwt + ewx + fw + g = 0,

(4.6)

where the coefficients are functions of the independent variables x and t only. The

type of a second order PDE depends on the discriminant defined as

∆ = b2 − 4ac. (4.7)

Under the assumption that the discriminant does not change sign in some region Ω,

the PDE (4.6) is one of the following types in Ω:

∆ > 0 : hyperbolic, (4.8)

∆ = 0 : parabolic, (4.9)

∆ < 0 : elliptic. (4.10)

If the discriminant ∆ changes sign in the region Ω, the PDE is said to be of a mixed

type in Ω.

Scalar-valued Evolution equations, boundary conditions and initial

conditions: For the Equation (4.6), let us assume that x ∈ Ω ⊂ Rn, Ω open.

Additionally, assume that the variable t represents time, thus, t ≥ 0. Then, the

PDE given by Equation (4.6) is often known as an evolution equation because the

quantity w(x, t) evolves in time from a given initial configuration w(x, 0) = w0(x).

The function w0(x) is known as the initial condition. If the quantity w is scalar valued

for each x and t, that is, w : Ω × [0,∞) → R, then the PDE is known as a scalar

valued PDE.
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Let ∂Ω denote the boundary1 of Ω. Then, for an operator G, a constraint of

the form

(Gw) (x, t) = f(x, t), for x ∈ ∂Ω, t ∈ [0,∞), (4.11)

is known as a boundary condition. Boundary conditions can be classified based on

the operator G. If (Gw) (x, t) = w(x, t), then the boundary condition is known as

a Dirichlet boundary condition. A condition of the form (Gw) (x, t) = ∇xw(x, t) · n̂,

where ∇x denotes the gradient with respect to x and n̂ is the unit outward normal

vector, is called a Neumann boundary condition. Of course, this requires that the

boundary be such that the outward normal vector can be specified. A linear combi-

nation of Dirichlet and Neumann boundary conditions is known as a Robin boundary

condition. A PDE can can have different boundary conditions on different sections

of the boundary ∂Ω.

4.1 Well-Posedness of Parabolic PDEs

The research work presented in the thesis deals with evolution equations given

by scalar valued parabolic PDEs. Parabolic PDEs are used to model processes such as

diffusion, transport and reaction. An example of a fairly well known parabolic PDE

is the heat equation. For a uniform one dimensional rod of length L, the temperature

of the rod w(x, t) at any point x ∈ [0, L] and at time t > 0 is governed by the heat

equation given by

wt(x, t) = κwxx(x, t), (4.12)

where κ is the thermal conductivity of the material of the rod. It is clear from

Equation (4.9) that the PDE (4.12) is of the parabolic type. Further examples of

parabolic PDEs are the equations modeling the evolution of the poloidal magnetic flux

in a tokamak ψ and its gradient ψx given by Equations (3.2) and (3.6) in Chapter 3.

1∂Ω = Ω̄\Ω, where Ω̄ is the closure of Ω.
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Well Posedness: The first question to be asked of a parabolic PDE, or in

fact any type of PDE, is if it is well-posed. A parabolic PDE is well-posed if:

1. the PDE has a unique solution;

2. the solution depends continuously on the data given in the problem.

4.1.1 Semigroup theory. The definition of a solution of a PDE is non-trivial

[31], [32], [33], [34]. One way of establishing the definitions of solutions and their

uniqueness and existence is by using semigroup theory.

Consider the following second order inhomogeneous parabolic PDE

wt(x, t) = a(x)wxx(x, t) + b(x)wx(x, t) + c(x)w(x, t) + f(x, t) (4.13)

with Dirichlet boundary conditions,

w(0, t) = 0 and w(1, t) = 0, (4.14)

where the functions a, b and c are C1 functions, f is a known function, x ∈ [0, 1] and

t ≥ 0. We can write this PDE as a differential equation as follows. Let

w(t) = w(·, t) and f(t) = f(·, t).

Additionally, define the following differential operator

A = a(x)
d2

dx2
+ b(x)

d

dx
+ c(x). (4.15)

Then, the PDE (4.13) can be written as

ẇ(t) = (Aw) (t) + f(t). (4.16)

Let us denote by DA the space of functions over which the operator A is well defined

and also incorporates the boundary conditions (4.14). Thus

DA = {w ∈ H2(0, 1) : w(0) = 0 and w(1) = 0}. (4.17)
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Under certain conditions, the pair (A,DA) is associated with an operator val-

ued function S(t) called the strongly continuous semigroup generated by (A,DA).

Definition 4.1. A strongly continuous semigroup, or a C0-semigroup is an

operator valued function S(t), S : [0,∞) → L(L2(0, 1)), that satisfies

S(t+ s) = S(t)S(s), for t, s ≥ 0;

S(0) = I;

‖S(t)y − y‖ → 0 as t→ 0+ for all y ∈ L2(0, 1).

Of course, the question arises whether the pair (A,DA) generates a C0-semigroup.

This question can be answered using the Hille-Yoisida Theorem [45, Theorem 2.1.12].

Well-posedness using semigroup theory: Using the semigroup theory, we

can discuss the uniqueness and existence of solutions. We begin with the following

notion of a solution.

Definition 4.2. A function w(t) is a classical solution of (4.16) on [0, τ ] if

z ∈ C1([0, τ ];L2(0, 1)), z(t) ∈ DA for all t ∈ [0, τ ] and z(t) satisfies (4.16) for all

t ∈ [0, τ ].

The function z(t) is a classical solution of (4.16) on [0,∞] if it is a

classical solution on [0, τ ] for every τ ≥ 0.

A classical solution captures all the properties that one might expect a ‘solu-

tion’ of the PDE (4.13) to possess. That is, the solution is continuously differentiable

in time, its derivatives up to order 2 are well-defined, satisfies the equation and the

boundary conditions.

The following theorem establishes the existence of a unique classical solution

of PDE (4.13) using the semigroup theory.
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Theorem 4.3. [45, Theorem 3.1.3] If the operator A generates a C0-semigroup S(t)

on L2(0, 1), f ∈ C1([0, τ ];L2(0, 1)) and w(0) = w0 ∈ DA. Then there exists a unique

classical solution of PDE (4.13) given by

w(t) = S(t)w0 +

∫ t

0

S(t− s)f(s)ds. (4.18)

The condition that f ∈ C1([0, τ ];L2(0, 1)) is very conservative. In fact, it can

be weakened to f ∈ L2([0, τ ];L2(0, 1)) with w0 ∈ L2(0, 1), in which case, w(t) in

Equation (4.18) is known as the mild solution or the weak solution.

Corollary 4.4. If the operator A generates a C0-semigroup S(t) on L2(0, 1), f ∈

L2([0, τ ];L2(0, 1)) and w(0) = w0 ∈ L2(0, 1). Then there exists a unique weak solution

of PDE (4.13) given by

w(t) = S(t)w0 +

∫ t

0

S(t− s)f(s)ds. (4.19)

Simply put, the idea is that the weak solution satisfies the PDE (4.13) almost

everywhere in t and x, that is, under the integral. Thus, instead of searching for

solutions which are continuously differentiable in x and t, we can search over the larger

space of functions whose generalized derivatives or weak derivatives exist. Refer to

Chapters 5 and 7 in [31] for weak derivatives and weak solutions of parabolic PDEs.

For the homogeneous case (f = 0), the classical solution of PDE (4.13) is given

by

w(t) = S(t)w0, w0 ∈ DA.

Compare this to the solution of the ODE ẋ(t) = Ax(t), A ∈ Rn×n, which is given by

x(t) = eAtx0, x0 ∈ R
n.

This comparison immediately illustrates that a C0-semigroup can be thought of as an

infinite dimensional generalization of the matrix exponential.
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Note that although we chose Dirichlet boundary conditions in Equation (4.14)

to illustrate the uniqueness and existence of solutions, the same theory applies to

Neumann and Robin boundary conditions.

Remark 4.5. Establishing the well-posedness of parabolic PDEs using semigroup the-

ory requires that the coefficients a, b, c in Equation (4.13) be independent of t. If this

is not the case, the Galerkin method [31, Section 7.1] may be used to establish the

existence and uniqueness of weak solutions.

4.2 Stability of systems governed by Parabolic PDEs

Once we have established that the PDE (4.13) has a classical (weak) solution,

we would like to know if the PDE is stable. We begin by defining the following notion

of stability.

Definition 4.6. Suppose that w(t) is a classical (weak) solution of (4.13) with initial

condition w0. Then, the PDE is exponentially stable if for any w0, there exist

scalars M,ω > 0 such that

‖w(t)‖ ≤Me−ωt, t ≥ 0. (4.20)

Exponential stability can be established using semigroup theory.

Definition 4.7. A C0-semigroup S(t) on L2(0, 1) is exponentially stable if there

exist scalars N,α > 0 such that

‖S(t)‖L(L2(0,1)) ≤ Ne−αt, t ≥ 0. (4.21)

The following theorem may be used to verify the exponential stability of C0-

semigroups.
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Theorem 4.8. [45, Theorem 5.1.3] Suppose that the pair (A,DA) generates a C0-

semigroup S(t) on L2(0, 1). Then S(t) is exponentially stable if and only if there

exists P ∈ L(L2(0, 1)) such that

〈y,Py〉 > 0, for all y ∈ DA, y 6= 0 (4.22)

〈Ay,Py〉+ 〈PAy, y〉 = −‖y‖2, for all y ∈ DA. (4.23)

Note that for the PDE (4.13) with f = 0, the PDE is exponentially stable if

the C0-semigroup S(t) generated by (A,DA) is exponentially stable because

‖w(t)‖ = ‖S(t)w0‖ ≤ ‖S(t)‖L(L2(0,1))‖w0‖ ≤ Ne−αt‖w0‖.

Then, by setting ω = α and M = N‖w0‖ and using Definition 4.6 shows that the

PDE is exponentially stable.

Exponential stability can also be established by using Lyapunov functions.

Suppose there exists a classical (weak) solution of PDE (4.13) and a Lyapunov func-

tion V (w(t)) such that for some ǫ, α > 0

V (w(t)) ≥ ǫ‖w(t)‖2 (4.24)

V̇ (w(t)) ≤ −αV (w(t)). (4.25)

Then, by integrating the second inequality in time and using the first inequality, we

can show that the PDE is exponentially stable. Note that if we choose V (w(t)) =

〈w(t),Pw(t)〉, it becomes evident that Inequalities (4.24)-(4.25) are similar to In-

equalities (4.22)-(4.23).
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CHAPTER 5

STABILITY ANALYSIS OF PARABOLIC PDES

In this chapter we analyze the stability of a particular class of parabolic PDEs.

The goal is to develop a methodology to check the stability and construct Lya-

punov functions which act as certificates of stability. We accomplish these tasks

by constructing Lyapunov functions using positive operators parametrized by sum-

of-squares-polynomials.

We consider the following type of parabolic PDEs

wt(x, t) = a(x)wxx(x, t) + b(x)wx(x, t) + c(x)w(x, t), x ∈ [0, 1], t ≥ 0, (5.1)

with boundary conditions of the form

ν1w(0, t) + ν2wx(0, t) = 0 and ρ1w(1, t) + ρ2wx(1, t) = 0. (5.2)

The functions a, b and c are polynomial functions in x. Moreover, the function a

satisfies

a(x) ≥ α > 0, for x ∈ [0, 1]. (5.3)

The scalars νi, ρj ∈ R, i, j ∈ {1, 2}, can be chosen so that (5.2) represents Dirichlet,

Neumann or Robin boundary conditions. Additionally, these scalars satisfy

|ν1|+ |ν2| > 0 and |ρ1|+ |ρ2| > 0. (5.4)

For PDEs in the form of Equations (5.1)-(5.2), we define the first-order differ-

ential form

ẇ(t) = Aw(t), w ∈ D0 (5.5)

where the operator A : H2(0, 1) → L2(0, 1) is defined as

(Ay) (x) = a(x)yxx(x) + b(x)yx(x) + c(x)y(x), (5.6)
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and

D0 = {y ∈ H2(0, 1) : ν1y(0) + ν2yx(0) = 0 and ρ1y(1) + ρ2yx(1) = 0}. (5.7)

For later use, we present the following definition.

Definition 5.1. Given scalars ν1, ν2, ρ1 and ρ2, we define

{n1, n2, n3} =































{−ν1
ν2
, 0, 1} if ν1, ν2 6= 0

{0, 1, 0} if ν1 6= 0, ν2 = 0

{0, 0, 1} if ν1 = 0, ν2 6= 0

and

{n4, n5, n6} =































{−ρ1
ρ2
, 0, 1} if ρ1, ρ2 6= 0

{0, 1, 0} if ρ1 6= 0, ρ2 = 0

{0, 0, 1} if ρ1 = 0, ρ2 6= 0

.

With this definition, the boundary conditions for any w ∈ D0 can be represented as

wx(0) = n1w(0) + n2wx(0), w(0) = n3w(0),

wx(1) = n4w(1) + n5wx(1), w(1) = n6w(1).

5.1 Uniqueness and Existence of Solutions

We will use semigroup theory presented in Subsection 4.1.1 to show that a

classical solution of the system represented by Equation (5.5) exists. Thus, we have

to show that the pair (A,D0) generates a C0-semigroup. The idea is to express the

operator A as the negative of a Sturm-Liouville operator and then use its spectral

properties to show that (A,D0) generates a C0-semigroup.

Definition 5.2. [84, Chapter 8] An operator S : D0 → L2(0, 1) is called a Sturm-

Liouville operator if

(Sy) (x) = − d

dx

(

p(x)
dy(x)

dx

)

+ q(x)y(x), y ∈ D0, (5.8)



53

where p, dp/dx and q are real valued and continuous functions on [0, 1] and p(x) ≥

p0 > 0, for all x ∈ [0, 1].

Additionally, for a given σ(x) > 0, an equation of the form

− d

dx

(

p(x)
dy(x)

dx

)

+ q(x)y(x) = λσ(x)y(x), (5.9)

where λ ∈ R, is called a Sturm-Liouville equation. If there exist scalars λn and

functions φn such that

− d

dx

(

p(x)
dφn(x)

dx

)

+ q(x)φn(x) = λnσ(x)φn, n ∈ N, (5.10)

then, the scalars λn are called the eigenvalues of S, and the functions φn are called

the eigenfunctions of S.

The following lemma summarizes some of the spectral properties of a Sturm-

Liouville operator.

Lemma 5.3. [85] Let S : D0 → L2(0, 1) be a Sturm-Liouville operator. Then, the

following properties hold:

1. S is a closed operator2.

2. The eigenvalues {λn, n ≥ 0} of S exist, are real, countable and simple.

3. The set of normalized eigenfunctions of S, {φn, n ≥ 0}, is an orthonormal basis

of L2(0, 1).

4. The closure of the set {λn, n ≥ 0} is totally disconnected, that is, for two points

ω0, ω1 ∈ {λn, n ≥ 0}, [ω0, ω1] /∈ {λn, n ≥ 0}.

5. The eigenvalues λn satisfy

λ0 < λ1 < · · · < λn <∞ and λn → ∞ as n→ ∞.

2Refer to Section 1.2 for the definition of a closed operator.
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Lemma 5.4. For any initial condition w0 ∈ D0 there exists a classical solution

for the system represented by Equations (5.1)-(5.2). Additionally, for any initial

condition w0 ∈ L2(0, 1) there exists a weak solution for the system represented by

Equations (5.1)-(5.2).

Proof. For the operator A given in (5.6), if we choose

p(x) = e
∫ x

0
b(ξ)
a(ξ)

dξ, q(x) = −c(x)p(x)
a(x)

, σ(x) =
p(x)

a(x)
,

then

−Ay =
1

σ(x)
Sy, y ∈ D0,

where S is the Sturm-Liouville operator. Then, for λ ∈ R, the equation

−Ay = λy, y ∈ D0,

can be written as

Sy = λσ(x)y, y ∈ D0,

which is the Sturm-Liouville equation given in Equation (5.9). Thus, A has the same

spectral properties of S given in Lemma 5.3 except that if λn are the eigenvalues of

S and ωn are the eigenvalues of A, then ωn = −λn. Thus, from Lemma 5.3(5) we get

that

sup
n≥0

wn < +∞.

Hence, from [45, Theorem 2.3.5(c)] we get that the pair (A,D0) is the generator of a

C0-semigroup S(t) on L2(0, 1).

From Theorem 4.3 we obtain that for any w0 ∈ D0, Equation (5.5), and

thus (5.1)-(5.2), has a classical solution given by

w(t, x) = (S(t)w0) (x). (5.11)
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From Corollary 4.4, for any w0 ∈ L2(0, 1), (5.11) is the unique weak solution

of (5.1)-(5.2).

5.2 Positive Operators and Semi-Separable Kernels

As stated earlier, we establish the stability of the systems under consideration

by constructing Lyapunov functions parametrized by positive operators. In particular,

we construct positive operators on L2(0, 1) which are parametrized by Sum-of-Squares

(SOS) polynomials. Since the search for SOS polynomials can be cast as a semi-

definite programming as explained in Chapter 2, this parametrization allows us to

construct the Lyapunov functions algorithmically.

We consider operators of the form

(Py)(x) =M(x)y(x) +

∫ x

0

K1(x, ξ)y(ξ)dξ+

∫ 1

x

K2(x, ξ)y(ξ)dξ, (5.12)

where M(x) : [0, 1] → R and K1(x, ξ), K2(x, ξ) : [0, 1] × [0, 1] → R are polynomials

and y ∈ L2(0, 1). In [86], the necessary and sufficient conditions for positivity of

multiplier and integral operators of similar form using pointwise constraints on the

functions M , K1 and K2 are given. Recently, in [87], these conditions was sharpened

- See Theorem 5.5.

Theorem 5.5. Given d1, d2 ∈ N and ǫ ∈ R, ǫ > 0, let Z1(x) = Zd1(x) and Z2(x, ξ) =

Zd2(x, ξ) as defined in Section 1.2. Suppose there exists a matrix U such that

U =



















U11 − ǫI0 U12 U13

⋆ U22 U23

⋆ ⋆ U33



















≥ 0,

where I0 is a matrix of zeros of appropriate dimensions except at the 1-by-1 element

which has a value of 1, and Uij are a partition of U . LetM , K1 and K2 be polynomials
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such that, for (x, ξ) ∈ [0, 1]× [0, 1],

M(x) ≥ Z1(x)
TU11Z1(x),

K1(x, ξ) =Z1(x)
TU12Z2(x, ξ) + Z2(ξ, x)U31Z1(ξ) +

∫ ξ

0

Z2(η, x)
TU33Z2(η, ξ)dη

+

∫ x

ξ

Z2(η, x)
TU32Z2(η, ξ)dη +

∫ 1

x

Z2(η, x)
TU22Z2(η, ξ)dη,

and

K2(x, ξ) =Z1(x)
TU13Z2(x, ξ) + Z2(ξ, x)U21Z1(ξ) +

∫ x

0

Z2(η, x)
TU33Z2(η, ξ)dη

+

∫ ξ

x

Z2(η, x)
TU23Z2(η, ξ)dη +

∫ 1

ξ

Z2(η, x)
TU22Z2(η, ξ)dη.

Then the operator P, defined by Equation (5.12) is self-adjoint and satisfies

〈Pw,w〉 ≥ ǫ‖w‖2, for all w ∈ L2(0, 1).

Proof. By non-negativity, there exists a Ū such that U = ŪT Ū . Partitioning Ū as

Ū =

[

D H1 H2

]

gives us

U =



















DTD DTH1 DTH2

HT
1 D HT

1 H1 HT
1 H2

HT
2 D HT

2 H1 HT
2 H2



















=



















U11 − ǫI0 U12 U13

⋆ U22 U23

⋆ ⋆ U33



















(5.13)

Let, for y ∈ L2(0, 1),

(Ay)(η) = DZ1(η)y(η) +

∫ η

0

H1Z2(η, x)y(x)dx+

∫ 1

η

H2Z2(η, x)y(x)dx.

Similarly,

(Ay)(η) = DZ1(η)y(η) +

∫ η

0

H1Z2(η, ξ)y(ξ)dξ +

∫ 1

η

H2Z2(η, ξ)y(ξ)dξ.
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Thus,

〈Ay,Ay〉 (5.14)

=

∫ 1

0

(

y(η)TZ1(η)
TDT +

∫ η

0

y(x)TZ2(η, x)
THT

1 dx+

∫ 1

η

y(x)TZ2(η, x)
THT

2 dx

)

(

DZ1(η)y(η) +

∫ η

0

H1Z2(η, ξ)y(ξ)dξ +

∫ 1

η

H2Z2(η, ξ)y(ξ)dξ

)

dη

= A1 + A2 + A3, (5.15)

where

A1 =

∫ 1

0

y(η)TZ1(η)
T (U11 − ǫI0)Z1(η)y(η)dη

+

∫ 1

0

y(η)TZ1(η)
T

(
∫ η

0

U12Z2(η, ξ)y(ξ)dξ +

∫ 1

η

U13Z2(η, ξ)y(ξ)dξ

)

dη,

A2 =

∫ 1

0

(
∫ η

0

y(x)TZ2(η, x)
TU21dx+

∫ 1

η

y(x)TZ2(η, x)
TU31dx

)

Z1(η)y(η)dη

and

A3 =
∫ 1

0

∫ η

0

y(x)TZ2(η, x)
T

(

U22

∫ η

0

Z2(η, ξ)y(ξ)dξ + U23

∫ 1

η

Z2(η, ξ)y(ξ)dξ

)

dxdη

+

∫ 1

0

∫ 1

η

y(x)TZ2(η, x)
T

(

U32

∫ η

0

Z2(η, ξ)y(ξ)dξ + U33

∫ 1

η

Z2(η, ξ)y(ξ)dξ

)

dxdη.

Note that here we have used the definitions of Uij .

Switching between η and x in A1

A1

=

∫ 1

0

y(x)TZ1(x)
T (U11 − ǫI)Z1(x)y(x)dx+

∫ 1

0

∫ x

0

y(x)TZ1(x)
TU12Z2(x, ξ)y(ξ)dξdx

+

∫ 1

0

∫ 1

x

y(x)TZ1(x)
TU13Z2(x, ξ)y(ξ)dξdx. (5.16)
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Switching between η and ξ and switching the order of integration in A2

A2 =

∫ 1

0

y(x)T
(
∫ x

0

Z2(ξ, x)
TU31Z1(ξ)y(ξ)dξ +

∫ 1

x

Z2(ξ, x)
TU21Z1(ξ)y(ξ)dξ

)

dx

(5.17)

Switching the order of integration, first between x and η and then between ξ and η

in A3, we get

A3 =

∫ 1

0

y(x)T
∫ x

0

(
∫ ξ

0

Z2(η, x)
TU33Z2(η, ξ)dη +

∫ x

ξ

Z2(η, x)
TU32Z2(η, ξ)dη

+

∫ 1

x

Z2(η, x)
TU22Z2(η, ξ)dη

)

y(ξ)dξdx

+

∫ 1

0

y(x)T
∫ 1

x

(
∫ x

0

Z2(η, x)
TU33Z2(η, ξ)dη +

∫ ξ

x

Z2(η, x)
TU23Z2(η, ξ)dη

+

∫ 1

ξ

Z2(η, x)
TU22Z2(η, ξ)dη

)

y(ξ)dξdx. (5.18)

Substituting Equations (5.16)-(5.18) into (5.15) and using the definitions of K1 and

K2 gives

〈Ay,Ay〉

=

∫ 1

0

y(x)

(

[

Z1(x)
TU11Z1(x)− ǫZ1(x)

T I0Z1(x)
]

y(x) +

∫ x

0

K1(x, ξ)y(ξ)dξ

+

∫ 1

x

K1(x, ξ)y(ξ)dξ

)

dx.

From the theorem statement, M(x) ≥ Z1(x)
TU11Z1(x). Therefore,

〈Ay,Ay〉

=

∫ 1

0

y(x)

(

[

Z1(x)
TU11Z1(x)− ǫZ1(x)

T I0Z1(x)
]

y(x) +

∫ x

0

K1(x, ξ)y(ξ)dξ

+

∫ 1

x

K1(x, ξ)y(ξ)dξ

)

dx

≤
∫ 1

0

y(x)

(

[

M(x)− ǫZ1(x)
T I0Z1(x)

]

y(x) +

∫ x

0

K1(x, ξ)y(ξ)dξ +

∫ 1

x

K1(x, ξ)y(ξ)dξ

)

dx

= 〈y,Py〉 − ǫ

∫ 1

0

y(x)Z1(x)
T I0Z1(x)y(x)dx.
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Since 〈Ay,Ay〉 ≥ 0, using the previous expression we get that

〈y,Py〉 − ǫ

∫ 1

0

y(x)Z1(x)
T I0Z1(x)y(x)dx ≥ 0.

Finally, since Z1(x)
T I0Z1(x) = 1, we obtain

〈y,Py〉 − ǫ

∫ 1

0

y(x)Z1(x)
T I0Z1(x)y(x)dx = 〈y,Py〉 − ǫ‖y‖2 ≥ 0.

Therefore

〈y,Py〉 ≥ ǫ‖y‖2, for all y ∈ L2(0, 1).

Self-adjointedness of P can be established using the fact that by construction

K1(x, ξ) = K2(ξ, x).

A similar proof can be found in [87].

For convenience, we define the set of multipliers and kernels which satisfy

Theorem 5.5.

Ξ{d1,d2,ǫ} = {M,K1, K2 : M,K1, K2 satisfy the conditions of

Theorem 5.5 for d1, d2, ǫ.}

Note that in Theorem 5.5 we have established only the lower bound for the

positive operators. However, we would also require positive operators with known

upper bounds. For this purpose, we present the following corollary.

Corollary 5.6. Given d1, d2 ∈ N and ǫ1, ǫ2 ∈ R such that 0 < ǫ1 < ǫ2, let Z1(x) =

Zd1(x) and Z2(x, ξ) = Zd2(x, ξ) as defined in Section 1.2. Suppose there exists a

matrix U such that

U =



















U11 − ǫ1I0 U12 U13

⋆ U22 U23

⋆ ⋆ U33



















≥ 0,
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where I0 is a matrix of zeros of appropriate dimensions except at the 1-by-1 element

which has a value of 1, and Uij are a partition of U . Additionally,



















U11 U12 U13

⋆ U22 U23

⋆ ⋆ U33



















≤ ǫ2
θ1 + θ2

I,

where

θ1 = sup
x∈[0,1]

Z1(x)
TZ1(x),

θ2 = sup
(x,ξ)∈[0,1]×[0,1]

∣

∣

∣

∣

∫ ξ

0

Z2(η, x)
TZ2(η, ξ)dη +

∫ 1

x

Z2(η, x)
TZ2(η, ξ)dη

∣

∣

∣

∣

.

Let M , K1 and K2 be polynomials such that, for (x, ξ) ∈ [0, 1]× [0, 1],

M(x) = Z1(x)
TU11Z1(x),

K1(x, ξ) =Z1(x)
TU12Z2(x, ξ) + Z2(ξ, x)U31Z1(ξ) +

∫ ξ

0

Z2(η, x)
TU33Z2(η, ξ)dη

+

∫ x

ξ

Z2(η, x)
TU32Z2(η, ξ)dη +

∫ 1

x

Z2(η, x)
TU22Z2(η, ξ)dη,

and

K2(x, ξ) =Z1(x)
TU13Z2(x, ξ) + Z2(ξ, x)U21Z1(ξ) +

∫ x

0

Z2(η, x)
TU33Z2(η, ξ)dη

+

∫ ξ

x

Z2(η, x)
TU23Z2(η, ξ)dη +

∫ 1

ξ

Z2(η, x)
TU22Z2(η, ξ)dη.

Then the operator P, defined by Equation (5.12) is self-adjoint and satisfies

ǫ1‖y‖2 ≤ 〈Py, y〉 ≤ ǫ2‖y‖2, for all y ∈ L2(0, 1).

Proof. By substituting ǫ1 in place of ǫ of Theorem 5.5, it is readily proven that

ǫ1‖y‖2 ≤ 〈Py, y〉, for all y ∈ L2(0, 1). (5.19)
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From the corollary statement,



















U11 U12 U13

⋆ U22 U23

⋆ ⋆ U33



















≤ ǫ2
θ1 + θ2

I.

Thus,



















(ǫ2)/(θ1 + θ2)I − U11 −U12 −U13

⋆ (ǫ2)/(θ1 + θ2)I − U22 −U23

⋆ ⋆ (ǫ2)/(θ1 + θ2)I − U33



















≥ 0,

for identity matrices of appropriate dimensions. Thus, using the definitions of M ,

K1 and K2 and the analysis presented in Theorem 5.5, it can be shown that for any

y ∈ L2(0, 1),

∫ 1

0

y(x)

(

[

M̂(x)−M(x)
]

+

∫ x

0

[

K̂1(x, ξ)−K1(x, ξ)
]

y(ξ)dξ

+

∫ 1

x

[

K̂2(x, ξ)−K2(x, ξ)
]

y(ξ)dξ

)

dx ≥ 0,

where

M̂(x) =
ǫ2

θ1 + θ2
Z(x)TZ(x),

K̂1(x, ξ) =
ǫ2

θ1 + θ2

(
∫ ξ

0

Z2(η, x)
TZ2(η, ξ)dη +

∫ 1

x

Z2(η, x)
TZ2(η, ξ)dη

)

,

K̂2(x, ξ) =
ǫ2

θ1 + θ2

(
∫ x

0

Z2(η, x)
TZ2(η, ξ)dη +

∫ 1

ξ

Z2(η, x)
TZ2(η, ξ)dη

)

.

Thus,

∫ 1

0

y(x)

(

M(x)y(x) +

∫ x

0

K1(x, ξ)y(ξ)dξ +

∫ 1

x

K2(x, ξ)y(ξ)dξ

)

dx

≤ y(x)

(

M̂(x)y(x) +

∫ x

0

K̂1(x, ξ)y(ξ)dξ +

∫ 1

x

K̂2(x, ξ)y(ξ)dξ

)

dx.
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Therefore,

〈y,Py〉 ≤
∫ 1

0

M̂(x)y(x)2dx+

∫ 1

0

∫ x

0

y(x)K̂1(x, ξ)y(ξ)dξdx

+

∫ 1

0

∫ x

0

y(x)K̂2(x, ξ)y(ξ)dξdx

≤
∫ 1

0

M̂(x)y(x)2dx+

∫ 1

0

∫ x

0

|y(x)||K̂1(x, ξ)y(ξ)|dξdx

+

∫ 1

0

∫ x

0

|y(x)||K̂2(x, ξ)||y(ξ)|dξdx.

Since K̂1(x, ξ) = K̂2(ξ, x), K̂1 and K̂2 have the same supremum over (x, ξ) ∈ [0, 1]×

[0, 1]. Thus, using the previous equation, we obtain

〈y,Py〉 ≤
∫ 1

0

M̂(x)y(x)2dx +

∫ 1

0

∫ x

0

|y(x)||K̂1(x, ξ)y(ξ)|dξdx

+

∫ 1

0

∫ x

0

|y(x)||K̂2(x, ξ)||y(ξ)|dξdx

≤ sup
x∈[0,1]

M̂(x)

∫ 1

0

y(x)2dx+ sup
(x,ξ)∈[0,1]×[0,1]

|K̂1(x, ξ)|
∫ 1

0

|y(x)|dx
∫ 1

0

|y(ξ)|dξ.

Using the definitions of θ1 and θ2, we obtain

〈y,Py〉 ≤ ǫ2θ1
θ1 + θ2

∫ 1

0

y(x)2dx+
ǫ2θ2
θ1 + θ2

∫ 1

0

|y(x)|dx
∫ 1

0

|y(ξ)|dξ.

Using Proposition B.8 in [88], we obtain

〈y,Py〉 ≤ ǫ2θ1
θ1 + θ2

∫ 1

0

y(x)2dx+
ǫ2θ2
θ1 + θ2

∫ 1

0

|y(x)|dx
∫ 1

0

|y(ξ)|dξ

≤ ǫ2θ1
θ1 + θ2

∫ 1

0

y(x)2dx+
ǫ2θ2
θ1 + θ2

∫ 1

0

y(x)2dx

=ǫ2‖y‖2.

Thus, using Equation (5.19), we conclude that

ǫ1‖y‖2 ≤ 〈Py, y〉 ≤ ǫ2‖y‖2, for all y ∈ L2(0, 1).
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For convenience, we define the set of multipliers and kernels which satisfy

Corollary 5.6.

Ω{d1,d2,ǫ1,ǫ2} = {M,K1, K2 : M,K1, K2 satisfy the conditions of

Corollary 5.6 for d1, d2, ǫ1, ǫ2.}

5.3 Exponential Stability Analysis

In this section we consider the exponential stability of the system governed

by Equations (5.1)-(5.2). The main result depends primarily on the following upper

bound - the proof of which can be found in Lemma A.3 in Appendix A.

〈Aw,Pw〉+ 〈w,PAw〉 ≤ 〈w,Qw〉+ wx(1)

∫ 1

0

Q3(x)w(x)dx+ wx(0)

∫ 1

0

Q4(x)w(x)dx

+ w(1)

(

Q5w(1) +Q6wx(1) +

∫ 1

0

Q7(x)w(x)dx

)

+ w(0)

(

Q8w(0) +Q9wx(0) +

∫ 1

0

Q10(x)w(x)dx

)

,

for any w ∈ D0, where we define the operator Q as

(Qy) (x) = Q0(x)y(x) +

∫ x

0

Q1(x, ξ)y(ξ)dξ +

∫ 1

x

Q2(x, ξ)y(ξ)dξ, y ∈ L2(0, 1),

where

{Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10} = M(M,K1, K2)

and the linear operator M is defined as follows.

Definition 5.7. We say

{Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10} = M(M,K1, K2)

if the following hold

Q0(x) =
∂

∂x

(

∂

∂x
(a(x)M(x))− b(x)M(x)

)

+ 2M(x)c(x) − αǫπ2

2
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+ 2

[

∂

∂x
[a(x) (K1(x, ξ)−K2(x, ξ))]

]

ξ=x

,

Q1(x, ξ) =
∂

∂x

(

∂

∂x
[a(x)K1(x, ξ)]− b(x)K1(x, ξ)

)

+ c(x)K1(x, ξ)

+
∂

∂ξ

(

∂

∂ξ
[a(ξ)K1(x, ξ)]− b(ξ)K1(x, ξ)

)

+ c(ξ)K1(x, ξ),

Q2(x, ξ) =
∂

∂x

(

∂

∂x
[a(x)K2(x, ξ)]− b(x)K2(x, ξ)

)

+ c(x)K2(x, ξ)

+
∂

∂ξ

(

∂

∂ξ
[a(ξ)K2(x, ξ)]− b(ξ)K2(x, ξ)

)

+ c(ξ)K2(x, ξ),

Q3(x) =2n5a(1)K1(1, x),

Q4(x) =− 2n2a(0)K2(0, x),

Q5 =2n6n4a(1)M(1)− n2
6 [ax(1)M(1) + a(1)Mx(1)− b(1)M(1)] ,

Q6 =2n6n5a(1)M(1),

Q7(x) =K1(1, x) [2n4a(1) + 2n6b(1)]− 2n6 [ax(1)K1(1, x) + a(1)K1,x(1, x)] ,

Q8 =− 2n3n1a(0)M(0) + n2
3

[

ax(0)M(0) + a(0)Mx(0)− b(0)M(0)− αǫπ2

2

]

,

Q9 =− 2n3n2a(0)M(0),

Q10(x) =−K2(0, x) [2n1a(0) + 2n3b(0)] + 2n3 [ax(0)K2(0, x) + a(0)K2,x(0, x)]

+ n3αǫπ
2,

where K1,x(1, x) = [K1,x(x, ξ)|x=1]ξ=x, K2,x(0, x) = [K2,x(x, ξ)|x=0]ξ=x and ǫ > 0 and

ni, i ∈ {1, · · · , 6}, are scalars.

Theorem 5.8. Suppose that there exist scalars ǫ, δ > 0 and {M,K1, K2} ∈ Ξd1,d2,ǫ

such that

{−Q0 − 2δM,−Q1 − 2δK1,−Q2 − 2δK2} ∈ Ξd1,d2,0,

Q3 = Q4 = Q6 = Q7 = Q9 = Q10 = 0,

Q5 ≤ 0, Q8 ≤ 0, for all nj , j ∈ {1, · · · , 6},
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where nj are given by Definition 5.1 and

{Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10} = M(M,K1, K2).

Then, for any initial condition w0 ∈ D0, there exists a scalar M ≥ 0 such that

the classical solution w(x, t) of Equations (5.1)-(5.2) satisfies

‖w(·, t)‖ ≤ e−δtM, t > 0.

For w0 ∈ L2(0, 1), the same result holds for the weak solution.

Proof. Consider the following Lyapunov function V (w(·, t)) = 〈w(·, t),Pw(·, t)〉, where

(Py) (x) =M(x)y(x) +

∫ x

0

K1(x, ξ)y(ξ)dξ +

∫ 1

x

K2(x, ξ)y(ξ)dξ, y ∈ L2(0, 1).

Taking the derivative along trajectories of the system, we have

d

dt
V (w(·, t)) = 〈wt(·, t), (Pw(·, t))〉+ 〈w(·, t), (Pwt(·, t))〉

= 〈Aw(·, t),Pw(·, t)〉+ 〈w(·, t),PAw(·, t)〉 .

Since the initial condition w0 ∈ D0, from Lemma 5.4, the classical solution w(·, t) ∈ D0

exists for all t ≥ 0. For P as defined in (5.12) and M as defined in Definition 5.7, it

is shown in Appendix A that if

{Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10} = M(M,K1, K2),

then

d

dt
V (w(·, t)) = 〈Aw(·, t),Pw(·, t)〉+ 〈w(·, t),PAw(·, t)〉

≤ 〈w(·, t),Qw(·, t)〉

+ wx(1, t)

∫ 1

0

Q3(x)w(x, t)dx+ wx(0, t)

∫ 1

0

Q4(x)w(x, t)dx

+ w(1, t)

(

Q5w(1, t) +Q6wx(1, t) +

∫ 1

0

Q7(x)w(x, t)dx

)
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+ w(0, t)

(

Q8w(0, t) +Q9wx(0, t) +

∫ 1

0

Q10(x)w(x, t)dx

)

.

Now, since by assumption Q3 = Q4 = Q6 = Q7 = Q9 = Q10 = 0, Q5 ≤ 0 and Q8 ≤ 0,

we have

d

dt
V (w(·, t)) ≤〈w(·, t),Qw(·, t)〉

=

∫ 1

0

w(x, t)

(

Q0(x)w(x, t) +

∫ x

0

Q1(x, ξ)w(ξ, t)dξ

+

∫ 1

x

Q2(x, ξ)w(ξ, t)dξ

)

dx.

Since

{−Q0 − 2δM,−Q1 − 2δK1,−Q2 − 2δK2} ∈ Ξd1,d2,0,

we have that

d

dt
V (w(·, t)) ≤〈w(·, t),Qw(·, t)〉 ≤ −2δ 〈w(·, t),Pw(·, t)〉 .

Hence we conclude that

d

dt
V (w(·, t)) ≤ −2δV (w(·, t)), t > 0.

Integrating in time yields 〈w(·, t), (Pw)(·, t)〉 ≤ e−2δt〈w0,Pw0〉 and since, {M,K1, K2} ∈

Ξd1,d2,ǫ, we have

ǫ‖w(·, t)‖2 ≤ 〈w(·, t), (Pw)(·, t)〉 ≤ e−2δt〈w0,Pw0〉, t > 0

which implies

‖w(·, t)‖ ≤ e−δt

√

〈w0,Pw0〉
ǫ

, t > 0.

Setting

M =

√

〈w0,Pw0〉
ǫ

completes the proof.
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5.3.1 Exponential Stability Analysis Numerical Results.

To illustrate the accuracy of the the stability test, we perform the following

numerical experiments. We consider the following two parabolic PDEs:

wt(x, t) =wxx(x, t) + λw(x, t), and (5.20)

wt(x, t) =
(

x3 − x2 + 2
)

wxx(x, t) +
(

3x2 − 2x
)

wx(x, t)

+
(

−0.5x3 + 1.3x2 − 1.5x+ 0.7 + λ
)

w(x, t), (5.21)

where λ is a scalar which may be chosen freely. We consider the following boundary

conditions for these two equations:

Dirichlet: = w(0) = 0, w(1) = 0, (5.22)

Neumann: = wx(0) = 0, wx(1) = 0, (5.23)

Mixed: = w(0) = 0, wx(1) = 0, (5.24)

Robin: = w(0) = 0, w(1) + wx(1) = 0. (5.25)

Table 5.1 illustrates the maximum λ for which we can construct a Lyapunov

function for Equation (5.20) using the analysis presented in Theorem 5.8.

Table 5.1. Maximum λ as a function of polynomial degree d for which a Lyapunov
function proving the exponential stability of wt = wxx + λw can be constructed
using Theorem 5.8

Boundary Conditions 4 5 6 7 8

Dirichlet

w(0) = 0, w(1) = 0 3.01 5.38 7.76 9.71 9.83

Neumann

wx(0) = 0, wx(1) = 0 −0.002 −0.002 −0.002 −0.002 −0.002

Mixed

w(0) = 0, wx(1) = 0 2.4 2.45 2.46 2.461 2.461

Robin

w(0) = 0, w(1) + wx(1) = 0 3.34 4.10 4.10 4.10 4.10
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Table 5.2 presents a comparison of the maximum λ as calculated by Theo-

rem 5.8 and the maximum λ calculated using Sturm-Liouville theory presented in

Table D.1 in Appendix D.

Table 5.2. Comparison of maximum λ for which a Lyapunov function proving the
exponential stability of wt = wxx + λw can be constructed using Theorem 5.8 and
maximum λ predicted by Sturm-Liouville theory for stability.

Boundary Conditions Maximum λ Maximum λ

using Theorem 5.8 using Sturm Liouville theory

Dirichlet

w(0) = 0, w(1) = 0 9.83 π2 ≈ 9.86

Neumann

wx(0) = 0, wx(1) = 0 −0.002 0

Mixed

w(0) = 0, wx(1) = 0 2.461 π2/4 ≈ 2.47

Robin

w(0) = 0, w(1) + wx(1) = 0 4.10 4.12

Table 5.2 illustrates that the presented methodology is very accurate. More-

over, increasing the polynomial degree d leads to a better approximation of the true

margin for λ.

Table 5.3 illustrates the maximum λ for which we can construct a Lyapunov

function for Equation (5.21) using the analysis presented in Theorem 5.8.
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Table 5.3. Maximum λ as a function of polynomial degree d for which a Lyapunov
function proving the exponential stability of Equation (5.21) can be constructed
using Theorem 5.8.

Boundary Conditions d = 4 5 6 7

Dirichlet

w(0) = 0, w(1) = 0 15.7 18.8 18.8 18.8

Neumann

wx(0) = 0, wx(1) = 0 −0.27 −0.27 −0.27 −0.27

Mixed

w(0) = 0, wx(1) = 0 4.62 4.62 4.62 4.62

Robin

w(0) = 0, w(1) + wx(1) = 0 7.89 7.89 7.89 7.91

Table 5.4 presents a comparison of the maximum λ as calculated by Theo-

rem 5.8 and the maximum λ calculated using finite-difference approach presented in

Table D.2 in Appendix D.

Table 5.4. Comparison of maximum λ for which a Lyapunov function proving the
exponential stability of Equation (5.21) can be constructed using Theorem 5.8 and
maximum λ predicted by finite-difference approach.

Boundary Conditions Maximum λ Maximum λ

using Theorem 5.8 using Sturm Liouville theory

Dirichlet

w(0) = 0, w(1) = 0 18.8 18.95

Neumann

wx(0) = 0, wx(1) = 0 −0.27 −0.255

Mixed

w(0) = 0, wx(1) = 0 4.62 4.66

Robin

w(0) = 0, w(1) + wx(1) = 0 7.91 7.96

As before, Table 5.4 illustrates that the presented methodology is very accu-

rate.
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5.4 L2 Stability Analysis

In this section, we consider the inhomogeneous version of Equations (5.1)-(5.2)

given by

wt(x, t) = a(x)wxx(x, t) + b(x)wx(x, t) + c(x)w(x, t) + f(x, t), x ∈ [0, 1], t ≥ 0,

(5.26)

with boundary conditions of the form

ν1w(0, t) + ν2wx(0, t) = 0 and ρ1w(1, t) + ρ2wx(1, t) = 0. (5.27)

Here, the function f ∈ C1
loc([0,∞];L2(0, 1)) or f ∈ Lloc

2 ([0,∞];L2(0, 1))
3 is called the

exogenous input. For this system, we wish to analyze its L2 stability.

Definition 5.9. A system of the form represented by Equations (5.26)-(5.27) is L2

stable if there exists a scalar γ > 0 such that

∫ ∞

0

‖w(·, t)‖2dt ≤ γ

∫ ∞

0

‖f(·, t)‖2dt.

Here w(x, t) is the solution of (5.26)-(5.27) initiated by a zero initial condition w0(x) =

0. The scalar γ is known as the disturbance attenuation parameter.

The uniqueness and existence of the solutions for the inhomogeneous system

can be established by the following corollary to Lemma 5.4.

Corollary 5.10. For any initial condition w0 ∈ D0 and f ∈ C1
loc([0,∞];L2(0, 1))

there exists a classical solution for the system represented by Equations (5.26)-(5.27).

Additionally, for any initial condition w0 ∈ L2(0, 1) and f ∈ Lloc
2 ([0,∞];L2(0, 1))

there exists a weak solution for the system represented by Equations (5.26)-(5.27).

3Refer to the section on notation for definitions of the function spaces.
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Proof. For the case when f = 0, it has already been established in Lemma 5.4 that

the unique (weak) solution of (5.26)-(5.27) is given by

w(x, t) = (S(t)w0(x)), w0 ∈ D0(w0 ∈ L2(0, 1)),

where S(t) is the C0-semigroup generated by the pair (A,D0).

Thus, from Theorem 4.3 (Corollary 4.4), the classical (weak) solution of (5.26)-

(5.27) with f 6= 0 is given by

w(x, t) = (S(t)w0)(x) +

∫ t

0

S(t− s)f(x, s)ds, w0 ∈ D0(w0 ∈ L2(0, 1)),

where f ∈ C1
loc([0,∞];L2(0, 1))(f ∈ Lloc

2 ([0,∞];L2(0, 1)).

We present the following theorem for L2 stability analysis.

Theorem 5.11. Suppose that there exist scalars 0 < ǫ1 < ǫ2, γ > 0 and {M,K1, K2} ∈

Ωd1,d2,ǫ1,ǫ2 such that

{−Q0 − 2δM,−Q1 − 2δK1,−Q2 − 2δK2} ∈ Ξd1,d2,0,

Q3 = Q4 = Q6 = Q7 = Q9 = Q10 = 0,

Q5 ≤ 0, Q8 ≤ 0, for all nj , j ∈ {1, · · · , 6},

where

δ =

√

ǫ2
ǫ1γ

,

and, nj are given by Definition 5.1 and

{Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10} = M(M,K1, K2).

Then, for a zero initial condition w0 = 0 and f ∈ C1
loc([0,∞];L2(0, 1), the

classical solution w(x, t) of Equations (5.26)-(5.27) satisfies

∫ ∞

0

‖w(·, t)‖2dt ≤ γ

∫ ∞

0

‖f(·, t)‖2dt,
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where

(Py)(x) =M(x)y(x) +

∫ x

0

K1(x, ξ)y(ξ)dξ +

∫ 1

x

K2(x, ξ)y(ξ)dξ, y ∈ L2(0, 1).

For f ∈ Lloc
2 ([0,∞];L2(0, 1)), the same result holds for the weak solution.

Proof. Consider the following Lyapunov function V (w(·, t)) = 〈w(·, t),Pw(·, t)〉. Tak-

ing the derivative along trajectories of the system, we have

d

dt
V (w(·, t)) = 〈wt(·, t), (Pw(·, t))〉+ 〈w(·, t), (Pwt(·, t))〉

= 〈Aw(·, t),Pw(·, t)〉+ 〈w(·, t),PAw(·, t)〉+ 2 〈w(·, t),Pf(·, t)〉 .

Since f ∈ C1
loc([0,∞];L2(0, 1), from Corollary 5.10, the classical solution w(·, t) ∈ D0

exists for all t ≥ 0. From the analysis presented in Theorem 5.8, we obtain

d

dt
V (w(·, t)) = 〈Aw(·, t),Pw(·, t)〉+ 〈w(·, t),PAw(·, t)〉

≤ 〈w(·, t),Qw(·, t)〉+ 2 〈w(·, t),Pf(·, t)〉

+ wx(1, t)

∫ 1

0

Q3(x)w(x, t)dx+ wx(0, t)

∫ 1

0

Q4(x)w(x, t)dx

+ w(1, t)

(

Q5w(1, t) +Q6wx(1, t) +

∫ 1

0

Q7(x)w(x, t)dx

)

+ w(0, t)

(

Q8w(0, t) +Q9wx(0, t) +

∫ 1

0

Q10(x)w(x, t)dx

)

.

Now, since by assumption Q3 = Q4 = Q6 = Q7 = Q9 = Q10 = 0, Q5 ≤ 0 and Q8 ≤ 0,

we have

d

dt
V (w(·, t)) ≤〈w(·, t),Qw(·, t)〉+ 2 〈w(·, t),Pf(·, t)〉 .

Thus,

d

dt
V (w(·, t)) + δ 〈w(·, t),Pw(·, t)〉 − 1

δ
〈f(·, t),Pf(·, t)〉

≤ 〈w(·, t), (Q+ δP)w(·, t)〉+ 2 〈w(·, t),Pf(·, t)〉 − 1

δ
〈f(·, t),Pf(·, t)〉
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=

〈









w(·, t)

f(·, t)









,









Q+ δP P

P −1
δ
P

















w(·, t)

f(·, t)









〉

L2(0,1)×L2(0,1)

. (5.28)

From Schur complement, the operator









Q+ δP P

P −1
δ
P









≤ 0

if and only if

Q+ 2δP ≤ 0.

Here we have used the fact that since P is a bounded linear operator, its inverse

exists. Since

{−Q0 − 2δM,−Q1 − 2δK1,−Q2 − 2δK2} ∈ Ξd1,d2,0,

we have that

Q+ 2δP ≤ 0,

and consequently, from Equation (5.28),

d

dt
V (w(·, t)) + δ 〈w(·, t),Pw(·, t)〉 ≤ 1

δ
〈f(·, t),Pf(·, t)〉 .

Integrating in time from t = 0 to t = T <∞, we obtain

V (w(·, t))− V (w(·, 0)) + δ

∫ T

0

〈w(·, t),Pw(·, t)〉dt ≤ 1

δ

∫ T

0

〈f(·, t),Pf(·, t)〉 dt.

Since w0(x) = w(x, 0) = 0, V (w(·, 0)) = 0. Additionally, V (w(·, t)) ≥ 0, thus

∫ T

0

〈w(·, t),Pw(·, t)〉dt ≤ 1

δ2

∫ T

0

〈f(·, t),Pf(·, t)〉 dt.

Since {M,K1, K2} ∈ Ωd1,d2,ǫ1,ǫ2,

ǫ1‖w(·, t)‖2 ≤ 〈w(·, t),Pw(·, t)〉 ,
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〈f(·, t),Pf(·, t)〉 ≤ ǫ2‖f(·, t)‖2.

Hence
∫ T

0

‖w(·, t)‖2dt ≤ ǫ2
ǫ1δ2

∫ T

0

‖f(·, t)‖2dt.

From the theorem statement

δ =

√

ǫ2
ǫ1γ

.

Therefore,
∫ T

0

‖w(·, t)‖2dt ≤ γ

∫ T

0

‖f(·, t)‖2dt.

Taking the limit T → ∞ completes the proof.

The proof is similar for f ∈ Lloc
2 ([0,∞];L2(0, 1)).
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CHAPTER 6

STATE FEEDBACK BASED BOUNDARY CONTROL OF PARABOLIC PDES

In this chapter we consider controller synthesis for parabolic PDEs. Similar to

Chapter 5, we accomplish this task by constructing Lyapunov functions parametrized

by sum-of-squares polynomials. In addition, the controllers are parametrized by poly-

nomials.

We consider Equations (5.1)- (5.2), given in Chapter 5, with inhomogeneous

boundary conditions given by

wt(x, t) = a(x)wxx(x, t) + b(x)wx(x, t) + c(x)w(x, t), x ∈ [0, 1], t ≥ 0, (6.1)

with boundary conditions of the form

ν1w(0, t) + ν2wx(0, t) = 0 and ρ1w(1, t) + ρ2wx(1, t) = u(t). (6.2)

Here, the real valued function u(t) ∈ R is called the control input. In addition, recall

the properties of the system, namely, the functions a, b and c are polynomial functions

in x. Moreover, the function a satisfies

a(x) ≥ α > 0, for x ∈ [0, 1]. (6.3)

The scalars νi, ρj ∈ R, i, j ∈ {1, 2} satisfy

|ν1|+ |ν2| > 0 and |ρ1|+ |ρ2| > 0. (6.4)

We wish to design a controller F : H2(0, 1) → R such that if

u(t) = Fw(·, t), (6.5)

then the system given by Equations (6.1)-(6.2) is stable. We also assume that access

to the complete state is available for the design of controllers. Such type of controllers

are called full state feedback based controllers.
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For PDEs in the form of Equations (6.1)-(6.2), we define the following first

order form

ẇ(t) = Aw(t), w ∈ D (6.6)

where the operator A : H2(0, 1) → L2(0, 1) is defined in Equation (5.6) as

(Ay) (x) = a(x)yxx(x) + b(x)yx(x) + c(x)y(x), (6.7)

and

D = {y ∈ H2(0, 1) : ν1y(0) + ν2yx(0) = 0 and ρ1y(1) + ρ2yx(1) = Fy}. (6.8)

If the operator F is of the form Fy = R1y(1) + R2yx(1), y ∈ H2(0, 1), then,

using the analysis presented in Section 5.1 the uniqueness and existence of classical

(weak) solutions of Equation (6.6), and hence Equations (6.1)-(6.2), can be estab-

lished. However, for a more general form of operator F which we consider, it is

considerably more difficult to establish the uniqueness and existence of solutions.

Thus, we make the following assumption:

Assumption 6.1. For any operator F : H2(0, 1) → R and initial condition w0 ∈ D,

there exists a classical solution to Equations (6.1)-(6.2) with u(t) given by Equa-

tion (6.5). Similarly, for any initial condition w0 ∈ L2(0, 1), there exists a weak

solution to Equations (6.1)-(6.2).

For later use, we present the following definition.

Definition 6.2. Given scalars ν1, ν2, ρ1 and ρ2, we define

{m1, m2, m3} =































{−ν1
ν2
, 0, 1} if ν1, ν2 6= 0

{0, 1, 0} if ν1 6= 0, ν2 = 0

{0, 0, 1} if ν1 = 0, ν2 6= 0.



77

With this definition, the boundary conditions given in Equation (6.2) can be repre-

sented as

wx(0, t) = m1w(0, t) +m2wx(0, t), w(0) = m3w(0, t).

6.1 Exponentially Stabilizing Boundary Control

In this section we consider the synthesis of controller F such that if the control

input

u(t) = Fw(·, t),

then, the system governed by Equations (6.1)-(6.2) is exponentially stable. The main

result depends primarily on the following upper bound - the proof of which can be

found in Lemma A.7 in Appendix A.

〈APz(·, t), z(·, t)〉+ 〈z(·, t),PAz(·, t)〉

≤ 〈z(·, t), T z(·, t)〉

+ z(0, t)

(

T3z(0, t) +

∫ 1

0

T4(x)z(x, t)dx

)

+ zx(0, t)

∫ 1

0

T5(x)z(x, t)dx

+

∫ 1

0

1

M(0)
T6(x)z(x, t)dx

[(

−a(0)Mx(0)−
1

2
αǫπ2

)

z(0, t) +

∫ 1

0

αǫπ2z(x, t)dx

]

+ z(1, t) (T7z(1, t) + T8zx(1, t)) ,

where z(·, t) = P−1w(·, t), w being a solution of Equations (6.1)-(6.2),

(Py) (x) =M(x)y(x) +

∫ x

0

K1(x, ξ)y(ξ)dξ +

∫ 1

x

K2(x, ξ)y(ξ)dξ, y ∈ L2(0, 1),

and we define the operator T as

(T y) (x) = T0(x)y(x) +

∫ x

0

T1(x, ξ)y(ξ)dξ +

∫ 1

x

T2(x, ξ)y(ξ)dξ, y ∈ L2(0, 1),

where

{T0, T1, T2, T3, T4, T5, T6, T7, T8} = N (M,K1, K2)

and the linear operator N is defined as follows.
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Definition 6.3. We say

{T0, T1, T2, T3, T4, T5, T6, T7, T8} = N (M,K1, K2)

if the following hold

T0(x) =axx(x)M(x) + a(x)Mxx(x)− bx(x)M(x) + b(x)Mx(x) + 2c(x)M(x)

+ 2a(x) [K1,x(x, x)−K2,x(x, x)]−
π2αǫ

2
,

T1(x, ξ) = [a(x)K1,xx(x, ξ) + a(ξ)K1,ξξ(x, ξ)] + [b(x)K1,x(x, ξ) + b(ξ)K1,ξ(x, ξ)]

+ [c(x)K1(x, ξ) + c(ξ)K1(x, ξ)] ,

T2(x, ξ) = [a(x)K2,xx(x, ξ) + a(ξ)K2,ξξ(x, ξ)] + [b(x)K2,x(x, ξ) + b(ξ)K2,ξ(x, ξ)]

+ [c(x)K2(x, ξ) + c(ξ)K2(x, ξ)] ,

T3 =−m3

(

a(0)Mx(0) +
1

2
αǫπ2

)

+m3 (ax(0)− b(0))M(0)

− 2a(0) (m1M(0) + (m2 − 1)Mx(0)) ,

T4 =(m3 − 1)(ax(0)− b(0))K2(0, x)− 2a(0) [(m2 − 1)K2,x(0, x) +m1K2(0, x)]

+m3αǫπ
2,

T5(x) =− 2m2(m3 − 1)a(0)K2(0, x),

T6(x) =2(m3 − 1)K2(0, x),

T7 =− ax(1)M(1) + a(1)Mx(1) + b(1)M(1),

T8 =2a(1)M(1),

where K1,x(1, x) = [K1,x(x, ξ)|x=1]ξ=x, K2,x(0, x) = [K2,x(x, ξ)|x=0]ξ=x and ǫ > 0 and

mi, i ∈ {1, · · · , 3}, are scalars.

Theorem 6.4. Suppose that there exist scalars ǫ, δ > 0 and {M,K1, K2} ∈ Ξd1,d2,ǫ

such that

{−T0 − 2δM,−T1 − 2δK1,−T2 − 2δK2} ∈ Ξd1,d2,0,

T3 ≤ 0, T4(x) = T5(x) = T6(x) = 0,
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for all mj, j ∈ {1, · · · , 3} where mj are given by Definition 6.2 and

{T0, T1, T2, T3, T4, T5, T6, T7, T8} = N (M,K1, K2).

Define the operator F := ZP−1 where, for any y ∈ H2(0, 1),

Zy =































Z1y(1) +
∫ 1

0
Z2(x)y(x)dx ρ1 = 0, ρ2 6= 0

Z3yx(1) +
∫ 1

0
Z4(x)y(x)dx ρ1 6= 0, ρ2 = 0

Z5y(1) +
∫ 1

0
Z6(x)y(x)dx ρ1 6= 0, ρ2 6= 0

.

Here, Z1, Z3 and Z5 are any scalars that satisfy

Z1 < 0 and Z1 < − ρ2
2a(1)

(T7 − 2a(1)Mx(1)) ,

Z3 < 0 and
1

Z3
< − 1

ρ1M(1)

T7
T8
,

Z5 < 0 and Z5 < − ρ2
2a(1)

(

T7 −
ρ1
ρ2
T8 − 2a(1)Mx(1)

)

,

and polynomials Z2(x), Z4(x) and Z6(x) are defined as

Z2(x) = ρ2K1,x(1, x), Z4(x) = ρ1K1(1, x), Z6(x) = ρ2

(

ρ1
ρ2
K1(1, x) +K1,x(1, x)

)

.

Additionally,

(Py) (x) =M(x)y(x) +

∫ x

0

K1(x, ξ)y(ξ)dξ +

∫ 1

x

K2(x, ξ)y(ξ)dξ, y ∈ L2(0, 1).

Then for any solution w of (6.1) - (6.2) with u(t) = Fw(·, t) and initial condition

w0 ∈ D there exists a scalar M ≥ 0 such that

‖w(·, t)‖ ≤ e−δtM, t > 0.

Proof. Consider the following Lyapunov function V (w(·, t)) = 〈w(·, t),P−1w(·, t)〉.

Note that this Lyapunov functional is well-defined because from Assumption 6.1, the

solution (unique or weak) exists. Moreover, the bounded linear operator P is strictly

positive. Thus, its inverse P−1 exists and is bounded and linear [35].
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Taking the time derivative along trajectories of the system, we have

d

dt
V (w(·, t)) =

〈

Aw(t),P−1w(t)
〉

+
〈

P−1w(t),Aw(t)
〉

,

where we have used the fact that P = P⋆ implies P−1 = (P⋆)−1. Now let z = P−1w.

Then

d

dt
V (w(·, t)) =

〈

APP−1w(·, t),P−1w(·, t)
〉

+
〈

P−1w(·, t),APP−1w(·, t)
〉

= 〈APz(·, t), z(·, t)〉+ 〈z(·, t),APz(·, t)〉 .

From Lemma A.7,

d

dt
V (w(·, t))

= 〈APz(·, t), z(·, t)〉+ 〈z(·, t),APz(·, t)〉

≤ 〈z(·, t), T z(·, t)〉

+ z(0, t)

(

T3z(0, t) +

∫ 1

0

T4(x)z(x, t)dx

)

+ zx(0, t)

∫ 1

0

T5(x)z(x, t)dx

+

∫ 1

0

1

M(0)
T6(x)z(x, t)dx

[(

−a(0)Mx(0)−
1

2
αǫπ2

)

z(0, t) +

∫ 1

0

αǫπ2z(x, t)dx

]

+ z(1, t) (T7z(1, t) + T8zx(1, t)) .

From the theorem statement we have that T4(x) = T5(x) = T6(x) = 0 and T3 ≤ 0,

thus

d

dt
V (w(·, t))

= 〈APz(·, t), z(·, t)〉+ 〈z(·, t),APz(·, t)〉

≤ 〈z(·, t), T z(·, t)〉 + z(1, t) (T7z(1, t) + T8zx(1, t)) . (6.9)

From Equation (6.4),

|ρ1|+ |ρ2| > 0.

Thus, there are three cases possible,

ρ1 = 0 and ρ2 6= 0, ρ1 6= 0 and ρ2 = 0, ρ1 6= 0 and ρ2 6= 0.
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For the case when ρ1 = 0 and ρ2 6= 0,

ρ2wx(1, t) = u(t) = Fw(·, t) = FPP−1w(·, t) = Zz(·, t),

hence

wx(1, t) =
1

ρ2
Zz(·, t).

Since, w = Pz, we have

wx(1, t) =
1

ρ2
Zz(·, t) =Mx(1)z(1, t) +M(1)zx(1, t) +

∫ 1

0

K1,x(1, x)z(x, t)dx.

Hence,

M(1)zx(1, t) =
1

ρ2
Zz(·, t)−Mx(1)z(1, t)−

∫ 1

0

K1,x(1, x)z(x, t)dx.

Multiplying both sides by 2a(1),

T8zx(1, t) =
2a(1)

ρ2
Zz(·, t)− 2a(1)Mx(1)z(1, t)−

∫ 1

0

2a(1)K1,x(1, x)z(x, t)dx.

Substituting in Equation (6.9),

d

dt
V (w(·, t))

= 〈APz(·, t), z(·, t)〉+ 〈z(·, t),APz(·, t)〉

≤ 〈z(·, t), T z(·, t)〉+ z(1, t)
2a(1)

ρ2
Zz(·, t)

+ z(1, t)

(

(T7 − 2a(1)Mx(1)) z(1, t)−
∫ 1

0

2a(1)K1,x(1, x)z(x, t)dx

)

.

Using the definition of Z from the theorem statement

d

dt
V (w(·, t))

= 〈APz(·, t), z(·, t)〉+ 〈z(·, t),APz(·, t)〉

≤ 〈z(·, t), T z(·, t)〉+ z(1, t)2
(

T7 − 2a(1)Mx(1) +
2a(1)

ρ2
Z1

)

.
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Since Z1 is any scalar that satisfies

Z1 < 0 and Z1 < − ρ2
2a(1)

(T7 − 2a(1)Mx(1)) ,

there exists a scalar ζ1 > 0 such that

T7 − 2a(1)Mx(1) +
2a(1)

ρ2
Z1 = −ζ1.

Thus, for the case when ρ1 = 0 and ρ2 6= 0 we get that there exists a scalar ζ1 > 0

such that

d

dt
V (w(·, t)) ≤ 〈z(·, t), T z(·, t)〉 − ζ1z(1, t)

2. (6.10)

For the case when ρ1 6= 0 and ρ2 = 0,

ρ1w(1, t) = u(t) = Fw(·, t) = FPP−1w(·, t) = Zz(·, t),

hence

w(1, t) =
1

ρ1
Zz(·, t).

Using the fact that w = Pz we obtain

w(1, t) =
1

ρ1
Zz(·, t) =M(1)z(1, t) +

∫ 1

0

K1(1, x)z(x, t)dx.

Now, by definition,

Zz(·, t) = Z3zx(1, t) +

∫ 1

0

Z4(x)z(x, t)dx.

Combining the last two statements and using the definition of Z4(x),

zx(1, t) =
ρ1
Z3

M(1)z(1, t).

Note that this is well defined since Z3 < 0. Substituting in Equation (6.9)

d

dt
V (w(·, t))

= 〈APz(·, t), z(·, t)〉+ 〈z(·, t),APz(·, t)〉
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≤ 〈z(·, t), T z(·, t)〉+ z(1, t)2
(

T7 +
ρ1
Z3
M(1)T8

)

.

Since, from the theorem statement,

Z3 < 0 and
1

Z3
< − 1

ρ1M(1)

T7
T8
,

there exists a scalar ζ2 > 0 such that

T7 +
ρ1
Z3
M(1)T8 = −ζ2,

where we have used the fact that T8 = 2a(1)M(1) > 0. Hence, for the case when

ρ1 6= 0 and ρ2 = 0, there exists a scalar ζ2 > 0 such that

d

dt
V (w(·, t)) ≤ 〈z(·, t), T z(·, t)〉 − ζ2z(1, t)

2. (6.11)

For the case when ρ1 6= 0 and ρ2 6= 0,

ρ1w(1, t) + ρ2wx(1, t) = u(t) = Fw(·, t) = FPP−1w(·, t) = Zz(·, t),

hence using w = Pz

M(1)zx(1, t) =
1

ρ2
Zz(·, t)− ρ1

ρ2
M(1)z(1, t)−Mx(1)z(1, t)

− ρ1
ρ2

∫ 1

0

K1(1, x)z(x, t)dx−
∫ 1

0

K1,x(1, x)z(x, t)dx.

Multiplying both sides by 2a(1)

T8zx(1, t) =
2a(1)

ρ2
Zz(·, t)− ρ1

ρ2
T8z(1, t)− 2a(1)Mx(1)z(1, t)

− 2a(1)
ρ1
ρ2

∫ 1

0

K1(1, x)z(x, t)dx− 2a(1)

∫ 1

0

K1,x(1, x)z(x, t)dx.

Substituting in Equation (6.9) we obtain

d

dt
V (w(·, t))

= 〈APz(·, t), z(·, t)〉+ 〈z(·, t),APz(·, t)〉
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≤ 〈z(·, t), T z(·, t)〉+ z(1, t)
2a(1)

ρ2
Zz(·, t)

+ z(1, t)2
[

T7 −
ρ1
ρ2
T8 − 2a(1)Mx(1)

]

− z(1, t)

∫ 1

0

2a(1)

(

ρ1
ρ2
K1(1, x) +K1,x(1, x)

)

z(x, t)dx.

Using the definition of Z from the theorem statement for the case when ρ1 6= 0 and

ρ2 6= 0 we obtain

d

dt
V (w(·, t))

= 〈APz(·, t), z(·, t)〉+ 〈z(·, t),APz(·, t)〉

≤ 〈z(·, t), T z(·, t)〉

+ z(1, t)2
(

T7 −
ρ1
ρ2
T8 − 2a(1)Mx(1) +

2a(1)

ρ2
Z5

)

.

Since, by definition, Z5 is any scalar that satisfies

Z5 < 0 and Z5 < − ρ2
2a(1)

(

T7 −
ρ1
ρ2
T8 − 2a(1)Mx(1)

)

,

there exists a scalar ζ3 > 0 such that

T7 −
ρ1
ρ2
T8 − 2a(1)Mx(1) +

2a(1)

ρ2
Z5 = −ζ3.

Thus, for the case when ρ1 6= 0 and ρ2 6= 0, there exists a scalar ζ3 > 0 such that

d

dt
V (w(·, t)) ≤ 〈z(·, t), T z(·, t)〉 − ζ3z(1, t)

2. (6.12)

From Equations (6.10)-(6.12) we conclude that that there exist scalars ζ1, ζ2, ζ3 >

0 such that

d

dt
V (w(·, t)) ≤ 〈z(·, t), T z(·, t)〉 − ζz(1, t)2, (6.13)

where ζ = min{ζ1, ζ2, ζ3}.
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Since ζ < 0, we conclude that

d

dt
V (w(·, t)) ≤ 〈z(·, t), T z(·, t)〉 .

From the theorem hypotheses,

{−T0 − 2δM,−T1 − 2δK1,−T2 − 2δK2} ∈ Ξd1,d2,0.

Thus we conclude that

d

dt
V (w(·, t)) ≤ −2δV (w(·, t)), t > 0.

Integrating in time yields

V (w(·, t)) ≤ e−2δtV (w(·, 0)) ⇒ 〈Pz(·, t), z(·, t)〉 ≤ e−2δt〈w0,P−1w0〉.

Since {M,K1, K2} ∈ Ξd1,d2,ǫ, ǫ‖z(·, t)‖2 ≤ 〈Pz(·, t), z(·, t)〉 and thus

‖z(·, t)‖ ≤ e−δt

√

〈w0,P−1w0〉
ǫ

.

Since z = P−1w, w = Pz, and therefore,

‖w(·, t)‖ = ‖(Pz)(·, t)‖ ≤ ‖P‖L‖z(·, t)‖ ≤ e−δt‖P‖L
√

〈w0,P−1w0〉
ǫ

.

Setting

M = ‖P‖L
√

〈w0,P−1w0〉
ǫ

completes the proof.

6.1.1 Controller Synthesis Numerical Results.

To illustrate the effectiveness of the controller synthesis, we construct expo-

nentially stabilizing boundary controllers for the PDEs considered in Chapter 5. We

consider the following two parabolic PDEs:

wt(x, t) =wxx(x, t) + λw(x, t), and (6.14)
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wt(x, t) =
(

x3 − x2 + 2
)

wxx(x, t) +
(

3x2 − 2x
)

wx(x, t)

+
(

−0.5x3 + 1.3x2 − 1.5x+ 0.7 + λ
)

w(x, t), (6.15)

where λ is a scalar which may be chosen freely. We consider the following boundary

conditions for these two equations:

Dirichlet: = w(0) = 0, w(1) = u(t), (6.16)

Neumann: = wx(0) = 0, wx(1) = u(t), (6.17)

Mixed: = w(0) = 0, wx(1) = u(t), (6.18)

Robin: = w(0) = 0, w(1) + wx(1) = u(t). (6.19)

Table 6.1 illustrates the maximum λ for which we can construct an expo-

nentially stabilizing controller for Equation (6.14) using the analysis presented in

Theorem 6.4.

Table 6.1. Maximum λ as a function of polynomial degree d for which an exponentially
stabilizing controller for Equation (6.14) can be constructed using Theorem 6.4

Boundary Conditions 4 5 6 7 8

Dirichlet

w(0) = 0, w(1) = u(t) − − 10 13 19

Neumann

wx(0) = 0, wx(1) = u(t) 2 6 10 12 17

Mixed

w(0) = 0, wx(1) = u(t) − − 10 13 19

Robin

w(0) = 0, w(1) + wx(1) = u(t) − − 10 13 19

Table 6.2 illustrates the maximum λ for which we can construct an expo-

nentially stabilizing controller for Equation (5.21) using the analysis presented in

Theorem 6.4.
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Table 6.2. Maximum λ as a function of polynomial degree d for which aan expo-
nentially stabilizing controller for Equation (5.21) can be constructed using Theo-
rem 6.4.

Boundary Conditions d = 4 5 6 7

Dirichlet

w(0) = 0, w(1) = u(t) 20 34 42 44

Neumann

wx(0) = 0, wx(1) = u(t) 14 21 31 33

Mixed

w(0) = 0, wx(1) = u(t) 20 34 42 44

Robin

w(0) = 0, w(1) + wx(1) = u(t) 20 34 42 44

6.2 L2 Optimal Control

In this section, we consider the inhomogeneous version of Equations (6.1)-(6.2)

given by

wt(x, t) = a(x)wxx(x, t) + b(x)wx(x, t) + c(x)w(x, t) + f(x, t), x ∈ [0, 1], t ≥ 0,

(6.20)

with boundary conditions of the form

ν1w(0, t) + ν2wx(0, t) = 0 and ρ1w(1, t) + ρ2wx(1, t) = u(t). (6.21)

Here, the function f ∈ C1
loc([0,∞];L2(0, 1)) or f ∈ Lloc

2 ([0,∞];L2(0, 1))
4 is the ex-

ogenous input. For this system, we wish to synthesize a controller F : H2(0, 1) → R

such that if the control input is given by

u(t) = Fw(·, t),

then there exists a positive scalar γ such that
∫ ∞

0

‖w(·, t)‖2dt ≤ γ

∫ ∞

0

‖f(·, t)‖2dt.

4Refer to the section on notation for definitions of the function spaces.
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The following assumption, akin to Assumption 6.1, establishes uniqueness and

existence of the solutions for the inhomogeneous system.

Assumption 6.5. For any operator F : H2(0, 1) → R, initial condition w0 ∈ D

and f ∈ C1
loc([0,∞];L2(0, 1)), there exists a classical solution to Equations (6.20)-

(6.21) with u(t) = Fw(·, t). Similarly, for any initial condition w0 ∈ L2(0, 1) and

f ∈ Lloc
2 ([0,∞];L2(0, 1)), there exists a weak solution to Equations (6.20)-(6.21).

We present the following theorem for L2 stability analysis.

Theorem 6.6. Suppose that there exist scalars 0 < ǫ1 < ǫ2, γ > 0 and {M,K1, K2} ∈

Ωd1,d2,ǫ2,ǫ2 such that

{−T0 − 2δM,−T1 − 2δK1,−T2 − 2δK2} ∈ Ξd1,d2,0,

T4(x) = T5(x) = T6(x) = 0, T3 ≤ 0,

for all mj, j ∈ {1, · · · , 3} where

δ =

√

ǫ2
ǫ1γ

,

mj are given by Definition 6.2 and

{T0, T1, T2, T3, T4, T5, T6, T7, T8} = N (M,K1, K2).

Define the operator F := ZP−1 where, for any y ∈ H2(0, 1),

Zy =































Z1y(1) +
∫ 1

0
Z2(x)y(x)dx ρ1 = 0, ρ2 6= 0

Z3yx(1) +
∫ 1

0
Z4(x)y(x)dx ρ1 6= 0, ρ2 = 0

Z5y(1) +
∫ 1

0
Z6(x)y(x)dx ρ1 6= 0, ρ2 6= 0

.

Here, Z1, Z3 and Z5 are any scalars that satisfy

Z1 < 0 and Z1 < − ρ2
2a(1)

(T7 − 2a(1)Mx(1)) ,
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Z3 < 0 and
1

Z3
< − 1

ρ1M(1)

T7
T8
,

Z5 < 0 and Z5 < − ρ2
2a(1)

(

T7 −
ρ1
ρ2
T8 − 2a(1)Mx(1)

)

,

and polynomials Z2(x), Z4(x) and Z6(x) are defined as

Z2(x) = ρ2K1,x(1, x), Z4(x) = ρ1K1(1, x), Z6(x) = ρ2

(

ρ1
ρ2
K1(1, x) +K1,x(1, x)

)

.

Additionally,

(Py) (x) =M(x)y(x) +

∫ x

0

K1(x, ξ)y(ξ)dξ +

∫ 1

x

K2(x, ξ)y(ξ)dξ, y ∈ L2(0, 1).

Then any solution w of (6.20) - (6.21) with u(t) = (Fw)(t) and w0 = 0 satisfies

∫ ∞

0

‖w(·, t)‖2dt ≤ γ

∫ ∞

0

‖f(·, t)‖2dt.

Proof. Consider the following Lyapunov function V (w(·, t)) = 〈w(·, t),P−1w(·, t)〉.

Taking the time derivative along trajectories of the system, we have

d

dt
V (w(·, t)) =

〈

wt(·, t),P−1w(·, t)
〉

+
〈

w(·, t),P−1wt(·, t)
〉

=
〈

Aw(t),P−1w(t)
〉

+
〈

P−1w(t),Aw(t)
〉

+ 2
〈

f(·, t),P−1w(·, t)
〉

,

where we have used the fact that P = P⋆ implies P−1 = (P⋆)−1. Now let z = P−1w.

Then

d

dt
V (w(·, t)) =

〈

APP−1w(·, t),P−1w(·, t)
〉

+
〈

P−1w(·, t),APP−1w(·, t)
〉

+ 2
〈

f(·, t),P−1w(·, t)
〉

= 〈APz(·, t), z(·, t)〉+ 〈z(·, t),APz(·, t)〉+ 2 〈f(·, t), z(·, t)〉 .

From the analysis presented in Theorem 6.4, we have

d

dt
V (w(·, t)) ≤ 〈z(·, t), T z(·, t)〉+ 2 〈f(·, t), z(·, t)〉 .
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Thus,

d

dt
V (w(·, t)) + δ 〈z(·, t),Pz(·, t)〉 − 1

δ

〈

f(·, t),P−1f(·, t)
〉

≤ 〈z(·, t), (T + δP)z(·, t)〉 + 2 〈f(·, t), z(·, t)〉 − 1

δ

〈

f(·, t),P−1f(·, t)
〉

=

〈









z(·, t)

f(·, t)









,









T + δP I

I −1
δ
P−1

















z(·, t)

f(·, t)









〉

. (6.22)

From Schur complement, the operator









T + δP I

I −1
δ
P−1









≤ 0

if and only if

T + 2δP ≤ 0.

Since {−T0 − 2δM,−T1 − 2δK1,−T2 − 2δK2} ∈ Ξd1,d2,0, we have that

T + 2δP ≤ 0,

and consequently, from Equation (6.22),

d

dt
V (w(·, t)) + δ 〈z(·, t),Pz(·, t)〉 ≤ 1

δ

〈

f(·, t),P−1f(·, t)
〉

.

Integrating in time from t = 0 to t = T <∞ , we obtain

V (w(·, T ))− V (w(·, 0)) + δ

∫ T

0

〈z(·, t),Pz(·, t)〉 dt ≤ 1

δ

∫ T

0

〈

f(·, t),P−1f(·, t)
〉

dt.

Since w0(x) = w(x, 0) = 0, V (w(·, 0)) = 0. Additionally, V (w(·, T )) ≥ 0, thus

∫ T

0

〈z(·, t),Pz(·, t)〉 dt ≤ 1

δ2

∫ T

0

〈

f(·, t),P−1f(·, t)
〉

dt.

Since, 〈z(·, t),Pz(·, t)〉 = 〈w(·, t),P−1w(·, t)〉,
∫ T

0

〈

w(·, t),P−1w(·, t)
〉

dt ≤ 1

δ2

∫ T

0

〈

f(·, t),P−1f(·, t)
〉

dt.
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Since {M,K1, K2} ∈ Ωd1,d2,ǫ1,ǫ2, we have from Lemma B.1 that

1

ǫ2
‖w(·, t)‖2 ≤

〈

w(·, t),P−1w(·, t)
〉

and
〈

f(·, t),P−1f(·, t)
〉

≤ 1

ǫ1
‖f(·, t)‖2.

Therefore,

1

ǫ2

∫ T

0

‖w(·, t)‖2dt ≤ 1

ǫ1δ2

∫ T

0

‖f(·, t)‖2dt.

Consequently,
∫ T

0

‖w(·, t)‖2dt ≤ ǫ2
ǫ1δ2

∫ T

0

‖f(·, t)‖2dt.

Since

δ =

√

ǫ2
ǫ1γ

,

we obtain
∫ T

0

‖w(·, t)‖2dt ≤ γ

∫ T

0

‖f(·, t)‖2dt.

Taking the limit T → ∞ completes the proof.

6.3 Inverses of Positive Operators

In Theorems 6.4 and 6.6 we construct operators Z and P satisfying the con-

ditions of the respective theorems. If such operators exist, then the controller is

given by F = ZP−1. Thus, given a positive operator P, we require a method

of constructing P−1. Therefore, in this section, given scalar valued polynomials

{M,K1, K2} ∈ Ξ{d1,d2,ǫ}, or indeed {M,K1, K2} ∈ Ω{d1,d2,ǫ1,ǫ2} for any 0 < ǫ1 < ǫ2, we

will provide a method to construct P−1 where

(Py) (x) =M(x)y(x) +

∫ x

0

K1(x, ξ)y(ξ)dξ +

∫ 1

x

K2(x, ξ)y(ξ)dξ.

For operators without joint positivity, this procedure has been presented in [89] and

expanded in [90]. In this section, we further expand these results by proposing a

method for constructing inverses for the class of operators considered in Section 5.2.
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Since all positive bounded linear operators are invertible [35], the operators

constructed in Theorem 5.5 are invertible. Of course, to construct the inverses of such

operators, one could enforce the supremum of the integral kernels Ki(x, ξ), i ∈ {1, 2}

to be less than the infimum of M(x) so that the power series expansion of the inverse

operator converges. However, such conditions are very conservative. Our approach

uses the results presented in [91] where it has been shown that operators belonging

to the set Ξ{d1,d2,ǫ} are the input-output maps of well-posed Linear Time Varying

(LTV) systems. Thus, by switching the input and the output, such operators can be

inverted. We prove this fact explicitly.

Let {M,K1, K2} ∈ Ξ{d1,d2,ǫ}, then K1(x, ξ) and K2(x, ξ) are of degree d2+1 in

variables x and ξ. We can always find a matrix R ∈ Rd2+2×d2+2 such that K1(x, ξ) =

Zd2+1(x)
TRZd2+1(ξ). Recall that we denote the vector of monomials up to degree d2+1

by Zd2+1(·). Since, K2(x, ξ) = K1(x, ξ), we get K2(x, ξ) = Zd2+1(x)
TRTZd2+1(ξ). Let

R = R1R2 be a factorization, for e.g. QR factorization, then

K1(x, ξ) = Zd2+1(x)
TR1R2Zd2+1(ξ),

K2(x, ξ) = Zd2+1(x)
TRT

2R
T
1 Zd2+1(ξ).

With this, we provide the following definition.

Definition 6.7. Consider the operator

(Py) (x) =M(x)y(x) +

∫ x

0

K1(x, ξ)y(ξ)dξ +

∫ 1

x

K2(x, ξ)y(ξ)dξ,

where {M,K1, K2} ∈ Ξ{d1,d2,ǫ}, K1(x, ξ) = Zd2+1(x)
TR1R2Zd2+1(ξ), K2(x, ξ) = Zd2+1(x)

TRT
2R

T
1 Zd2+1

and R = R1R2.

We define

ΘP = {M,F1, F2, G1, G2},

where

F1(x) = Zd2+1(x)
TR1 ∈ R

1×d2+1,
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F2(x) = −Zd2+1(x)
TRT

2 ∈ R
1×d2+1,

G1(ξ) = R2Zd2+1(ξ) ∈ R
d2+1×1,

G2(ξ) = RT
1 Zd2+1(ξ) ∈ R

d2+1×1.

With this definition, if

(Py) (x) =M(x)y(x) +

∫ x

0

K1(x, ξ)y(ξ)dξ +

∫ 1

x

K2(x, ξ)y(ξ)dξ,

then ΘP = {M,F1, F2, G1, G2} implies that

(Py)(x) =M(x)y(x) +

∫ x

0

F1(x)G1(ξ)y(ξ)dξ −
∫ 1

x

F2(x)G2(ξ)y(ξ)dξ.

We provide the following Lemma which we will use to construct inverse oper-

ators.

Lemma 6.8. Let A(x) be a matrix in Rk×k, k ∈ N, whose entries are Lebesgue

integrable and continuous on x ∈ [0, 1]. Then, the matrix differential equation

dU(x)

dx
=A(x)U(x),

U(0) =I,

has a unique absolutely continuous solution which is given by the uniform limit on

0 ≤ x ≤ 1 of the sequence U1(x), U2(x), · · · , which are defined recursively as

Un+1(x) = I +

∫ x

0

A(ξ)Un(ξ)dξ, U1(x) = I.

Additionally, U(x) is non-singular.

The matrix U(x) is known as the fundamental matrix of A(x).

A proof is provided in Appendix B. Additionally, refer to [91] and [92] and

references therein for a similar proof.
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Theorem 6.9. For {M,K1, K2} ∈ Ξd1,d2,ǫ, let

(Pw) (x) =M(x)w(x) +

∫ t

0

K1(x, ξ)w(ξ)dξ +

∫ 1

x

K2(x, ξ)w(ξ)dξ, w ∈ L2(0, 1).

Additionally, let ΘP = (M,F1, F2, G1, G2). Define the operator P̂ as

(

P̂w
)

(x) =M(x)−1w(x)−
∫ x

0

γ1(x, ξ)w(ξ)dξ −
∫ 1

x

γ2(x, ξ)w(ξ)dξ,

where

γ1(x, ξ) =M(x)−1C(x)U(x)(I4(d+1) − P )U(ξ)−1B(ξ)M(ξ)−1,

γ2(x, ξ) =−M(x)−1C(x)U(x)PU(ξ)−1B(ξ)M(ξ)−1,

B(x) =









G1(x)

G2(x)









, C(x) =

[

F1(x) F2(x)

]

,

P = (N1 +N2U(1))
−1N2U(1),

N1 =









I2(d+1) 0

0 0









, N2 =









0 0

0 I2(d+1)









, N1, N2 ∈ S
4(d+1),

U(x) = fundamental matrix of − B(x)M(x)−1C(x), and

d =d2 + 1.

Then, P̂ is the inverse of P, i.e. PP̂ = P̂P = I, where I is the identity operator.

The same result holds for {M,K1, K2} ∈ Ωd1,d2,ǫ1,ǫ2 for any 0 < ǫ1 < ǫ2.

Refer to Appendix B for the proof.

To construct the inverse in practice, the fundamental matrix U(x) has to be

replaced by

UK(x) = I +

∫ x

0

(

−B(ξ)M(ξ)−1C(ξ)
)

UK−1(ξ)dξ, U1(x) = I4(d+1),
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for some finite K where K is chosen sufficiently large so that the inverse is ap-

proximated adequately. In practice, we have found that only a few terms are re-

quired for convergence. To illustrate, in Figures 6.1(a) and 6.1(b) we find some

(M,K1,M2) ∈ Ω1,1,1,1. Then we plot ‖w − PP−1
K w‖ and ‖w − P−1

K Pw‖, where P−1
K

denotes P−1 with U(x) replaced by UK(x), as a function of K for the arbitrarily

chosen function w(x) = x(x − 0.4)(x − 1). In this case, K = 5 yields norm error of

order ≈ 10−5.

Finally, Figures 6.2(a) and 6.2(b) illustrate w(t),
(

PP−1
K w

)

(t) and
(

P−1
K Pw

)

(t).
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CHAPTER 7

OBSERVER BASED BOUNDARY CONTROL OF PARABOLIC PDES USING
POINT OBSERVATION

In this chapter we consider boundary stabilization of parabolic PDEs when

only a partial knowledge of the state is available. In Chapter 6 we considered controller

design using the complete knowledge of the state. However, due to the infinite-

dimensional nature of PDEs, real-time measurement of the complete state is not

possible. Thus, a realistic approach would entail the design of controllers using only

the partial knowledge of the state.

We consider Equations (6.1)-(6.2) given by

wt(x, t) = a(x)wxx(x, t) + b(x)wx(x, t) + c(x)w(x, t), x ∈ [0, 1], t ≥ 0, (7.1)

with boundary conditions

ν1w(0, t) + ν2wx(0, t) = 0, ρ1w(1, t) + ρ2wx(1, t) = u(t), (7.2)

and measurement

y(t) = µ1w(1, t) + µ2wx(1, t). (7.3)

As in Chapter 6, the function u(t) ∈ R is the control input. The measurement

y(t) ∈ R is also called an output. As in previous chapters, the functions a, b and c

are polynomials in x and

a(x) ≥ α > 0, for x ∈ [0, 1]. (7.4)

The scalars νi, ρj ∈ R, i, j ∈ {1, 2}, satisfy

|ν1|+ |ν2| > 0, and |ρ1|+ |ρ2| > 0. (7.5)

Additionally, the scalars µk, k ∈ {1, 2} satisfy

µ1 6= 0 and µ2 = 0 if ρ1 = 0
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µ1 = 0 and µ2 6= 0 if ρ2 = 0 (7.6)

µ1 6= 0 and µ2 = 0 if ρ1 6= 0 and ρ2 6= 0.

(7.7)

The method we use is to design an observer with measurement y(t) as inputs

such that the state of the observer estimates the state of the system represented by

Equations (7.1)-(7.2). Additionally, the output of the observer is constructed such

that if it is set as the input u(t), then the System (7.1)-(7.2) is stabilized. The

simplest class of observers for which it is possible to verify closed loop stability is

Luenberger observers. In our version of the Luenberger observer, the dynamics of the

state estimate ŵ are defined as

ŵt(x, t) = a(x)ŵxx(x, t) + b(x)ŵx(x, t) + c(x)ŵ(x, t) + p(x, t), (7.8)

with boundary conditions

ν1ŵ(0, t) + ν2ŵx(0, t) = 0, ρ1ŵ(1, t) + ρ2ŵx(1, t) = q(t) + u(t), (7.9)

where p(x, t) and q(t) are the inputs to the observer.

We wish to design a controller F : H2(0, 1) → R, observer operator O : R →

L2(0, 1), and scalars O such that if the observer is given by Equations (7.8)-(7.9) with

the observer inputs given by

p(x, t) = (O (ŷ(t)− y(t))) (x),

q(t) =O (ŷ(t)− y(t)) ,

and the control input is given by

u(t) = Fŵ(·, t),

then the system represented by Equations (7.1)-(7.2) is stable. Here,

ŷ(t) = µ1ŵ(1, t) + µ2ŵx(1, t).
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With the control input u(t) = Fŵ(·, t), the coupled dynamics of the system

state w and the observer state ŵ can be written as

wt(x, t) =a(x)wxx(x, t) + b(x)wx(x, t) + c(x)w(x, t)

ŵt(x, t) =a(x)ŵxx(x, t) + b(x)ŵx(x, t) + c(x)ŵ(x, t) + (O (ŷ(t)− y(t))) (x), (7.10)

with boundary conditions

ν1w(0, t) + ν2wx(0, t) = 0, ρ1w(1, t) + ρ2wx(1, t) = Fŵ(·, t),

ν1ŵ(0, t) + ν2ŵx(0, t) = 0, ρ1ŵ(1, t) + ρ2ŵx(1, t) = O (ŷ(t)− y(t)) + Fŵ(·, t),

(7.11)

where

y(t) =µ1w(1, t) + µ2wx(1, t), ŷ(t) = µ1ŵ(1, t) + µ2ŵx(1, t),

A block-diagram of the coupled dynamics can be found in Figure 7.1.
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wt(x, t) = a(x)wxx(x, t) + b(x)wx(x, t) + c(x)w(x, t),

ν1w(0, t) + ν2wx(0, t) = 0,

ρ1w(1, t) + ρ2wx(1, t) = u(t),

y(t) = ω1w(1, t) + ω2wx(1, t).

System

ŵt(x, t) = a(x)ŵxx(x, t) + b(x)ŵx(x, t) + c(x)ŵ(x, t),

+ (O(ŷ(t)− y(t)))(x),

ν1ŵ(0, t)+ ν2ŵx(0, t) = 0,

ρ1ŵ(1, t)+ ρ2ŵx(1, t) = O (ŷ(t)− y(t)) + u(t),

ŷ(t) = ω1ŵ(1, t) + ω2ŵx(1, t).

−
+

y(t)

O

ŷ(t)

O++
ŷ(t)− y(t)

q(t)

F
ŵ(x, t)

u(t)

u(t)

Observer Based Controller

Figure 7.1. Diagram representing the coupled dynamics (7.10)-(7.11)

For the coupled PDEs in the form of Equations (7.10)-(7.11), we define the

following first order form









ẇ(t)

˙̂w(t)









=









A 0

−OC A+OC

















w(t)

ŵ(t)









,









w

ŵ









∈ D̂,



102

where the operator A : H2(0, 1) → L2(0, 1) is defined as

(Az) (x) = a(x)zxx(x) + b(x)zx(x) + c(x)z(x), (7.12)

the operator C : H2(0, 1) → R is defined as

Cz = µ1z(1) + µ2zx(1),

and the space D̂ is defined as

D̂ =

{









z

ẑ









∈ H2(0, 1)⊕H2(0, 1) : ν1









z(0)

ẑ(0)









+ ν2









zx(0)

ẑx(0)









=









0

0









and

ρ1









z(1)

ẑ(1)









+ ρ2









zx(1)

ẑx(1)









=









0 F

−OC F +OC

















z

ẑ









}

. (7.13)

Similar to Chapter 6, we make the following assumption for the uniqueness

and existence of solutions for the coupled closed loop system.

Assumption 7.1. For any controller F : H2(0, 1) → R, observer operator O :

L2(0, 1) → L2(0, 1), scalar O, and initial condition









w0

ŵ0









∈ D̂, there exists a classical

solution to Equations (7.10)-(7.11) with control input u(t) = Fŵ(·, t) and

p(x, t) = (O (ŷ(t)− y(t))) (x),

q(t) =O (ŷ(t)− y(t)) .

Similarly, for any initial condition









w0

ŵ0









∈ L2(0, 1) ⊕ L2(0, 1), there exists a weak

solution to Equations (7.10)-(7.11).
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For later use, let e = ŵ − w denote the state estimation error. Then, from

Equation (7.11), the boundary conditions for the error variable e can be obtained as

ν1e(0, t) + ν2ex(0, t) = 0 and ρ1e(1, t) + ρ2ex(1, t) = q(t). (7.14)

For these boundary conditions, we provide the following definition analogous to Def-

inition 6.2.

Definition 7.2. Given scalars ν1, ν2, ρ1 and ρ2, we define

{l1, l2, l3} =































{−ν1
ν2
, 0, 1} if ν1, ν2 6= 0

{0, 1, 0} if ν1 6= 0, ν2 = 0

{0, 0, 1} if ν1 = 0, ν2 6= 0

.

With this definition, the boundary condition at x = 0 given in Equation (7.11)

can be represented as

ex(0, t) = l1e(0, t) + l2ex(0, t), e(0) = l3e(0, t).

7.1 Observer Design

In this section we wish to design observers such that its state estimates the

state of the plant to be controlled with an exponentially vanishing error. Then, in the

following section, we show that this observer can be coupled to the controllers designed

in Theorem 6.4 to produce an exponentially stabilizing observer based boundary

controller.

We begin by defining the state estimation error e(x, t) = ŵ(x, t) = w(x, t), the

dynamics of which can be obtained from Equations (7.10)-(7.11) as

et(x, t) = a(x)exx(x, t) + b(x)ex(x, t) + c(x)e(x, t) + p(x, t), (7.15)

with boundary conditions

ν1e(0, t) + ν2ex(0, t) = 0 and ρ1e(1, t) + ρ2ex(1, t) = q(t). (7.16)
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The main result depends primarily on the following upper bound - the proof

of which can be found in Corollary A.5 in Appendix A.

〈Ae(·, t),Pe(·, t)〉+ 〈e(·, t),PAe(·, t)〉

≤ 〈e(·, t),Re(·, t)〉+ ex(0, t)

∫ 1

0

R3(x)e(x, t)dx

+ e(0, t)

(

R4e(0, t) +R5ex(0, t) +

∫ 1

0

R6(x)e(x, t)dx

)

+ e(1, t)

(

R7e(1, t) +R8ex(1, t) +

∫ 1

0

R9(x)e(x, t)dx

)

+ ex(1, t)

∫ 1

0

R10(x)e(x, t)dx,

where e(·, t) is any solution of Equations (7.15)-(7.16),

(Py) (x) = N(x)y(x) +

∫ x

0

L1(x, ξ)y(ξ)dξ +

∫ 1

x

L2(x, ξ)y(ξ)dξ, y ∈ L2(0, 1),

and we define the operator R as

(Ry) (x) = R0(x)y(x) +

∫ x

0

R1(x, ξ)y(ξ)dξ +

∫ 1

x

R2(x, ξ)y(ξ)dξ, y ∈ L2(0, 1),

where

{R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10} = J (N,L1, L2)

and the linear operator J is defined as follows.

Definition 7.3. We say

{R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10} = J (N,L1, L2)

if the following hold

R0(x) =
∂

∂x

(

∂

∂x
(a(x)N(x))− b(x)N(x)

)

+ 2N(x)c(x)− αǫπ2

2

+ 2

[

∂

∂x
[a(x) (L1(x, ξ)− L2(x, ξ))]

]

ξ=x

,

R1(x, ξ) =
∂

∂x

(

∂

∂x
[a(x)L1(x, ξ)]− b(x)L1(x, ξ)

)

+ c(x)L1(x, ξ)
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+
∂

∂ξ

(

∂

∂ξ
[a(ξ)L1(x, ξ)]− b(ξ)L1(x, ξ)

)

+ c(ξ)L1(x, ξ),

R2(x, ξ) =
∂

∂x

(

∂

∂x
[a(x)L2(x, ξ)]− b(x)L2(x, ξ)

)

+ c(x)L2(x, ξ)

+
∂

∂ξ

(

∂

∂ξ
[a(ξ)L2(x, ξ)]− b(ξ)L2(x, ξ)

)

+ c(ξ)L2(x, ξ),

R3(x) =− 2l2a(0)L2(0, x),

R4 =− 2l3l1a(0)N(0) + l23

[

ax(0)N(0) + a(0)Nx(0)− b(0)N(0)− αǫπ2

2

]

,

R5 =− 2l3n2a(0)N(0),

R6(x) =− L2(0, x) [2l1a(0) + 2l3b(0)] + 2l3 [ax(0)L2(0, x) + a(0)L2,x(0, x)]

+ l3αǫπ
2,

R7 =− ax(1)N(1)− a(1)Nx(1) + b(1)N(1),

R8 =2a(1)N(1),

R9(x) =− 2ax(1)L1(1, x)− 2a(1)L1,x(1, x) + 2b(1)L1(1, x),

R10(x) =2a(1)L1(1, x),

where L1,x(1, x) = [L1,x(x, ξ)|x=1]ξ=x, L2,x(0, x) = [L2,x(x, ξ)|x=0]ξ=x and ǫ > 0 and li,

i ∈ {1, · · · , 3}, are scalars.

We present the following theorem.

Theorem 7.4. Suppose that there exist scalars ǫ, δ > 0 and {N,L1, L2} ∈ Ξd1,d2,ǫ

such that

{−R0 − 2δN,−R1 − 2δL1,−R2 − 2δL2} ∈ Ξd1,d2,0,

R3(x) = R5 = R6(x) = 0, R4 ≤ 0, ,

for all lj, j ∈ {1, · · · , 3} where lj are given by Definition 7.2 and

{R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10} = J (N,L1, L2).
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Define the operator O := P−1V where, for any κ ∈ R,

(Vκ)(x) =































V1(x)κ = − 1
2µ1

(

R9(x) +
Oµ1

ρ2
R10(x)

)

κ, ρ1 = 0, ρ2 6= 0

V2(x)κ = − 1
2µ2

(

Oµ2

ρ1
R9(x) +R10(x)

)

κ, ρ1 6= 0, ρ2 = 0

V3(x)κ = − 1
2µ1

(

R9(x) +
(

Oµ1−ρ1
ρ2

)

R10(x)
)

κ, ρ1 6= 0, ρ2 6= 0

,

and O is any scalar that satisfies O < 0 and

O < −ρ2R7/µ1R8 when ρ1 = 0, ρ2 6= 0,

1

O
< −µ2R7/ρ1R8 when ρ1 6= 0, ρ2 = 0,

O < ρ1/µ1 − ρ2R7/µ1R8 when ρ1 6= 0, ρ2 6= 0.

Additionally,

(Py) (x) = N(x)y(x) +

∫ x

0

L1(x, ξ)y(ξ)dξ +

∫ 1

x

L2(x, ξ)y(ξ)dξ, y ∈ L2(0, 1).

Then for any solution ŵ of (7.8)- (7.9) with p(·, t) = O(ŷ(t) − y(t)) and q(t) =

O(ŷ(t) − y(t)) and any solution w of (7.1)- (7.2), there exists a scalar M ≥ 0 such

that

‖e(·, t)‖ ≤ e−δtM, t ≥ 0,

where e = ŵ − w and e0 = ŵ0 − w0 and the initial conditions satisfy









w0

ŵ0









∈ D̂,

for any F : H2(0, 1) → R, and the space D̂ is defined in Equation (7.13).

Proof. Consider the Lyapunov function V (e(·, t)) = 〈e(·, t),Pe(·, t)〉, where e(x, t) =

ŵ(x, t)−w(x, t) is the state estimation error whose dynamics are governed by Equa-

tions (7.15)-(7.16). Taking the derivative along the trajectories of the system, we
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have

d

dt
V (e(·, t)) = 〈et(·, t),Pe(·, t)〉+ 〈e(·, t),Pet(·, t)〉

= 〈Ae(·, t),Pe(·, t)〉+ 〈e(·, t),PAe(·, t)〉+ 2 〈Pe(·, t), p(·, t)〉 ,

where we have used the fact that P is self-adjoint. Using Corollary A.5,

d

dt
V (e(·, t))

≤ 〈e(·, t),Re(·, t)〉+ ex(0, t)

∫ 1

0

R3(x)e(x, t)dx

+ e(0, t)

(

R4e(0, t) +R5ex(0, t) +

∫ 1

0

R6(x)e(x, t)dx

)

+ e(1, t)

(

R7e(1, t) +R8ex(1, t) +

∫ 1

0

R9(x)e(x, t)dx

)

+ ex(1, t)

∫ 1

0

R10(x)e(x, t)dx+ 2 〈Pe(·, t), p(·, t)〉 .

Since from the theorem statement R3(x) = R5 = R6(x) = 0 and R4 ≤ 0, thus

d

dt
V (e(·, t))

≤ 〈e(·, t),Re(·, t)〉

+ e(1, t)

(

R7e(1, t) +R8ex(1, t) +

∫ 1

0

R9(x)e(x, t)dx

)

+ ex(1, t)

∫ 1

0

R10(x)e(x, t)dx+ 2 〈Pe(·, t), p(·, t)〉 . (7.17)

Now,

p(x, t) = (O(ŷ(t)− y(t))) (x).

Thus,

〈Pe(·, t), p(·, t)〉 = 〈Pe(·, t),O (ŷ(t)− y(t))〉

= 〈e(·, t),PO (ŷ(t)− y(t))〉 ,

where we have utilized the fact that P is self-adjoint. Since O = P−1V, we have that

PO = V. Thus,

〈Pe(·, t), p(·, t)〉 = 〈e(·, t),PO (ŷ(t)− y(t))〉
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= 〈e(·, t),V (ŷ(t)− y(t))〉 .

Substituting into Equation (7.17) produces

d

dt
Vo(e(·, t))

≤ 〈e(·, t),Re(·, t)〉+ 2 〈e(·, t),V (ŷ(t)− y(t))〉

+ e(1, t)

(

R7e(1, t) +R8ex(1, t) +

∫ 1

0

R9(x)e(x, t)dx

)

+ ex(1, t)

∫ 1

0

R10(x)e(x, t)dx. (7.18)

From the condition in Equation (7.5) we have that

|ρ1|+ |ρ2| > 0.

Thus, there are three possible cases:

CASE 1: ρ1 = 0, ρ2 6= 0,

CASE 2: ρ1 6= 0, ρ2 = 0,

CASE 3: ρ1 6= 0, ρ2 6= 0.

For the case when ρ1 = 0 and ρ2 6= 0, we have that

ρ2ex(1, t) = q(t)

or

ex(1, t) =
1

ρ2
O(ŷ(t)− y(t)).

From Equation (7.6), when ρ1 = 0, we have that µ1 6= 0 and µ2 = 0. Thus

ŷ(t)− y(t) = µ1e(1, t).

Thus

ex(1, t) =
Oµ1

ρ2
e(1, t). (7.19)
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Moreover,

(V(ŷ(t)− y(t))) (x) = µ1 (Ve(1, t)) (x). (7.20)

Substituting Equations (7.19)-(7.20) into Equation (7.18) and collecting terms pro-

duces

d

dt
V (e(·, t))

≤ 〈e(·, t),Re(·, t)〉+ 2µ1 〈e(·, t),Ve(1, t)〉

+ e2(1, t)

(

R7 +
Oµ1

ρ2
R8

)

+ e(1, t)

∫ 1

0

(

R9(x) +
Oµ1

ρ2
R10(x)

)

e(x, t)dx. (7.21)

From the theorem statement, when ρ1 = 0 and ρ2 6= 0

O < 0 and O < −ρ2R7

µ1R8

,

which is well defined as R8 = 2a(1)N(1) > 0. Thus there exists a scalar ω1 > 0 such

that

R7 +
Oµ1

ρ2
R8 =− ω1. (7.22)

Additionally

(Vκ) (x) = V1(x)κ = − 1

2µ1

(

R9(x) +
Oµ1

ρ2
R10(x)

)

κ,

for any κ ∈ R. Thus

2µ1 〈e(·, t),Ve(1, t)〉 = −e(1, t)
∫ 1

0

(

R9(x) +
Oµ1

ρ2
R10(x)

)

e(x, t)dx. (7.23)

Substituting Equations (7.22)-(7.23) into Equation (7.21) produces

d

dt
Vo(e(·, t)) ≤ 〈e(·, t),Re(·, t)〉 − ω1e(1, t)

2, (7.24)

when ρ1 = 0 and ρ2 6= 0 for some ω1 > 0.

For the case when ρ1 6= 0 and ρ2 = 0, we have that

ρ1e(1, t) = q(t),
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or

e(1, t) =
1

ρ1
O(ŷ(t)− y(t)).

From Equation (7.6), when ρ1 6= 0 and ρ2 = 0, µ1 = 0 and µ2 6= 0. Thus,

ŷ(t)− y(t) = µ2ex(1, t).

Thus,

e(1, t) =
Oµ2

ρ1
ex(1, t), (7.25)

and

ex(1, t) =
ρ1
Oµ2

e(1, t), (7.26)

which is well defined since for this case O 6= 0. Moreover

(V(ŷ(t)− y(t))) (x) = µ2 (Vex(1, t)) (x). (7.27)

Substituting Equations (7.25)-(7.27) into Equation (7.18) produces

d

dt
V (e(·, t))

≤ 〈e(·, t),Re(·, t)〉+ 2µ2 〈e(·, t),Vex(1, t)〉

+ e(1, t)2
(

R7 +
ρ1
Oµ2

R8

)

+ ex(1, t)

∫ 1

0

(

Oµ2

ρ1
R9(x) +R10(x)

)

e(x, t)dx. (7.28)

From the theorem statement, when ρ1 6= 0 and ρ2 = 0

O < 0 and
1

O
< −µ2

ρ1

R7

R8

Thus, there exists a scalar ω2 > 0 such that

R7 +
ρ1
Oµ2

R8 = −ω2, (7.29)

since R8 = 2a(1)N(1) > 0. Substituting (7.29) in (7.28) produces,

d

dt
V (e(·, t))

≤ 〈e(·, t),Re(·, t)〉+ 2µ2 〈e(·, t),Vex(1, t)〉
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− ω2e(1, t)
2 + ex(1, t)

∫ 1

0

(

Oµ2

ρ1
R9(x) +R10(x)

)

e(x, t)dx. (7.30)

Moreover, from the theorem statement,

(Vκ) (x) = V2(x)κ = − 1

2µ2

(

Oµ2

ρ1
R9(x) +R10(x)

)

κ,

for any κ ∈ R. Thus,

2µ2 〈e(·, t),Vex(1, t)〉 = −ex(1, t)
∫ 1

0

(

Oµ2

ρ1
R9(x) +R10(x)

)

e(x, t)dx. (7.31)

Substituting Equation (7.31) into Equation (7.30) produces

d

dt
V (e(·, t)) ≤ 〈e(·, t),Re(·, t)〉 − ω2e(1, t)

2, (7.32)

when ρ1 6= 0 and ρ2 = 0 for some ω2 > 0.

For the case when ρ1 6= 0 and ρ2 6= 0, we have that

ρ1e(1, t) + ρ2ex(1, t) = q(t),

or

ex(1, t) =
1

ρ2
O(ŷ(t)− y(t))− ρ1

ρ2
e(1, t).

From Equation (7.6), when ρ1 6= 0 and ρ2 6= 0, µ1 6= 0 and µ2 = 0. Thus,

ŷ(t)− y(t) = µ1e(1, t).

Thus,

ex(1, t) =

(

Oµ1 − ρ1
ρ2

)

e(1, t). (7.33)

Moreover

(V(ŷ(t)− y(t))) (x) = µ1 (Ve(1, t)) (x). (7.34)

Substituting Equations (7.33)-(7.34) into Equation (7.18) produces

d

dt
V (e(·, t))
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≤ 〈e(·, t),Re(·, t)〉+ 2µ1 〈e(·, t),Ve(1, t)〉+ e2(1, t)

(

R7 +

(

Oµ1 − ρ1
ρ2

)

R8

)

+ e(1, t)

∫ 1

0

(

R9(x) +

(

Oµ1 − ρ1
ρ2

)

R10(x)

)

e(x, t)dx. (7.35)

From the theorem statement, when ρ1 6= 0 and ρ2 6= 0,

O < 0 and O <
ρ1
µ1

− ρ2R7

µ1R8
,

which is well defined as R8 = 2a(1)N(1) > 0. Thus, there exists a scalar ω3 > 0 such

that

R7 +

(

Oµ1 − ρ1
ρ2

)

R8 = −ω3. (7.36)

Additionally,

(Vκ) (x) = V3(x)κ = − 1

2µ1

(

R9(x) +

(

Oµ1 − ρ1
ρ2

)

R10(x)

)

κ,

for any κ ∈ R. Thus,

2µ1 〈e(·, t),Ve(1, t)〉 = −e(1, t)
∫ 1

0

(

R9(x) +

(

Oµ1 − ρ1
ρ2

)

R10(x)

)

e(x, t)dx. (7.37)

Substituting Equations (7.36)-(7.37) into Equation (7.35) produces

d

dt
V (e(·, t)) ≤ 〈e(·, t),Re(·, t)〉 − ω3e(1, t)

2, (7.38)

when ρ1 6= 0 and ρ2 6= 0 for some ω3 > 0.

From Equations (7.24), (7.32) and (7.38) we conclude that for any ρ1, ρ2 ∈ R

which satisfy

|ρ1|+ |ρ2| > 0,

there exists scalars ω1, ω2, ω3 > 0 such that

d

dt
V (e(·, t)) ≤ 〈e(·, t),Re(·, t)〉 − ωe(1, t)2, (7.39)

where ω = min{ω1, ω2, ω3}.
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Since ω > 0, we conclude that

d

dt
V (e(·, t)) ≤ 〈e(·, t),Re(·, t)〉 . (7.40)

From the theorem statement we have that

{−R0 − 2δN,−R1 − 2δL1,−R2 − 2δL2} ∈ Ξd1,d2,0,

and hence, from Equation (7.40), we conclude that

d

dt
V (e(·, t)) ≤〈e(·, t),Re(·, t)〉 ≤ −2δ 〈e(·, t),Pe(·, t)〉 .

Therefore,

d

dt
V (e(·, t)) ≤ −2δV (e(·, t)), t ≥ 0.

Integrating in time yields

V (e(·, t)) = 〈e(·, t), (Pe)(·, t)〉 ≤ e−2δt〈e0,Pe0〉,

and since, {N,L1, L2} ∈ Ξd1,d2,ǫ, we have

ǫ‖e(·, t)‖2 ≤ 〈e(·, t), (Pe)(·, t)〉 ≤ e−2δt〈e0,Pe0〉, t ≥ 0

which implies

‖e(·, t)‖ ≤ e−δt

√

〈e0,Pe0〉
ǫ

, t ≥ 0.

Setting

M =

√

〈e0,Pe0〉
ǫ

completes the proof.

7.2 Exponentially Stabilizing Observer Based Boundary Control

We now prove that the observer designed in Theorem 7.4 can be coupled to the

controlled designed in Theorem 6.4 to produce an exponentially stabilizing observer

based feedback controller. This is known as the separation principle [36].
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Theorem 7.5. Suppose that there exist scalars ǫ, δc, δo > 0, {M,K1, K2} ∈ Ξd1,d2,ǫ

and {N,L1, L2} ∈ Ξd1,d2,ǫ, such that

{−T0 − 2δcM,−T1 − 2δcK1,−T2 − 2δcK2} ∈ Ξd1,d2,0,

{−R0 − 2δoN,−R1 − 2δoL1,−R2 − 2δoL2} ∈ Ξd1,d2,0,

T3 ≤ 0, T4(x) = T5(x) = T6(x) = 0,

R4 ≤ 0, R3(x) = R5 = R6(x) = 0,

for all lj, j ∈ {1, · · · , 3} where lj are given by Definition 7.2 and for all mj, j ∈

{1, · · · , 3} where mj are given by Definition 6.2. Here,

{T0, T1, T2, T3, T4, T5, T6, T7, T8} =N (M,K1, K2),

{R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10} =J (N,L1, L2).

Define the operator F := ZP−1
c where, for any y ∈ H2(0, 1),

Zy =































Z1y(1) +
∫ 1

0
Z2(x)y(x)dx ρ1 = 0, ρ2 6= 0

Z3yx(1) +
∫ 1

0
Z4(x)y(x)dx ρ1 6= 0, ρ2 = 0

Z5y(1) +
∫ 1

0
Z6(x)y(x)dx ρ1 6= 0, ρ2 6= 0

.

Here, Z1, Z3 and Z5 are any scalars that satisfy

Z1 < 0 and Z1 < − ρ2
2a(1)

(T7 − 2a(1)Mx(1)) ,

Z3 < 0 and
1

Z3

< − 1

ρ1M(1)

T7
T8
,

Z5 < 0 and Z5 < − ρ2
2a(1)

(

T7 −
ρ1
ρ2
T8 − 2a(1)Mx(1)

)

,

and polynomials Z2(x), Z4(x) and Z6(x) are defined as

Z2(x) = ρ2K1,x(1, x), Z4(x) = ρ1K1(1, x), Z6(x) = ρ2

(

ρ1
ρ2
K1(1, x) +K1,x(1, x)

)

.
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Additionally, define the operator O := P−1
o V where, for any κ ∈ R,

(Vκ)(x) =































V1(x)κ = − 1
2µ1

(

R9(x) +
Oµ1

ρ2
R10(x)

)

κ, ρ1 = 0, ρ2 6= 0

V2(x)κ = − 1
2µ2

(

Oµ2

ρ1
R9(x) +R10(x)

)

κ, ρ1 6= 0, ρ2 = 0

V3(x)κ = − 1
2µ1

(

R9(x) +
(

Oµ1−ρ1
ρ2

)

R10(x)
)

κ, ρ1 6= 0, ρ2 6= 0

,

and O is any scalar that satisfies O < 0 and

O < −ρ2R7/µ1R8 when ρ1 = 0, ρ2 6= 0,

1

O
< −µ2R7/ρ1R8 when ρ1 6= 0, ρ2 = 0,

O < ρ1/µ1 − ρ2R7/µ1R8 when ρ1 6= 0, ρ2 6= 0.

Moreover, for any y ∈ L2(0, 1),

(Pcy) (x) =M(x)y(x) +

∫ x

0

K1(x, ξ)y(ξ)dξ +

∫ 1

x

K2(x, ξ)y(ξ)dξ,

(Poy) (x) =N(x)y(x) +

∫ x

0

L1(x, ξ)y(ξ)dξ +

∫ 1

x

L2(x, ξ)y(ξ)dξ.

Then, for any solution w of (7.1)- (7.2) with u(t) = Fŵ(·, t), where ŵ is a

solution of (7.8)- (7.9) with p(·, t) = O(ŷ(t)− y(t)) and q(t) = O(ŷ(t) − y(t)), there

exists a scalar M ≥ 0 such that

‖w(·, t)‖ ≤ e−δtM, t ≥ 0,

where δ = min{δc, δo}.

Proof. Consider the Lyapunov function Vo(e(·, t)) = 〈e(·, t),Poe(·, t)〉, where e(x, t) =

ŵ(x, t)−w(x, t) is the state estimation error whose dynamics are governed by Equa-

tions (7.15)-(7.16). Taking the derivative along the trajectories of the system, we

have

d

dt
Vo(e(·, t)) = 〈et(·, t),Poe(·, t)〉+ 〈e(·, t),Poet(·, t)〉
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= 〈Ae(·, t),Poe(·, t)〉+ 〈e(·, t),PoAe(·, t)〉+ 2 〈Poe(·, t), p(·, t)〉 ,

where we have used the fact that Po is self-adjoint. Using Corollary A.5,

d

dt
Vo(e(·, t))

≤ 〈e(·, t),Re(·, t)〉+ ex(0, t)

∫ 1

0

R3(x)e(x, t)dx

+ e(0, t)

(

R4e(0, t) +R5ex(0, t) +

∫ 1

0

R6(x)e(x, t)dx

)

+ e(1, t)

(

R7e(1, t) +R8ex(1, t) +

∫ 1

0

R9(x)e(x, t)dx

)

+ ex(1, t)

∫ 1

0

R10(x)e(x, t)dx+ 2 〈Poe(·, t), p(·, t)〉 .

From the theorem statement we have that R3(x) = R5 = R6(x) = 0 and R4 ≤ 0,

therefore

d

dt
Vo(e(·, t))

≤ 〈e(·, t),Re(·, t)〉+ 2 〈Poe(·, t), p(·, t)〉

+ e(1, t)

(

R7e(1, t) +R8ex(1, t) +

∫ 1

0

R9(x)e(x, t)dx

)

+ ex(1, t)

∫ 1

0

R10(x)e(x, t)dx.

With the operator O and scalar O as defined in the theorem statement, using the

analysis presented in Theorem 7.4 and from Equation (7.39), we conclude that there

exists a scalar ω > 0 such that

d

dt
Vo(e(·, t)) ≤ 〈e(·, t),Re(·, t)〉 − ωe(1, t)2. (7.41)

Now recall the dynamics of the observer given by

ŵt(x, t) = a(x)ŵxx(x, t) + b(x)ŵx(x, t) + c(x)ŵ(x, t) + p(x, t), (7.42)

ν1ŵ(0, t) + ν2ŵx(0, t) = 0, ρ1ŵ(1, t) + ρ2ŵx(1, t) = q(t) + u(t). (7.43)
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For the observer, consider the following Lyapunov function Vc(ŵ(·, t)) = 〈ŵ(·, t),P−1
c ŵ(·, t)〉.

Taking the time derivative along trajectories of the system, we have

d

dt
Vc(ŵ(·, t)) =

〈

Aŵ(·, t),P−1
c ŵ(·, t)

〉

+
〈

P−1
c ŵ(·, t),Aŵ(·, t)

〉

+ 2
〈

P−1
c ŵ(·, t), p(·, t)

〉

,

where we have used the fact that Pc = P⋆
c implies P−1

c = (P⋆
c )

−1. Now let ẑ = P−1
c ŵ.

Then

d

dt
Vc(ŵ(·, t)) =

〈

APcP−1
c ŵ(·, t),P−1

c ŵ(·, t)
〉

+
〈

P−1
c ŵ(·, t),APcP−1

c ŵ(·, t)
〉

+ 2
〈

P−1
c ŵ(·, t), p(·, t)

〉

= 〈APcẑ(·, t), ẑ(·, t)〉+ 〈ẑ(·, t),APcẑ(·, t)〉+ 2 〈ẑ(·, t), p(·, t)〉 .

From Corollary A.7,

d

dt
Vc(ŵ(·, t))

≤ 〈ẑ(·, t), T ẑ(·, t)〉+ 2 〈ẑ(·, t), p(·, t)〉

+ ẑ(0, t)

(

T3ẑ(0, t) +

∫ 1

0

T4(x)ẑ(x, t)dx

)

+ ẑx(0, t)

∫ 1

0

T5(x)ẑ(x, t)dx

+

∫ 1

0

1

M(0)
T6(x)ẑ(x, t)dx

[(

−a(0)Mx(0)−
1

2
αǫπ2

)

ẑ(0, t) +

∫ 1

0

αǫπ2ẑ(x, t)dx

]

+ ẑ(1, t) (T7ẑ(1, t) + T8ẑx(1, t)) .

From the theorem statement we have that T4(x) = T5(x) = T6(x) = 0 and T3 ≤ 0,

therefore

d

dt
Vc(ŵ(·, t))

≤ 〈ẑ(·, t), T ẑ(·, t)〉+ 2 〈ẑ(·, t), p(·, t)〉+ ẑ(1, t) (T7ẑ(1, t) + T8ẑx(1, t)) . (7.44)

Now, from the theorem statement u(t) = Fŵ(·, t) and F = ZP−1
c , which

implies FPc = Z. Therefore

u(t) = Fŵ(·, t) = FPcP−1
c ŵ(·, t) = Z ẑ(·, t).
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Thus, using (7.43), the boundary condition at x = 1 can be written as

ρ1ŵ(1, t) + ρ2ŵx(1, t) = u(t) + q(t) = Z ẑ(·, t) + q(t).

Using the definition of the operator Z from the theorem statement and applying the

analysis presented in Theorem 6.4 and Equation (6.13), there exists a scalar ζ > 0

such that Equation (7.44) reduces to

d

dt
Vc(ŵ(·, t))

≤ 〈ẑ(·, t), T ẑ(·, t)〉 − ζẑ(1, t)2 + 2 〈ẑ(·, t), p(·, t)〉+ 2ẑ(1, t)hq(t), (7.45)

where

h =































2a(1)/ρ2, ρ1 = 0, ρ2 6= 0,

−T8/2Z3, ρ1 6= 0, ρ2 = 0,

2a(1)/ρ2, ρ1 6= 0, ρ2 6= 0.

(7.46)

By definition p(x, t) = (O(ŷ(t)− y(t))) (x) and O = P−1
o V. Therefore,

p(x, t) =
(

P−1
o V (ŷ(t)− y(t))

)

(x).

Thus, using the analysis presented in Theorem 7.4 it can be established that

〈ẑ(·, t), p(·, t)〉 = e(1, t)

∫ 1

0

W (x)ẑ(x, t)dx, (7.47)

where

W (x) =































µ1 (P−1
o V1) (x), ρ1 = 0, ρ2 6= 0,

(ρ1/O) (P−1
o V2) (x), ρ1 6= 0, ρ2 = 0,

µ1 (P−1
o V3) (x), ρ1 6= 0, ρ2 6= 0

, (7.48)

where polynomials V1(x), V2(x) and V3(x) are defined in the theorem statement.

Similarly, by definition q(t) = O (ŷ(t)− y(t)). Thus, using the analysis pre-

sented in Theorem 7.4 it can be established that

ẑ(1, t)hq(t) = ẑ(1, t)ge(1, t), (7.49)
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where

g =































hOµ1, ρ1 = 0, ρ2 6= 0,

hρ1, ρ1 6= 0, ρ2 = 0,

hOµ1, ρ1 6= 0, ρ2 6= 0,

, (7.50)

and h is defined in (7.46).

Substituting Equations (7.47) and (7.49) into (7.45) produces

d

dt
Vc(ŵ(·, t))

≤ 〈ẑ(·, t), T ẑ(·, t)〉 − ζẑ(1, t)2 + 2e(1, t)

∫ 1

0

W (x)ẑ(x, t)dx+ 2ẑ(1, t)ge(1, t), (7.51)

From Equations (7.41) and (7.51) we conclude that for any scalar A > 0,

A
d

dt
Vo(e(·, t)) +

d

dt
Vc(ŵ(·, t))

≤ A 〈e(·, t),Re(·, t)〉 − Aωe(1, t)2 + 〈ẑ(·, t), T ẑ(·, t)〉 − ζẑ(1, t)2

+ 2e(1, t)

∫ 1

0

W (x)ẑ(x, t)dx+ 2ẑ(1, t)ge(1, t), (7.52)

where ζ, ω > 0.

Let us define the operator W : L2(0, 1) → L2(0, 1) as (Wy) (x) = W (x)y(x),

for any y ∈ L2(0, 1). Thus, we get

e(1, t)

∫ 1

0

W (x)ẑ(x, t)dx = 〈e(1, t),W ẑ(·, t〉 .

Substituting into Equation (7.52) and rearranging

A
d

dt
Vo(e(·, t)) +

d

dt
Vc(ŵ(·, t))

≤ A 〈e(·, t),Re(·, t)〉+
〈



















ẑ(·, t)

ẑ(1, t)

e(1, t)



















,



















T 0 W

0 −ζI gI

W gI −AωI





































ẑ(·, t)

ẑ(1, t)

e(1, t)



















〉

, (7.53)
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where I is the identity operator.

Now, for any n ∈ N, consider the following operator on L2(0, 1)⊕ L2(0, 1) ⊕

L2(0, 1),


















T + 2δcPc − 1
n
Pc 0 W

0 −ζI gI

W gI −AωI



















.

From Schur complement, this operator is negative semidefinite if and only if

T + 2δcPc −
1

n
Pc +

ζW2

Aωζ − g2
≤ 0,

where we have chosen A sufficiently large such that Aωζ − g2 > 0. From the theorem

statement, {−T0−2δcM,−T1−2δcK1,−T2−2δcK2} ∈ Ξd1,d2,0. Thus, T +2δcPc ≤ 0.

Hence, from the previous equation, we obtain that

T + 2δcPc −
1

n
Pc +

ζW2

Aωζ − g2
≤ −1

n
Pc +

ζW2

Aωζ − g2
.

Since Pc is positive, choosing A > 0 sufficiently large will ensure that

T + 2δcPc −
1

n
Pc +

ζW2

Aωζ − g2
≤ −1

n
Pc +

ζW2

Aωζ − g2
≤ 0.

Thus, we conclude that for sufficiently large A > 0


















T + 2δcPc − 1
n
Pc 0 W

0 −ζI gI

W gI −AωI



















≤ 0.

Thus,

〈



















ẑ(·, t)

ẑ(1, t)

e(1, t)



















,



















T + 2δcPc − 1
n
Pc 0 W

0 −ζI gI

W gI −AωI





































ẑ(·, t)

ẑ(1, t)

e(1, t)



















〉

≤ 0.
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Consequently,

〈



















ẑ(·, t)

ẑ(1, t)

e(1, t)



















,



















T 0 W

0 −ζI gI

W gI −AωI





































ẑ(·, t)

ẑ(1, t)

e(1, t)



















〉

≤ −2δc 〈ẑ(·, t),Pcẑ(·, c)〉+
1

n
〈ẑ(·, t),Pcẑ(·, c)〉 ,

for any n ∈ N. Substituting into Equation (7.53), we obtain

A
d

dt
Vo(e(·, t)) +

d

dt
Vc(ŵ(·, t))

≤ A 〈e(·, t),Re(·, t)〉 − 2δc 〈ẑ(·, t),Pcẑ(·, c)〉+
1

n
〈ẑ(·, t),Pcẑ(·, c)〉 .

From the theorem statement {−R0 − 2δoN,−R1 − 2δoL1,−R2 − 2δoL2} ∈ Ξd1,d2,0,

thus R ≤ −2δoPo. Therefore

A
d

dt
Vo(e(·, t)) +

d

dt
Vc(ŵ(·, t))

≤ −2δoA 〈e(·, t),Poe(·, t)〉 − 2δc 〈ẑ(·, t),Pcẑ(·, c)〉+
1

n
〈ẑ(·, t),Pcẑ(·, c)〉 .

Since this inequality holds for any n ∈ N, we conclude that

A
d

dt
Vo(e(·, t)) +

d

dt
Vc(ŵ(·, t))

≤ −2δoA 〈e(·, t),Poe(·, t)〉 − 2δc 〈ẑ(·, t),Pcẑ(·, c)〉 .

Recall that

Vo(e(·, t) = 〈e(·, t),Poe(·, t)〉 ,

Vc(ŵ(·, t)) =
〈

ŵ(·, t),P−1
c ŵ(·, t)

〉

= 〈ẑ(·, t),Pcẑ(·, t)〉 .

Therefore,

A
d

dt
Vo(e(·, t)) +

d

dt
Vc(ŵ(·, t)) ≤ −2δoAVo(e(·, t))− 2δcVc(ŵ(·, t)).

Or,

d

dt
(AVo(e(·, t)) + Vc(ŵ(·, t))) ≤ −2δ (AVo(e(·, t)) + Vc(ŵ(·, t))) ,
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where δ = min{δc, δo}. Integrating in time yields

AVo(e(·, t)) + Vc(ŵ(·, t)) ≤ e−2δt (AVo(e0) + Vc(ŵ0)) ,

where e0 = e(x, 0) and ŵ0 = ŵ(x, 0).

Using the analysis presented in Theorems 5.8 and 6.4, we have that

‖e(·, t)‖2 ≤ 1

ǫ
Vo(e(·, t)), ‖ŵ(·, t)‖2 ≤ ‖Pc‖2L

ǫ
Vc(ŵ(·, t)).

Thus,

Aǫ‖e(·, t)‖2 + ǫ‖Pc‖−2
L ‖ŵ(·, t)‖ ≤ e−2δt (AVo(e0) + Vc(ŵ0)) ,

which in turn implies

‖e(·, t)‖ ≤ 1√
Aǫ
e−δt

√

AVo(e0) + Vc(ŵ0),

‖ŵ(·, t)‖ ≤‖Pc‖L√
ǫ
e−δt

√

AVo(e0) + Vc(ŵ0). (7.54)

Since e = ŵ − w,

‖w(·, t)‖ = ‖ŵ(·, t)− e(·, t)‖ ≤ ‖ŵ(·, t)‖+ ‖e(·, t)‖.

Substituting Equation (7.54) produces,

‖w(·, t)‖ ≤ e−δt

(

1√
Aǫ

+
‖Pc‖L√

ǫ

)

√

AVo(e0) + Vc(ŵ0).

Setting

M =

(

1√
Aǫ

+
‖Pc‖L√

ǫ

)

√

AVo(e0) + Vc(ŵ0)

completes the proof.

7.2.1 Observer Numerical Results.
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To illustrate the effectiveness of the observer synthesis, we construct expo-

nentially estimating boundary observers for the PDEs considered in Chapter 6. We

consider the following two parabolic PDEs:

wt(x, t) =wxx(x, t) + λw(x, t), and (7.55)

wt(x, t) =
(

x3 − x2 + 2
)

wxx(x, t) +
(

3x2 − 2x
)

wx(x, t)

+
(

−0.5x3 + 1.3x2 − 1.5x+ 0.7 + λ
)

w(x, t), (7.56)

where λ is a scalar which may be chosen freely. We consider the following boundary

conditions for these two equations:

Dirichlet: = w(0) = 0, w(1) = u(t), (7.57)

Neumann: = wx(0) = 0, wx(1) = u(t), (7.58)

Mixed: = w(0) = 0, wx(1) = u(t), (7.59)

Robin: = w(0) = 0, w(1) + wx(1) = u(t). (7.60)

Table 7.1 illustrates the maximum λ for which we can construct an exponen-

tially estimating observer for Equation (7.55) using the analysis presented in Theo-

rem 7.4.

Table 7.1. Maximum λ as a function of polynomial degree d for which an exponentially
estimating observer for Equation (7.55) can be constructed using Theorem 7.4

Boundary Conditions 4 5 6 7 8

Dirichlet

w(0) = 0, w(1) = u(t) − − 10 13 19

Neumann

wx(0) = 0, wx(1) = u(t) 2 6 10 12 17

Mixed

w(0) = 0, wx(1) = u(t) − − 10 13 19

Robin

w(0) = 0, w(1) + wx(1) = u(t) − − 10 13 19
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Table 7.2 illustrates the maximum λ for which we can construct an exponen-

tially estimating observer for Equation (7.56) using the analysis presented in Theo-

rem 7.4.

Table 7.2. Maximum λ as a function of polynomial degree d for which aan expo-
nentially estimating observer for Equation (7.56) can be constructed using Theo-
rem 7.4.

Boundary Conditions d = 4 5 6 7

Dirichlet

w(0) = 0, w(1) = u(t) 20 34 42 44

Neumann

wx(0) = 0, wx(1) = u(t) 14 21 31 33

Mixed

w(0) = 0, wx(1) = u(t) 20 34 42 44

Robin

w(0) = 0, w(1) + wx(1) = u(t) 20 34 42 44
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CHAPTER 8

CONTROL AND VERIFICATION OF THE SAFETY FACTOR PROFILE IN
TOKAMAKS

The instabilities in a tokamak plasma described by theMagneto-Hydrodynamic-

Dynamic (MHD) models are known as MHD instabilities. MHD instabilities arise due

to current gradients and pressure gradients interacting with the magnetic field line

curvature [6].

A common heuristic for setting operating conditions that avoid MHD insta-

bilities is the safety factor profile, or the q-profile [82]. Additionally, in [83], it has

been shown that the safety factor profile is important in triggering Internal Trans-

port Barriers (ITBs) which significantly improve energy confinement. The q-profile

the the magnetic filed line pitch, that is, the number of revolutions a magnetic field

line makes in the poloidal field while traversing a complete revolution in the toroidal

plane. Recall the definition of the q-profile, presented in Equation (3.5),

q(x, t) = −Bφ0a
2x

Z(x, t)
, (8.1)

where5

Bφ0 = toroidal magnetic field at the plasma center,

a = loation of the last close magnetic surface,

x = normalized spatial variable,

t = temporal varable,

Z(x, t) = ψx(x, t) = gradient of the poloidal magnetic flux, and

ψ(x, t) = poloidal magnetic flux.

From Equation (8.1), it is evident that to control the q-profile, we may control the

gradient of the poloidal magnetic flux Z.

5Refer to Table 3.1 for tokamak variable definitions.
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8.1 Simplified Model of the Gradient of Poloidal Flux

Recall the evolution equation of Z presented in Chapter 3 obtained by neglect-

ing the diamagnetic effect and applying cylindrical approximation as

∂Z

∂t
(x, t) =

1

µ0a2
∂

∂x

(

η‖(x, t)

x

∂

∂x
(xZ(x, t))

)

+R0
∂

∂x

(

η‖(x, t)jni(x, t)
)

, (8.2)

with boundary conditions

Z(0, t) = 0 and Z(1, t) = −R0µ0Ip(t)/2π, (8.3)

where

η‖ = parallel resistivity,

jni = non-inductive effective current density,

Ip = total plasma current,

R0 = location of magnetic center, and

µ0 = permeability of free space.

For this model, we consider the plasma resistivity η‖(x, t) to be static, thus

η‖(x, t) = η‖(x). Additionally, the averaged value of the bootsrap current density

jbs(x, t) = j̄bs(x) is considered. For the external non-inductive current density source

jeni, we consider only the Lower Hybrid Current Density (LHCD) source jlh. Finally,

the plasma current Ip is considered to be constant. Thus, since, jni(x, t) = jbs(x, t) +

jeni(x, t), we obtain

jni(x, t) = j̄bs(x) + jlh(x, t).

Substituting into Equation (8.2) and using the steady plasma resistivity η‖(x) and a

constant Ip, we obtain

∂Z

∂t
(x, t) =

1

µ0a2
∂

∂x

(

η‖(x)

x

∂

∂x
(xZ(x, t))

)

+R0
∂

∂x

(

η‖(x) [j̄bs(x) + jlh(x, t)]
)

, (8.4)
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with boundary conditions

Z(0, t) = 0 and Z(1, t) = −R0µ0Ip/2π. (8.5)

Suppose we want to regulate q(x, t) to a desired steady state qref(x). Let

Zref(x) be the associated gradient of the poloidal magnetic flux obtained using Equa-

tion (8.1). Then, since Zref(x) satisfies Equations (8.4)-(8.5), we obtain

∂Zref

∂t
(x) = 0 =

1

µ0a2
∂

∂x

(

η‖(x)

x

∂

∂x
(xZref(x))

)

+R0
∂

∂x

(

η‖(x)j̄bs(x)
)

, (8.6)

with boundary conditions

Zref(0) = 0 and Zref(1) = −R0µ0Ip/2π. (8.7)

Subtracting Equations (8.6)-(8.7) from Equations (8.4)-(8.5) produces

∂Ẑ

∂t
(x, t) =

1

µ0a2
∂

∂x

(

η‖(x)

x

∂

∂x

(

xẐ(x, t)
)

)

+R0
∂

∂x

(

η‖(x)jlh(x, t)
)

, (8.8)

with boundary conditions

Ẑ(0, t) = 0 and Ẑ(1, t) = 0, (8.9)

where

Ẑ(x, t) = Z(x, t)− Zref(x) (8.10)

is the error variable which must be regulated to zero.

8.1.1 Uniqueness and Existence of Solutions.

To regulate the error variable Ẑ to zero, we will be constructing state feedback

controllers of the form

jlh(x, t) = K1(x)Ẑ(x, t) +
∂

∂x

(

K2(x)Ẑ(x, t)
)

, (8.11)
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where K1 and K2 are rational functions.

To establish the uniqueness and existence of solutions for Equations (8.8)-(8.9)

with jlh given in Equation (8.11), we will follow the procedure presented in Section 5.1.

We begin by placing the following assumption.

Assumption 8.1. The functions

η‖(x)

x
+ η‖,x(x) and

xη‖,x(x)− η‖(x)

x2

are continuous for x ∈ [0, 1].

Lemma 8.2. Suppose there exists a rational function K2 such that

η‖(x)

(

1

µ0a2
+R0K2(x)

)

> 0, x ∈ [0, 1].

Then, for any initial condition Ẑ0 ∈ DT , where

DT = {y ∈ H2(0, 1) : y(0) = y(1) = 0, } (8.12)

there exists a classical solution Ẑ(·, t) ∈ DT , t > 0, for Equations (8.8)-(8.9) with

control given in Equation (8.11) with any rational function K1.

Similarly, for any initial condition Ẑ0 ∈ L2(0, 1), there exists a weak solution

Ẑ(·, t) ∈ L2(0, 1), t > 0.

Proof. By substituting Equation (8.11) into Equation (8.8), we obtain

∂Ẑ

∂t
(x, t) = a(x)Ẑxx(x, t) + b(x)Ẑx(x, t) + c(x)Ẑ(x, t), (8.13)

with boundary conditions

Ẑ(0, t) = 0 and Ẑ(1, t) = 0, (8.14)

where

a(x) =η‖(x)

(

1

µ0a2
+R0K2(x)

)

,
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b(x) =
1

µ0a2

(

η‖(x)

x
+ η‖,x(x)

)

+R0

(

η‖(x) (K1(x) + 2K2,x(x)) + η‖,x(x)K2(x)
)

,

c(x) =
1

µ0a2

(

xη‖,x(x)− η‖(x)

x2

)

+R0η‖(x) (K1,x(x) +K2,xx(x))

+R0η‖,x(x) (K1(x) +K2,x(x)) .

For Equations (8.13)-(8.14), we define the following first order differential form

˙̂Z(t) = AT Ẑ(t), (8.15)

where the operator AT : H2(0, 1) → L2(0, 1) is defined as

(ATy) (x) = a(x)yxx(x) + b(x)yx(x) + c(x)y(x), y ∈ H2(0, 1). (8.16)

From the theorem statement, a(x) > 0 for all x ∈ [0, 1]. Moreover, from

Assumption 8.1, the functions b(x) and c(x) are continuous. Thus, if we define

p(x) = e
∫ x

0
b(ξ)
a(ξ)

dξ, q(x) = −c(x)p(x)
a(x)

, σ(x) =
p(x)

a(x)
,

it follows that, for any y ∈ DT ,

−ATy =
1

σ(x)
Sy,

where S is the Sturm-Liouville operator defined as

(Sy) (x) = − d

dx

(

p(x)
dy(x)

dx

)

+ q(x)y(x), y ∈ DT .

Therefore, similar to the analysis presented in Lemma 5.4, it can be established

that the pair (AT ,DT ) generates a C0-semigroup S(t) on L2(0, 1). Thus, from The-

orem 4.3, for any initial condition Ẑ0 ∈ DT , Equations (8.13)-(8.14) have a classical

solution given by

Ẑ(x, t) =
(

S(t)Ẑ0

)

(x). (8.17)

From Corollary 4.4, for any Ẑ0 ∈ L2(0, 1), (8.17) is the unique weak solution of (8.13)-

(8.14).
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8.2 Control Design

As explained before, we wish to design control jlh of the form presented in

Equation (8.11) such that Z → Zref . As in previous chapters, we will use sum-of-

squares polynomials.

We present the following theorem.

Theorem 8.3. Suppose there exist polynomials M(x), Z1(x) and Z2(x) and scalars

ǫ, α such that, for all x ∈ [0, 1],

M(x) ≥ǫ,
1

µ0a2
(B1M) (x) + (B2Z1) (x) + (B3Z2) (x) + αf(x)M(x) <0,

(

C
(

1

µ0a2
M + Z2

))

(x) <0,

where Bi, i ∈ {1, 2, 3}, and C are defined as

(B1y) (x) =

(

−fx(x)
η‖(x)

x
+

1

2

d

dx

[

f(x)
η‖(x)

x
+ fx(x)η‖(x)

])

y(x)

+
1

2

(

fx(x)η‖(x) + f(x)
η‖(x)

x
+

d

dx

[

f(x)η‖(x)
]

)

dy(x)

dx

+
1

2
f(x)η‖(x)

d2y(x)

dx2
, y ∈ H2(0, 1),

(B2y) (x) =
1

2
fx(x)y(x)−

1

2
f(x)

dy(x)

dx
, y ∈ H1(0, 1),

(B3y) (x) =
1

2

d

dx
(fx(x)η‖(x))y(x) +

1

2

(

−fx(x)η‖(x) +
d

dx

(

f(x)η‖(x)
)

)

dy(x)

dx

+
1

2
f(x)η‖(x)

d2y(x)

dx2
, y ∈ H2(0, 1),

(Cy) (x) =− η‖(x)y(x), y ∈ L2(0, 1),

f(x) =x2(1− x).

Let

K1(x) = R−1
0 η‖(x)

−1M(x)−1Z1(x), K2(x) = R−1
0 M(x)−1Z2(x).
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Then, with

jlh(x, t) = K1(x)Ẑ(x, t) +
∂

∂x

(

K2(x)Ẑ(x, t)
)

,

for any initial condition Z0 ∈ DT (L2(0, 1)) and a desired reference profile Zref ∈

DT (L2(0, 1)), there exists a scalar κ ≥ 0 such that

‖Z(·, t)− Zref(·)‖Lf
2 (0,1)

≤ κe−αt, t > 0,

where, for any y ∈ L2(0, 1),

‖y‖Lf
2 (0,1)

=

(
∫ 1

0

f(x)y(x)2dx

)

1
2

.

Proof. We begin by recalling the evolution equation for Ẑ = Z − Zref presented in

Equation (8.8)-(8.9) as

∂Ẑ

∂t
(x, t) =

1

µ0a2
∂

∂x

(

η‖(x)

x

∂

∂x

(

xẐ(x, t)
)

)

+R0
∂

∂x

(

η‖(x)jlh(x, t)
)

, (8.18)

with boundary conditions

Ẑ(0, t) = 0 and Ẑ(1, t) = 0. (8.19)

From the theorem statement, for all x ∈ [0, 1],

(

C
(

1

µ0a2
M + Z2

))

(x) < 0.

Using the definition of C and K2(x), we obtain that

−M(x)η‖(x)

(

1

µ0a2
+R0K2(x)

)

< 0.

Since M(x) > 0, we conclude that, for all x ∈ [0, 1],

η‖(x)

(

1

µ0a2
+R0K2(x)

)

> 0.

Therefore, from Lemma 8.2, if Z0, Zref ∈ DT (L2(0, 1)), and consequently, Ẑ ∈

DT (L2(0, 1)), Equations (8.18)-(8.19) have a classical (weak) solution.
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With the uniqueness and existence of solutions to Equations (8.18)-(8.19) es-

tablished, let us define the following Lyapunov function

V (Ẑ(·, t)) =
∫ 1

0

f(x)M(x)−1Ẑ(x, t)2dx.

Taking the derivative along the trajectories of (8.18)-(8.19),

V̇ (Ẑ(·, t)) =2

∫ 1

0

f(x)M(x)−1Ẑ(x, t)Ẑt(x, t)dx

=
2

µ0a2

∫ 1

0

f(x)M(x)−1Ẑ(x, t)
∂

∂x

(

η‖(x)

x

∂

∂x

(

xẐ(x, t)
)

)

dx

+ 2

∫ 1

0

f(x)M(x)−1Ẑ(x, t)

[

R0
∂

∂x

(

η‖(x)jlh(x, t)
)

]

dx

Substituting in

jlh(x, t) = K1(x)Ẑ(x, t) +
∂

∂x

(

K2(x)Ẑ(x, t)
)

produces

V̇ (Ẑ(·, t)) = 2

µ0a2

∫ 1

0

f(x)M(x)−1Ẑ(x, t)
∂

∂x

(

η‖(x)

x

∂

∂x

(

xẐ(x, t)
)

)

dx

+ 2

∫ 1

0

f(x)M(x)−1Ẑ(x, t)
∂

∂x

(

R0η‖(x)K1(x)Ẑ(x, t)
)

dx

+ 2

∫ 1

0

f(x)M(x)−1Ẑ(x, t)
∂

∂x

[

η‖(x)
∂

∂x

(

R0K2(x)Ẑ(x, t)
)

]

dx.

Since,

K1(x) = R−1
0 η‖(x)

−1M(x)−1Z1(x), K2(x) = R−1
0 M(x)−1Z2(x),

we have that

V̇ (Ẑ(·, t)) = 2

µ0a2

∫ 1

0

f(x)M(x)−1Ẑ(x, t)
∂

∂x

(

η‖(x)

x

∂

∂x

(

xẐ(x, t)
)

)

dx

+ 2

∫ 1

0

f(x)M(x)−1Ẑ(x, t)
∂

∂x

(

Z1(x)M(x)−1Ẑ(x, t)
)

dx

+ 2

∫ 1

0

f(x)M(x)−1Ẑ(x, t)
∂

∂x

[

η‖(x)
∂

∂x

(

Z2(x)M(x)−1Ẑ(x, t)
)

]

dx.

We can write

V̇ (Ẑ(·, t)) = 2

µ0a2

∫ 1

0

f(x)M(x)−1Ẑ(x, t)
∂

∂x

(

η‖(x)

x

∂

∂x

(

xM(x)M(x)−1Ẑ(x, t)
)

)

dx
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+ 2

∫ 1

0

f(x)M(x)−1Ẑ(x, t)
∂

∂x

(

Z1(x)M(x)−1Ẑ(x, t)
)

dx

+ 2

∫ 1

0

f(x)M(x)−1Ẑ(x, t)
∂

∂x

[

η‖(x)
∂

∂x

(

Z2(x)M(x)−1Ẑ(x, t)
)

]

dx.

If we define

Y (x, t) =M(x)−1Ẑ(x, t),

we get

V̇ (Ẑ(·, t)) = 2

µ0a2

∫ 1

0

f(x)Y (x, t)
∂

∂x

(

η‖(x)

x

∂

∂x
(xM(x)Y (x, t))

)

dx

+ 2

∫ 1

0

f(x)Y (x, t)
∂

∂x
(Z1(x)Y (x, t)) dx

+ 2

∫ 1

0

f(x)Y (x, t)
∂

∂x

[

η‖(x)
∂

∂x
(Z2(x)Y (x, t))

]

dx.

Thus, we can write

V̇ (Ẑ(·, t)) = 2

µ0a2
V̇1(Ẑ(·, t)) + 2V̇2(Ẑ(·, t)) + 2V̇3(Ẑ(·, t)), (8.20)

where

V̇1(Ẑ(·, t)) =
∫ 1

0

f(x)Y (x, t)
∂

∂x

(

η‖(x)

x

∂

∂x
(xM(x)Y (x, t))

)

dx,

V̇2(Ẑ(·, t)) =
∫ 1

0

f(x)Y (x, t)
∂

∂x
(Z1(x)Y (x, t)) dx,

V̇3(Ẑ(·, t)) =
∫ 1

0

f(x)Y (x, t)
∂

∂x

[

η‖(x)
∂

∂x
(Z2(x)Y (x, t))

]

dx.

Before simplifying these terms using integration by parts, we would like to comment

that since Y (x, t) =M(x)−1Ẑ(x, t), from (8.19), we obtain that

Y (0, t) = 0 and Y (1, t) = 0. (8.21)

Applying integration by parts twice and using (8.21) produces

V̇1(Ẑ(·, t)) =
∫ 1

0

Y (x, t)2 (B1M) (x)dx+

∫ 1

0

Yx(x, t)
2f(x) (CM) (x)dx. (8.22)
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Applying integration by parts once,

V̇2(Ẑ(·, t)) =
∫ 1

0

Y (x, t)2 (B2Z1) (x)dx. (8.23)

Finally, applying integration by parts twice produces

V̇3(Ẑ(·, t)) =
∫ 1

0

Y (x, t)2 (B3Z2) (x)dx+

∫ 1

0

Yx(x, t)
2f(x) (CZ2) (x)dx.. (8.24)

Substituting Equations (8.22)-(8.24) into (8.20) produces

V̇ (Ẑ(·, t)) =2

∫ 1

0

Y (x, t)2
(

1

µ0a2
(B1M) (x) + (B2Z1) (x) (B3Z2) (x)

)

dx

+ 2

∫ 1

0

Yx(x, t)
2

(

f(x)C
(

1

µ0a2
M + Z2

)

(x)

)

dx.

Now

V (Ẑ(·, t)) =
∫ 1

0

f(x)M(x)−1Ẑ(x, t)2dx =

∫ 1

0

f(x)M(x)Y (x, t)2dx.

Thus

V̇ (Ẑ(·, t)) + 2αV (Ẑ(·, t))

= 2

∫ 1

0

Y (x, t)2
(

1

µ0a2
(B1M) (x) + (B2Z1) (x) (B3Z2) (x) + αf(x)M(x)

)

dx

+ 2

∫ 1

0

Yx(x, t)
2

(

f(x)C
(

1

µ0a2
M + Z2

)

(x)

)

dx. (8.25)

Since, from the theorem statement, for all x ∈ [0, 1],

1

µ0a2
(B1M) (x) + (B2Z1) (x) (B3Z2) (x) + αf(x)M(x) <0,

C
(

1

µ0a2
M + Z2

)

(x) <0,

and f(x) ≥ 0, from Equation (8.25)

V̇ (Ẑ(·, t)) ≤ −2αV (Ẑ(·, t)).

Thus, integrating in time

V (Ẑ(·, t)) ≤ e−2αtV (Ẑ0) = e−2αtV (Z0 − Zref). (8.26)
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Using the fact that M(x) ≥ ǫ > 0, thus

‖Z(·, t)− Zref(·)‖2Lf
2 (0,1)

≤ 1

infx∈[0,1]M(x)
e−2αtV (Z0 − Zref).

Taking the square root and setting

κ =

√

V (Z0 − Zref)

infx∈[0,1]M(x)
,

completes the proof.

8.3 Numerical Simulation

We test the conditions of Theorem 8.3 using SOSTOOLS. Once we obtain

polynomials M(x), Z1(x) and Z2(x), and designed a controller, we would like to

simulate the dynamics under realistic operating conditions. For this we discretize the

error dynamics given by Equations (8.8)-(8.9) with control given by Equation (8.11).

However, unlike Chapters 5-7, a simple finite-difference scheme cannot be applied to

disctretize the system dynamics. This is due to the fact that the coefficients of the

PDE in question have a singularity at x = 0. This problem may be overcome by

modifying the finite difference scheme as explained in [93].

For the purpose of simulation, the following values are taken from the data

of the Tore Supra tokamak: Ip = 0.6MA and Bφ0 = 1.9T , where Ip is the plasma

current and Bφ0 is the toroidal magnetic field at the plasma center.

Given a qref -profile, the corresponding Zref -profile can be computed using

(8.1), where a = 0.38 m for Tore Supra. The boundary values for Z are calculated

using the magnetic center location, which is R0 = 2.38 m and (8.5) to get

Z(0, t) = 0 and Z(1, t) = −0.2851. (8.27)
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Figure 8.1. Control effort, jlh(x, t).

Even though we used steady-state η‖ for controller synthesis, in order for a

realistic controller simulation we use time-varying η‖ data for shot TS 35109. Time

evolution of the pertinent variables is presented in Figs. 8.1-8.2.
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0
0.5

1

0

0.5
−0.5

0

0.5

xtime

Z
−
Z

 r
e
f
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error profiles
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CHAPTER 9

MAXIMIZATION OF BOOTSTRAP CURRENT DENSITY IN TOKAMAKS

In order to contain plasma, a tokamak uses a helical magnetic field which

is generated due to the superposition of toroidal and poloidal magnetic fields. The

toroidal magnetic field is generated using powerful external electromagnets, whereas,

the poloidal magnetic field is generated by the plasma current Ip. A major fraction of

Ip comes from the current induced by the central ohmic coil using transformer effect.

Other sources of Ip are the external non-inductive sources of Lower Hybrid Current

Density (LHCD) and Electron Cyclotron Current Density (ECCD). The total current

provided provided by these sources accounts for a considerable portion of energy

required for tokamak operation. Moreover, due to the current induced by the ohmic

coil accounting for a large portion of Ip, a tokamak can only operate as a pulsed

device.

An additional source of current is internally generated by particles trapped be-

tween isoflux surfaces (surfaces with constant magnetic flux). This current is referred

to as the bootstrap current [6]. Thus, bootstrap current is an automatically generated

source contributing to Ip. A brief explanation of the mechanism which leads to the

generation of the bootstrap current is provided in Chapter 3. An increase in the boot-

strap current would lead to a reduced dependence on the current generated by the

ohmic coil induction and the LHCD and ECCD inputs. This reduced dependence on

external current sources would also increase the pulse lengths for which the tokamak

can operate. For example, the ultimate goal of the ITER project [94] is to demon-

strate the steady state operation of tokamaks. A high value of bootstrap current has

been identified as a crucial factor for steady state operation of tokamaks [95], [96].

From Equation (3.4), we have that the bootstrap current density can be ex-

pressed as a function of the electron and ion temperature and density profiles and the
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gradient of the poloidal magnetic flux Z = ψx as

jbs(x, t) =
C(x, t)

Z(x, t)
, (9.1)

where6

C(x, t) =eR0

(

(A1 −A2)ne
∂Te
∂x

+ A1Te
∂ne

∂x
+ A1(1− αi)ni

∂Ti
∂x

+ A1Ti
∂ni

∂x

)

,

ni(ne) = ion (electron) density profile,

Ti(Te) = ion (electron) temperature profile,

αi = ion thermal speed,

e = electron charge,

R0 = location of magnetic center, and

A1, A2 = functions of ratio of trapped to free particles.

It is evident from Equation (9.1) that in order to maximize jbs, the gradient of the

poloidal magnetic flux Z may be minimized. In this chapter, we construct controllers

which allow us to minimize the upper bound on the norm of Z.

9.1 Model of the Gradient of the Poloidal Flux

Recall the evolution equation of Z = ψx, ψ being the poloidal magnetic flux,

presented in Chapter 3 obtained by neglecting the diamagnetic effect and applying

cylindrical approximation as

∂Z

∂t
(x, t) =

1

µ0a2
∂

∂x

(

η‖(x, t)

x

∂

∂x
(xZ(x, t))

)

+R0
∂

∂x

(

η‖(x, t)jni(x, t)
)

, (9.2)

with boundary conditions

Z(0, t) = 0 and Z(1, t) = −R0µ0Ip(t)/2π, (9.3)

6Refer to Table 3.1 for tokamak variable definitions
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where

η‖ = parallel resistivity,

jni = non-inductive effective current density,

Ip = total plasma current, and

µ0 = permeability of free space.

The non-inductive current density jni is a sum of the bootstrap current density jbs

and the external non-inductive current density jeni. Moreover, as in Chapter 8, we

will consider only the Lower Hybrid Current Density (LHCD) as jeni. Thus

jni = jbs + jlh.

Hence, the model can be written as

∂Z

∂t
(x, t) =

1

µ0a2
∂

∂x

(

η‖(x, t)

x

∂

∂x
(xZ(x, t))

)

+R0
∂

∂x

(

η‖(x, t)jbs(x, t)
)

+R0
∂

∂x

(

η‖(x, t)jlh(x, t)
)

. (9.4)

In our analysis, we will assume that

Zx(1, t) = −Z(1, t). (9.5)

This assumption is based on the observation that the total current density jT (x, t),

defined in [74] as

jT (x, t) = −xZx(1, t) + Z(x, t)

µ0R0a2x
,

is weak at the plasma edge, however, we assume it to be zero.

Recall from Equation (9.1) that jbs(x, t) = C(x, t)/Z(x, t). As a result Equa-

tion (9.4) is implicitly nonlinear in Z. We address this problem by linearizing jbs

about a static operating point Z̄(x) to get

jbs(x, t) =
C̄(x)

Z̄(x)
+ u(x, t),
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where C̄(x) corresponds to the static operating point Z̄(x) and

u(x, t) =
∂

∂Z
C|Z=Z̄

(

Z(x, t)− Z̄(x)
)

.

For our analysis, we take C̄(x)/Z̄(x) = 0. Numerical simulation results presented at

the end of the chapter verify that this assumption does not have a significant effect

on the controller performance. Thus

jbs(x, t) = u(x, t).

Substituting into Equation (9.4) produces the evolution equation Z used for the

controller synthesis and is given by

∂Z

∂t
(x, t) =

1

µ0a2
∂

∂x

(

η‖(x, t)

x

∂

∂x
(xZ(x, t))

)

+R0
∂

∂x

(

η‖(x, t)jlh(x, t)
)

+R0
∂

∂x

(

η‖(x, t)u(x, t)
)

. (9.6)

with boundary conditions

Z(0, t) = 0 and Z(1, t) = −R0µ0Ip(t)/2π. (9.7)

We will take the disturbance u(x, t) to be the external input to the system and

assume that u ∈ Lloc
2 ([0,∞], C2(0, 1)) ⊂ Lloc

2 ([0,∞], L2(0, 1))
7. This also implies that

for all 0 < T <∞, u ∈ L2([0, T ], C
2(0, 1)) ⊂ L2([0, T ], L2(0, 1)). Unlike Chapters 5-8,

where the coefficient of the PDEs involved were only spatially varying, the coefficients

in Equation (9.6) are time-varying due to the presence of η‖(x, t). Thus, we can

no longer apply the semigroup approach to prove the uniqueness and existence of

solutions. Instead, we assume that for all initial conditions Z0 ∈ C2[0, 1] and all

sufficiently smooth η‖, there exists a unique solution Z ∈ C1([0, T ], C2(0, 1)) satisfying

Equations (9.6)-(9.7). Refer to [33, Section 7.6] for the existence and uniqueness of

7Refer to Section 1.2 for the definitions of the function spaces
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solutions to parabolic PDEs with time-varying coefficients. Improved regularity for

zero boundary conditions has been proved in [97].

9.1.1 Control Input.

The control input jlh is shape constrained. The shape constraints are depen-

dent on the operating conditions. Using the X-ray measurement from Tore Supra

and empirical model of jlh was developed in [47] and is presented in Chapter 3. This

model uses a Gaussian deposition pattern with control authority over certain scaling

parameters. In particular, we may use

jlh(x, t) = vlh(t)e
−(µlh(t)−x)2/2σlh(t), (9.8)

where we may control the amplitude vlh, mean µlh and the variance σlh with the

constraints that vlh(t) ∈ [0, 1.22 MA], µlh(t) ∈ [0.14, 0.33], and σlh(t) ∈ [0.016, 0.073],

for all t ≥ 0.

We will design control laws for these three input parameters using full-state

feedback. Note that we choose the Gaussian parameters as the control input param-

eters and not the engineering parameters, namely the hybrid wave parallel refractive

index N‖ and the lower hybrid antenna power Plh. In a tokamak, these parameters

determine the Gaussian parameters. Hence, unlike the approach we have chosen, the

mean, amplitude and variance of the control cannot vary independently.

9.2 A Boundedness Condition on the System Solution

We wish to synthesize control jlh such that the norm of Z is minimized in the

presence of the input u. We now present a result which shows that, for a bounded u,

Z is bounded.

Lemma 9.1. Consider the function

V (Z(·, t)) =
∫ 1

0

Z(x, t)f(x)M(x)−1Z(x, t)dx,
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where f(x) = x2,M(x) > 0, for all x ∈ [0, 1], and Z is the solution of Equations (9.6)-

(9.7) with u ∈ Lloc
2 ([0,∞], C2(0, 1)). Suppose that there exists a scalar γ > 0 such

that

dV (Z(·, t))
dt

= V̇ (Z(·, t)) ≤ 1

γ
‖u(·, t)‖2 − γ‖Z(·, t)‖2

LM−2
2 (0,1)

,

for all t ≥ 0. Then

‖Z‖2
Lloc
2 ([0,∞],LM−2

2 (0,1))
≤ 1

γ2
‖u‖2

Lloc
2 ([0,∞],LM−2

2 (0,1))
+

1

γ
V (Z0),

where Z0 ∈ C2[0, 1] is the initial condition.

Here,

LM−2

2 (0, 1) := {g : (0, 1) → R : ‖g‖
LM−2
2

=

(
∫ 1

0

M(x)−2g(x)2dx

)

1
2

<∞}.

Proof. Since u ∈ Lloc
2 ([0,∞], C2(0, 1)), for any 0 < T < ∞, we have that u ∈

L2([0, T ], C
2(0, 1)). Thus, from our assumption, for any initial condition Z0 ∈ C2[0, 1],

there exists a unique Z ∈ C1([0, T ], C2(0, 1)) satisfying Equations (9.6)-(9.7). Addi-

tionally

1

2
V̇ (Z(·, t)) =

∫ 1

0

Z(x, t)f(x)M(x)−1∂Z

∂t
(x, t).

Note that this is well defined as ∂Z(x, t)/∂t is given by (9.6) and f(x) cancels out

the singularity at x = 0 due to 1/x.

Assume that the hypothesis of the Lemma holds. Integrating

V̇ (Z(·, t)) ≤ 1

γ
‖u(·, t)‖2 − γ‖Z(·, t)‖2

LM−2
2 (0,1)

in time from 0 to an arbitrary 0 < T <∞,

‖Z‖2
L2([0,T ],LM−2

2 (0,1))
≤ 1

γ2
‖u‖2

L2([0,T ],LM−2
2 (0,1))

+
1

γ
V (Z0),

where we have used the fact that Z(x, 0) = Z0(x).
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Taking the limit T → ∞ gives us

‖Z‖2
Lloc
2 ([0,∞],LM−2

2 (0,1))
≤ 1

γ2
‖u‖2

Lloc
2 ([0,∞],LM−2

2 (0,1))
+

1

γ
V (Z0).

This expression is well defined since ‖u‖2
Lloc
2 ([0,∞],LM−2

2 (0,1))
< ∞ and V (Z0)/γ is a

constant.

9.3 Control Design

We now apply integration by parts to the condition in Lemma 9.1 to formulate

our optimization problem which will allow us to synthesize controllers which minimize

the upper bound 1
γ
on Z. We assume that the plasma resistivity can be approximates,

as given in [97]:

η‖(x, t) = a(t)eλ(t)x,

where, for all t ≥ 0, 0 < a ≤ a(t) ≤ ā <∞ and 0 < λ ≤ λ(t) ≤ λ̄ <∞.

We present the following theorem.

Theorem 9.2. Suppose that for a given scalar γ > 0 there exist polynomials M(x)

and R(x) such that

M(x) >0, for all x ∈ [0, 1],

Ω(x, λ) + Θ ≤0, for all (x, λ) ∈ [0, 1]× [λ, λ̄],

2A4 + 2B2 + A2(1) ≤0,

where

Ω(x, λ) =



















2A1(x) 0 −R0µ0a
2f(x)

⋆ A0(x, λ) −R0µ0a
2fx(x)

⋆ ⋆ 0



















, Θ =



















0 0 0

⋆ µ0a2γ
a

0

⋆ ⋆ −µ0a2

āeλ̄γ



















,
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A0(x, λ) =2A3(x)− λA2(x)− A2,x(x) + 2B1(x, λ), A1(x) = −f(x)M(x),

A2(x) =− f̄(x)M(x) − f(x)Mx(x)− fx(x)M(x),

A3(x) =− 2M(x)− fx(x)Mx(x), A4 =M(1),

B1(x) =
1

2
(−fx(x)R(x) + f(x)Rx(x) + λf(x)R(x)) , B2 =

1

2
R(1),

f(x) =x2 and f̄(x) = x.

Then if

jlh(x, t) =
K(x)

R0µ0a2
Z(x, t),

where K(x) =M(x)−1R(x), then Z is bounded as follows:

‖Z‖2
Lloc
2 ([0,∞],LM−2

2 (0,1))
≤ 1

γ2
‖u‖2

Lloc
2 ([0,∞],LM−2

2 (0,1))
+

1

γ
V (Z0).

Proof. Suppose there exists a γ > 0 for which the hypotheses of the theorem hold

true. Taking the time derivative of V (Z(·, t)) defined in Lemma 9.1 produces

1

2
V̇ (Z(·, t)) =

∫ 1

0

Z(x, t)M(x)−1f(x)
∂Z

∂t
(x, t)dx,

=V̇1(Z(·, t)) + V̇2(Z(·, t)) + V̇3(Z(·, t)),

where

V̇1(Z(·, t)) =
1

µ0a2

∫ 1

0

Z(x, t)M(x)−1f(x)
∂

∂x

(

η‖(x, t)

x

∂

∂x
(xZ(x, t))

)

dx,

V̇2(Z(·, t)) =R0

∫ 1

0

Z(x, t)M(x)−1f(x)
∂

∂x

(

η‖(x, t)u(x, t)
)

dx,

V̇3(Z(·, t)) =R0

∫ 1

0

Z(x, t)M(x)−1f(x)
∂

∂x

(

η‖(x, t)jlh(x, t)
)

dx.

If we define

Y (x, t) =M(x)−1Z(x, t),

we obtain

V̇1(Z(·, t)) =
1

µ0a2

∫ 1

0

Y (x, t)f(x)
∂

∂x

(

η‖(x, t)

x

∂

∂x
(xM(x)Y (x, t))

)

dx,
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V̇2(Z(·, t)) =R0

∫ 1

0

Y (x, t)f(x)
∂

∂x

(

η‖(x, t)u(x, t)
)

dx,

V̇3(Z(·, t)) =R0

∫ 1

0

Y (x, t)f(x)
∂

∂x

(

η‖(x, t)jlh(x, t)
)

dx.

Applying integration by parts twice, we obtain

V̇1(Z(·, t)) =
∫ 1

0

η‖(x, t)

µ0a2
A1(x)Yx(x, t)

2dx

+

∫ 1

0

η‖(x, t)

µ0a2

(

A3(x)−
1

2
λA2(x)−

1

2
A2,x(x)

)

Y (x, t)2dx

+
η‖(1, t)

µ0a2

(

A4 +
1

2
A2(1)

)

Y (1, t)2 +
η‖(1, t)

µ0a2
Zx(1, t)Y (1, t). (9.9)

Here we have used the fact that

Z(x, t) =M(x)Y (x, t),

⇒ Zx(x, t) =Mx(x)Y (x, t) +M(x)Yx(x, t),

⇒ Zx(1, t) =Mx(1)Y (1, t) +M(1)Yx(1, t).

Due to the assumption on the total current density on the boundary jT (1, t)

and due to the linearization of jbs, we obtain the boundary condition u(1, t) = 0.

Thus, upon applying integration by parts once, we obtain

V̇2(Z(·, t)) = −
∫ 1

0

R0η‖(x, t) (Y (x, t)fx(x) + Yx(x, t)f(x)) u(x, t)dx. (9.10)

Using the feedback law jlh(x, t) = K(x)Z(x, t)/R0µ0a
2, we get

V̇3(Z(·, t)) =
1

µ0a2

∫ 1

0

Y (x, t)f(x)
∂

∂x

(

η‖(x, t)K(x)Z(x, t)
)

dx

=
1

µ0a2

∫ 1

0

Y (x, t)f(x)
∂

∂x

(

η‖(x, t)K(x)M(x)M(x)−1Z(x, t)
)

dx

=
1

µ0a2

∫ 1

0

Y (x, t)f(x)
∂

∂x

(

η‖(x, t)R(x)Y (x, t)
)

dx.

Applying integration by parts twice

V̇3(Z(·, t)) =
∫ 1

0

η‖(x, t)

µ0a2
B1(x)Y (x, t)

2dx+
η‖(1, t)

µ0a2
B2Y (1, t)

2. (9.11)
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Since V̇ (Z(·, t)) = 2V̇1(Z(·, t))+2V̇2(Z(·, t))+2V̇3(Z(·, t)), using Equations (9.9)-

(9.11), we obtain

V̇ (Z(·, t)) =
∫ 1

0

η‖(x, t)

µ0a2



















Yx(x, t)

Y (x, t)

u(x, t)



















T

Ω(x, λ)



















Yx(x, t)

Y (x, t)

u(x, t)



















dx

+
η‖(1, t)

µ0a2
(2A4 + A2(1) + 2B2)Y (1, t)

2 +
η‖(1, t)

µ0a2
Zx(1, t)Y (1, t).

Consequently

V̇ (Z(·, t))− 1

γ
‖u(·, t)‖2L2(0,1) + γ‖Z(·, t)‖2

LM−2
2 (0,1)

= V̇ (Z(·, t))− 1

γ
‖u(·, t)‖2L2(0,1) + γ‖Y (·, t)‖2L2(0,1)

=

∫ 1

0

η‖(x, t)

µ0a2



















Yx(x, t)

Y (x, t)

u(x, t)



















T

Ω(x, λ)



















Yx(x, t)

Y (x, t)

u(x, t)



















dx

+

∫ 1

0

η‖(x, t)

µ0a2

(

− µ0a
2

η‖(x, t)

u(x, t)2

γ
+

µ0a
2

η‖(x, t)
γY (x, t)2

)

dx

+
η‖(1, t)

µ0a2
(2A4 + A2(1) + 2B2) Y (1, t)

2 +
η‖(1, t)

µ0a2
Zx(1, t)Y (1, t). (9.12)

Since η‖(x, t) = a(t)eλ(t)x, a ≤ āeλ̄ for all (x, t) ∈ [0, 1]× [0, T ]. Thus



















Yx(x, t)

Y (x, t)

u(x, t)



















T

Ω(x, λ)



















Yx(x, t)

Y (x, t)

u(x, t)



















− µ0a
2

η‖(x, t)

u(x, t)2

γ
+

µ0a
2

η‖(x, t)
γY (x, t)2
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≤



















Yx(x, t)

Y (x, t)

u(x, t)



















T

Ω(x, λ)



















Yx(x, t)

Y (x, t)

u(x, t)



















− µ0a
2

āeλ̄
u(x, t)2

γ
+
µ0a

2

a
γY (x, t)2

=



















Yx(x, t)

Y (x, t)

u(x, t)



















T

[Ω(x, λ) + Θ]



















Yx(x, t)

Y (x, t)

u(x, t)



















.

Since Ω(x, λ) + Θ ≤ 0, for all (x, λ) ∈ [0, 1]× [λ, λ̄], we conclude that

∫ 1

0

η‖(x, t)

µ0a2



















Yx(x, t)

Y (x, t)

u(x, t)



















T

Ω(x, λ)



















Yx(x, t)

Y (x, t)

u(x, t)



















dx

+

∫ 1

0

η‖(x, t)

µ0a2

(

− µ0a
2

η‖(x, t)

u(x, t)2

γ
+

µ0a
2

η‖(x, t)
γY (x, t)2

)

dx ≤ 0, (9.13)

for all t ≥ 0. Similarly, since from the theorem statement we have 2A4+A2(1)+2B2 ≤

0 and hence

η‖(1, t)

µ0a2
(2A4 + A2(1) + 2B2) Y (1, t)

2 ≤ 0. (9.14)

Using Equation (9.5) and the fact that Y (x, t) =M(x)−1Z(x, t), we get that

η‖(1, t)

µ0a2
Zx(1, t)Y (1, t) = −η‖(1, t)

µ0a2
Z(1, t)Y (1, t) = −η‖(1, t)

µ0a2
M(1)Y (1, t)2. (9.15)

Combining Equations (9.12)-(9.15) we get

V̇ (Z(·, t)) ≤ 1

γ
‖u(·, t)‖2L2(0,1) − γ‖Z(·, t)‖2

LM−2
2 (0,1)

.

Lemma 9.1 then completes the proof.
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By using sum-of-squares to maximize γ in the conditions of Theorem 9.2, we

can minimize the upper bound on the state Z. Because bootstrap current density is

inversely proportional to Z and is non-zero on non-zero measure subsets on [0, 1], for

all t ≥ 0, this implies that our controller will maximize the norm of the bootstrap

current density.

9.3.1 Constraints on the Control Input.

The controller given by Theorem 9.2 will have a spatial distribution which is

a function of the state Z(x, t). Unfortunately, this distribution may not correspond

to the Gaussian distribution described in our discussion of Subsection 9.1.1. In order

to constrain the input profile to have the required Gaussian shape, we propose the

following simple heuristic.

To ensure that jlh resembles a Gaussian defined by suitable choice pf the

time-varying parameters vlh, µlh and σlh, we add an additional constraint to our

optimization problem. This constraint has the form

g1(x) ≤ jlh(x, t) =
K(x)

R0µ0a2
Z(x, t) ≤ g2(x),

where g1(x) < g2(x), for all x ∈ [0, 1], are polynomial approximations of two selected

feasible Gaussians. Since both K(x) and Z(x, t) are continuous, the control is a

continuous function bounded by the shape of the constraint envelope defined by g1(x)

and g2(x). Additionally, we assume that

Z(x, t) = α(t)Z1(x) + (1− α(t))Z2(x), for all t ≥ 0,

where α ∈ [0, 1] and Z1(x) is the polynomial approximation of the open loop steady

state. Similarly, Z2(x) is the polynomial approximation of the closed loop steady

state under maximum actuation of jlh. Hence, Z1(x) and Z2(x) define the expected

envelope on the state Z(x, t) established for a given set of operating conditions. The
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parameter α reflects the actuation capabilities. Since K(x) = R(x)/M(x), the shape

constraint becomes

R0µoa
2M(x)g1(x) ≤ R(x) (αZ1(x) + (1− α)Z2(x)) ≤ R0µoa

2M(x)g2(x),

for all (x, α) ∈ [0, 1] × [0, 1]. Although this approach is only a heuristic, we may

improve our results by trying different constraint envelopes, as represented by g1(x)

and g2(x).

9.3.2 Computation.

Finally, we implement the conditions of Theorem 9.2 and the heuristic dis-

cussed previously using sum-of-squares polynomials. We formulate the optimization

problem as follows. We are given polynomials Z1(x), Z2(x), g1(x) and g2(x) and solve

the following.

Maximize γ > 0 such that there exist polynomials M(x) and R(x) satisfying

M(x) > 0, for all x ∈ [0, 1],

Ω(x, λ) + Θ ≤ 0, for all (x, λ) ∈ [0, 1]× [λ, λ̄],

2A4 + 2B2 + A2(1) ≤ 0, and

R0µoa
2M(x)g1(x) ≤ R(x) (αZ1(x) + (1− α)Z2(x)) ≤ R0µoa

2M(x)g2(x),

for all (x, α) ∈ [0, 1]× [0, 1],

where Ω(x, λ), Θ, A4, A2(x) and B2 are defined in Theorem 9.2.

We solve the optimization problem using SOSTOOLS. The search for the

maximum γ is performed using the bisection method. We solve this problem for

the Tore Supra tokamak for which R0 = 2.38m and a = 0.38m. Moreover, the

plasma resistivity is defined as η‖(x, t) = a(t)eλ(t)x, where a(t) ∈ [0.0093, 0.0121] and

λ(t) ∈ [4, 7.3] for all t ≥ 0. These values were obtained from the data for shot TS

35109.
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Figure 9.1. Constraint envelope and K(x)
R0µ0a2

(αZ1(x) + (1− α)Z2(x)) for α ∈ [0, 1].

9.4 Numerical Simulation

We obtain a maximum value of γ = 104 as the solution for the optimization

problem for Tore Supra. The feasible polynomials M(x) and R(x) obtained for this

value of γ are of degree 12 in x. We simulate the closed loop system on the simulator

developed in [47]. This simulator considers rge nonlinear evolution model of Z. The

following figures provide the simulation results and show that although our controller

was developed using a linearized model, it is effective in controlling the nonlinear

PDE.

Figure 9.1 shows the constraint envelope as well as K(x)
R0µ0a2

(αZ1(x) + (1 −

α)Z2(x)) for several values of α ∈ [0, 1], where K(x) = R(x)/M(x).

Figure 9.2 shows the comparison between the time evolution of the spatial

L2(0, 1) norm of Z(x, t) using both open-loop and closed-loop with closed loop control

starting at t = 12. Figure 9.3 shows the evolution of the spatial L2-norm of jbs(x, t)

using both open-loop and closed-loop with closed loop control starting at t = 12. As
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Figure 9.2. Evolution of closed loop (t ≥ 12) and open loop ‖Z(·, t)‖.

a consequence of the decrease in Z(x, t), we are able to obtain a percentage increase

of ≈ 90% in ‖jbs(·, t)‖.

Figure 9.4 illustrates the time evolution of the jbs(x, t) using level sets (shad-

ing).

Finally, to analyze the control input shapes, we fit a feasible Gaussian to

control input at a time instance as shown in Figure 9.5. We observe that the control

input approximates the shape of feasible Gaussians satisfactorily for roughly 70% of

the spatial domain. However, the control input departs from the Gaussian shapes as

x → 0. This is due to the controller having the form jlh(x, t) = K(x)Z(x, t)/R0µ0a
2

and the boundary condition Z(0, t) = 0. Note that the Gaussian approximation of

the LHCD current deposit is obtained from hard X-ray measurements and, as stated

in [47], a large uncertainty remains concerning the actual deposit close to the plasma

center (x = 0). If a true zero boundary condition for the input is desired, then RF-

antennas (ECCD) can be used to generate a sharper deposit profile near the plasma

center.
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CHAPTER 10

CONCLUSION

In this work we considered the analysis and controller and observer synthesis

for parabolic PDEs using Sum-of-Squares (SOS) polynomials. In Chapters 5-7 we

considered a general class of Parabolic PDEs. Whereas, in Chapters 8-9 we considered

the PDE governing the evolution of the poloidal magnetic flux in a Tokamak.

In Chapter 5 we analyze the stability of

wt(x, t) = a(x)wxx(x, t) + b(x)wx(x, t) + c(x)w(x, t),

with boundary conditions

ν1w(0, t) + ν2wx(0, t) = 0 and ρ1w(1, t) + ρ2wx(1, t) = 0.

Here a, b and c are polynomial functions of x ∈ [0, 1]. Additionally,

|ν1|+ |ν2| > 0 and|ρ1|+ |ρ2| > 0. (10.1)

Different values of these scalars may be used to represent Dirichlet, Neumann, Robin

or mixed boundary conditions.

We establish the exponential stability by constructing Lyapunov functions of

the form V (w(·, t)) = 〈w(·, t),Pw(·, t)〉, where

(Py) (x) =M(x)y(x) +

∫ x

0

K1(x, ξ)y(ξ)dξ +

∫ 1

x

K2(x, ξ)y(ξ)dξ, y ∈ L2(0, 1),

(10.2)

and {M,K1, K2} ∈ Ξd1,d2,ǫ for some ǫ > 0. The results of the numerical experiments

presented prove that the presented methodology has an inconsequential amount of

conservatism.

In Chapter 6 we construct exponentially stabilizing state feedback based con-

trollers for

wt(x, t) = a(x)wxx(x, t) + b(x)wx(x, t) + c(x)w(x, t),
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with boundary conditions

ν1w(0, t) + ν2wx(0, t) = 0 and ρ1w(1, t) + ρ2wx(1, t) = u(t).

Here u(t) ∈ R is the control input. Using Lyapunov functions of the form V (w(·, t)) =

〈w(·, t),P−1w(·, t)〉, where P is of the form given in Equation (10.2), we synthesize

controllers F : H2(0, 1) → R such that if the control is given by

u(t) = Fw(·, t),

then the system is exponentially stable. Numerical experiments prove that the

method is effective in exponentially stabilizing systems, which without control, are

unstable. Moreover, the controllers constructed are more effective than simple static

controllers.

In Chapter 7 we construct exponentially estimating state observers for

wt(x, t) = a(x)wxx(x, t) + b(x)wx(x, t) + c(x)w(x, t),

with boundary conditions

ν1w(0, t) + ν2wx(0, t) = 0 and ρ1w(1, t) + ρ2wx(1, t) = u(t).

We assume that a boundary measurement (output) of the form

y(t) = µ1w(1, t) + µ2wx(1, t),

is available. The goal is to estimate the state w of the system using the boundary

output y. For this purpose we design Luenberger observers of the form

ŵt(x, t) = a(x)ŵxx(x, t) + b(x)ŵx(x, t) + c(x)ŵ(x, t) + p(x, t),

with boundary conditions

ŵ1w(0, t) + ν2ŵx(0, t) = 0 and ρ1ŵ(1, t) + ρ2ŵx(1, t) = u(t) + q(t).
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Here p(x, t) and q(t) ate the observer inputs.

By constructing Lyapunov functions of the form

V ((ŵ − w)(·, t)) = 〈(ŵ − w)(·, t),P(ŵ − w)(·, t)〉 ,

we construct operator O : R → L2(0, 1) and scalar O such that if

p(x, t) = (O(ŷ(t)− y(t))) (x) and q(t) = O(ŷ(t)− y(t)),

where ŷ(t) = µ1ŵ(1, t) + µ2ŵx(1, t), then ŵ → w exponentially fast. Additionally,

we show that the observers designed can be coupled to the controllers designed in

Chapter 6 to construct exponentially stabilizing observer based boundary controllers.

In Chapters 8-9 we consider the gradient of the poloidal magnetic flux Z = ψx

whose evolution is governed by

∂Z

∂t
(x, t) =

1

µ0a2
∂

∂x

(

η‖(x, t)

x

∂

∂x
(xZ(x, t))

)

+R0
∂

∂x

(

η‖(x, t)jlh(x, t) + jbs(x, t)
)

,

with boundary conditions

Z(0, t) = 0 and Z(1, t) = −R0µ0Ip(t)/2π,

where

η‖ = parallel resistivity,

jlh = Lower Hybrid Current Density (LHCD),

jbs = bootstrap current density,

Ip = total plasma current, and

µ0 = permeability of free space.

In Chapter 8 we regulate the magnetic field line pitch, also known as the safety

factor profile, or the q-profile using jlh as the control input. Since

q ∝ 1

Z
,
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we regulate the Z-profile. We accomplish this task by using a Lyapunov function of

the from

V (Z(·, t)) =
∫ 1

0

x2(1− x)M(x)−1Z(x, t)2dx,

where M(x) is a strictly positive polynomial and

jlh(x, t) = K1(x)Z(x, t) +
∂

∂x
(K2(x)Z(x, t)) ,

where K1 and K2 are rational functions.

In Chapter 9 we maximize the norm of the bootstrap current density jbs. Since

jbs ∝
1

Z
,

we minimize the norm of the Z-profile. We use a Lypaunov function of the form

V (Z(·, t)) =
∫ 1

0

x2M(x)−1Z(x, t)2dx,

where M(x) is a strictly positive polynomial and

jlh(x, t) = K1(x)Z(x, t),

where K1 is a rational functions. Moreover, we present a heuristic such that shape

constraints on the control input jlh are respected.
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APPENDIX A

UPPER BOUNDS FOR OPERATOR INEQUALITIES
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First, recall the variation of Wirtinger’s inequality

Lemma A.1. [98, 36] For any w ∈ H1(0, 1)

∫ 1

0

(w(x)− w(0))2 dx ≤ 4

π2

∫ 1

0

wx(x)
2dx.

Now recall the definition of M from Chapter 5.

Definition A.2. We say

{Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10} = M(M,K1, K2)

if the following hold

Q0(x) =
∂

∂x

(

∂

∂x
(a(x)M(x))− b(x)M(x)

)

+ 2M(x)c(x) − αǫπ2

2

+ 2

[

∂

∂x
[a(x) (K1(x, ξ)−K2(x, ξ))]

]

ξ=x

,

Q1(x, ξ) =
∂

∂x

(

∂

∂x
[a(x)K1(x, ξ)]− b(x)K1(x, ξ)

)

+ c(x)K1(x, ξ)

+
∂

∂ξ

(

∂

∂ξ
[a(ξ)K1(x, ξ)]− b(ξ)K1(x, ξ)

)

+ c(ξ)K1(x, ξ),

Q2(x, ξ) =
∂

∂x

(

∂

∂x
[a(x)K2(x, ξ)]− b(x)K2(x, ξ)

)

+ c(x)K2(x, ξ)

+
∂

∂ξ

(

∂

∂ξ
[a(ξ)K2(x, ξ)]− b(ξ)K2(x, ξ)

)

+ c(ξ)K2(x, ξ),

Q3(x) =2n5a(1)K1(1, x),

Q4(x) =− 2n2a(0)K2(0, x),

Q5 =2n6n4a(1)M(1)− n2
6 [ax(1)M(1) + a(1)Mx(1)− b(1)M(1)] ,

Q6 =2n6n5a(1)M(1),

Q7(x) =K1(1, x) [2n4a(1) + 2n6b(1)]− 2n6 [ax(1)K1(1, x) + a(1)K1,x(1, x)] ,

Q8 =− 2n3n1a(0)M(0) + n2
3

[

ax(0)M(0) + a(0)Mx(0)− b(0)M(0)− αǫπ2

2

]

,

Q9 =− 2n3n2a(0)M(0),

Q10(x) =−K2(0, x) [2n1a(0) + 2n3b(0)] + 2n3 [ax(0)K2(0, x) + a(0)K2,x(0, x)]
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+ n3αǫπ
2,

where K1,x(1, x) = [K1,x(x, ξ)|x=1]ξ=x, K2,x(0, x) = [K2,x(x, ξ)|x=0]ξ=x and ǫ > 0 and

ni, i ∈ {1, · · · , 6}, are scalars.

Lemma A.3. Suppose we are given {M,K1, K2} ∈ Ξd1,d2,ǫ,

{Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7, Q8, Q9, Q10} = M(M,K1, K2),

and scalars ni, i ∈ {1, · · · , 6}, as defined in Definition 5.1. Then, for any solution

w(x, t) of Equations (5.1)-(5.2) or Equations (5.26)-(5.27), A as defined in Equa-

tion (5.6) and P defined in Equation (5.12), we have that

〈Aw(·, t),Pw(·, t)〉+ 〈w(·, t),PAw(·, t)〉

≤ 〈w(·, t),Qw(·, t)〉+ wx(1, t)

∫ 1

0

Q3(x)w(x, t)dx+ wx(0, t)

∫ 1

0

Q4(x)w(x, t)dx

+ w(1, t)

(

Q5w(1, t) +Q6wx(1, t) +

∫ 1

0

Q7(x)w(x, t)dx

)

+ w(0, t)

(

Q8w(0, t) +Q9wx(0, t) +

∫ 1

0

Q10(x)w(x, t)dx

)

,

where Q is defined as

(Qy) (x) = Q0(x)y(x) +

∫ x

0

Q1(x, ξ)y(ξ)dξ +

∫ 1

x

Q2(x, ξ)y(ξ)dξ, y ∈ L2(0, 1).

Proof. We begin by considering the following decomposition

〈Aw(·, t),Pw(·, t)〉+ 〈w(·, t),PAw(·, t)〉

= 2

∫ 1

0

(a(x)wxx(x, t) + b(x)wx(x, t) + c(x)w(x, t)) (Pw) (x, t)dx

= 2 (Γ1 + Γ2 + Γ3 + Γ4 + Γ5) , (A.1)

where

Γ1 =

∫ 1

0

wxx(x, t)a(x)M(x)w(x, t)dx,
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Γ2 =

∫ 1

0

wx(x, t)b(x)M(x)w(x, t)dx,

Γ3 =

∫ 1

0

wxx(x, t)a(x)

(
∫ x

0

K1(x, ξ)w(ξ, t)dξ +

∫ 1

x

K2(x, ξ)w(ξ, t)dξ

)

dx,

Γ4 =

∫ 1

0

wx(x, t)b(x)

(
∫ x

0

K1(x, ξ)w(ξ, t)dξ +

∫ 1

x

K2(x, ξ)w(ξ, t)dξ

)

dx,

Γ5 =

∫ 1

0

w(x, t)2M(x)c(x)dx +

∫ 1

0

∫ x

0

w(x, t)c(x)K1(x, ξ)w(ξ, t)dξ

+

∫ 1

0

∫ 1

x

w(x, t)c(x)K2(x, ξ)w(ξ, t)dξ.

Applying integration by parts twice

Γ1 =−
∫ 1

0

w2
x(x, t)a(x)M(x)dx +

∫ 1

0

w2(x, t)
1

2

∂2

∂x2
(a(x)M(x)) dx,

+ w(1, t)

(

a(1)M(1)wx(1, t)−
(

1

2
ax(1)M(1) +

1

2
a(1)Mx(1)

)

w(1, t)

)

+ w(0, t)

(

−a(0)M(0)wx(0, t) +

(

1

2
ax(0)M(0) +

1

2
a(0)Mx(0)

)

w(0, t)

)

.

(A.2)

Since a(x)M(x) ≥ αǫ, applying a variation of Wirtinger’s inequality given in Lemma A.1

produces

−
∫ 1

0

wx(x, t)
2a(x)M(x)dx

≤ −αǫ
∫ 1

0

wx(x, t)
2dx

≤ −αǫπ
2

4

∫ 1

0

w(x, t)2dx− αǫπ2

4

∫ 1

0

w(0, t)2dx+
αǫπ2

2

∫ 1

0

w(x, t)w(0, t)dx.

Substituting into Equation (A.2),

Γ1 ≤
∫ 1

0

w2(x, t)

(

1

2

∂2

∂x2
(a(x)M(x))− αǫπ2

4

)

dx+
αǫπ2

2

∫ 1

0

w(x, t)w(0, t)dx,

+ w(1, t)

(

a(1)M(1)wx(1, t)−
(

1

2
ax(1)M(1) +

1

2
a(1)Mx(1)

)

w(1, t)

)

+ w(0, t)

(

−a(0)M(0)wx(0, t) +

(

1

2
ax(0)M(0) +

1

2
a(0)Mx(0)−

αǫπ2

4

)

w(0, t)

)

.
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Using the representation of w(0, t), wx(0, t), w(1, t) and wx(1, t) given in Definition 5.1,

we obtain

Γ1 ≤
∫ 1

0

w2(x, t)

(

1

2

∂2

∂x2
(a(x)M(x)) − αǫπ2

4

)

dx+
αǫπ2

2

∫ 1

0

w(x, t)w(0, t)dx,

+

(

n6n4a(1)M(1)− n2
6

2
ax(1)M(1)− n2

6

2
a(1)Mx(1)

)

w(1, t)2

+ (n6n5a(1)M(1))w(1, t)wx(1, t) + (−n3n2a(0)M(0))w(0, t)wx(0, t)

+

(

−n3n1a(0)M(0) +
n2
3

2
ax(0)M(0) +

n2
3

2
a(0)Mx(0)−

n2
3αǫπ

2

4

)

w(0, t)2.

(A.3)

Applying integration by parts once

Γ2 =−
∫ 1

0

w2(x, t)
1

2

∂

∂x
(b(x)M(x)) dx+ w2(1, t)

n2
6

2
b(1)M(1)− w2(0, t)

n2
3

2
b(0)M(0).

(A.4)

Applying integration by parts twice and using the fact thatK1(x, x) = K2(x, x),

Γ3 =

∫ 1

0

w2(x, t)

[

∂

∂x
[a(x) (K1(x, ξ)−K2(x, ξ))]

]

ξ=x

dx

+

∫ 1

0

∫ x

0

w(x, t)
∂2

∂x2

(

a(x)K1(x, ξ)

)

w(ξ, t)dξdx

+

∫ 1

0

∫ 1

x

w(x, t)
∂2

∂x2

(

a(x)K2(x, ξ)

)

w(ξ, t)dξdx

+ wx(1, t)

∫ 1

0

n5a(1)K1(1, x)w(x, t)dx− wx(0, t)

∫ 1

0

n2a(0)K2(0, x)w(x, t)dx

+ w(1, t)

∫ 1

0

[n4a(1)K1(1, x)− n6ax(1)K1(1, x)− n6a(1)K1,x(1, x)]w(x, t)dx

+ w(0, t)

∫ 1

0

[−n1a(0)K2(0, x) + n3ax(0)K2(0, x) + n3a(0)K2,x(0, x)]w(x, t)dx.

Applying a change of order of integration in the double integrals, switching between

x and ξ and using the fact that K1(x, ξ) = K2(ξ, x) produces

Γ3 =

∫ 1

0

w2(x, t)

[

∂

∂x
[a(x) (K1(x, ξ)−K2(x, ξ))]

]

ξ=x

dx
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+

∫ 1

0

∫ x

0

w(x, t)

(

1

2

∂2

∂x2

(

a(x)K1(x, ξ)

)

+
1

2

∂2

∂ξ2

(

a(ξ)K1(x, ξ)

))

w(ξ, t)dξdx

+

∫ 1

0

∫ 1

x

w(x, t)

(

1

2

∂2

∂x2

(

a(x)K2(x, ξ)

)

+
1

2

∂2

∂ξ2

(

a(ξ)K2(x, ξ)

))

w(ξ, t)dξdx

+ wx(1, t)

∫ 1

0

n5a(1)K1(1, x)w(x, t)dx− wx(0, t)

∫ 1

0

n2a(0)K2(0, x)w(x, t)dx

+ w(1, t)

∫ 1

0

[n4a(1)K1(1, x)− n6ax(1)K1(1, x)− n6a(1)K1,x(1, x)]w(x, t)dx

+ w(0, t)

∫ 1

0

[−n1a(0)K2(0, x) + n3ax(0)K2(0, x) + n3a(0)K2,x(0, x)]w(x, t)dx.

(A.5)

Similarly,

Γ4 =−
∫ 1

0

∫ x

0

w(x, t)

(

1

2

∂

∂x

(

b(x)K1(x, ξ)

)

+
1

2

∂

∂ξ

(

b(ξ)K1(x, ξ)

))

w(ξ, t)dξdx

−
∫ 1

0

∫ 1

x

w(x, t)

(

1

2

∂

∂x

(

b(x)K2(x, ξ)

)

+
1

2

∂

∂ξ

(

b(ξ)K2(x, ξ)

))

w(ξ, t)dξdx

+ w(1, t)

∫ 1

0

n6b(1)K1(1, x)w(x)dx− w(0)

∫ 1

0

n3b(0)K2(0, x)w(x, t)dx. (A.6)

Finally, changing the order of integration produces

Γ5 =

∫ 1

0

w(x, t)2M(x)c(x)dx +

∫ 1

0

∫ x

0

w(x, t)

(

1

2
[c(x) + c(ξ)]K1(x, ξ)

)

w(ξ, t)dξ

+

∫ 1

0

∫ 1

x

w(x, t)

(

1

2
[c(x) + c(ξ)]K2(x, ξ)

)

w(ξ, t)dξ. (A.7)

Substituting Equations (A.3)-(A.7) into (A.1) produces

〈Aw(·, t),Pw(·, t)〉+ 〈w(·, t),PAw(·, t)〉

≤ 〈w(·, t),Qw(·, t)〉+ wx(1, t)

∫ 1

0

Q3(x)w(x, t)dx+ wx(0, t)

∫ 1

0

Q4(x)w(x, t)dx

+ w(1, t)

(

Q5w(1, t) +Q6wx(1, t) +

∫ 1

0

Q7(x)w(x, t)dx

)

+ w(0, t)

(

Q8w(0, t) +Q9wx(0, t) +

∫ 1

0

Q10(x)w(x, t)dx

)

.
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For the following corollary, recall the definition of J from Chapter 7.

Definition A.4. We say

{R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10} = J (M,K1, K2)

if the following hold

R0(x) =
∂

∂x

(

∂

∂x
(a(x)M(x)) − b(x)M(x)

)

+ 2M(x)c(x)− αǫπ2

2

+ 2

[

∂

∂x
[a(x) (K1(x, ξ)−K2(x, ξ))]

]

ξ=x

,

R1(x, ξ) =
∂

∂x

(

∂

∂x
[a(x)K1(x, ξ)]− b(x)K1(x, ξ)

)

+ c(x)K1(x, ξ)

+
∂

∂ξ

(

∂

∂ξ
[a(ξ)K1(x, ξ)]− b(ξ)K1(x, ξ)

)

+ c(ξ)K1(x, ξ),

R2(x, ξ) =
∂

∂x

(

∂

∂x
[a(x)K2(x, ξ)]− b(x)K2(x, ξ)

)

+ c(x)K2(x, ξ)

+
∂

∂ξ

(

∂

∂ξ
[a(ξ)K2(x, ξ)]− b(ξ)K2(x, ξ)

)

+ c(ξ)K2(x, ξ),

R3(x) =− 2l2a(0)K2(0, x),

R4 =− 2l3l1a(0)M(0) + l23

[

ax(0)M(0) + a(0)Mx(0)− b(0)M(0)− αǫπ2

2

]

,

R5 =− 2l3n2a(0)M(0),

R6(x) =−K2(0, x) [2l1a(0) + 2l3b(0)] + 2l3 [ax(0)K2(0, x) + a(0)K2,x(0, x)]

+ l3αǫπ
2,

R7 =− ax(1)M(1)− a(1)Mx(1) + b(1)M(1),

R8 =2a(1)M(1),

R9(x) =− 2ax(1)K1(1, x)− 2a(1)K1,x(1, x) + 2b(1)K1(1, x),

R10(x) =2a(1)K1(1, x),

where K1,x(1, x) = [K1,x(x, ξ)|x=1]ξ=x, K2,x(0, x) = [K2,x(x, ξ)|x=0]ξ=x and ǫ > 0 and

li, i ∈ {1, · · · , 3}, are scalars.
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Corollary A.5. Suppose we are given {M,K1, K2} ∈ Ξd1,d2,ǫ,

{R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10} = J (M,K1, K2),

and scalars li, i ∈ {1, · · · , 3}, as defined in Definition 7.2. Then, for any solution

e(x, t) of Equations (7.15)-(7.16), A as defined in Equation (7.12) and P defined in

Equation (5.12), we have that

〈Ae(·, t),Pe(·, t)〉+ 〈e(·, t),PAe(·, t)〉

≤ 〈e(·, t),Re(·, t)〉+ ex(0, t)

∫ 1

0

R3(x)e(x, t)dx

+ e(0, t)

(

R4e(0, t) +R5ex(0, t) +

∫ 1

0

R6(x)e(x, t)dx

)

+ e(1, t)

(

R7e(1, t) +R8ex(1, t) +

∫ 1

0

R9(x)e(x, t)dx

)

+ ex(1, t)

∫ 1

0

R10(x)e(x, t)dx,

where R is defined as

(Ry) (x) = R0(x)y(x) +

∫ x

0

R1(x, ξ)y(ξ)dξ +

∫ 1

x

R2(x, ξ)y(ξ)dξ, y ∈ L2(0, 1).

The proof of Corollary A.5 can be established by using Definition 7.2 instead

of Definition 5.1 in the proof of Lemma A.3.

Now recall the definition of N from Chapter 6.

Definition A.6. We say

{T0, T1, T2, T3, T4, T5, T6, T7, T8} = N (M,K1, K2)

if the following hold

T0(x) =axx(x)M(x) + a(x)Mxx(x)− bx(x)M(x) + b(x)Mx(x) + 2c(x)M(x)

+ 2a(x) [K1,x(x, x)−K2,x(x, x)]−
π2αǫ

2
,
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T1(x, ξ) = [a(x)K1,xx(x, ξ) + a(ξ)K1,ξξ(x, ξ)] + [b(x)K1,x(x, ξ) + b(ξ)K1,ξ(x, ξ)]

+ [c(x)K1(x, ξ) + c(ξ)K1(x, ξ)] ,

T2(x, ξ) = [a(x)K2,xx(x, ξ) + a(ξ)K2,ξξ(x, ξ)] + [b(x)K2,x(x, ξ) + b(ξ)K2,ξ(x, ξ)]

+ [c(x)K2(x, ξ) + c(ξ)K2(x, ξ)] ,

T3 =−m3

(

a(0)Mx(0) +
1

2
αǫπ2

)

+m3 (ax(0)− b(0))M(0)

− 2a(0) (m1M(0) + (m2 − 1)Mx(0)) ,

T4 =(m3 − 1)(ax(0)− b(0))K2(0, x)− 2a(0) [(m2 − 1)K2,x(0, x) +m1K2(0, x)]

+m3αǫπ
2,

T5(x) =− 2m2(m3 − 1)a(0)K2(0, x),

T6(x) =2(m3 − 1)K2(0, x),

T7 =− ax(1)M(1) + a(1)Mx(1) + b(1)M(1),

T8 =2a(1)M(1),

where K1,x(1, x) = [K1,x(x, ξ)|x=1]ξ=x, K2,x(0, x) = [K2,x(x, ξ)|x=0]ξ=x and ǫ > 0 and

mi, i ∈ {1, · · · , 3}, are scalars.

Lemma A.7. Suppose we are given {M,K1, K2} ∈ Ξd1,d2,ǫ,

{T0, T1, T2, T3, T4, T5, T6, T7, T8} = N (M,K1, K2),

and scalars mi, i ∈ {1, · · · , 3}, as defined in Definition 6.2. Then, for the solution

w(x, t) of Equations (6.1)-(6.2) or Equations (6.20)-(6.21), A as defined in Equa-

tion (6.7) and P defined in Equation (5.12), we have that

〈APz(·, t), z(·, t)〉+ 〈z(·, t),PAz(·, t)〉

≤ 〈z(·, t), T z(·, t)〉

+ z(0, t)

(

T3z(0, t) +

∫ 1

0

T4(x)z(x, t)dx

)

+ zx(0, t)

∫ 1

0

T5(x)z(x, t)dx

+

∫ 1

0

1

M(0)
T6(x)z(x, t)dx

[(

−a(0)Mx(0)−
1

2
αǫπ2

)

z(0, t) +

∫ 1

0

αǫπ2z(x, t)dx

]
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+ z(1, t) (T7z(1, t) + T8zx(1, t)) ,

where z(·, t) = P−1w(·, t), and T is defined as

(T y) (x) = T0(x)y(x) +

∫ x

0

T1(x, ξ)y(ξ)dξ +

∫ 1

x

T2(x, ξ)y(ξ)dξ, y ∈ L2(0, 1).

Proof. We begin by considering the following decomposition

〈APz(·, t), z(·, t)〉+ 〈z(·, t),APz(·, t)〉

= 2

∫ 1

0

(

a(x)
∂2

∂x2
(Pz)(x, t) + b(x)

∂

∂x
(Pz)(x, t) + c(x)(Pz)(x, t)

)

z(x, t)dx

= 2 (Γ1 + Γ2 + Γ3 + Γ4) , (A.8)

where

Γ1 =

∫ 1

0

zxx(x, t) [a(x)M(x)] z(x, t)dx,

Γ2 =

∫ 1

0

zx(x, t) [2a(x)Mx(x) + b(x)M(x)] z(x, t)dx,

Γ3 =

∫ 1

0

z2(x, t) [a(x) (Mxx(x) +K1,x(x, x)−K2,x(x, x)) + b(x)Mx(x) + c(x)M(x)] dx,

Γ4 =

∫ 1

0

∫ x

0

z(x, t) [a(x)K1,xx(x, ξ) + b(x)K1,x(x, ξ) + c(x)K1(x, ξ)] z(ξ, t)dξdx

+

∫ 1

0

∫ 1

x

z(x, t) [a(x)K2,xx(x, ξ) + b(x)K2,x(x, ξ) + c(x)K2(x, ξ)] z(ξ, t)dξdx.

Applying integration by parts twice

Γ1 =−
∫ 1

0

z2x(x, t)a(x)M(x)dx +

∫ 1

0

z2(x, t)
1

2

∂2

∂x2
(a(x)M(x)) dx

+ z(1, t)

(

−1

2
[ax(1)M(1) + a(1)Mx(1)] z(1, t) + a(1)M(1)zx(1, t)

)

+ z(0, t)

(

1

2
[ax(0)M(0) + a(0)Mx(0)] z(0, t)− a(0)M(0)zx(0, t)

)

.

Applying a variation of Wirtinger’s inequality

Γ1 ≤
∫ 1

0

z2(x, t)
1

2

(

∂2

∂x2
(a(x)M(x))− αǫπ2

2

)

dx
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+ z(1, t)

(

−1

2
[ax(1)M(1) + a(1)Mx(1)] z(1, t) + a(1)M(1)zx(1, t)

)

+ z(0, t)

(

1

2

[

ax(0)M(0) + a(0)Mx(0)−
αǫπ2

2

]

z(0, t)− a(0)M(0)zx(0, t)

)

+ z(0, t)

∫ 1

0

αǫπ2

2
z(x, t)dx. (A.9)

Applying integration by parts

Γ2 =−
∫ 1

0

z2(x, t)

(

ax(x)Mx(x) + a(x)Mxx(x) +
1

2

∂

∂x
(b(x)M(x))

)

dx

+ z2(1, t)

(

a(1)Mx(1) +
1

2
b(1)M(1)

)

− z2(0, t)

(

a(0)Mx(0) +
1

2
b(0)M(0)

)

.

(A.10)

Adding Equations (A.9) and (A.10)

Γ1 + Γ2

≤
∫ 1

0

z2(x, t)

(

1

2
axx(x)M(x) − 1

2
a(x)Mxx(x)−

1

2
bx(x)M(x)− 1

2
b(x)Mx(x)−

αǫπ2

4

)

dx

+ z(1, t)

(

1

2
T7z(1, t) +

1

2
T8zx(1, t)

)

+

[(

−1

2
a(0)Mx(0)−

1

4
αǫπ2

)

z(0, t) +

∫ 1

0

1

2
αǫπ2z(x, t)dx

]

z(0, t)

+ z(0, t)

(

1

2
ax(0)−

1

2
b(0)

)

M(0)z(0, t)− z(0, t)a(0)M(0)zx(0, t)

− a(0)Mx(0)z(0, t)
2. (A.11)

Since z(·, t) = P−1w(·, t), w(·, t) = Pz(·, t). Thus

w(x, t) =M(x)z(x, t) +

∫ x

0

K1(x, ξ)z(ξ, t)dξ +

∫ 1

x

K2(x, ξ)z(ξ, t)dξ and

wx(x, t) =Mx(x)z(x, t) +M(x)zx(x, t) +

∫ x

0

K1,x(x, ξ)z(ξ, t)dξ +

∫ 1

x

K2,x(x, ξ)z(ξ, t)dξ.

The boundary condition for x = 0 can hence be written as

w(0, t) =M(0)z(0, t) +

∫ 1

0

K2(0, x)z(x, t)dx,
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wx(0, t) =Mx(0)z(0, t) +M(0)zx(0, t) +

∫ 1

0

K2,x(0, x)z(x, t)dx.

Using Definition 6.2,

wx(0, t) = m1w(0, t) +m2wx(0, t), w(0, t) = m3w(0, t),

the boundary conditions in variable z can be written as

z(0, t) =m3z(0, t) +

∫ 1

0

(m3 − 1)
1

M(0)
K2(0, x)z(x, t)dx, (A.12)

M(0)z(0, t) =m3M(0)z(0, t) +

∫ 1

0

(m3 − 1)K2(0, x)z(x, t)dx, (A.13)

M(0)zx(0, t) = [m1M(0) + (m2 − 1)Mx(0)] z(0, t) +m2M(0)zx(0, t)

+

∫ 1

0

[(m2 − 1)K2,x(0, x) +m1K2(0, x)] z(x, t)dx. (A.14)

Substituting Equations (A.12)-(A.14) in Equation (A.11) produces

Γ1 + Γ2

≤
∫ 1

0

z2(x, t)

(

1

2
axx(x)M(x) − 1

2
a(x)Mxx(x)−

1

2
bx(x)M(x)− 1

2
b(x)Mx(x)−

π2

4
αǫ

)

dx

+ z(0, t)
1

2

(

T3z(0, t) +

∫ 1

0

T4(x)z(x, t)dx

)

+
1

2

∫ 1

0

1

M(0)
T6(x)z(x, t)dx

[(

−a(0)Mx(0)−
1

2
αǫπ2

)

z(0, t) +

∫ 1

0

αǫπ2z(x, t)dx

]

−m2a(0)zx(0, t)M(0)z(0, t) + z(1, t)

(

1

2
T7z(1, t) +

1

2
T8zx(1, t)

)

.

Substituting the boundary condition in Equation (A.13) in the second to last term

of the previous equation we obtain

Γ1 + Γ2

≤
∫ 1

0

z2(x, t)

(

1

2
axx(x)M(x) − 1

2
a(x)Mxx(x)−

1

2
bx(x)M(x)− 1

2
b(x)Mx(x)−

π2

4
αǫ

)

dx

+ z(0, t)
1

2

(

T3z(0, t) +

∫ 1

0

T4(x)z(x, t)dx

)

+ zx(0, t)
1

2

∫ 1

0

T5(x)z(x, t)dx

+
1

2

∫ 1

0

1

M(0)
T6(x)z(x, t)dx

[(

−a(0)Mx(0)−
1

2
αǫπ2

)

z(0, t) +

∫ 1

0

αǫπ2z(x, t)dx

]
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+ z(1, t)

(

1

2
T7z(1, t) +

1

2
T8zx(1, t)

)

− z(0, t)m2m3M(0)zx(0, t).

Recall from Definition 6.2 that for all possible cases, m2m3 = 0. Thus,

Γ1 + Γ2

≤
∫ 1

0

z2(x, t)

(

1

2
axx(x)M(x) − 1

2
a(x)Mxx(x)−

1

2
bx(x)M(x)− 1

2
b(x)Mx(x)−

π2

4
αǫ

)

dx

+ z(0, t)
1

2

(

T3z(0, t) +

∫ 1

0

T4(x)z(x, t)dx

)

+ zx(0, t)
1

2

∫ 1

0

T5(x)z(x, t)dx

+
1

2

∫ 1

0

1

M(0)
T6(x)z(x, t)dx

[(

−a(0)Mx(0)−
1

2
αǫπ2

)

z(0, t) +

∫ 1

0

αǫπ2z(x, t)dx

]

+ z(1, t)

(

1

2
T7z(1, t) +

1

2
T8zx(1, t)

)

. (A.15)

Adding Equation (A.15) and Γ3 produces

Γ1 + Γ2 + Γ3

≤
∫ 1

0

z2(x, t)
1

2
T0(x)dx

+ z(0, t)
1

2

(

T3z(0, t) +

∫ 1

0

T4(x)z(x, t)dx

)

+ zx(0, t)
1

2

∫ 1

0

T5(x)z(x, t)dx

+
1

2

∫ 1

0

1

M(0)
T6(x)z(x, t)dx

[(

−a(0)Mx(0)−
1

2
αǫπ2

)

z(0, t) +

∫ 1

0

αǫπ2z(x, t)dx

]

+ z(1, t)

(

1

2
T7z(1, t) +

1

2
T8zx(1, t)

)

. (A.16)

Switching the order of integration and interchanging x and ξ produces

Γ4 =

∫ 1

0

∫ x

0

z(x, t)
1

2
T2(x, ξ)z(ξ, t)dξ +

∫ 1

0

∫ 1

x

z(x, t)
1

2
T3(x, ξ)z(ξ, t)dξ. (A.17)

Finally, substituting Equations (A.16)-(A.17) into Equation (A.8) produces

〈APz(·, t), z(·, t)〉+ 〈z(·, t),PAz(·, t)〉

≤ 〈z(·, t), T z(·, t)〉

+ z(0, t)

(

T3z(0, t) +

∫ 1

0

T4(x)z(x, t)dx

)

+ zx(0, t)

∫ 1

0

T5(x)z(x, t)dx
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+

∫ 1

0

1

M(0)
T6(x)z(x, t)dx

[(

−a(0)Mx(0)−
1

2
αǫπ2

)

z(0, t) +

∫ 1

0

αǫπ2z(x, t)dx

]

+ z(1, t) (T7z(1, t) + T8zx(1, t)) .
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APPENDIX B

INVERSES OF POSITIVE OPERATORS
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Lemma B.1. Let {M,K1, K2} = Ωd1,d2,ǫ1,ǫ2 for any 0 < ǫ1 < ǫ2. Then for the

following operator

(Py) (x) =M(x)y(x) +

∫ x

0

K1(x, ξ)y(ξ)dξ +

∫ 1

x

K2(x, ξ)y(ξ)dξ, y ∈ L2(0, 1),

the following holds

1

ǫ2
‖y‖2 ≤

〈

y,P−1y
〉

≤ 1

ǫ1
‖y‖2.

Proof. Since {M,K1, K2} = Ωd1,d2,ǫ1,ǫ2, from Corollary 5.6 we have that

ǫ1‖y‖2 ≤ 〈y,Py〉 ≤ ǫ2‖y‖2.

Now,

〈y,Py〉 ≤ ǫ2‖y‖2 = ǫ2 〈y, y〉 .

Thus,

〈y, (P − ǫ2I) y〉 ≤ 0,

where I is the identity operator. From Theorem 6.9, we know that the inverse of

theis operator P−1 exists. Thus,

〈

y,P
(

I − ǫ2P−1
)

y
〉

≤ 0.

By definition P is a positive operator. Thus, by [35, 9.4-2], P has a unique

positive self-adjoint square root, that is,

P = P 1
2P 1

2 .

Thus, we get
〈

y,P 1
2P 1

2

(

I − ǫ2P−1
)

y
〉

≤ 0.

Since P 1
2 is self-adjoint

〈

P 1
2y,P 1

2

(

I − ǫ2P−1
)

y
〉

≤ 0.
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Using [35, 9.4-2] we get that since P commutes with P−1, P 1
2 commutes with P−1.

Therefore

〈

P 1
2 y,P 1

2

(

I − ǫ2P−1
)

y
〉

=
〈

P 1
2y,
(

I − ǫ2P−1
)

P 1
2y
〉

≤ 0.

Thus, we conclude that

I − ǫ2P−1 ≤ 0, on L2(0, 1).

Therefore, for any y ∈ L2(0, 1), we have that

〈

y,
(

I − ǫ2P−1
)

y
〉

≤ 0.

This implies that, for any y ∈ L2(0, 1),

1

ǫ2
‖y‖2 ≤

〈

y,P−1y
〉

.

The assertion that
〈

y,P−1y
〉

≤ 1

ǫ1
‖y‖2,

is similarly proved.

Proof of Lemma 6.8. Let ‖·‖Rk×k be any induced norm on Rk×k. Then, for any matrix

valued function Q : [0, 1] → Rk×k define

‖Q‖∞ = sup
x∈[0,1]

‖Q(x)‖Rk×k .

It can be easily verified that the space

Φ = {Q : [0, 1] → R
k×k : ‖Q‖∞ <∞},

where ‖·‖∞ is the norm, is a complete normed space. In other words, the space Φ

with norm ‖ · ‖∞ is a Banach space.
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For any V ∈ Φ, we define the following mapping

(TV )(x) = I +

∫ x

0

A(ξ)V (ξ)dξ.

Then for any V,W ∈ Φ,

(TV )(x)− (TW )(x) =

∫ x

0

A(ξ) [V (ξ)−W (ξ)] dξ.

Thus,

‖(TV )(x)− (TW )(x)‖Rk×k =

∥

∥

∥

∥

∫ x

0

A(ξ) [V (ξ)−W (ξ)] dξ

∥

∥

∥

∥

Rk×k

≤
∫ x

0

‖A(ξ)‖Rk×k‖V (ξ)−W (ξ)‖Rk×kdξ. (B.1)

Since the elements of A(x) are continuous on [0, 1], A ∈ Φ. Let α = ‖A‖∞, then

‖A(ξ)‖Rk×k ≤ α, for all ξ ∈ [0, 1].

Moreover,

‖V (ξ)−W (ξ)‖Rk×k ≤ ‖V −W‖∞, for all ξ ∈ [0, 1].

Thus, substituting these in Equation (B.1) produces

‖(TV )(x)− (TW )(x)‖Rk×k ≤ α‖V −W‖∞
∫ x

0

dξ

= α‖V −W‖∞x, for all x ∈ [0, 1]. (B.2)

We will now prove that for any m ∈ N, the following holds

‖(TmV )(x)− (TmW )(x)‖Rk×k ≤ αmxm

m!
‖V −W‖∞. (B.3)

Clearly, from Equation (B.2), this claim is true for m = 1. Assume that Equa-

tion (B.3) holds for any m ∈ N. Then

‖(Tm+1V )(x)− (Tm+1W )(x)‖Rk×k

=

∥

∥

∥

∥

∫ x

0

A(ξ) [(TmV )(ξ)− (TmW )(ξ)] dξ

∥

∥

∥

∥

Rk×k
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≤
∫ x

0

‖A(ξ)‖Rk×k‖ [(TmV )(ξ)− (TmW )(ξ)‖]
Rk×k dξ

≤ α

∫ x

0

‖ [(TmV )(ξ)− (TmW )(ξ)‖]
Rk×k dξ.

Substituting in Equation (B.3) produces

‖(Tm+1V )(x)− (Tm+1W )(x)‖Rk×k ≤α‖V −W‖∞
∫ x

0

αmξm

m!
dξ

=
αmxm

m!
‖V −W‖∞.

Thus, we have proven by induction that

‖(TmV )(x)− (TmW )(x)‖Rk×k ≤α
mxm

m!
‖V −W‖∞

≤α
m

m!
‖V −W‖∞, for all x ∈ [0, 1].

Since

‖TmV − TmW‖∞ = sup
x∈[0,1]

‖(TmV )(x)− (TmW )(x)‖Rk×k ,

we conclude

‖TmV − TmW‖∞ ≤ αm

m!
‖V −W‖∞.

Since V,W ∈ Φ were chosen arbitrarily, and for a large enough m ∈ N

αm

m!
< 1,

we conclude that Tm, for a large enough m ∈ N, is a contraction on Φ [35, 5.1-1].

Therefore, from Banach fixed point theorem [35, 5.1-2], there exists a unique fixed

point U ∈ Φ which satisfies

U = TmU,

and U can be obtained by the uniform limit of

U0 = I, U1 = TmU0, U2 = T 2mU1, · · · , Un = T nmUn−1, · · · .

Moreover, from [35, Lemma 5.4-3], U ∈ Φ is also the unique solution to

U = TU
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and hence is given by the uniform limit of the sequence

U0 = I, U1 = TU0, U2 = T 2U1, · · · , Un = T nUn−1, · · · .

Since the unique fixed point U satisfies U = TU , using the definition of the mapping

T ,

U(x) = I +

∫ x

0

A(ξ)U(ξ)dξ.

Thus, by differentiating in x, we see that the fixed point U satisfies

dU(x)

dx
= A(x)U(x)

and

U(0) = I.

To prove that U(x) is non-singular for every x ∈ [0, 1], one may apply the

small-gain theorem [52, 3.7] and use the fact that U(x) is the uniform limit of the

sequence Un(x) provided previously.
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APPENDIX C

SOLUTIONS TO PARABOLIC PDES USING SEPARATION OF VARIABLES



180

For a few types of parabolic PDEs, the solution may be explicitly calculated

using a technique known as separation of variables [36]. The idea is to represent the

solution of the PDE as the product of solutions of two Ordinary Differential Equations

(ODEs). We specifically consider the class of PDEs considered in Chapter 5 and use

Sturm-Liouville theory [84] to formulate solutions.

Consider the following PDE

wt(x, t) = a(x)wxx(x, t) + b(x)wx(x, t) + c(x)w(x, t), (C.1)

with boundary conditions of the form

ν1w(0, t) + ν2wx(0, t) = 0 and ρ1w(1, t) + ρ2wx(1, t) = 0. (C.2)

The scalars νi and ρj satisfy

|ν1|+ |ν2| > 0 and |ρ1|+ |ρ2| > 0.

Here, a, b and c are polynomials and a(x) ≥ α > 0 for all x ∈ [0, 1].

The uniqueness and existence of solutions to such problems has been estab-

lished in Lemma 5.4. However, using separation of variables, we can establish the

structure of solutions and then establish the stability properties. We present the

following theorem.

Lemma C.1. For any initial condition w0 ∈ D0(L2(0, 1)), there exist scalars ωn and

an orthonormal basis φn of L2(0, 1), n ∈ N such that the classical (weak) solution of

Equations (C.1)-(C.2) is given by

w(x, t) =
∞
∑

n=0

eωnt 〈w0, φn〉φn(x). (C.3)

Moreover,

ω0 > ω1 > · · · > ωn > · · · and ωn → −∞ as n→ ∞.
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Here, the set D0 is defined as

D0 = {y ∈ H2(0, 1) : ν1y(0) + ν2yx(0) = 0 and ρ1y(1) + ρ2yx(1) = 0}.

Proof. We begin by using the ansatz that the solution can be written as

w(x, t) = X(x)T (t).

Substituting this ansatz into Equation (C.1) produces

X(x)Tt(t) = a(x)Xxx(x)T (t) + b(x)Xx(x)T (t) + c(x)X(x)T (t),

with boundary conditions

T (t) (ν1X(0) + ν2Xx(0)) = 0 and T (t) (ρ1X(1) + ρ2Xx(1)) = 0.

Separating spatial and temporal terms

Tt(t)

T (t)
=
a(x)Xxx(x) + b(x)Xx(x) + c(x)X(x)

X(x)
. (C.4)

Since the left hand side is a function of time t only and the right hand side is a

function of space x only, in order for (C.4) to be true, the following must hold for

some λ ∈ R,

Tt(t)

T (t)
=
a(x)Xxx(x) + b(x)Xx(x) + c(x)X(x)

X(x)
= −λ. (C.5)

Thus, we obtain the following ODEs

−a(x)Xxx(x)− b(x)Xx(x)− c(x)X(x) = λX(x), (C.6)

with boundary conditions

ν1X(0) + ν2Xx(0) = 0 and ρ1X(1) + ρ2Xx(1) = 0, (C.7)

and

Tt(t) = −λT (t). (C.8)
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If we define

p(x) = e
∫ x

0
b(ξ)
a(ξ)

dξ, q(x) = −c(x)p(x)
a(x)

, σ(x) =
p(x)

a(x)
, (C.9)

then Equations (C.6)-(C.7) can be written as

(SX) (x) = − d

dx

(

p(x)
dX(x)

dx

)

+ q(x)X(x) = λσ(x)X(x), X ∈ D0. (C.10)

For Definition 5.2, the operator S is the Sturm-Liouville operator and Equation (C.10)

is the Sturm-Liouville equation. Then, form Lemma 5.3, there exist scalars λn satis-

fying

λ0 < λ1 < · · · < λn < · · · and λn → ∞ as n→ ∞,

and functions Xn = φn ∈ D0 such that

− d

dx

(

p(x)
dφn(x)

dx

)

+ q(x)φn(x) = λnσ(x)φn(x). (C.11)

For each λn, the solution of Equation (C.8) can be easily calculated as

Tn(t) = Ane
−λnt, (C.12)

for some scalar An ∈ R. Since from the Ansatz we have that

w(x, t) = X(x)T (t),

for any n ∈ N, the solution to Equations (C.1)-(C.2) is given by

wn(x, t) = Xn(x)Tn(t) = Ane
−λntφn(x).

By superposition, the solution of Equations (C.1)-(C.2) is a linear combination of all

possible solutions. Thus, there exist scalars Bn ∈ R such that

w(x, t) =

∞
∑

n=0

Cne
−λntφn(x), (C.13)
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where Cn = AnBn. This solution obviously satisfies the boundary conditions (C.2)

since φn ∈ D0. However, the solution must satisfy w(x, 0) = w0(x). From Lemma 5.3

we have that φn is an orthonormal basis for L2(0, 1), thus, from [35, Theorem 3.5-2]

w0(x) =

∞
∑

n=0

〈w0, φn〉φn(x).

Therefore, If we set

Cn = 〈w0, φn〉 ,

then

w(x, 0) =

∞
∑

n=0

〈w0, φn〉φn(x) = w0(x).

Hence, the solution is given by

w(x, t) =
∞
∑

n=0

e−λnt 〈w0, φn〉 e−λntφn(x).

Finally, setting ωn = −λn produces

w(x, t) =
∞
∑

n=0

eωnt 〈w0, φn〉φn(x).

From Lemma C.1 we have that

ω0 > ω1 > · · · > ωn > · · · .

Thus, the system represented by Equations (C.1)-(C.2) is exponentially stable if ω0 <

0. If we can calculate the eigenvalues, we can infer the system’s stability properties.

Unfortunately, for a system with spatially distributed coefficients, there is no general

way of calculating the eigenvalues. However, we can estimate them. For the stability

analysis, this will serve as a benchmark against which we can compare the provided

methodology. Additionally, this will help us to synthesize static controllers which

will serve as a benchmark against which we can compare the performance of the

controllers we synthesize. We present the following Lemma.
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Lemma C.2. Given coefficients a(x), b(x) and c(x) of Equation (C.1), define

p(x) = e
∫ x

0
b(ξ)
a(ξ)

dξ, q(x) = −c(x)p(x)
a(x)

, σ(x) =
p(x)

a(x)
.

Additionally, let

p(x) ≥ p0 > 0, q(x) ≥ q1, σ(x) ≤ σ1.

Then, if ν1ν2 ≤ 0 and ρ1ρ2 ≥ 0, we have that

ω0 ≤ −λcc0 ,

where the scalars ωn define the solution given in Equation (C.3) and λcc1 is the first

eigenvalue of the following constant coefficient Sturm-Liouville equation

−p0
d2z(x)

dx2
+ q1z(x) = λσ1z(x), z ∈ D0.

Proof. We begin by commenting that since a(x) ≥ α > 0, there exists a scalar p0

such that

p(x) = e
∫ x

0
b(ξ)
a(ξ)

dξ ≥ p0 > 0.

Additionally, since q(x) and σ(x) are continuous, there exist scalars q1 and σ1 such

that

q(x) ≥ q1, σ(x) ≤ σ1.

Recall from the proof of Lemma C.1 that ωn = −λn, where λn are the eigen-

values of the following Sturm-Liouville equation

− d

dx

(

p(x)
dz(x)

dx

)

+ q(x)z(x) = λσ(x)z(x), z ∈ D0.

Using the Rayleigh quotient [99, Chapter 5], the first eigenvalue is given by

λ0 = min
z∈D0

p(0)y(0)yx(0)− p(1)y(1)yx(1) +
∫ 1

0
(p(x)yx(x)

2 + q(x)y(x)2) dx
∫ 1

0
σ(x)y(x)2dx

. (C.14)
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If z ∈ D0, then z ∈ D̂0, where

D̂0 = {y ∈ H1(0, 1) : yx(0, t) = k0y(0, t), yx(1, t) = k1y(1, t)

w(0, t) = 0 if k0 = 0 and w(1, t) = 0 if k1 = 0},

where

k0 =















−ν1
ν2

if ν2 6= 0

0 if ν2 = 0

, k1 =















ρ1
ρ2

if ρ2 6= 0

0 if ρ2 = 0

,

Thus, Equation (C.14) may be written as

λ0 = min
z∈D̂0

k0p(0)y(0)
2 + k1p(1)y(1)

2 +
∫ 1

0
(p(x)yx(x)

2 + q(x)y(x)2) dx
∫ 1

0
σ(x)y(x)2dx

. (C.15)

We assumed that ν1ν2 ≤ 0 and ρ1ρ2 ≥ 0, thus

k0 ≥ 0 and k1 ≥ 0.

Consequently

k0p(0)y(0)
2 + k1p(1)y(1)

2 +
∫ 1

0
(p(x)yx(x)

2 + q(x)y(x)2) dx
∫ 1

0
σ(x)y(x)2dx

≥ k0p0y(0)
2 + k1p0y(1)

2 +
∫ 1

0
(p0yx(x)

2 + q1y(x)
2) dx

∫ 1

0
σ1y(x)2dx

Since the right hand side is also a Rayleigh quotient, it follows that

λ0 ≥ λcc0 ,

where λcc0 is the first eigenvalue of the following constant coefficient Sturm-Liouville

equation

−p0
d2z(x)

dx2
+ q1z(x) = λσ1z(x), z ∈ D0.

Since ω0 = −λ0, we obtain

ω0 ≤ −λcc0 .
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The advantage of Lemma C.2 is that the eigenvalues of the constant coefficient

Sturm-Liouville equation

−p0
d2z(x)

dx2
+ q1z(x) = λσ1z(x), z ∈ D0,

for most boundary conditions, can be calculated analytically. Thus, we can easily

obtain an upper bound on ω1 and thus, wean information on the system stability.

Table C.1 summarizes the eigenvalues λccn and eigenfunctions φcc
n for Dirichlet, Neu-

mann, mixed and Robin boundary conditions.

Table C.1. Eigenvalues and normalized eigenfunctions of −p0 d2z(x)
dx2 +q1z(x) = λσ1z(x)

with Dirichlet, Neumann, mixed and Robin boundary conditions.

Boundary Conditions Eigenvalues λccn Eigenfunctions φcc
n

Dirichlet

w(0) = 0, w(1) = 0 (p0n
2π2 + q1) /σ1

1√
2
sin nπx

Neumann

wx(0) = 0, wx(1) = 0 (p0n
2π2 + q1) /σ1

1√
2
cosnπx

Mixed

w(0) = 0, wx(1) = 0 (p0(2n− 1)2π2 + 4q1) /4σ1
1√
2
cos((2n− 1)π/2)x

Robin

w(0) = 0, w(1) + wx(1) = 0 λccn ∈ (λ1n, λ
2
n) (see (C.16)) 1√

2
sinλccn x

In Table C.1,

λ1n =
(

p0(2n− 1)2π2 + 4q1
)

/4σ1 and λ2n =
(

p0n
2π2 + q1

)

/σ1. (C.16)
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APPENDIX D

STABILITY ANALYSIS USING FINITE-DIFFERENCES AND

STURM-LIOUVILLE THEORY
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In Chapters 5-7 we consider the following two parabolic PDEs:

wt(x, t) =wxx(x, t) + λw(x, t), and (D.1)

wt(x, t) =
(

x3 − x2 + 2
)

wxx(x, t) +
(

3x2 − 2x
)

wx(x, t)

+
(

−0.5x3 + 1.3x2 − 1.5x+ 0.7 + λ
)

w(x, t), (D.2)

where λ is a scalar which may be chosen freely. We consider the following boundary

conditions for these two equations:

Dirichlet: = w(0) = 0, w(1) = 0, (D.3)

Neumann: = wx(0) = 0, wx(1) = 0, (D.4)

Mixed: = w(0) = 0, wx(1) = 0, (D.5)

Robin: = w(0) = 0, w(1) + wx(1) = 0. (D.6)

Using Lemma C.1 we may analytically compute the interval in which the

scalar λ must lie such that Equation (D.1) is exponentially stable. However, for

Equation (D.2), the eigenvalues can not be computed analytically, in which case,

we may approximate the interval in which λ must lie for exponential stability using

Lemma C.2 or finite-differences.

We begin first by considering Equation (D.1) with boundary conditions (D.3)-

(D.6). This equation corresponds to

wt(x, t) = a(x)wxx(x, t) + b(x)wx(x, t) + c(x)w(x, t)

with

a(x) = 1, b(x) = 0, c(x) = λ.

If we let

p(x) = e
∫ x

0
b(ξ)
a(ξ)

dξ
, q(x) = −c(x)p(x)

a(x)
, σ(x) =

p(x)

a(x)
,
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then, we get

p(x) = p0 = 1, q(x) = q1 = −λ, σ(x) = σ1 = 1. (D.7)

Then, by Lemma C.1, the solution of Equation (D.1) is given by

w(x, t) =

∞
∑

n=0

eωnt 〈w0, φn〉φn(x),

where w0 is an appropriately chosen initial condition and ωn = −λccn , where λccn and

φn are the eigenvalues and normalized eigenfunctions, respectively, of the following

constant coefficient Sturm-Liouville equation

−p0
d2z(x)

dx2
+ q1z(x) = λccσ1z(x).

Using the values in (D.7) and Table C.1, the solution of Equation (D.1) with

Dirichlet boundary conditions (D.3) is given by

w(x, t) =
∞
∑

n=0

e(λ−n2π2)t 〈w0, φn〉 φn(x), (D.8)

where φn(x) = 1√
2
sinnπx. Therefore, for Dirichlet boundary conditions, Equa-

tion (D.1) is stable for λ ∈ [0, π2). Similarly, the solution of Equation (D.1) for

Neumann and mixed boundary conditions, respectively, is

w(x, t) =

∞
∑

n=0

e(λ−n2π2)t 〈w0, φn〉 φn(x), (D.9)

where φn(x) =
1√
2
cosnπx, and

w(x, t) =

∞
∑

n=1

e(λ−(2n−1)2π2/4)t 〈w0, φn〉φn(x), (D.10)

where φn(x) =
1√
2
sinnπx. From Equation (D.9), for Neumann boundary condition,

the system governed by Equation (D.1) is stable for λ ∈ [0, π2). Similarly, from Equa-

tion (D.10), for mixed boundary condition, the system governed by Equation (D.1)

is stable for λ ∈ [0, π2/4).
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Finally, for the Robin boundary conditions, using (D.7) and Table C.1, we

have that

λ− n2π2 ≤ −λccn = ωn ≤ λ− (2n− 1)2π2

4
.

Thus, the solution of Equation (D.1) with Robin boundary conditions satisfies

w(x, t) =

∞
∑

n=1

eωnt 〈w0, φn〉φn(x), (D.11)

where φn(x) =
1√
2
sinλccn x. Since

λ− n2π2 ≤ ωn ≤ λ− (2n− 1)2π2

4
,

the solution of Equation (D.1) with Robin boundary conditions is exponentially stable

for λ ∈ [0, π2/4). However, this bound on λ is conservative. Thus, we can compliment

it by calculating the approximate solution using finite-differences. The state norm

‖w(·, t)‖ is presented in Figure D.1. It is evident from the figure that Equation (D.1)

with Robin boundary conditions is stable for λ < 4.12.

The stability margins for λ in Equation (D.1) with various boundary conditions

is presented in Table D.1.

Table D.1. Stability margins for λ > 0 for wt = wxx + λw with Dirichlet, Neumann,
mixed and Robin boundary conditions.

Boundary Conditions Stability margin for λ > 0

Dirichlet

w(0) = 0, w(1) = 0 λ < π2

Neumann

wx(0) = 0, wx(1) = 0 λ < 0

Mixed

w(0) = 0, wx(1) = 0 λ < π2/4

Robin

w(0) = 0, w(1) + wx(1) = 0 λ < 4.12

As stated earlier, analytical solutions for Equation (D.2) can not be calculated.
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Figure D.1. State norm ‖w(·.t)‖ of Equation (D.1) with Robin boundary conditions
for different λ.

Thus, we rely solely on finite-differences to approximate the upper bounds for the

parameter λ so that the system is stable. Figures D.2-D.5 illustrate the state norm

‖w(·, t)‖ of Equation (D.2) with various boundary conditions.

The stability margins for λ in Equation (D.2) with various boundary conditions

is presented in Table D.2.
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Figure D.2. State norm ‖w(·.t)‖ of Equation (D.2) with Dirichlet boundary conditions
w(0, t) = w(1, t) = 0 for different λ.

Table D.2. Stability margins for Equation (D.2) with Dirichlet, Neumann, mixed and
Robin boundary conditions.

Boundary Conditions Stability margin for λ > 0

Dirichlet

w(0) = 0, w(1) = 0 λ < 18.95

Neumann

wx(0) = 0, wx(1) = 0 λ < −0.255

Mixed

w(0) = 0, wx(1) = 0 λ < 4.66

Robin

w(0) = 0, w(1) + wx(1) = 0 λ < 7.96
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Figure D.3. State norm ‖w(·.t)‖ of Equation (D.2) with Neumann boundary condi-
tions wx(0, t) = wx(1, t) = 0 for different λ.
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Figure D.4. State norm ‖w(·.t)‖ of Equation (D.2) with mixed boundary conditions
w(0, t) = wx(1, t) = 0 for different λ.
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Figure D.5. State norm ‖w(·.t)‖ of Equation (D.2) with Robin boundary conditions
w(0, t) = w(1, t) + wx(1, t) = 0 for different λ.
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