
PARALLEL OPTIMIZATION OF POLYNOMIALS FOR LARGE-SCALE
PROBLEMS IN STABILITY AND CONTROL

by

Reza Kamyar

A Dissertation Presented in Partial Fulfillment
of the Requirement for the Degree

Doctor of Philosophy

Approved January 2016 by the
Graduate Supervisory Committee:

Matthew Peet, Chair
Daniel Rivera

Georgios Fainekos
Panagiotis Artemiadis

Spring Berman

ARIZONA STATE UNIVERSITY

January 2016

ABSTRACT

In today’s world, optimal operation of ever-growing industries and markets often

requires solving optimization problems with unprecedented sizes. Economic dispatch

of generating units in power companies, frequency assignment in large mobile commu-

nication networks, profit maximization in competitive markets, and optimal operation

of smart grids are few examples of many real-world problems which can be closely

modeled as optimization over a large number (tens of thousands) of integer- and

real-valued decision variables. Unfortunately, majority of the existing commercial

off-the-shelf software are not designed to scale to optimization problems of this size.

Moreover, in theory, these optimization problems often fall into the class NP-hard -

meaning that despite the tremendous effort towards modernization of optimization

algorithms, it is widely suspected that no algorithm can find exact solutions to these

problems in a reasonable amount of time.

In this thesis, we focus on some of the NP-hard problems in control theory. Thanks

to the converse Lyapunov theory, these problems can often be modeled as optimiza-

tion over polynomials. To avoid the problem of intractability, we establish a trade off

between accuracy and complexity. In particular, we develop a sequence of tractable

optimization problems - in the form of Linear Programs (LPs) and/or Semi-Definite

Programs (SDPs) - whose solutions converge to the exact solution of the NP-hard

problem. However, the computational and memory complexity of these LPs and

SDPs grow exponentially with the progress of the sequence - meaning that improving

the accuracy of the solutions requires solving SDPs with tens of thousands of deci-

sion variables and constraints. Setting up and solving such problems is a significant

challenge. Unfortunately, the existing optimization algorithms and software are only

designed to use desktop computers or small cluster computers - machines which do

not have sufficient memory for solving such large SDPs. Moreover, the speed-up of

i

these algorithms does not scale beyond dozens of processors. This in fact is the reason

we seek parallel algorithms for setting-up and solving large SDPs on large cluster-

and/or super-computers.

We propose parallel algorithms for stability analysis of two classes of systems: 1)

Linear systems with a large number of uncertain parameters; 2) Nonlinear systems

defined by polynomial vector fields. First, we develop a distributed parallel algorithm

which applies Polya’s and/or Handelman’s theorems to some variants of parameter-

dependent Lyapunov inequalities with parameters defined over the standard simplex.

The result is a sequence of SDPs which possess a block-diagonal structure. We then

develop a parallel SDP solver which exploits this structure in order to map the com-

putation, memory and communication to a distributed parallel environment. We pro-

duce a Message Passing Interface (MPI) implementation of our parallel algorithms

and provide a comprehensive theoretical and experimental analysis on its complexity

and scalability. Numerical tests on a supercomputer demonstrate the ability of the

algorithm to efficiently utilize hundreds and potentially thousands of processors and

analyze systems with 100+ dimensional state-space. We then apply our algorithms

to two real-world problems: Stability of plasma in a Tokamak reactor, and optimal

electricity pricing in a smart grid environment. Finally, we extend our algorithms to

analyze robust stability over more complicated geometries such as hypercubes and

arbitrary convex polytopes. Our algorithms can be readily extended to address a

wide variety of problems in control; e.g., H2/H∞ control synthesis for systems with

parametric uncertainty, computing control Lyapunov functions for optimal control

problems, and analysis and control of switched/hybrid systems.

ii

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . xi

LIST OF SYMBOLS . 1

CHAPTER

1 INTRODUCTION . 1

1.1 Sum of squares method . 2

1.2 Moments method . 3

1.3 Quantifier elimination . 5

1.4 Reformulation linear techniques . 6

1.5 Groebner basis technique . 6

1.6 Blossoming technique . 7

1.7 Bernstein’s, Polya’s and Handelman’s theorems 8

1.8 Motivations and summary of contributions . 9

2 FUNDAMENTAL RESULTS for OPTIMIZATION of POLYNOMIALS . 14

2.1 Background on positivity results . 14

2.2 Polynomial optimization and optimization of polynomials 20

2.3 Algorithms for optimization of polynomials . 23

2.3.1 Case 1: Optimization over the standard simplex ∆n 23

2.3.2 Case 2: Optimization over the hypercube Φn 24

2.3.3 Case 3: Optimization over the convex polytope ΓK 27

2.3.4 Case 4: Optimization over compact semi-algebraic sets 29

2.3.5 Case 5: Tests for non-negativity on Rn: . 32

3 SEMI-DEFINITE PROGRAMMING AND INTERIOR-POINT ALGO-

RITHMS. 35

iii

CHAPTER Page

3.1 Convex optimization and duality . 35

3.2 Descent algorithms for convex optimization . 37

3.3 Interior-point algorithms for convex problems with inequality con-

straints . 40

3.4 Semi-definite programming . 44

3.5 A primal-dual interior-point algorithm for semi-definite programming 48

4 PARALLEL ALGORITHMS FOR ROBUST STABILITY ANALYSIS

OVER SIMPLEX. 53

4.1 Background and motivations. 53

4.1.1 Our contributions . 59

4.2 Notation and Preliminaries on homogeneous polynomials 60

4.3 Setting up the problem of robust stability analysis over a simplex . . 62

4.3.1 General formulae for calculating coefficients β and H 65

4.3.2 Number of coefficients β〈h〉,〈γ〉 and H〈h〉,〈γ〉 66

4.3.3 The elements of the SDP problem associated with Polya’s

theorem . 69

4.3.4 A parallel algorithm for setting-up the SDP 71

4.4 Complexity analysis of the set-up algorithm . 71

4.4.1 Computational complexity analysis . 74

4.4.2 Communication complexity analysis . 75

4.5 A parallel SDP solver . 77

4.5.1 Structure of the SDP variables . 80

4.5.2 A parallel implementation for the SDP solver 83

4.6 Computational complexity analysis of the SDP algorithm 83

iv

CHAPTER Page

4.6.1 Complexity analysis for systems with large number of states 87

4.6.2 Complexity of increasing accuracy/decreasing Conservative-

ness . 88

4.6.3 Analysis of scalability/speed-up . 89

4.6.4 Synchronization and load balancing analysis 91

4.6.5 Communication graph of the algorithm . 93

4.7 Testing and validation . 93

4.7.1 Example 1: Application to control of a discretized PDE

model in fusion research . 94

4.7.2 Example 2: Accuracy and convergence. 98

4.7.3 Example 3: Evaluating speed-up . 100

4.7.4 Example 4: Maximum state-space and parameter dimen-

sions for a 9-node Linux-based cluster computer 103

5 PARALLEL ALGORITHMS FOR ROBUST STABILITY ANALYSIS

OVER HYPERCUBES . 105

5.1 Background and motivation . 105

5.1.1 Our Contributions . 106

5.2 Notation and preliminaries on multi-homogeneous polynomials 106

5.3 Setting up the problem of robust stability analysis over multi-simplex111

5.3.1 General formulae for calculating coefficients β and H 113

5.3.2 The SDP elements associated with the multi-simplex version

of Polya’s theorem . 114

5.3.3 A parallel algorithm for setting up the SDP 116

5.4 Computational complexity analysis of the set-up algorithm 116

v

CHAPTER Page

5.4.1 Computational cost of the set-up algorithm: 116

5.4.2 Communication cost of the set-up algorithm: 118

5.4.3 Speed-up and memory requirement of the set-up algorithm: . 119

5.5 Testing and validation . 121

5.5.1 Example 1: Evaluating speed-up . 121

5.5.2 Example 2: Verifying robust stability over a hypercube 121

5.5.3 Example 2: Evaluating accuracy . 123

6 PARALLEL ALGORITHMS FOR NONLINEAR STABILITY ANALYSIS125

6.1 Background and Motivation . 125

6.1.1 Our contributions . 127

6.2 Definitions and Notation . 128

6.3 Statement of the stability problem . 132

6.4 Expressing the stability problem as a linear program 133

6.5 Computational complexity analysis . 139

6.5.1 Complexity of the LP associated with Handelman’s repre-

sentation . 141

6.5.2 Complexity of the SDP associated with Polya’s algorithm . . . 142

6.5.3 Complexity of the SDP associated with SOS algorithm 143

6.5.4 Comparison of the Complexities . 145

6.6 Numerical results . 145

7 OPTIMIZATION OF SMART GRID OPERATION: OPTIMAL UTIL-

ITY PRICING AND DEMAND RESPONSE . 151

7.1 Background and motivation . 151

7.1.1 Our contributions . 155

vi

CHAPTER Page

7.2 Problem statement: user-level and utility level problems 157

7.2.1 A model for the building thermodynamics 157

7.2.2 Calibrating the thermodynamics model . 159

7.2.3 User-level problem I: optimal thermostat programming 160

7.2.4 User-level problem II: 4-setpoint thermostat program 162

7.2.5 Utility-level optimization problem . 163

7.3 Solving user- and utility-level problems by dynamic programming . . 166

7.4 Policy implications and analysis . 172

7.4.1 Effect of electricity prices on peak demand and production

costs . 175

7.4.2 Optimal thermostat programming with optimal electricity

prices . 179

7.4.3 Optimal thermostat programming for solar customers - im-

pact of distributed solar generation on non-solar customers . . 181

8 SUMMARY, CONCLUSIONS AND FUTURE DIRECTIONS OF OUR

RESEARCH . 183

8.1 Summary and conclusions . 183

8.2 Future directions of our research . 187

8.2.1 A Parallel algorithm for nonlinear stability analysis using

Polya’s theorem. 187

8.2.2 Parallel computation for parameter-varyingH∞-optimal con-

trol synthesis . 191

8.2.3 Parallel computation of value functions for approximate dy-

namic programming . 194

vii

CHAPTER Page

REFERENCES . 198

viii

LIST OF TABLES

Table Page

4.1 Per processor, per iteration computational complexity of the set-up

algorithm. L0 is the number of monomials is P (α); L is the number

of monomials in
(∑l

i=1 αi

)d1
P (α); M is the number of monomials in

(∑l
i=1 αi

)d2
P (α)A(α). 75

4.2 Per processor, per iteration communication complexity of the set-up

algorithm. L0 is the number of monomials is P (α); L is the number

of monomials in
(∑l

i=1 αi

)d1
P (α); M is the number of monomials in

(∑l
i=1 αi

)d2
P (α)A(α). 77

4.3 Data for Example 1: Nominal values of the plasma resistivity 95

4.4 Upper bounds found for Lopt by the SOS algorithm using different

degrees for x and α (inf: infeasible, O.M.: Out of Memory) 100

5.1 The lower-bounds on r∗ computed by Algorithm 7 using different de-

gree vector Dp and using methods in Bliman (2004a) and Chesi (2005). 124

7.1 Building’s parameters as determined in Section 7.2.1 175

7.2 On-peak, off-peak & demand prices of Arizona utility APS 176

7.3 CASE I: Electricity bills (for three days) and demand peaks for different

strategies. Electricity prices are from APS. 177

7.4 CASE I: Costs of production (for three days) and Demand peaks for

various prices and strategies. Prices are non-regulated and SRP’s coef-

ficients of utility cost are: τ =0.00401 $/(MWh)2, ν =4.54351 $/(MWh)177

7.5 CASE II: Production costs (for three days) and demand peaks asso-

ciated with regulated optimal electricity prices (calculated by Algo-

rithm 10) and SRP’s electricity prices. SRP’s marginal costs: a =

0.0814 $
kWh

, b = 59.76 $
kW

. 180

ix

7.6 CASE III: Optimal electricity prices, bills (for three days) and de-

mand peaks for various customers. Marginal costs from SRP: a =

0.0814 $
kWh

, b = 59.76 $
kW

. 182

x

LIST OF FIGURES

Figure Page

4.1 Various interconnections of nodes in a cluster computer (Top), Typical

memory hierarchies of a GPU and a multi-core CPU (bottom) 56

4.2 Number of β〈h〉,〈γ〉 coefficients vs. the number of uncertain parameters

for different Polya’s exponents and for dp = 2 . 67

4.3 Number of H〈h〉,〈γ〉 coefficients vs. the number of uncertain parameters

for different Polya’s exponents and for dp = da = 2 67

4.4 Memory required to store the coefficients β〈h〉,〈γ〉 and H〈h〉,〈γ〉 vs. num-

ber of uncertain parameters, for different d1, d2 and dp = da = 2 68

4.5 Graph representation of the network communication of the set-up algo-

rithm. (a) Communication directed graph for the case α ∈ ∆3, dp = 2.

(b) Communication directed graph for the case α ∈ ∆4, dp = 2. 76

4.6 Theoretical speed-up vs. No. of processors for different system dimen-

sions n for l = 10, dp = 2, da = 3 and d1 = d2 = 4, where L+M = 53625 91

4.7 The number of blocks of the SDP elements assigned to each processor.

An illustration of load balancing. 92

4.8 The communication graph of the SDP algorithm . 93

4.9 Speed-up of set-up and SDP algorithms vs. number of processors for

a discretized model of magnetic flux in Tokamak . 98

4.10 Upper bound on optimal L vs. Polya’s exponents d1 and d2, for differ-

ent degrees of P (α). (d1 = d2). 101

4.11 Error of the approximation for the optimal value of L vs. degrees of

P (α), for different Polya’s exponents . 101

xi

Table Page

4.12 Computation time of the parallel set-up algorithm vs. number of pro-

cessors for different dimensions of linear system n and numbers of un-

certain parameters l- executed on Blue Gene supercomputer of Argonne

National Labratory . 102

4.13 Computation time of the parallel SDP algorithm vs. number of proces-

sors for different dimensions of primal variable (L +M)n and of dual

variable K- executed on Karlin cluster computer . 103

4.14 Comparison between the speed-up of the present SDP solver and SD-

PARA 7.3.1, executed on Karlin cluster computer . 104

4.15 Largest number of uncertain parameters of n-dimensional systems for

which the set-up algorithm (Left) and SDP solver (Right) can solve

the robust stability problem of the system using 24 and 216 Gig of RAM104

5.1 Number of operations versus dimension of the hypercube, for different

Polya’s exponents d1 = d2 = d. (H): hypercube and (S): simplex. 119

5.2 Required memory for the calculation of SDP elements vs. number of

uncertain parameters in hypercube and simplex, for different state-

space dimensions and Polya’s exponents d1 = d2. (H): hypercube, (S):

simplex. 120

5.3 Execution time of the set-up algorithm vs. number of processors, for

different state-space dimensions n and Polya’s exponents 122

6.1 An illustration of a D-decomposition of a 2D polytope. λi(x) := hTi,jx+

gi,j for j = 1, · · · , mi. 129

6.2 Decomposition of the hypercube in 1−,2− and 3−dimensions 141

xii

Table Page

6.3 Number of decision variables and constraints of the optimization prob-

lems associated with Algorithm 1, Polya’s algorithm and SOS algo-

rithm for different degrees of the Lyapunov function and the vector

field f(x) . 146

6.4 The largest level-set of Lyapunov function (6.21) inscribed in Poly-

tope (6.20) . 147

6.5 Largest level sets of Lyapunov functions of different degrees and their

associated parallelograms . 150

6.6 Largest level sets of Lyapunov functions of different degrees and their

associated polytopes . 150

7.1 Effect of solar power on demand: Net loads for typical summer and

winter days in Arizona in 2014 and for 2029 (projected), from Ari-

zona Public Service (2014) . 152

7.2 Peak to average demand of electricity and its trend-line in California

and New England from 1993 to 2012, data adopted from Shear (2014) . 153

7.3 A schematic view of our thermal mass model . 159

7.4 Simulated and measured power consumptions . 160

7.5 An illustration for the programming periods of the 4-Setpoint thermo-

stat problem, switching times ti, pricing function r, Li and ∆ti. 163

7.6 External temperature of three typical summer days in Phoenix, Ari-

zona. Shaded areas correspond to on-peak hours. 175

7.7 CASE I: Power consumption and temperature settings for various pro-

gramming strategies using APS’s rates. 178

xiii

Table Page

7.8 CASE I: Power consumption and optimal temperature settings for

high, medium and low demand penalties. Shaded areas correspond

to on-peak hours. 178

7.9 CASE I: Power consumption and temperature settings for high, medium

and low demand penalties using 4-Setpoint thermostat programming. . . 179

7.10 CASE III: Power consumption, solar generated power and optimal tem-

perature settings for the non-solar and solar users. 182

xiv

Chapter 1

INTRODUCTION

Consider problems such as portfolio optimization, path-planning, structural de-

sign, local stability of nonlinear ordinary differential equations, control of time-delay

systems and control of systems with uncertainties. These problems can all be formu-

lated as polynomial optimization and/or optimization of polynomials. In this disser-

tation, we show how computation can be applied in a variety of ways to solve these

classes of problems. A simple example of polynomial optimization is β∗ = min
x∈Q

p(x),

where p : Rn → R is a multi-variate polynomial and Q ⊂ Rn. In general, since p(x)

and Q are not convex, this is not a convex optimization problem. In fact, it has been

proved that polynomial optimization is NP-hard (L. Blum and Smale (1998)). Fortu-

nately, algorithms such as branch-and-bound can find arbitrarily precise solutions to

polynomial optimization problems by repeatedly partitioning Q into subsets Qi and

computing lower and upper bounds on p(x) over each Qi. To find an upper bound

for p(x) over each Qi, one could use a local optimization algorithm such as sequential

quadratic programming. To find a lower bound on p(x) over each Qi, one can solve

the following optimization problem.

β∗ = max
y∈R

y

subject to p(x)− y ≥ 0 for all x ∈ Qi. (1.1)

This problem is in fact an instance of the problem of optimization of polynomials.

Optimization of polynomials is convex, yet again NP-hard. We will discuss optimiza-

tion of polynomials in more depth in Chapter 2. In the following, we discuss some of

1

the state-of-the-art methods for solving optimization of polynomials - hence finding

lower bounds on β∗.

1.1 Sum of squares method

One approach to find lower bounds on the optimal objective β∗ is to apply Sum

of Squares (SOS) programming (Parrilo (2000), Papachristodoulou et al. (2013)). A

polynomial p is SOS if there exist polynomials qi such that p(x) =
∑r

i=1 qi(x)
2. The

set {qi ∈ R[x], i = 1, · · · , r} is called an SOS decomposition of p(x), where R[x] is the

ring of real polynomials. An SOS program is an optimization problem of the form

min
x∈Rm

cTx

subject to Ai,0(y) +
m∑

j=1

xjAi,j(y) is SOS, i = 1, · · · , k, (1.2)

where c ∈ Rm and Ai,j ∈ R[y] are given. If p(x) is SOS, then clearly p(x) ≥ 0 on

Rn. While verifying p(x) ≥ 0 on Rn is NP-hard, verifying whether p(x) is SOS -

hence non-negative - can be done in polynomial time (Parrilo (2000)). It was first

shown in Parrilo (2000) that verifying the existence of a SOS decomposition is a

Semi-Definite Program (SDP). Fortunately, there exist several algorithms (Monteiro

(1997); Helmberg et al. (1996); Alizadeh et al. (1998)) and solvers (Yamashita et al.

(2010); Sturm (1999); Tutuncu et al. (2003)) which solve SDPs to arbitrary precision

in polynomial time. To find lower bounds on β∗ = minx∈Rn p(x), consider the SOS

program

y∗ = max
y∈R

y

subject to p(x)− y is SOS.

Clearly y∗ ≤ β∗. One can compute y∗ by performing a bisection search on y and using

semi-definite programming to verify p(x) − y is SOS. SOS programming can also be

2

used to find lower bounds on global minimum of polynomials over a semi-algebraic set

S := {x ∈ Rn : gi(x) ≥ 0, i = 1, · · · , m} generated by gi ∈ R[x]. Given Problem (1.1)

with x ∈ S, Positivstellensatz results (Stengle (1974), Putinar (1993), Schmudgen

(1991)) define a sequence of SOS programs whose objective values form a sequence of

lower bounds on the global minimum β∗. For instance, Putinar’s Positivstellensatz

defines the optimization problem

yd := max
y∈R

y

subject to p(x)− y = s0(x) +

m∑

i=1

si(x)gi(x), si ∈ Σ2d, (1.3)

where Σ2d denotes the cone of SOS polynomials of degree 2d. Putinar (1993) has

shown that under certain conditions (verifiable by semi-definite programming) on S

and for sufficiently large d, yd = β∗. See Laurent (2009) for a comprehensive discussion

on the Positivstellensatz results.

1.2 Moments method

As a dual to SOS program, Lasserre (2001) used the theory of moments to define

a sequence of lower bounds for global optima of polynomials. Let β∗ := minx∈S p(x),

where S := {x ∈ Rn : gi(x) ≥ 0, i = 1, · · · , m} is compact and p(x) :=
∑

α∈Wp

pαx
α

with the index set Wp := {α ∈ Nn : ‖α‖1 ≤ p}. Let us denote the degree of gi by ei.

Then, Lasserre (2001) showed that zd defined as

zd := min
z

∑

α∈Wp

pαzα

subject to Md(z) ≥ 0

Md−ei(gi z) ≥ 0 for i = 1, · · · , m, (1.4)

3

is a lower bound on β∗. In Equation (1.4), z := {zα}α∈I2d , where zα :=
∫
S
xαµ(dx) is

called the moment of order α and is represented by any probability measure1 µ on

Rn such that µ(R\S) = 0. Moreover, Md(z) is called the moment matrix associated

with sequence z and in two dimensions is defined as

Md(z)=




1 z[1,0] z[0,1] z[2,0] z[1,1] z[0,2] · · · z[d,0] · · · z[0,d]

z[1,0] z[2,0] z[1,1] z[3,0] z[2,1] z[1,2] · · · z[d+1,0] · · · z[1,d]

z[0,1] z[1,1] z[0,2] z[2,1] z[1,2] z[0,3] · · · z[d,1] · · · z[0,d+1]

z[2,0] z[3,0] z[2,1] z[4,0] z[3,1] z[2,2] · · · z[d+2,0] · · · z[2,d]

z[1,1] z[2,1] z[1,2] z[3,1] z[2,2] z[1,3] · · · z[d+1,1] · · · z[1,d+1]

z[0,2] z[1,2] z[0,3] z[2,2] z[1,3] z[0,4] · · · z[d,2] · · · z[0,d+2]

...
...

...
...

...
...

. . . · · · · · · · · ·

z[d,0] z[d+1,0] z[d,1] z[d+2,0] z[d+1,1] z[d,2] · · · z[2d,0] · · · z[d,d]
...

...
...

...
...

...
...

...
. . .

...

z[0,d] z[1,d] z[0,d+1] z[2,d] z[1,d+1] z[0,d+2] · · · z[d,d] · · · z[0,2d]




.

It can be shown that the SDPs in (1.4) are duals to the SDPs in (1.3) - implying

that yd ≤ zd. Indeed, if S has a non-empty interior, then for all sufficiently large d,

the duality gap is zero, i.e., yd = zd. See Laurent (2009) and Jeyakumar et al. (2014)

for conditions on convergence of the lower bounds to global minima and extension of

moments method to polynomial optimization over non-compact semi-algebraic sets.

In the sequel, we explore the merits of some of the alternatives to SOS pro-

gramming and moments method. There exist several results in the literature that

can be applied to polynomial optimization; e.g., Quantifier Elimination (QE) algo-

1Let X be a set and M be a σ−algebra over X . Then µ : M → [0, 1] is a probability measure if

1. µ(∅) = 0 and µ(X) = 1.

2. For all countable collections {Si}i∈N of pairwise disjoint subsets of M , µ(
⋃
i∈N

Si) =
∑
i∈N

µ(Si).

4

rithms (Collins and Hoon (1991)) for testing the feasibility of semi-algebraic sets,

Reformulation Linear Techniques (RLTs) (Sherali and Tuncbilek (1992, 1997)) for

linearizing polynomial optimizations, Polya’s theorem (G. Hardy and Polya (1934))

for positivity over the positive orthant, Bernstein’s (Boudaoud et al. (2008); Leroy

(2012)) and Handelman’s (Handelman (1988a)) theorems for positivity over simplices

and convex polytopes, and other results based on Groebner bases (Adams and Lous-

taunau (1994)) and Blossoming (Ramshaw (1987)) techniques. In particular, we will

focus on Polya’s, Bernstein’s and Handelman’s results in more depth and elaborate

on the computational advantages of these results over the others. The discussion of

the other results are beyond the scope of this dissertation, however the ideas behind

these results can be summarized as follows.

1.3 Quantifier elimination

QE algorithms apply to First-Order Logic formulae, e.g.,

∀x ∃y (f(x, y) ≥ 0 ⇒ ((g(a) < xy) ∧ (a > 2)),

to eliminate the quantified variables x and y (preceded by quantifiers ∀, ∃) and con-

struct an equivalent formula in terms of the unquantified variable a. The key result

underlying QE algorithms is Tarski-Seidenberg theorem (Tarski (1951)). The theo-

rem implies that for every formula of the form ∀x ∈ Rn ∃y ∈ Rm(fi(x, y, a) ≥ 0),

where fi ∈ R[x, y, a], there exists an equivalent quantifier-free formula of the form

∧i(gi(a) ≥ 0) ∨j (hj(a) ≥ 0) with gi, hj ∈ R[a]. QE implementations (e.g., Brown

(2003) and Dolzmann and Sturm (1997)) with a bisection search yields the exact

solution to optimization of polynomials, however the complexity scales double expo-

nentially in the dimension of variables x, y.

5

1.4 Reformulation linear techniques

RLT was initially developed to find the convex hull of feasible solutions of zero-one

linear programs (Sherali and Adams (1990)). It was later generalized by Sherali and

Tuncbilek (1992) to address polynomial optimizations of the form minx p(x) subject

to x ∈ [0, 1]n ∩ S. RLT constructs a δ−hierarchy of linear programs by performing

two steps. In the first step (reformulation), RLT introduces the new constraints

∏
i xi
∏

j(1 − xj) ≥ 0 for all i, j : i + j = δ. In the second step (linearization),

RTL defines a linear program by replacing every product of variables xi by a new

variable. By increasing δ and repeating the two steps, one can construct a δ−hierarchy

of lower bounding linear programs. A combination of RLT and branch-and-bound

partitioning of [0, 1]n was developed by Sherali and Tuncbilek (1997) to achieve tighter

lower bounds on the global minimum. For a survey of different extensions of RLT

see Sherali and Liberti (2009).

1.5 Groebner basis technique

Groebner bases can be used to reduce a polynomial optimization over a semi-

algebraic set S := {x ∈ Rn : gi(x) ≥ 0, hj(x) = 0} to the problem of finding the roots

of univariate polynomials (Chang and Wah (1994)). First, one needs to construct the

system of polynomial equations

[∇xL(x, λ, µ),∇λL(x, λ, µ),∇µL(x, λ, µ)] = 0, (1.5)

where L := p(x)+
∑

i λigi(x)+
∑

j µjhj(x) is the Lagrangian function. It is well-known

that the set of solutions to (1.5) is the set of extrema of the polynomial optimization

minx∈S p(x). Let

[f1(x, λ, µ), · · · , fN(x, λ, µ)] := [∇xL(x, λ, µ),∇λL(x, λ, µ),∇µL(x, λ, µ)] .

6

Using the elimination property (Adams and Loustaunau (1994)) of the Groebner

bases, the minimal Groebner basis of the ideal of f1, · · · , fN defines a triangular-form

system of polynomial equations. This system can be solved by calculating one variable

at a time and back-substituting into other polynomials. The most computationally

expensive part is the calculation of the Groebner basis, which in the worst case scales

double-exponentially in the number of decision variables.

1.6 Blossoming technique

The blossoming technique involves a bijective map between the space of poly-

nomials p : Rn → R and the space of multi-affine functions q : Rd1+d2+···+dn → R

(polynomials that are affine in each variable), where di is the degree of p in variable

xi. For instance, the blossom of a cubic polynomial p(x) = ax3 + bx2 + cx+ d is the

multi-affine function

q(z1, z2, z3) = az1z2z3 +
b

3
(z1z2 + z1z3 + z2z3) +

c

3
(z1 + z2 + z3) + d.

It can be shown that the blossom, q, of any polynomial p ∈ R[x] with degree di in

variable xi satisfies the so-called diagonal property (Ramshaw (1987)), i.e.,

p(z1, z2, · · · , zn) = q(z1, · · · , z1︸ ︷︷ ︸
d1 times

, · · · , zn, · · · , zn︸ ︷︷ ︸
dn times

) for all z ∈ R.

By using this property, one can reformulate any polynomial optimization minx∈S p(x)

as

min
z∈Q

q(z)

subject to zφ(i) = zφ(i)−j for i = 1, · · · , n and for j = 1, · · · , di − 1, (1.6)

where φ(i) :=
i∑

k=1

di and Q is the semi-algebraic set defined by the blossoms of the

generating polynomials of S. In the special case, where S is a hypercube, Sassi and Gi-

rard (2012) showed that the Lagrangian dual optimization problem to Problem (1.6)

7

is a linear program. Hence, the optimal objective value of this linear program is a

lower bound on the minimum of p(x) over the hypercube. Application of blossoming

in estimation of reachability sets of discrete-time dynamical systems can be found

in Sassi et al. (2012).

1.7 Bernstein’s, Polya’s and Handelman’s theorems

While QE, RLT, Groebner bases and blossoming are all useful techniques with

advantages and disadvantages (such as exponential complexity), we focus on Polya’s,

Bernstein’s and Handelman’s theorems - results which yield polynomial-time tests

for positivity of polynomials. Polya’s theorem yields a basis to represent the cone

of polynomials that are positive over the positive orthant. Bernstein’s and Handel-

man’s theorems yield bases which represent the cones of polynomials that are positive

over simplices and convex polytopes, respectively. Similar to SOS programming, one

can find certificates of positivity using Polya’s, Bernstein’s and Handelman’s repre-

sentations by solving a sequence of Linear Programs (LPs) and/or SDPs. However,

unlike the SDPs associated with SOS programming, the SDPs associated with these

theorems have a block-diagonal structure. In this dissertation, we exploit this struc-

ture to design parallel algorithms for optimization of polynomials of high degrees

with several independent variables. See Kamyar and Peet (2012a), Kamyar and Peet

(2012b), Kamyar and Peet (2013) and Kamyar et al. (2013) for parallel implementa-

tions of variants of Polya’s theorem applied to various Lyapunov inequalities.

Unfortunately, unlike the SOS methodology, the bases given by Polya’s theorem,

Bernstein’s theorem and Handelman’s theorem cannot be used to represent the cone

of non-negative polynomials which have zeros in the interior of simplices and poly-

topes. This is indeed a barrier against using these theorems to compute polynomial

Lyapunov functions, since Lyapunov functions, by definition, have a zero at the ori-

8

gin. There do, however, exist some variants of Polya’s theorem which consider zeros

at the corners Powers and Reznick (2006) and edges Castle et al. (2011) by con-

structing local certificates of non-negativity over closed subsets, Ci, of the simplex

such that ∪Ci is the simplex. These results apply to non-negative polynomials whose

zeros are on the corners and/or edges of the simplex. Moreover, Oliveira et al. (2008)

and Kamyar and Peet (2012b) propose versions of Polya’s theorem which prove pos-

itivity over hypercubes by: 1) Providing certificates of positivity on the Cartesian

product of unit simplices; and 2) Introducing a one-to-one map between products of

unit simplices (multi-simplex) and hypercubes. A generalization of Polya’s theorem

for proving positivity on the entire Rn was introduced by de Loera and Santos (1996).

This generalization first applies Polya’s theorem to each orthant of Rn to compute

a certificate of positivity over each orthant. Then, it uses the merging technique

in Lombardi (1991) to obtain a unified certificate - in the form of SOS of rationals -

over Rn. A recent extension of Polya’s theorem by Dickinson and Pohv (2014) can be

used to prove positivity over an intersection of a semi-algebraic set with the positive

orthant. Finally, positivity of polynomials with rational exponents can be verified by

a weak version of Polya’s theorem in Delzell (2008).

1.8 Motivations and summary of contributions

The novelty of our research centers on the areas of: computation and energy.

In the realm of computation, we observed that processors speeds are not growing

at the rate they once were. The entire controls community seems to have ignored

this fact, since everyone speaks of polynomial-time algorithms as the gold standard

for what the solution to a control problem should look like. But what good is a

polynomial-time algorithm when the degree of the polynomial is bounded by the

current state-of-the-art computers. Our solution was to look at the only area where

9

the computing world was getting faster (growing) - supercomputers. Surprisingly,

there have been no studies on the use of parallel computers for controls since the

1970’s. The reason was that the mathematical machinery for analysis and control is

based on Semidefinite Programming, which is inherently sequential (NC-hard). Our

idea, however, was that if the SDP problem has special structure, then this structure

can be exploited to distribute computation among processors. With this in mind, we

decided to seek out alternatives to the classical Sum-of-Squares approach to nonlinear

and robust stability analyses. We identified more than seven different alternatives to

the Sum-of-Squares approach. In the end, not all of these had usable structures for

parallelization. However, we identified three which did: polynomial positivity results

by Handelman, Polya and Bernstein. To demonstrate how well this approach works

in practice, we developed a Message Passing Interface code for Polya’s theorem. The

result enabled stability analysis for systems three times larger (in terms of number

of states) than any other algorithm. As a real-world application, we further used our

code to analyze robust stability of plasma in the Tore Supra Tokamak reactor.

In the realm of energy, we noticed that the two electrical utility companies of

Arizona (APS and SRP) have recently started charging their customers for their

maximum rate of electricity usage. This intrigued us as a mathematical problem

of how to optimize the thermostat settings of HVAC systems (the major sources of

electricity consumption in Arizona) in order to minimize the electricity bill. This

problem is interesting in that the time of peak electricity use is not usually at the

hottest time of day, but rather a couple of hours after - a behaviour which is usually

associated with a diffusion PDE. We used the heat equation to model the thermostat

programming problem as an optimal control problem and it turned out to be unsolved.

The mathematical reason being that the cost function is not separable in time - a

property which is necessary for optimal control algorithms to converge to an optimal

10

solution. We noticed that an arbitrarily precise approximation of the cost function

however, satisfy certain properties which make it solvable on a Pareto-optimal front.

The result is an optimal thermostat which can significantly reduce the electricity bills

and peak demand of both solar and nonsolar customers under the current pricing

plans. Expanding this approach, we started thinking about related topics, such as

how to set the demand price on order to influence customers’ behavior in an optimal

manner. Based on that, we proposed an optimal pricing algorithm which resulted

in a moderate reduction in the cost of generating, transmission and distribution of

electricity at SRP.

We highlight our contributions as follows. In Chapter 4, we propose a parallel set-

up algorithm which applies Polya’s theorem to the parameter-dependent Lyapunov

inequalities P (α) > 0 and AT (α)P (α)+P (α)A(α) < 0 with α belonging to the stan-

dard simplex. Feasibility of these inequalities implies robust stability of the system

of linear Ordinary Differential Equations (ODEs) ẋ(t) = A(α)x(t) over the simplex.

The output of our set-up algorithm is a sequence of SDPs of increasing size and pre-

cision. A solution to any of these SDPs yield a Lyapunov function which is quadratic

in the states and depends polynomially on the uncertain parameters. An interesting

property of these SDPs is that they possess a block-diagonal structure. We show how

this structure can be exploited to design a parallel interior-point primal-dual SDP

solver which distributes the computation of search direction among a large number of

processors. We then produce a Message Passing Interface (MPI) implementation of

our set-up and solver algorithms. Through numerical experiments, we show that these

algorithms achieve a near-linear theoretical and experimental speed-up (the increase

in processing speed per additional processor). Moreover, our numerical experiments

on cluster computers demonstrate the ability of our algorithms in utilizing hundreds

and potentially thousands of processors to analyze systems with 100+ dimensional

11

state-space.

In Chapter 5, we generalize our methodology to perform robust stability analy-

sis over hypercubes. We first propose an extended version of Polya’s theorem. This

theorem parameterizes every homogeneous polynomial which is positive over a hyper-

cube. We then propose an extended set-up algorithm which maps the computation

and memory - associated with applying the extended Polya’s theorem to stability

analysis problems - to parallel machines. This set-up algorithm has no centralized

computation and its per-core communication complexity scales polynomially with

the state-space dimension and the number of uncertain parameters. As the result, it

demonstrates a near-linear speed-up.

In Chapter 6, we further extend our analysis to address stability of nonlinear

ODEs defined by a polynomial vector field f . Our proposed solution to this prob-

lem is to reformulate the nonlinear stability problem using only strictly positive

forms. Specifically, we use our extended version of Polya’s theorem in Chapter 5

to compute a matrix-valued homogeneous polynomial P (x) such that P (x) > 0 and

〈∇(xTP (x)x), f(x)〉 < 0 for all x inside a hypercube containing the origin in its in-

terior. This yields a Lyapunov function of the form V (x) = xTP (x)x for the system

ẋ(t) = f(x(t)). To do this, we design a new parallel set-up algorithm which applies

Polya’s theorem to the inequalities P (x) > 0 and 〈∇(xTP (x)x), f(x)〉 < 0. The result

is a sequence of SDPs with coefficients of P as decision variables. Again, we show

that these SDPs have a block-diagonal structure - thus can be solved in parallel using

our SDP solver in Chapter 4. As an extension to stability analysis over arbitrary

convex polytopes, we then propose an algorithm which applies Handelman’s theo-

rem to the aforementioned Lyapunov inequalities. Unfortunately, as in the case of

Polya’s theorem, Handelman’s theorem is incapable of parameterizing polynomials

which possess zeros in the interior of a polytope. However, we show that this is not

12

the case if the zeros are on the vertices of the polytope. By using this property,

we propose the following methodology: 1) Decompose the polytope into several con-

vex sub-polytopes with a common vertex on the equilibrium; 2) Apply Handelman’s

theorem to Lyapunov inequalities defined on each sub-polytope. The result is a se-

quence of linear programs whose solutions define a piecewise polynomial Lyapunov

function V - hence proving asymptotic stability over the sublevel-set of V inscribed in

the original polytope. We provide a comprehensive comparison between the compu-

tational complexities of SOS algorithm, our Polya’s algorithms and our Handelman

algorithm. Our analysis shows that by using a certain decomposition scheme, our

algorithm (based on Handelman’s theorem) has the lowest computational complexity

compared to the SOS and Polya’s algorithms.

13

Chapter 2

FUNDAMENTAL RESULTS FOR OPTIMIZATION OF POLYNOMIALS

In this chapter, we first provide an overview of fundamental theorems on posi-

tivity of polynomials over various sets. Then, we show how applying these theorems

to optimization of polynomials problems of the Form (1.1) yields tractable convex

optimization problems in the forms of LPs and/or SDPs. Any solution to these LPs

and/or SDPs yields a lower-bound on the global minimum of the polynomial opti-

mization problem min
x∈Q

p(x).

2.1 Background on positivity results

In 1900, Hilbert published a list of mathematical problems, one of which is: For

every non-negative f ∈ R[x], does there exist any non-zero q ∈ R[x] such that q2f is a

sum of squares? In other words, is every non-negative polynomial a sum of squares of

rational functions? This question was motivated by his earlier works (Hilbert (1888,

1893)), in which he proved: 1) Every non-negative bi-variate degree 4 homogeneous

polynomial (A polynomial whose monomials all have the same degree) is a SOS of

three polynomials; 2) Every bi-variate non-negative polynomial is a SOS of four ra-

tional functions; 3) Not every non-negative homogeneous polynomial with more than

two variables and degree greater than 5 is SOS of polynomials. While there exist

systematic ways (e.g., semi-definite programming) to prove that a non-negative poly-

nomial is SOS, proving that a non-negative polynomial is not a SOS of polynomials

is not straightforward. Indeed, the first example of a non-negative non-SOS polyno-

mial was published eighty years after Hilbert posed his 17th problem. Motzkin (1967)

14

constructed a PSD degree 6 polynomial with three variables which is not SOS:

M(x1, x2, x3) = x41x
2
2 + x21x

4
2 − 3x21x

2
2x

2
3 + x63. (2.1)

Non-negativity of M follows directly from the inequality of arithmetic and geometric

means, i.e., (a1+ · · ·+an)/n ≥ n
√
a1 · · · an, by letting n = 3, a1 = x41x

2
2, a2 = x21x

4
2 and

a3 = x63. To show that M is not SOS, first by contradiction suppose that there exist

some N ∈ N and coefficients bi,j ∈ R such that

M(x1, x2, x3) =
N∑

i=1

([
bi,1 · · · bi,20

][
x31 x21x2 x21x3 x1x

2
2 x1x2x3 x1x

2
3 x32

x22x3 x2x
2
3 x33 x21 x1x2 x2x3 x22 x2x3 x23 x1 x2 x3 1

]T
)2

. (2.2)

By substituting (2.1) in (2.2) and equating the coefficients of both sides of (2.2), it

follows that
∑N

i=1 b
2
i,5 = −3. This is a contradiction, thus M is not SOS of polyno-

mials. A generalization of Motzkin’s example is given by Robinson (Reznick (2000)).

Polynomials of the form (
∏n

i=1 x
2
i)f(x1, · · · , xn) + 1 are not SOS if polynomial f of

degree < 2n is not SOS. Hence, although the non-homogeneous Motzkin polynomial

M(x1, x2, 1) = x21x
2
2(x

2
1 + x22 − 3) + 1 is non-negative it is not SOS.

Artin (1927) answered Hilbert’s problem in the following theorem.

Theorem 1. (Artin’s theorem) A polynomial f ∈ R[x] satisfies f(x) ≥ 0 on Rn if

and only if there exist SOS polynomials N and D 6= 0 such that f(x) = N(x)
D(x)

.

Although Artin settled Hilbert’s problem, his proof was neither constructive nor

gave a characterization of the numerator N and denominator D. In 1939, Habicht

provided some structure on N and D for a certain class of polynomials f . Habicht

(1939) showed that if a homogeneous polynomial f is positive definite and can be ex-

pressed as f(x1, · · · , xn) = g(x21, · · · , x2n) for some polynomial g, then one can choose

the denominator D =
∑n

i=1 x
2
i . Moreover, he showed that by using D =

∑n
i=1 x

2
i ,

15

the numerator N can be expressed as a sum of squares of monomials. Habicht used

Polya’s theorem (Hardy et al. (1934), Theorem 56) to obtain the above characteriza-

tions for N and D.

Theorem 2. (Polya’s theorem) Suppose a homogeneous polynomial p satisfies p(x) >

0 for all x ∈ {x ∈ Rn : xi ≥ 0,
∑n

i=1 xi 6= 0}. Then p(x) can be expressed as

p(x) =
N(x)

D(x)
,

where N(x) and D(x) are homogeneous polynomials with all positive coefficients. Fur-

thermore, for every homogeneous p(x) and some e ≥ 0, the denominator D(x) can be

chosen as (x1 + · · ·+ xn)
e.

To see Habicht’s result, suppose f is homogeneous and positive on the positive

orthant and can be expressed as f(x1, · · · , xn) = g(x21, · · · , x2n) for some homogeneous

polynomial g. By using Polya’s theorem, g(y) = N(y)
D(y)

, where y := (y1, · · · , yn) and

polynomials N and D have all positive coefficients. Furthermore, from Theorem 2

we may choose D(y) = (
∑n

i=1 yi)
e
. Then, (

∑n
i=1 yi)

e
g(y) = N(y). Now let xi =

√
yi,

then (
∑n

i=1 x
2
i)

e
f(x1, · · · , xn) = N(x21, · · · , x2n). Since N has all positive coefficients,

N(x21, · · · , x2n) is a sum of squares of monomials.

Similar to the case of positive definite polynomials, ternary positive semi-definite

polynomials of the form g(x21, x
2
2, x

2
3) can be parameterized using the denominator

D = (x21 + x22 + x23)
N (Scheiderer (2006)). However, in any dimension higher than

three, there exist positive semi-definite polynomials f such that if h2f is SOS, then

h has a zero other than the origin. Thus, for such polynomials f , Df cannot be

SOS. Indeed, it has been shown by Reznick (2005) that there exists no single SOS

polynomial D 6= 0 which satisfies f = N
D

for every positive semi-definite f and some

SOS polynomial N .

16

As in the case of positivity on R
n, there has been an extensive research regarding

positivity of polynomials on bounded sets. A pioneering result on local positivity is

Bernstein’s theorem (Bernstein (1915)). Bernstein’s theorem uses the polynomials

hi,j = (1 + x)i(1 − x)j as a basis to parameterize univariate polynomials which are

positive on [−1, 1].

Theorem 3. (Bernstein’s theorem) If a polynomial f(x) > 0 on [−1, 1], then there

exist ci,j > 0 such that

f(x) =
∑

i,j∈N: i+j=d

ci,j(1 + x)i(1− x)j

for some d > 0.

Powers and Reznick (2000) used Goursat’s transformation of f to find an up-

per bound on d. Unfortunately, the bound itself is a function of the minimum of

f on [−1, 1]. In order to reduce the computational complexity of testing positiv-

ity, Boudaoud et al. (2008) proposed a decomposition scheme for breaking [−1, 1]

into a collection of sub-intervals. Subsequently, Bernstein’s theorem was applied to

f over each sub-interval to find a certificate of positivity over each sub-interval. An

extension of this technique was proposed in Leroy (2012) to verify positivity over

simplices (a simplex is the convex hull of n + 1 vertices in Rn). Moreover, Leroy

(2012) provided a degree bound as a function of the minimum of f over the simplex,

the number of variables in f , the degree of f and the maximum of certain affine

combinations of the coefficients ci,j.

Handelman (1988b) also used products of affine functions as a basis (the Han-

delman basis) to extend Bernstein’s theorem to multi-variate polynomials which are

positive on convex polytopes.

Theorem 4. (Handelman’s Theorem) Given wi ∈ Rn and ui ∈ R, define the polytope

ΓK := {x ∈ Rn : wT
i x+ ui ≥ 0, i = 1, · · · , K}. If a polynomial f(x) > 0 on ΓK, then

17

there exist bα ≥ 0, α ∈ N
K such that for some d ∈ N,

f(x) =
∑

α∈NK

α1+···+αK≤d

bα(w
T
1 x+ u1)

α1 · · · (wT
Kx+ uK)

αK . (2.3)

Recently, S. Sankaranarayanan and Abrahm (2013) combined the Handelman ba-

sis with positive basis functions

xα1
1 · · ·xαn

n − lα and uα − xα1
1 · · ·xαn

n

to compute Lyapunov functions over a hypercube Φ, where lα and uα are the minimum

and maximum of xα1
1 · · ·xαn

n over the hypercube Φ. A generalization of Handelman’s

theorem was made by Schweighofer (2005) to verify non-negativity of polynomials

over compact semi-algebraic sets. Schweighofer used the cone of polynomials1 defined

in (2.5) to parameterize any polynomial f which has the following properties:

1. f is non-negative over the compact semi-algebraic set S defined in (2.4)

2. f = q1p1 + q2p2 + · · · for some qi in the Cone (2.5) and for some pi > 0 over

S ∩ {x ∈ R
n : f(x) = 0}

Theorem 5. (Schweighofer’s theorem) Suppose

S := {x ∈ R
n : gi(x) ≥ 0, gi ∈ R[x] for i = 1, · · · , K} (2.4)

is compact. Define the following set of polynomials which are positive on S.

Θd :=





∑

λ∈NK :λ1+···+λK≤d

sλg
λ1
1 · · · gλK

K : sλ are SOS



 (2.5)

If f ≥ 0 on S and there exist qi ∈ Θd and polynomials pi > 0 on S∩{x ∈ Rn : f(x) =

0} such that f =
∑

i qipi for some d, then f ∈ Θd.

1A set of polynomials S ⊂ R[x1, · · · , xn] is a cone if: 1) f1 ∈ S and f2 ∈ S imply f1f2 ∈ S and

f1 + f2 ∈ S; and 2) f ∈ R[x1, · · · , xn] implies f2 ∈ S.

18

On the assumption that gi are affine functions, pi = 1 and sλ are constant,

Schweighofer’s theorem gives the same parameterization of f as in Handelman’s the-

orem. Another special case of Schweighofer’s theorem is when λ ∈ {0, 1}K. In this

case, Schweighofer’s theorem reduces to Schmudgen’s Positivstellensatz (Schmudgen

(1991)). Schmudgen’s Positivstellensatz states that the cone

Λg :=





∑

λ∈{0,1}K

sλg
λ1
1 · · · gλK

K : sλ are SOS



 ⊂ Θd (2.6)

is sufficient to parameterize every f > 0 over the semi-algebraic set S generated by

{g1, · · · , gK}. Unfortunately, the cone Λg contains 2K products of gi, thus finding a

representation of Form (2.6) for f requires a search for at most 2K SOS polynomials.

Putinar’s Positivstellensatz (Putinar (1993)) reduces the complexity of Schmudgen’s

parameterization in the case where the quadratic module Mg (as defined in (2.8)) of

polynomials gi is Archimedean, i.e., there exists N ∈ N such that

N −
n∑

i=1

x2i ∈Mg. (2.7)

Equivalently, if there exists some f ∈ Mg such that {x ∈ Rn : f(x) ≥ 0} is compact,

then Mg is Archimedean.

Theorem 6. (Putinars’s Positivstellensatz) Let S := {x ∈ R
n : gi(x) ≥ 0, gi ∈

R[x] for i = 1, · · · , K} and define

Mg :=

{
s0 +

K∑

i=1

sigi : si are SOS

}
. (2.8)

If there exist some N > 0 such that N −∑n
i=1 x

2
i ∈ Mg, then Mg is Archimedean. If

Mg is Archimedean and f > 0 over S, then f ∈Mg.

Finding a representation of Form (2.8) for f , only requires a search for K+1 SOS

polynomials using SOS programming. Verifying the Archimedian Condition (2.7)

19

is also an SOS program. Observe that if Mg is not Archimedean, one can add a

redundant constraint r −∑n
i=1 x

2
i ≥ 0 (for sufficiently large r ∈ R) to S in order to

make Mg Archimedean. Archimedean condition clearly implies compactness of the

semi-algebraic set S because for any f ∈Mg, S ⊂ {x ∈ Rn : f(x) ≥ 0}. The following

theorem lifts the compactness requirement for the semi-algebraic set S.

Theorem 7. (Stengle’s Positivstellensatz) Let S := {x ∈ Rn : gi(x) ≥ 0, gi ∈

R[x] for i = 1, · · · , K} and define the cone

Λg :=





∑

λ∈{0,1}K

sλg
λ1
1 · · · gλK

K : sλ are SOS



 .

If f > 0 on S, then there exist p, g ∈ Λg such that qf = p+ 1.

Notice that the Parameterziation (2.3) in Handelman’s theorem is affine in f

and the coefficients bα. Likewise, the parameterizations in Theorems 5 and 6, i.e.,

f =
∑

λ sλg
λ1
1 · · · gλK

K and f = s0 +
∑

i sigi are affine in f, sλ and si. Thus, one can

use convex optimization to find bα, sλ, si and f efficiently. Unfortunately, since the

parameterization qf = p + 1 in Stengle’s Positivstellensatz is non-convex (bilinear

in q and f), it is more difficult to verify qf = p + 1 compared to Handelman’s and

Putinar’s parameterizations.

For a comprehensive discussion on the Positivstellensatz and other results on

polynomial positivity in algebraic geometry see Laurent (2009); Scheiderer (2009),

and Prestel and Delzell (2004).

2.2 Polynomial optimization and optimization of polynomials

Given f, gi, hj ∈ R[x] for i = 1, · · · , m and j = 1, · · · , r, define a semi-algebraic

set S as

S := {y ∈ R
n : gi(y) ≥ 0, hj(y) = 0 for i = 1, · · · , m and j = 1, · · · , r}. (2.9)

20

We then define polynomial optimization problems as

β∗ = min
x∈S

f(x). (2.10)

For example, the integer program

min
x∈Rn

p(x)

subject to aTi x ≥ bi for i = 1, · · · , m,

x ∈ {−1, 1}n, (2.11)

with given ai ∈ Rn, bi ∈ R and p ∈ R[x], can be formulated as a polynomial optimiza-

tion problem by setting f = p in (2.10) and setting

gi(x) = aTi x− bi for i = 1, · · · , m

hj(x) = x2j − 1 for j = 1, · · · , n.

in the definition of S in (2.9).

Given c ∈ Rn and gi, hj ∈ R[x] for i = 1, · · · , m and j = 1, · · · , r, we define

Optimization of polynomials problems as

γ∗ = max
x∈Rq

cTx

subject to F (x, y) := F0(y) +

q∑

i=1

xiFi(y) ≥ 0 for all y ∈ S, (2.12)

where S is defined in (2.9) and

Fi(y) :=
∑

α∈Edi

Fi,αy
α1
1 · · · yαn

n

with Edi := {α ∈ Nn :
∑n

i=1 αi ≤ di}, where coefficients Fi,α ∈ Rt×t, i = 0, · · · , q

are given. If the goal is to optimize over a polynomial variable, p(y), this may be

achieved using a basis of monomials for Fi(y) so that the polynomial variable becomes

21

p(y) =
∑

i xiFi(y). Optimization of polynomials can be used to find β∗ in (2.10). For

example, we can compute the optimal objective value η∗ of the polynomial optimiza-

tion problem

η∗ = min
x∈Rn

p(x)

subject to aTi x− bi ≥ 0 for i = 1, · · · , m,

x2j − 1 = 0 for j = 1, · · · , n,

by solving the problem

η∗ = max
η∈R

η

subject to p(y) ≥ η for y ∈ {y ∈ R
n : aTi y ≥ bi, y

2
j − 1 = 0 for i = 1, · · · , m

and j = 1, · · · , n}, (2.13)

where Problem (2.13) can be expressed in the Form (2.12) by setting

c = 1, q = 1, t = 1, F0 = p F1 = −1,

S := {y ∈ R
n : aTi y ≥ bi, y

2
j − 1 = 0 for i = 1, · · · , m, and j = 1, · · · , n}.

Optimization of polynomials (2.12) can be reformulated as the feasibility problem

γ∗ = min
γ

γ

subject to Sγ :=
{
x ∈ R

q : cTx > γ, F (x, y) ≥ 0 for all y ∈ S
}
= ∅, (2.14)

where c and F are given and

S := {y ∈ R
n : gi(y) ≥ 0, hj(y) = 0 for i = 1, · · · , m and j = 1, · · · , r},

where polynomials gi and hj are given. The question of feasibility of a semi-algebraic

set is NP-hard (L. Blum and Smale (1998)). However, if we have a test to verify

22

Sγ = ∅, we can find γ∗ by performing a bisection on γ. In the following section, we

use the results of Section 2.1 to provide sufficient conditions, in the form of Linear

Matrix Inequalities (LMIs), for Sγ = ∅.

2.3 Algorithms for optimization of polynomials

In this section, we discuss how to find lower bounds on β∗ for different classes of

polynomial optimization problems. The results in this section are primarily expressed

as methods for verifying Sγ = ∅ and can be used with bisection to solve polynomial

optimization problems.

2.3.1 Case 1: Optimization over the standard simplex ∆n

Define the standard unit simplex as

∆n := {x ∈ R
n :

n∑

i=1

xi = 1, xi ≥ 0}. (2.15)

Consider the polynomial optimization problem

γ∗ = min
x∈∆n

f(x),

where f is a homogeneous polynomial of degree d. If f is not homogeneous, we

can homogenize it by multiplying each monomial xα1
1 · · ·xαn

n in f by (
∑n

i=1 xi)
d−‖α‖1 .

Notice that since
∑n

i=1 xi = 1 for all x ∈ ∆n, the homogenized f is equal to f for

every x ∈ ∆n. To find γ∗, one can solve the following optimization of polynomials

problem.

γ∗ = max
γ∈R

γ

subject to f(x) ≥ γ for all x ∈ ∆n (2.16)

23

Clearly, Problem (2.16) can be re-stated as the following feasibility problem

γ∗ = min
γ∈R

γ

subject to Sγ := {x ∈ R
n : f(x)− γ < 0,

n∑

i=1

xi = 1, xi ≥ 0} = ∅.

For a given γ, we can use the following version of Polya’s theorem to verify Sγ = ∅.

Theorem 8. (Polya’s theorem, simplex version) If a homogeneous matrix-valued poly-

nomial F satisfies F (x) > 0 for all x ∈ ∆n := {x ∈ Rn :
∑n

i=1 xi = 1, xi ≥ 0}, then

there exists e ≥ 0 such that all the coefficients of
(

n∑

i=1

xi

)e

F (x)

are positive definite.

See pages 57-59 of G. Hardy and Polya (1934) for a proof. The converse of the

theorem only implies F ≥ 0 over the unit simplex. Given γ ∈ R, it follows from the

converse of Theorem 8 that Sγ = ∅ if there exists some e ≥ 0 such that

(
n∑

i=1

xi

)e

f(x)− γ

(
n∑

i=1

xi

)d

 (2.17)

has all positive coefficients, where recall that d is the degree of f . We can compute

lower bounds on γ∗ by performing a bisection on γ. For each γ of the bisection, if

there exists some e ≥ 0 such that all of the coefficients of (2.17) are positive, then

γ ≤ γ∗. We have detailed this procedure in Algorithm 1.

In Chapter 4, we will propose a decentralized version of Algorithm 1 to perform

robust stability analysis over a simplex.

2.3.2 Case 2: Optimization over the hypercube Φn

Given ri ∈ R, define the hypercube

Φn := {x ∈ R
n : |xi| ≤ ri, i = 1, · · · , n}. (2.18)

24

Input:

Polynomial f ; maximum polya’s exponent emax; lower-bound γl and

upper-bound γu for bisection search; number of bisection iterations bmax;

Initialization:

Set Polya’s exponent e = 0.

Set k = 0.

Main Loop:

while d ≤ bmax do

Set γ = γu+γl
2

.

while Eq. (2.17) has some negative coefficient or e ≤ emax do

Set e = e+ 1.

Calculate the Product (2.17).

end

if Eq. (2.17) has all positive coefficients then

Set γl = γ.

else

Set γu = γ.

end

Set k = k + 1.

end

Output:

γ: a lower bound on the minimum of f over the standard simplex.

Algorithm 1: Polya’s algorithm for polynomial optimization over the simplex

25

Define the set of n-variate multi-homogeneous polynomials of degree vector d ∈ N
n

as 


p ∈ R[x, y] : p(x, y) =

∑

h,g∈Nn

h+g=d

ph,gx
h1
1 y

g1
1 · · ·xhn

n ygnn , ph,g ∈ R




. (2.19)

In a more general case, if the coefficients ph,g are matrices, we call p a matrix-valued

multi-homogeneous polynomial. Now consider the polynomial optimization problem

γ∗ = min
x∈Φn

f(x).

To find γ∗, one can solve the following feasibility problem.

γ∗ = min
γ∈R

γ

subject to Sγ,r := {x ∈ R
n : f(x)− γ < 0, |xi| ≤ ri, i = 1, · · · , n} = ∅ (2.20)

For a given γ, we propose the following version of Polya’s theorem (Kamyar and Peet

(2012b)) to verify Sγ,r = ∅.

Theorem 9. (Polya’s theorem: multi-simplex version) A matrix-valued multi-homogeneous

polynomial F satisfies F (x, y) > 0 for all (xi, yi) ∈ ∆2, i = 1, · · · , n, if there exist

e ≥ 0 such that all the coefficients of
(

n∏

i=1

(xi + yi)
e

)
F (x, y)

are positive definite.

We will prove this result in Section 5.2. The converse of Theorem 9 only implies

non-negativity of F over the hypercube. To find lower bounds on γ, we first obtain

the multi-homogeneous form p of the polynomial f in (2.20). In 5.2 we have provided

a procedure to construct p. Given γ ∈ R and r ∈ Rn, it follows from the converse of

Theorem 9 that Sγ,r defined in (2.20) is empty if there exists some e ≥ 0 such that
(

n∏

i=1

(xi + yi)
e

)(
p(x, y)− γ

(
n∏

i=1

(xi + yi)
di

))
(2.21)

26

has all positive coefficients, where di is the degree of xi in p(x, y). We can compute

lower bounds on γ∗, as defined in (2.20), by performing a bisection on γ. For each γ

of the bisection, if there exists some e ≥ 0 such that all of the coefficients of (2.21) are

positive, then γ ≤ γ∗. By replacing (2.17) with (2.21) in Algorithm 1, this algorithm

computes γ. In Chapter 5, we will propose a parallel algorithm to perform robust

stability analysis for systems with uncertain parameters inside a hypercube.

2.3.3 Case 3: Optimization over the convex polytope ΓK

Given wi ∈ R
n and ui ∈ R, define the convex polytope

ΓK := {x ∈ R
n : wT

i x+ ui ≥ 0, i = 1, · · · , K}. (2.22)

Suppose ΓK is bounded. Consider the polynomial optimization problem

γ∗ = min
x∈ΓK

f(x),

where f is a polynomial of degree df . To find γ∗, one can solve the feasibility problem

γ∗ = min
γ∈R

γ

subject to Sγ,K := {x ∈ R
n : f(x)− γ < 0, wT

i x+ ui ≥ 0, i = 1, · · · , K} = ∅.

Given γ, one can use Handelman’s theorem to verify Sγ,K = ∅.

Theorem 10. (Handelman’s Theorem) Given wi ∈ Rn and ui ∈ R, define the polytope

ΓK := {x ∈ Rn : wT
i x+ ui ≥ 0, i = 1, · · · , K}. If a polynomial f(x) > 0 on ΓK, then

there exist bα ≥ 0, α ∈ NK such that for some d ∈ N,

f(x) =
∑

α∈NK

α1+···+αK≤d

bα(w
T
1 x+ u1)

α1 · · · (wT
Kx+ uK)

αK . (2.23)

Consider the Handelman basis associated with polytope ΓK defined as

Hs :=

{
λα ∈ R[x] : λα(x) =

K∏

i=1

(
wT

i x+ ui
)αi

, α ∈ N
K ,

K∑

i=1

αi ≤ s

}
.

27

Basis Hs spans the space of polynomials of degree s or less, however it is not minimal.

As a special case, if we take ΓK to be the standard unit simplex of RK , i.e.,

ΓK := {x ∈ R
K : 1−

K∑

i=1

xi ≥ 0, xi ≥ 0 for i = 1, · · · , K},

then the following set of polynomials is called the Bernstein basis associated with ΓK .

Bs :=

{
λα ∈ R[x] : λα(x) =

s!

α1! · · ·αK+1!

(
K∏

i=1

xαi
i

)(
1−

K∑

i=1

xi

)αK+1

, α ∈ N
K+1,

K∑

i=1

αi = s

}
.

Unlike Hs, Bs is a minimal basis2 for the vector space of polynomials of degree ≤ s.

Given γ ∈ R, polynomial f(x) of degree df and dmax ∈ N, if there exist

cα ≥ 0 for all α ∈ Id := {α ∈ N
K : ‖α‖1 ≤ d} (2.24)

such that

f(x)− γ =
∑

α∈Id

cα

K∏

i=1

(wT
i x+ ui)

αi (2.25)

for some d ≥ df , then f(x) − γ ≥ 0 for all x ∈ ΓK . Thus Sγ,K = ∅. Since Hs

is not a minimal basis, if (2.24) is feasible, then cα are not unique. Feasibility of

Conditions (2.24) and (2.25) can be determined using linear programming. To set-up

the linear program, we first represent the right and left hand side of (2.25) in the

canonical basis as

f(x)− γ =

[
b1 b2 · · · bM

]
zn,d(x) (2.26)

∑

α∈Id

cα

K∏

i=1

(wT
i x+ui)

αi =

[
l1(cα, w, u) l2(cα, w, u) · · · lM(cα, w, u)

]
zn,d(x), (2.27)

where it can be shown that li : R
N × Rn×K × RK → R are affine in cα and N :=(

K + d

d

)
is the cardinality of the index set {α ∈ NK : ‖α‖1 ≤ d}. In (2.27),

w :=
[
w1 w2 · · · wK

]
and u :=

[
u1 u2 · · · uK

]T
,

2This follows from the fact that every polynomial can be uniquely represented in the canonical

basis and every member of the canonical basis is a unique linear combination of λα ∈ Bs. A

derivation for these linear combinations can be found in Farin (2002)

28

where wi ∈ R
n and ui ∈ R define the polytope ΓK in (2.22). Recall that in (2.27),

zn,d(x) denotes the vector of all n−variate monomials of degree d or less. By equat-

ing (2.26) and (2.27) and cancelling zn,d(x) from both sides, the problem of finding a

lower bound γd on γ∗ can be expressed as the following linear program.

γd := max
γ∈R,cα≥0

γ

subject to li(cα, w, u) = bi for i = 1, · · · ,M. (2.28)

If Linear Program (2.28) is infeasible for some d, then one can increase d and repeat

setting-up and solving Linear Program (2.28). From Handelman’s theorem, if f(x)−

γ > 0 for all x ∈ ΓK , then for some d ≥ df , Conditions (2.24) and (2.25) hold

and Linear Program (2.28) will have a solution. We have outlined this procedure in

Algorithm 2. Unfortunately, to this date all the proposed upper-bounds on d (see

e.g., Powers and Reznick (2001) and Leroy (2012)) are functions of the minimum

of f(x) − γ over the polytope ΓK . In Chapter 6, we will combine this algorithm

with a polytope decomposition scheme to construct Lyapunov functions for nonlinear

systems with polynomial vector fields.

2.3.4 Case 4: Optimization over compact semi-algebraic sets

Recall that we defined a semi-algebraic set as

S := {x ∈ R
n : gi(x) ≥ 0, i = 1, · · · , m, hj(x) = 0, j = 1, · · · , r}. (2.29)

Suppose S is bounded. Consider the polynomial optimization problem

γ∗ = min
x∈Rn

f(x)

subject to gi(x) ≥ 0 for i = 1, · · · , m

hj(x) = 0 for j = 1, · · · , r.

29

Input: Polynomial f of degree df ; maximum degree dmax for Handelman’s

basis; polytope data: wi ∈ Rn and ui ∈ R in (2.22); tolerance ǫ > 0 for

stopping criterion.

Initialization:

Set d = df .

Set γold = −10100.

Set γnew = −10100 + 2ǫ.

Main Loop:

while (d < dmax) and (γnew − γold < ǫ) do

Express f(x)− γnew in the canonical basis as in (2.26).

Express
∑

α∈Id
cα
∏K

i=1(w
T
i x+ ui)

αi in the canonical basis as in (2.27).

Set-up LP (2.28).

if LP (2.28) is feasible then

Set γold = γnew.

Set γnew = γd.

end

Set d = d+ 1.

end

Output: γnew: a lower bound on the minimum of f over polytope ΓK .

Algorithm 2: Polynomial optimization over convex polytopes using Handel-

man’s theorem

30

Define the following cone of polynomials which are positive over S.

Mg,h :=

{
m∈R[x] : m(x)−

m∑

i=1

si(x)gi(x)−
r∑

i=1

ti(x)hi(x) is SOS, si ∈ Σ2d, ti ∈ R[x]

}
,

(2.30)

where Σ2d denotes the cone of SOS polynomials of degree 2d. From Putinar’s Posi-

tivstellensatz (Theorem 6) it follows that if the Cone (2.30) is Archimedean, then the

solution to the following SOS program is a lower bound on γ∗. Given d ∈ N, define

γd := max
γ∈R,si,ti

γ

subject to f(x)− γ −
m∑

i=1

si(x)gi(x)−
r∑

i=1

ti(x)hi(x) is SOS , ti ∈ R[x], si ∈ Σ2d.

(2.31)

On the other hand, every F ∈ Σ2d has a quadratic representation with a positive semi-

definite matrix. To see this, suppose F (x) =
∑

i qi(x)
2, where qi are polynomials of

degree d. Each qi can be written in the canonical basis as qi(x) = cTi zn,d(x), where

zn,d(x) is the vector of all n−variate monomials of degree d or less. Hence, we can

write F as

F (x) =
∑

i

qi(x)
2 =

∑

i

zn,d(x)
T cic

T
i zn,d(x)

= zn,d(x)
T

(
∑

i

cic
T
i

)
zn,d(x) = zn,d(x)

TQzn,d(x),

where clearly Q ≥ 0. Therefore, for given γ ∈ R and d ∈ N, Problem (2.31) can be

formulated as the following linear matrix inequality.

Find Qi ≥ 0 and Pj for i = 0, · · · , m and j = 1, · · · , r

such that f(x)− γ = zTn,d(x)

(
Q0 +

m∑

i=1

Qigi(x) +

r∑

j=1

Pjhj(x)

)
zn,d(x), (2.32)

where Qi and Pj ∈ SN , where SN is the subspace of symmetric matrices in RN×N and

N :=

(
n + d

d

)
. See G. Blekherman and Thomas (2013) for methods of solving SOS

31

programs. Also Papachristodoulou et al. (2013) provide a MATLAB package called

SOSTOOLs for solving SOS programs.

If the Cone (2.30) is not Archimedean, then we can use Schmudgen’s Positivstel-

lensatz to obtain the following SOS program with solution γd ≤ γ∗.

γd = max
γ∈R,si∈Σ2d,ti∈R[x]

γ

subject to f(x)− γ = 1 +
∑

λ∈{0,1}m

sλ(x)g1(x)
λ1 · · · gm(x)λm +

r∑

i=1

ti(x)hi(x). (2.33)

The Positivstellensatz and SOS programming can also be applied to polynomial

optimization over a more general form of semi-algebraic sets defined as

T := {x ∈ R
n:gi(x) ≥ 0, i = 1, · · · , m, hj(x) = 0, j = 1, · · · , r, qk(x) 6= 0, k = 1, · · · , l}.

It can be shown that T = ∅ if and only if

T̂ := {(x, y) ∈ R
n+l : gi(x) ≥ 0, i = 1, · · · , m, hj(x) = 0, j = 1, · · · , r,

ykqk(x) = 1, k = 1, · · · , l} = ∅.

Thus, for any f ∈ R[x], we have

min
x∈T

f(x) = min
(x,y)∈T̂

f(x).

Therefore, to find lower bounds on minx∈T f(x), one can apply SOS programming

and Putinar’s Positivstellensatzs to min
(x,y)∈T̂

f(x).

2.3.5 Case 5: Tests for non-negativity on Rn:

The following result from Habicht (1939) defines a test for non-negativity of ho-

mogeneous polynomials over Rn.

32

Theorem 11. (Habicht theorem) For every homogeneous polynomial f that satisfies

f(x1, · · · , xn) > 0 for all x ∈ Rn \ {0}, there exists some e ≥ 0 such that all of the

coefficients of (
n∑

i=1

x2i

)e

f(x1, · · · , xn) (2.34)

are positive. In particular, the product is a sum of squares of monomials.

Using this theorem, one can verify non-negativity of any homogeneous polyno-

mial f over Rn by multiplying F repeatedly by
∑n

i=1 x
2
i . If for some e ∈ N, the

Product (2.34) has all positive coefficients, then f ≥ 0. We can define an alternative

test for non-negativity over Rn using the following theorem (de Loera and Santos

(1996)).

Theorem 12. Define En := {−1, 1}n. Suppose a polynomial f(x1, · · · , xn) of degree d

satisfies f(x1, · · · , xn) > 0 for all x ∈ Rn and its homogenization3 is positive definite.

Then

1. there exist λe ≥ 0 and coefficients cα ∈ R such that

(
1 + eTx

)λe
f(x1, · · · , xn) =

∑

α∈Ie

cαx
α1
1 · · ·xαn

n for all e ∈ En, (2.35)

where Ie := {α ∈ Nn : ‖α‖1 ≤ d+ λe} and sgn(cα) = eα1
1 · · · eαn

n .

2. there exist positive N,D ∈ R[x21, · · · , x2n, f 2] such that f = N
D
.

Based on the converse of Theorem 12, we propose the following test for non-

negativity of polynomials over the cone Λe := {x ∈ Rn : sgn(xi) = ei, i = 1, · · · , n}

for some e ∈ En. Multiply a given polynomial f repeatedly by 1 + eTx for some

e ∈ En. If there exists some λe ≥ 0 such that sgn(cα) = eα1
1 · · · eαn

n , then (2.35)

3Associated to every polynomial f(x1, · · · , xn), x ∈ R
n of degree d, there exists a degree e

homogeneous polynomial h(x1, · · · , xn, y) := yef(x1

y
, · · · , xn

y
), where e ≥ d.

33

clearly implies that f(x) ≥ 0 for all x ∈ Λe. Since R
n = ∪e∈EnΛe, we can repeat the

test 2n times to obtain a test for non-negativity of f over Rn.

The second part of Theorem 12 gives a solution to Hilbert’s 17th problem (see

Section 2.1). For a construction of this solution (i.e., numerator N and denominator

D) see de Loera and Santos (1996).

34

Chapter 3

SEMI-DEFINITE PROGRAMMING AND INTERIOR-POINT ALGORITHMS

As discussed in Chapter 2, Polya’s theorem, Handelman’s theorem and the Posi-

tivstellensatz results can be used to approximate the minimum of a polynomial over

simplicies, hypercubes, polytopes and semi-algebraic sets. We showed that these

theorems define sequences of Linear/Semi-Definite Programs (SDPs) whose solutions

define lower bounds on the objective of the polynomial optimization problem. In this

section, we focus on solving these SDPs. In particular, we discuss the primal and

dual forms of semi-definite programming problems and introduce a state-of-the-art

primal-dual interior-point algorithm for solving SDPs. In Section 4.5, we will propose

a new parallel version of this algorithm - an algorithm which is specifically designed

to solve the SDPs defined by applying Polya’s theorem to optimization of polynomials

arising in robust stability and control problems.

3.1 Convex optimization and duality

Let us define the constrained optimization problem

f ∗ := min
x∈Rn

f0(x)

subject to fi(x) ≤ 0, i = 1, · · · , p

hi(x) = 0, i = 1, · · · , q, (3.1)

where fi : R
n → R and hi : R

n → R. For every problem of Form (3.1), one can define

the Lagrangian function L : Rn × Rp × Rq as

L(x, λ, ν) := f0(x) +

p∑

i=1

λifi(x) +

q∑

i=1

νihi(x), (3.2)

35

where λi ∈ R and νi ∈ R are called the Lagrange multipliers associated with the

inequality constraints and the equality constraints in (3.1), respectively. The vectors

λ = [λ1, · · · , λp] and ν = [ν1, · · · , νq] are called the dual variables of Problem (3.1).

Let us define the Lagrange dual function g : Rp × Rq → R as

g(λ, ν) := inf
x

(
f0(x) +

p∑

i=1

λifi(x) +

q∑

i=1

νihi(x)

)
.

The Lagrange dual functions have some interesting properties. First, because the La-

grangian is affine in λi and νi and the pointwise infimum of a family of affine functions

is concave (Boyd and Vandenberghe (2004)), g is a concave function. Second, it is

easy to show that the dual functions yield lower bounds on f ∗ as define in (3.1), i.e.,

g(λ, ν) ≤ p∗. To find the best lower bound on f ∗ using the Lagrange dual function,

one can solve the Lagrange dual problem defined as

d∗ := max
λ,ν

g(λ, ν)

subject to λ ≥ 0. (3.3)

Every pair (λ, ν) which satisfies λ ≥ 0 and g(λ, ν) > −∞ is called a dual feasible

point for Problem (3.3). Likewise, every x ∈ Rn satisfying fi(x) ≤ 0 for i = 1, · · · , p

and hi(x) ≤ 0 for i = 1, · · · , q is a primal feasible point for Problem (3.1). Dual

feasible points can be used to bound sub-optimality of a primal feasible point. In

particular, for every primal feasible point x and dual feasible point (λ, ν),

f0(x)− f ∗ ≤ f0(x)− g(λ, ν),

where f0(x)−g(λ, ν) is called the duality gap associated with x and (λ, ν). For certain

problems, the duality gap associated with primal optimal point x∗ and dual optimal

point (λ∗, ν∗) is zero, i.e.,

f0(x
∗) = f ∗ = d∗ = g(λ∗, ν∗).

36

This property is often called strong duality. One important class of problems which

usually posses this property is convex optimization problems. A convex optimization

problem is an optimization problem of Form (3.1), where the functions fi, i = 0, · · · , p

are convex1 and hi, i = 1, · · · , q are affine. For example, the Lagrange dual prob-

lem (3.3) is by definition a convex problem (it is a maximization of a concave function)

whether or not its primal (Eq. (3.1)) is convex. It can be shown that (Slater (2014))

if the primal problem (3.1) is convex and there exists some x ∈ R
n such that

fi(x) < 0 for i = 1, · · · , p and

hi(x) = 0 for i = 1, · · · , q, (3.4)

then strong duality holds. Strong duality can be exploited to solve the primal problem

via its dual. This is useful specially when the dual is easier or computationally less

expensive to solve. Suppose a dual optimal solution (λ∗, ν∗) is known and strong

duality holds. If

x∗ := argminL(x, λ∗, ν∗)

is unique and primal feasible, x∗ is the primal optimal solution.

3.2 Descent algorithms for convex optimization

Suppose f0 : Rn → R is differentiable. For x̂ to be a minimum of f0, the nec-

essary condition is that [∇x f0(x)]x=x̂ = 0. The Karush-Kuhn-Tucker (KKT) con-

ditions (Kuhn et al. (1951)) generalize this necessary condition for the constrained

optimization problem (3.1), under the assumption that the functions fi and gi are

differentiable. The KKT conditions can be stated as follows: Suppose x∗ ∈ R
n is a pri-

mal optimal point for (3.1) and λ∗i , i = 1, · · · , p and ν∗i , i = 1, · · · , q are dual optimal

1A function f : Rn → R is convex if f(αx + βy) ≤ αf(x) + βf(y) for all x, y ∈ Rn and for all

α, β ∈ R such that α+ β = 1 and α, β ≥ 0.

37

points for (3.3). Moreover, suppose the strong duality holds, i.e., f0(x
∗) = g(λ∗, ν∗).

Then, the optimal primal and dual points satisfy the following.
[
∇xf0(x) +

p∑

i=1

λ∗i∇xfi(x) +

q∑

i=1

ν∗i ∇xhi(x)

]

x=x∗

= 0

fi(x
∗) ≤ 0 for i = 1, · · · , p

hi(x
∗) = 0 for i = 1, · · · , q

λ∗i ≥ 0 for i = 1, · · · , p

λ∗i fi(x
∗) = 0 for i = 1, · · · , p. (3.5)

The first line follows from the fact that x∗ is a minimizer of the Lagrangian L(x, λ∗, ν∗).

The second, third and fourth lines indicate that x∗ and (λ∗, ν∗) are primal and dual

feasible. The last line is called the complementary slackness and follows from strong

duality. This condition implies that for i = 1, · · · , p, either the ith primal constraint

must be active at x∗ (i.e., fi(x
∗) = 0) or its corresponding optimal dual variable λ∗i

must be zero.

In general, the KKT conditions are only necessary conditions for optimality. In-

deed, under certain regularity conditions, local minima of the primal Problem (3.1)

satisfy the KKT conditions. However, when the primal problem is convex and there

exists x ∈ Rn which satisfies (3.4), the KKT conditions become necessary and suf-

ficient. Motivated by this result, many of the existing convex optimization algo-

rithms are in principle algorithms for solving the KKT conditions iteratively. These

algorithms are often called descent algorithms because they generate a sequence

{xk}k=1,2,··· of primal feasible solutions which satisfy

f0(x
k) > f0(x

k+1) for k = 1, 2, 3, · · · , (3.6)

unless xk is optimal. One example of descent algorithms is the Newton’s algorithm.

Given a primal feasible starting point x0, Newton’s algorithm finds a sequence of

38

search directions ∆xk ∈ R
n and step length tk ∈ R

+ such that all the iterates

xk+1 = xk + tk∆xk k = 1, 2, 3, · · ·

are feasible and satisfy (3.6). Given a primal feasible point xk, Newton’s algorithm

calculates the search directions ∆xk by first defining the convex optimization problem

f̂k := min
v∈R

[
f0(x) +∇xf0(x)

T v +
1

2
vT∇2

xf0(x)v

]

x=xk

subject to hi(x
k + v) = 0 for i = 1, · · · , m. (3.7)

The objective function of Problem (3.7) is the second-order Taylor’s approximation

of the objective function f0(x) at x = xk. Then, the KKT optimality conditions for

Problem (3.7) yield the following system of linear equations.


[∇2

xf0(x)]x=xk Dxh(x)
T

Dxh(x) 0






∆xk

νk


 =



− [∇xf0(x)]x=xk

0


 , (3.8)

where Dxh(x) := [∇xh1(x), · · · ,∇xhm(x)]
T . If the coefficient matrix in (3.8) is non-

singular, then there exist a unique Newton’s search direction ∆xk and optimal dual

point νk for the dual to Problem (3.8). Finally, Newton’s algorithm calculates the

new iterate as xk+1 = xk + tk∆xk, where a step length tk can be obtained using a line

search method such as backtracking (Dennis Jr and Schnabel (1996)) or bisection. A

typical stopping criterion for Newton’s algorithm is f0(x
k)− f̂k ≤ ǫ for some desired

ǫ > 0, where recall that f̂k is the minimum of the second-order Taylor’s approxima-

tion of f0 at xk, subject to the equality constraints in (3.7). The difference between

f0(x
k) and f̂k can also be interpreted as the size of Newton’s search direction defined

by the following weighted norm of ∆xk:

f0(x
k)− f̂k = ‖∆xk‖∇2

xf0(x)|x=xk
:= 2(∆xk)T ∇2

xf0(x)|x=xk ∆xk. (3.9)

For a comprehensive discussion on the complexity and convergence of Newton’s algo-

rithm, refer to Boyd and Vandenberghe (2004).

39

3.3 Interior-point algorithms for convex problems with inequality constraints

Suppose in Problem (3.1), fi are convex and differentiable and hi are affine and

differentiable. One of the most successful class of algorithms for solving this type of

problems is interior-point algorithms. Typically, interior-point algorithms solve this

problem in two steps: 1- Reducing the problem to a sequence of convex optimization

programs with only linear equality constraints; and 2- Applying a descent algorithm,

e.g., Newton’s algorithm, to solve the equality constrained problem. One way to

define this sequence of equality constrained problems is to incorporate the inequality

constraints into the objective function using barrier functions. For example, by using

logarithmic barrier functions one can approximate Problem (3.1) as

min
x∈Rn

f0(x)−
p∑

i=1

(
1

b

)
log(−fi(x))

subject to hi(x) = 0, i = 1, · · · , q. (3.10)

for some b > 0. Clearly, if any of the inequality constraints becomes active (fi(x) →

0), then the objective function blows up. Thus, any solution to Problem (3.10) lies

in the interior (as the name ‘interior-point’ suggests) of the feasible set

{x ∈ R
n : fi(x) ≤ 0, hj(x) = 0, for i = 1, · · · , p and j = 1, · · · , q}.

Since Problem (3.10) is convex, one can use Newton’s algorithm to find the optimal

solution x∗b for any b > 0. In particular, given b > 0 and feasible x0, Newton’s

40

algorithm finds a sequence {xk}k=1,2,··· → x∗b by solving the modified KKT conditions




[
b∇2

xf0(x)−∇2
x

p∑
i=1

log(−fi(x))
]

x=xk

Dxh(x)
T

Dxh(x) 0






∆xk

νk


 =



−
[
∇xf0(x) +∇

p∑
i=1

log(−fi(x))
]

x=xk

0




(3.11)

for ∆xk and νk and setting xk+1 = xk + tkxk. The set of optimal solutions x∗b for all

b > 0 is called the central path. Corresponding to any x∗b in the central path, one can

verify that

λ∗i = − 1

b fi(x∗b)
for i = 1, · · · , p and ν∗ =

νk

b
∈ R

q,

are dual feasible and together with x∗b yield the duality gap p
b
. This indicates that as

b → ∞, x∗b converges to the optimal solution of Problem 3.1 under the assumption

that fi are convex and differentiable and hi are affine and differentiable. Based

on this result, we can summarize the interior-point barrier algorithm for inequality

constrained problems in Algorithm 3.

An alternative subclass of interior-point algorithms for solving inequality con-

strained problems is the primal-dual algorithms. Similar to the barrier algorithm,

primal-dual algorithms find their search direction by solving the KKT optimality

conditions. However, instead of incorporating the inequality constraints into the

objective function (equivalently, eliminating the dual variable λ from the KKT con-

dition (3.5)), primal-dual algorithms simultaneously solve the primal problem and its

dual by computing independent Newton’s search directions ∆x ∈ Rn, ∆λ ∈ Rp and

∆ν ∈ Rq for primal and dual variables x, λ and ν. Given a feasible point (xk, λk, νk)

for Problem (3.1) and b > 0, the basic version of primal-dual algorithms computes the

41

Input: Convex functions f0, · · · , fp; affine functions h1, · · · , hq; a feasible

starting point x0; initial barrier parameter b0; tolerances ǫb > 0 and ǫN > 0 for

stopping criteria.

Initialization:

Set b = b0.

Choose µ > 1.

Barrier Algorithm:

while
p

b
> ǫb do

Set x = x0.

Set ∆x = 10100 · 1n.

Newton’s Algorithm:

while ‖∆x‖ as defined in (3.9) is greater than or equal to ǫN do

Calculate Newton’s search direction ∆x by solving the system of linear

equations in (3.11).

Choose step length t using backtracking line search.

Update Newton’s iterate as x := x+ t∆x.

end

Set x∗b = x.

Update the barrier parameter as b := µb.

end

Output: x∗b : A
p
b
-suboptimal solution to Problem (3.1).

Algorithm 3: Barrier algorithm for inequality constrained convex optimization

problems

42

search directions (∆xk,∆λk,∆νk) by approximating the modified KKT conditions

R(x, λ, ν, b) =




∇f0(x) +Dxf(x)
Tλ+Dxh(x)

Tν

λ1f1(x)−
1

b
...

λpfp(x)−
1

b

h1(x)

...

hq(x)




= 0

at the point (xk, λk, νk) as

R(xk +∆xk, λk +∆λk,νk +∇νk, b)

≈ R(x, λ, ν, b) +




[
∇R1(x, λ, ν, b)

T
]
x=xk

λ=λk

ν=νk

...
[
∇Rn+p+q(x, λ, ν, b)

T
]
x=xk

λ=λk

ν=νk







∆xk

∆λk

∆νk



= 0,

(3.12)

and solving for (∆xk,∆λk,∆νk). The primal-dual iterates are then updated according

to

xk+1 = xk + tk∆xk, λk+1 = λk + tk∆λk, νk+1 = νk + tk∆νk.

Similar to the barrier algorithm, the duality gap corresponding to any feasible primal-

dual iterate (xk, λk, νk) is
p

b
. Thus, as b→ ∞ in (3.12), the resulting iterates converge

to the optimal solution of Problem (3.1), assuming that fi are convex and hi are affine.

In the sequel, we describe a primal-dual algorithm for solving semi-definite programs

- a class of convex optimization problems which has numerous applications in control

theory.

43

3.4 Semi-definite programming

Consider the delay-differential equation

ẋ(t) = Ax(t) +
N∑

i=1

Aix(t− τi) (3.13)

where x(t) ∈ Rn and τi > 0, i = 1, · · · , N . From Repin (1965), a sufficient condition

for asymptotic stability of this system is existence of P0 > 0, · · · , PN > 0 such that

the quadratic functional

V (x, t) = xT (t)P0x(t) +

N∑

i=1

∫ τi

0

x(t− s)TPi x(t− s)ds

satisfies V̇ (x, t) < 0 for all x(t) ∈ Rn \ {0} and t > 0. The derivative V̇ (x, t) can be

expanded as

V̇ (x, t) = x(t)T

(
ATP0 + P0A+

N∑

i=1

Pi

)
x(t) + x(t)T

(
N∑

i=1

P0Aix(t− τi)

)

+

(
N∑

i=1

x(t− τi)
TAT

i P0

)
x(t)−

N∑

i=1

x(t− τi)
TPix(t− τi).

Thus, V̇ (x, t) = z(t)TQ(P0, · · · , PN)z(t), where z(t) := [x(t) x(t− τ1) · · · x(t− τN)]
T

and

Q(P0, · · · , PN) :=




ATP0 + P0A +
∑N

i=1 Pi P0A1 · · · P0AN

AT
1 P0 −P1 · · · 0

...
...

. . .
...

AT
NP0 0 · · · −PN




.

Thus, stability of System (3.13) can be verified by solving the following feasibility

problem:

Find P0 > 0, · · · , PN > 0

such that Q(P0, · · · , PN) < 0. (3.14)

44

Now let us parameterize each Pi as

Pi(yiL+1, · · · , y(i+1)L) =




yiL+1 yiL+2 · · · yiL+n

yiL+2 yiL+n+1 · · · yiL+2n−1

...
. . .

...

yiL+n yiL+2n−1 · · · y(i+1)L




for i = 0, · · · , N , where L := n(n + 1)/2 and yj ∈ R for j = 0, · · · , (N + 1)L. Then,

we can formulate the problem of stability of System (3.13) as the convex optimization

problem

min
y∈R(N+1)L

Z∈S(N+2)n

〈1(N+1)L, y〉

subject to

(N+1)L∑

i=1

Fiyi = Z

Z ≥ 0, (3.15)

where the matrices Fi ∈ S(N+2)n for i = 1, · · · , (N + 1)L are defined as

Fi = diag{P0(x0, · · · , xL), Q(P0(x0, · · · , xL), · · · , PN(xNL+1, · · · , x(N+1)L))}, (3.16)

where

xj =





1 j = i

0 j 6= i

for j = 1, · · · , (N + 1)L.

Problem (3.15) is an example of the dual form of the Semi-Definite Programming

(SDP) problem. We define SDP as the optimization of a linear objective function

over the cone of positive definite matrices subject to linear matrix equality and linear

matrix inequality constraints. Given C ∈ Sn, Bi ∈ Sn for i = 1, · · · , k, Gi ∈ Sn for

45

i = 1, · · · , l, a ∈ R
k and b ∈ R

l, the primal SDP problem is

p∗ := max
X∈Sn

tr(CX)

subject to B(X) = a

G(X) ≤ b

X ≥ 0, (3.17)

where the linear maps B : Sn → R
k and G : Sn → R

l are defined as

B(X) =




tr(B1X)

tr(B2X)

...

tr(BkX)




and G(X) =




tr(G1X)

tr(G2X)

...

tr(GlX)




. (3.18)

To derive the dual SDP to Problem (3.17), we employ Lagrange multipliers t ∈ Rl
+

and y ∈ Rk as follows.

p∗ = max
X≥0

min
y∈Rk,t∈Rl

+

tr(CX) + tT (b−G(X)) + yT (a−B(x))

Then, from the min-max inequality, i.e.,

max
u∈U

min
v∈V

f(u, v) ≤ min
v∈V

max
u∈U

f(u, v)

it follows that

p∗ ≤ max
y∈Rk,t∈Rl

+

min
X≥0

tr(CX) + tT (b−G(X)) + yT (a− B(x))

= min
y∈Rk ,t∈Rl

+

max
X≥0

tr(C −
k∑

i=1

Biyi −
l∑

i=1

Giti)X + aTy + bT t.

Note that

max
X≥0

tr(C −
k∑

i=1

Biyi −
l∑

i=1

Giti)X <∞

46

only if C −∑k
i=1Biyi −

∑l
i=1Giti ≤ 0. In this case, clearly the maximum occurs

when

C −
k∑

i=1

Biyi −
l∑

i=1

Giti = 0.

Therefore, we can the write dual SDP problem as

max
y∈Rk,t∈Rl

+

aT y + bT t

subject to
k∑

i=1

Biyi +
l∑

i=1

Giti − C = Z

Z ≥ 0. (3.19)

From (3.15) and (3.19) it is clear that the problem of stability of the delay-differential

Equation (3.13) can be formulated as the dual SDP defined by the elements

a := 1(N+1)L, b := 0, Gi = 0, C = 0, Bi = Fi,

where we have defined Fi in (3.16).

SDPs are popular among controls community because not only they can be solved

efficiently using convex optimization algorithms, but also a wide variety of problems in

controls can be formulated as SDPs; e.g., robust stability (Bliman (2004a); Oliveira

and Peres (2007)) and robust performance (Peaucelle and Arzelier (2001); Scherer

(2006)) of uncertain systems, H2/H∞-optimal filter design (Li and Fu (1997); Geromel

and de Oliveira (2001)), estimation of regions of attraction (Wang et al. (2005);

Tan and Packard (2008); Topcu et al. (2010)) and reachability sets (Wang et al.

(2013)) of nonlinear systems, stability and control of hybrid systems (Boukas (2006);

Papchristodoulou and Prajna (2009)) and game theory (Parrilo (2006)). In the next

section, we describe a state-of-the-art primal-dual algorithm by Helmberg et al. (2005)

for solving SDPs.

47

3.5 A primal-dual interior-point algorithm for semi-definite programming

Fortunately, there exists several interior-point algorithms in the literature for solv-

ing SDPs; e.g., dual scaling (Benson (2001); Benson et al. (1998)), primal-dual (Al-

izadeh et al. (1998); Monteiro (1997); Helmberg et al. (1996)) and cutting-plane/spectral

bundle (Helmberg and Rendl (2000); Sivaramakrishnan (2010); Nayakkankuppam

(2007)) algorithms. In our study, we are particularly interested in a state-of-the-art

primal-dual algorithm proposed by Helmberg et al. (2005) mainly because at each

iteration, it preserves a certain property (see (4.47)) of the primal and dual search

directions. In Section 4.5, we will exploit this property to propose a distributed par-

allel version of this algorithm for solving large-scale SDPs in robust and/or nonlinear

stability analysis. In the following, we briefly discuss the original version of this

algorithm algorithm.

Similar to the barrier method described in Section 3.3, we can incorporate the

inequality constraints in the dual SDP (3.19) using logarithmic barrier functions and

the barrier parameter µ > 0 as

max
y∈Rk ,t∈Rl

aTy + bT t− µ

(
log detZ +

l∑

i=1

log ti

)

subject to

k∑

i=1

Biyi +

l∑

i=1

Giti − C = Z. (3.20)

The Lagrangian for Problem (3.20) is defined as

L(X, y, t, Z) := aTy + bT t− µ

(
log detZ +

l∑

i=1

log ti

)

+ tr

((
Z + C −

k∑

i=1

Biyi −
l∑

i=1

Giti

)
X

)
.

Then, the KKT optimality conditions for Problem (3.20) is ∇L(X, y, t, Z) = 0, which

48

can be expanded as

∇XL(X, y, t, Z) = Z + C −
k∑

i=1

Biyi −
l∑

i=1

Giti = 0 (3.21)

∇yL(X, y, t, Z) = a− B(X) = 0 (3.22)

∇tL(X, y, t, Z) = b−G(X)− µ [1/t1, · · · , 1/tl]T = 0 (3.23)

∇ZL(X, y, t, Z) = X − µZ−1 = 0, (3.24)

where B(X) and G(x) are defined in (3.18).

Given a barrier parameter µ > 0, at each iteration, the primal-dual algorithm finds

a search direction ∆s := [∆X,∆y,∆t,∆Z] such that the new iterate [X + ∆X, y +

∆y, t+∆t, Z +∆Z] belongs to the central path, i.e.,

{[Xµ, yµ, tµ, Zµ] : µ ∈ [0,∞] and Xµ, yµ, tµ, Zµ satisfy Conditions (3.21)-(3.24)} .

Conversely, given a point [X, y, t, Z], one can use (3.23) and (3.24) to find its corre-

sponding barrier parameter as

µ =
tr(ZX) + [1/t1, · · · , 1/tl] (b−G(X))

n+ l
. (3.25)

The search direction ∆s of the primal-dual algorithm is the sum of two steps: the

predictor step ∆ŝ := [∆X̂,∆ŷ,∆t̂,∆Ẑ] and the corrector or centering step ∆s̄ :=

[∆X̄,∆ȳ,∆t̄,∆Z̄]. The predictor step is defined as the Newton’s step for solving

the optimality conditions (3.21)-(3.24) with µ = 0, starting at any point (X, y, t, Z)

which satisfies

X > 0, Z > 0, t > 0, G(X) < b. (3.26)

Similar to the Taylor’s approximation in (3.12), we find the Newton’s step by solving

∇L(X, y, t, Z) +∇2L(X, y, t, Z)∆ŝT = 0 (3.27)

49

for ∆ŝ. Substituting for ∇L from (3.21)-(3.24) into (3.27) yields the following system

of equations for the predictor step.


Λ11 Λ12

Λ21 Λ22






∆ŷ

∆t̂


 =



B (Z−1TX)− a)

G(Z−1TX)− b)


 , (3.28)

∆X̂ = Z−1TX − Z−1

(
k∑

i=1

Bi∆ŷ +
l∑

i=1

Gi∆t̂

)
X −X (3.29)

∆Ẑ = −T +
k∑

i=1

Bi∆ŷ +
l∑

i=1

Gi∆t̂ (3.30)

where

T = −
k∑

i=1

Biy +

l∑

i=1

Git+ C + Z

Λ11 =
[
B(Z−1B1X) · · · B(Z−1BkX)

]

Λ12 =
[
B(Z−1G1X) · · · B(Z−1GlX)

]

Λ21 =
[
G(Z−1B1X) · · · G(Z−1BkX)

]

Λ22 =
[
G(Z−1G1X) · · · G(Z−1GlX)

]
+ diag

{
b1 − tr(G1X)

t1
, · · · , bl − tr(GlX)

tl

}
.

The corrector step is defined as the Newton’s step for solving the KKT condi-

tions (3.21)-(3.24), using the barrier parameter µ as defined in (3.25) and starting

at

[X +∆X̂, y +∆ŷ, t+∆t̂, Z +∆Ẑ],

where [X, y, t, Z] can be any point satisfying (3.26) and [∆X̂,∆ŷ,∆t̂,∆Ẑ] can be

calculated using (3.28)-(3.30). Thus, to derive the corrector step, we substitute for

∇L from KKT conditions (3.21)-(3.24) into

[
∇L(X̄, ȳ, t̄, Z̄) +∇2L(X̄, ȳ, t̄, Z̄)

]
X̄=X+∆X̂
Z̄=Z+∆Ẑ
ȳ=y+∆ŷ
t̄=t+∆t̂

∆s̄T = 0

50

This yields the following set of equations for the corrector step.



Λ11 Λ12

Λ21 Λ22






∆ȳ

∆t̄


 =




µB(Z−1)−B(Z−1∆Ẑ∆X̂)

µ

[
1

t1
· · · 1

tl

]
+G

(
X +∆X̂ + µZ−1 − Z−1∆Ẑ∆X̂

)




(3.31)

∆X̄ = Z−1
(
−∆Ẑ∆X̂ + µI −∆Z̄X

)
(3.32)

∆Z̄ =
k∑

i=1

Bi∆ȳ +
l∑

i=1

Gi∆t̄ (3.33)

By solving (3.28)-(3.30) for the predictor step and solving (3.31)-(3.33) for the cor-

rector step, we can calculate the search direction as

∆s =
[
Sym(∆X̂ +∆X̄),∆ŷ +∆ȳ,∆t̂+∆t̄,∆Ẑ +∆Z̄

]
, (3.34)

where Sym(W) := (W+W T)/2 is the symmetric part of matrixW . We have provided

an outline of the discussed primal-dual algorithm in Algorithm 4.

51

Input: SDP elements C, a, b, Bi for i = 1, · · · , k and Gi for i = 1, · · · , l;

starting point satisfying (3.26); tolerance ǫ > 0 the stopping criterion.

Initialization:

Set the duality gap γ = 2ǫ.

while duality gap γ > ǫ do

Calculating the predictor step:

Solve ∆ŷ and ∆t̂ by solving system of the equations in (3.28).

Calculate ∆ŷ and ∆t̂ using (3.29) and (3.30).

Calculating the corrector step:

Calculate the barrier parameter µ using (3.25).

Solve ∆ȳ and ∆t̄ by solving system of the equations in (3.31).

Calculate ∆ȳ and ∆t̄ using (3.32) and (3.33).

Updating the primal and dual variables:

Calculate the search direction as

∆X := Sym(∆X̂+∆X̄), ∆y := ∆ŷ+∆ȳ, ∆t := ∆t̂+∆t̄, ∆Z := ∆Ẑ+∆Z̄.

Calculate primal and dual step lengths αp and αd using an appropriate

line-search algorithm.

Set the primal and dual variables as

X := X + αp∆X, y := y +∆y, t := t +∆t, Z := Z +∆Z.

Calculate the duality gap as γ = tr(CX)− (aTy + bT t).

end

Output: [X∗, y∗, t∗, Z∗]: A γ-suboptimal solution to Problems (3.17)

and (3.19).

Algorithm 4: An interior-point central-path primal-dual algorithm for SDP

52

Chapter 4

PARALLEL ALGORITHMS FOR ROBUST STABILITY ANALYSIS OVER

SIMPLEX

4.1 Background and motivations

Control system theory when applied in practical situations often involves the use

of large state-space models, typically due to inherent complexity of the system, the

interconnection of subsystems, or the reduction of an infinite-dimensional or PDE

model to a finite-dimensional approximation. One approach to dealing with such

large scale models has been to use model reduction techniques such as balanced trun-

cation (Gugercin and Antoulas (2004)). However, the use of model reduction tech-

niques are not necessarily robust and can result in arbitrarily large errors. In addition

to large state-space, practical problems often contain uncertainty in the model due

to modeling errors, linearization, or fluctuation in the operating conditions. The

problem of stability and control of systems with uncertainty has been widely studied.

See, e.g. the texts Ackermann et al. (2001); Bhattacharyya et al. (1995); Green and

Limebeer (1995); Zhou and Doyle (1998); Dullerud and Paganini (2000). Famous

results such as the small-gain theorem, Popov’s criterion, passivity theorems and

Kharitonov’s theorem have been widely used to find tractable solutions to certain

robust stability problems of a single and/or interconnected uncertain systems. As an

example, Kharitonov’s theorem reduces the stability problem of an infinite family of

differential equations

a1
dn

dtn
x(t) + a2

dn−1

dtn−1
x(t) + · · ·+ an−2

d

dt
x(t) + an+1x(t) + an+2 = 0, ai ∈ [ui, ūi] ⊂ R

(4.1)

53

to verifying whether the following four characteristic polynomials

k1(s) = un+2 + un+1s+ ūns
2 + ūn−1s

3 + un−2s
4 + un−3s

5 + · · ·

k2(s) = ūn+2 + ūn+1s+ uns
2 + un−1s

3 + ūn−2s
4 + ūn−3s

5 + · · ·

k3(s) = un+2 + ūn+1s+ ūns
2 + un−1s

3 + un−2s
4 + ūn−3s

5 + · · ·

k4(s) = ūn+2 + un+1s+ uns
2 + ūn−1s

3 + ūn−2s
4 + un−3s

5 + · · ·

have all their roots in the open left half-plane - a problem which can be tractably

solved (in O(n2) operations) using the Routh-Hurwitz criterion. Despite all the

progress in robust control theory during the past few decades, a drawback of ex-

isting computational methods for analysis and control of systems with uncertainty is

high computational complexity. This is a consequence of the fact that a wide range

of problems in robust stability and control of systems with parametric uncertainty

are known to be NP-hard. For example, even the classical problem of stability of

ẋ(t) = A(a)x(t) for all a inside a hypercube (the matrix analog of System (4.1)) is

NP-hard1. Other examples are calculation of structured singular values for robust per-

formance analysis and µ-synthesis (Zhou et al. (1996)), deciding null-controllability2

of x(k + 1) = f(x(k), u(k)) for a given f : Rn × Rm → Rn (Blondel and Tsitsik-

lis (1999)), and computing arbitrarily precise bounds on the joint spectral radius of

matrices for stability analysis of systems with time-varying uncertainty (Gripenberg

(1996)). See Blondel and Tsitsiklis (2000) for a comprehensive survey on NP-hard

problems in control theory. The result of such complexity is that for systems with

1Nemirovskii (1993) proves that the {−1,+1}-integer linear programming problem (a well-known

NP-complete problem) admits a polynomial-time reduction to the problem of verifying positive semi-

definiteness of a family of symmetric matrices with entries belonging to an interval on R.
2A system x(k + 1) = f(x(k), u(k)) is called null-controllable if for every initial state x(0), there

exist some T > 1 and controls u(k), k = 0, · · · , T − 1 such that x(T) = 0

54

parametric uncertainty and with hundreds of states, existing algorithms fail with the

primary point of failure usually being lack of unallocated memory.

In this dissertation, we seek to distribute the computation over an array of pro-

cessors within the context of existing computational resources; specifically cluster-

computers and supercomputers. When designing algorithms to run in a parallel

computing environment, one must both synchronize computational tasks among the

processors while minimizing communication overhead among the processors. This can

be difficult, as each architecture has a specific memory hierarchy and communication

graph (See Figure 4.1). Likewise, in a lower level, individual computing units may

have different processing architectures and memory hierarchies; e.g., see a compar-

ison of the memory hierarchy of a multi-core CPU and a GPU in Figure 4.1. We

account for communication by explicitly modeling the required communication graph

between processors. This communication graph is then mapped to the processor ar-

chitecture using the Message-Passing Interface (MPI) (Walker and Dongarra (1996)).

While there are many algorithms for robust stability analysis and control of linear

systems, ours is the first which explicitly accounts for the processing architecture in

the emerging multi-core computing environment.

Our approach to robust stability is based on the well-established use of parameter-

dependent Quadratic-In-The-State (QITS) Lyapunov functions. The use of parameter-

dependent Lyapunov QITS functions eliminates the conservativity associated with e.g.

quadratic stability (Packard and Doyle (1990)), at the cost of requiring some restric-

tion on the rate of parameter variation. Specifically, our QITS Lyapunov variables

are polynomials in the vector of uncertain parameters. This is a generalization of

the use of QITS Lyapunov functions with affine parameter dependence as in Barmish

and DeMarco (1986) and expanded in, e.g. Gahinet et al. (1996); Oliveira and Peres

(2005, 2001) and Ramos and Peres (2001). The use of polynomial QITS Lyapunov

55

Figure 4.1: Various interconnections of nodes in a cluster computer (Top), Typical
memory hierarchies of a GPU and a multi-core CPU (bottom)

variables can be motivated by Bliman (2004b), wherein it is shown that any feasible

parameter-dependent LMI with parameters inside a compact set has a polynomial

solution or Peet (2009) wherein it is shown that local stability of a nonlinear vector

field implies the existence of a polynomial Lyapunov function.

There are several results which use polynomial QITS Lyapunov functions to prove

robust stability. In most cases, the stability problem is reduced to the general prob-

lem of optimization of polynomial variables subject to LMI constraints - an NP-hard

problem (Ben-Tal and Nemirovski (1998)). To avoid NP-hardness, the optimization

of polynomials problem is usually solved in an asymptotic manner by posing a se-

quence of sufficient conditions of increasing accuracy and decreasing conservatism.

For example, building on the result in Bliman (2004b), Bliman (2004a) proposes a

56

sequence of increasingly precise LMIs for robust stability analysis of linear systems

with affine dependency on uncertain parameters on the complex unit ball. Necessary

and sufficient stability conditions for linear systems with one uncertain parameter are

derived in Zhang and Tsiotras (2003), providing an explicit bound on the degree of

the polynomial-type Lyapunov function. This result is extended to multi-parameter-

dependent linear systems in Zhang et al. (2005). Another important approach to

optimization of polynomials is the SOS methodology which replaces the polynomial

positivity constraint with the constraint that the polynomial admits a representation

as a sum of squares of polynomials. See Sections 2.3.4 and 1.1 for a review of this

approach. Applications of the SOS methodology in robust stability analysis of linear

and nonlinear systems can be found in Scherer and Hol (2006); Lavaei and Aghdam

(2008) and Tan and Packard (2008). While the SOS methodology have been exten-

sively utilized in the literature, we have not, as of yet, been able to adapt algorithms

for solving the resulting LMI conditions to a parallel-computing environment. Finally,

there have been multiple results in recent years on the use of Polya’s theorem to solve

optimization of polynomials problems (Oliveira and Peres (2007)) on the simplex. An

extension of Polya’s theorem for uncertain parameters on the multisimplex or hyper-

cube can be found in Oliveira et al. (2008). In this section, we propose an extension

of Polya’s theorem and its use for solving optimization of polynomials problems in a

parallel computing environment.

Our goal is to create algorithms which explicitly map computation, communica-

tion and storage to existing parallel processing architectures. This goal is motivated

by the failure of existing general-purpose Semi-Definite Programming (SDP) solvers

to efficiently utilize platforms for large-scale computation. Specifically, it is well-

established that linear programming and semi-definite programming both belong to

the complexity class P-Complete, also known as the class of inherently sequential

57

problems. Although there have been several attempts to map certain SDP solvers

to a parallel computing environment (Borchers and Young (2007); Yamashita et al.

(2003)), certain critical steps cannot be distributed. The result is that as the number

of processors increases, certain computational and communication bottlenecks dom-

inate - leading to a saturation in the speed-up (the increase in processing speed per

additional processor) of these solvers (Amdahl’s law (Amdahl (1967))). We avoid

these bottlenecks by exploiting the particular structure of the LMI conditions asso-

ciated with Polya’s theorem. Note that, in principle, a perfectly designed general-

purpose SDP algorithm could identify the structure of the SDP, as we have, and map

the communication, computation and memory constraints to a parallel architecture.

Indeed, there has been a great deal of research on creating programming languages

which attempt to do just this (Kalé et al. (1994); Deitz (2005)). However, at present

such languages are mostly theoretical and have certainly not been incorporated into

existing SDP solvers.

In addition to parallel SDP solvers, there have been some efforts to exploit struc-

ture in certain polynomial optimization algorithms to reducing the size and complex-

ity of the resulting LMI’s. For example, for the case of finding SOS representations

for symmetric polynomials3, Gatermann and Parrilo (2004) exploited symmetry to

reduce the number of decision variables and constraints in the associated SDPs. An-

other example is the use of an specific sparsity structure in Parrilo (2005); Kim et al.

(2005) and Waki et al. (2008) to reduce the complexity of the linear algebra calcu-

lations associated with the SOS methodology. The use of generalized Lagrangian

duals and Groebner basis techniques for reducing the complexity of the SDPs asso-

ciated with the SOS decompositions of sparse polynomial optimization problems can

3A symmetric polynomial is a polynomial which is invariant under all permutations of its vari-

ables, e.g., f(x, y, z) = x4 + y4 + z4 − 4xyz + x+ y + z.

58

be found in Kim et al. (2005) and Permenter and Parrilo (2012).

4.1.1 Our contributions

In this section, we focus on robust stability analysis of: 1- Systems with paramet-

ric uncertainty inside a simplex; and 2- Systems with parametric uncertainty inside

a hypercube. We solve each problem in two phases by proposing the following algo-

rithms: 1- A decentralized algorithm for Setting up the sequence of structured SDPs

associated with Polya’s theorem; and 2- A parallel SDP solver to solve the SDPs.

Note that the problem of decentralizing the set-up algorithm is significant in that

for large-scale systems, the instantiation of the problem may be beyond the memory

and computational capacity of a single processing node. For the set-up problem, the

algorithm that we propose has no centralized memory/computational requirements

whatsoever. Furthermore, we show that for a sufficiently large number of available

processors, the communication complexity is independent of the size of the state-space

or the number of Polya’s iterations.

In the second phase, we propose a variant of Helmberg’s primal-dual algorithm (Helm-

berg et al. (2005)) and map the computational, memory and communication require-

ments to a parallel computing environment. Unlike the set-up algorithm, the primal-

dual algorithm does have a “relatively small” centralized computation associated with

the update of the dual variables. However, we have structured the algorithm so that

the size of this centralized computation is solely a function of the degree of the poly-

nomial Lyapunov function and does not depend on the number of Polya’s iterations.

In addition, there is no point-to-point communication between the processors, which

means that the algorithm is compatible with most of the existing parallel computing

architectures. We will provide a graph representation of the communication architec-

ture of both the set-up and SDP algorithms.

59

By linking the set-up and SDP algorithms and conducting tests on various cluster

computers, we demonstrate the ability of our algorithms in performing robust stability

analysis on systems with 100+ states and several uncertain parameters. Specifically,

we ran a series of numerical experiments using the Linux-based cluster computer

Karlin at Illinois Institute of Technology and the Blue Gene supercomputer (with 200

processor allocation). First, we applied the algorithm to a current problem in robust

stability analysis of magnetic confinement fusion using a discretized PDE model.

Next, we examine the accuracy of the algorithm as Polya’s iterations progress and

compare this accuracy with the SOS approach. We show that unlike the general-

purpose parallel SDP solver SDPARA Yamashita et al. (2003), the speed-up of our

algorithm shows no evidence of saturation. Finally, we calculate the envelope of

the algorithm on the cluster computer Karlin in terms of the maximum state-space

dimension, number of processors and Polya’s iterations.

4.2 Notation and Preliminaries on homogeneous polynomials

Let us denote an l−variate monomial as αγ =
∏l

i=1 α
γi
i , where α ∈ Rl is the

vector of variables, γ ∈ Nl is the vector of exponents and
l∑

i=1

γi = d is the degree of

the monomial. We define

Wd :=

{
γ ∈ N

l :

l∑

i=1

γi = d

}
(4.2)

as the totally ordered set of the exponents of l−variate monomials of degree d, where

the ordering is lexicographic. Recall that in lexicographical ordering γ ∈ Wd precedes

η ∈ Wd, if the left most non-zero entry of γ− η is positive. The lexicographical index

of every γ ∈ Wd can be calculated using the map 〈·〉 : Nl → N defined as (Peet and

Peet (2010))

〈γ〉 =
l−1∑

j=1

γi∑

i=1

f

(
l − j, d+ 1−

j−1∑

k=1

γk − i

)
+ 1

60

where

f(l, d) :=





0 for l = 0
(
l + d− 1

l − 1

)
=

(d+ l − 1)!

d!(l − 1)!
for l > 0,

(4.3)

is the cardinality ofWd, i.e., the number of l−variate monomials of degree d. For con-

venience, we also denote the index of a monomial αγ by 〈γ〉. We represent l−variate

homogeneous polynomials of degree dp as

P (α) =
∑

γ∈Wdp

P〈γ〉α
γ ,

where P〈γ〉 ∈ Rn×n is the matrix coefficient of the monomial αγ.

Now consider the linear system

ẋ(t) = A(α)x(t), (4.4)

where A(α) ∈ Rn×n and α ∈ Q ⊂ Rl is a vector of uncertain parameters. We assume

that A(α) is a homogeneous polynomial and Q = ∆l ⊂ Rl, where ∆l is the unit

simplex, i.e.,

∆l =

{
α ∈ R

l :
l∑

i=1

αi = 1, αi > 0

}
.

If A(α) is not homogeneous, we can homogenize it in the following manner. Suppose

A(α) with α ∈ ∆l is a non-homogeneous polynomial of degree da and has Na mono-

mials with non-zero coefficients. Define D =
(
da1 , · · · , daNa

)
, where dai is the degree

of the ith monomial of A(α) according to the lexicographical ordering. Now define

the polynomial B(α) as per the following.

1. Let B = A.

2. For i = 1, · · · , Na, multiply the ith monomial of B(α), according to lexicograph-

ical ordering, by

(
l∑

j=1

αj

)da−dai

.

61

Then, since
l∑

j=1

αj = 1, B(α) = A(α) for all α ∈ ∆l and hence all properties of ẋ(t) =

A(α)x(t) for any α ∈ ∆l are retained by the homogeneous system ẋ(t) = B(α)x(t).

To further clarify the homogenization procedure, we provide the following example.

Example: Construction of the homogeneous system ẋ(t) = B(α)x(t).

Consider the non-homogeneous polynomial A(α) = Cα2
1 + Dα2 + Eα3 + F of

degree da = 2, where [α1, α2, α3] ∈ ∆3. Using the above procedure, the homogeneous

polynomial B(α) can be constructed as

B(α) = Cα2
1 +Dα2(α1 + α2 + α3) + Eα3(α1 + α2 + α3) + F (α1 + α2 + α3)

2

= (C + F)︸ ︷︷ ︸
B1

α2
1 + (D + 2F)︸ ︷︷ ︸

B2

α1α2 + (E + 2F)︸ ︷︷ ︸
B3

α1α3 + (D + F)︸ ︷︷ ︸
B4

α2
2

+ (D + E + 2F)︸ ︷︷ ︸
B5

α2α3 + (E + F)︸ ︷︷ ︸
B6

α2
3 =

∑

γ∈W2

B〈γ〉α
γ. (4.5)

4.3 Setting up the problem of robust stability analysis over a simplex

In this section, we show that applying Polya’s Theorem to the robust stability

problem, i.e., the inequalities in Theorem 13 yields a semi-definite program with a

block-diagonal structure - hence can be an efficiently distributed among processing

units. We start by stating the following well-known Lyapunov result on stability of

System (4.4).

Theorem 13. System (4.4) is stable if and only if there exists a polynomial matrix

P (α) such that P (α) ≻ 0 for all α ∈ ∆l and

AT (α)P (α) + P (α)A(α) ≺ 0 for all α ∈ ∆l. (4.6)

A similar condition also holds for discrete-time linear systems. The conditions as-

sociated with Theorem 13 are infinite-dimensional LMIs, meaning they must hold at

62

infinite number of points. Such problems are known to be NP-hard (Ben-Tal and Ne-

mirovski (1998)). Our goal is to derive a sequence of polynomial-time algorithms such

that their outputs converge to a solution of the parameter-dependent LMI in (5.8).

Key to this result is Polya’s Theorem (Hardy et al. (1934)). A variation of this

theorem for matrices is given as follows.

Theorem 14. (Polya’s theorem, simplex version) If a homogeneous matrix-valued

polynomial F satisfies F (α) > 0 for all α ∈ ∆l, then there exists d ≥ 0 such that all

the coefficients of (
l∑

i=1

αi

)d

F (α) (4.7)

are positive definite.

See Chapter 2 for a more detailed discussion on this result.

Consider the stability of the system described by Equation (4.4). We are interested

in finding a P (α) which satisfies the conditions of Theorem 13. According to Polya’s

theorem, the constraints of Theorem 13 are satisfied if for some sufficiently large d1

and d2, the polynomials (
l∑

i=1

αi

)d1

P (α) and (4.8)

−
(

l∑

i=1

αi

)d2 (
AT (α)P (α) + P (α)A(α)

)
(4.9)

have all positive definite coefficients.

Let P (α) be a homogeneous polynomial of degree dp which can be represented as

P (α) =
∑

γ∈Wdp

P〈γ〉α
γ , (4.10)

where the coefficients P〈γ〉 ∈ Sn and where we recall thatWdp :=
{
γ ∈ Nl :

∑l
i=1 γi = dp

}

is the set of the exponents of all l-variate monomials of degree dp. Since A(α) is a

63

homogeneous polynomial of degree da, we can write it as

A(α) =
∑

γ∈Wda

A〈γ〉α
γ, (4.11)

where the coefficients A〈γ〉 ∈ Rn×n. By substituting (4.10) and (4.11) into (4.8)

and (4.9) and defining dpa as the degree of P (α)A(α), the conditions of Theorem 14

can be represented in the form

(
l∑

i=1

αi

)d1

 ∑

h∈Wdp

P〈h〉α
h


 =

∑

g∈Wdp+d1


 ∑

h∈Wdp

β〈h〉,〈γ〉P〈h〉


αγ

and

−
(

l∑

i=1

αi

)d2



 ∑

h∈Wda

AT
〈h〉α

h




 ∑

h∈Wdp

P〈h〉α
h


+


 ∑

h∈Wdp

P〈h〉α
h




 ∑

h∈Wda

A〈h〉α
h






=
∑

γ∈Wdpa+d2


 ∑

h∈Wdp

HT
〈h〉,〈γ〉P〈h〉 + P〈h〉H〈h〉,〈γ〉


αγ

have all positive coefficients. This means that

∑

h∈Wdp

β〈h〉,〈γ〉P〈h〉 > 0 for all γ ∈ Wdp+d1 and (4.12)

∑

h∈Wdp

(HT
〈h〉,〈γ〉P〈h〉 + P〈h〉H〈h〉,〈γ〉) < 0 for all γ ∈ Wdpa+d2. (4.13)

Here we have defined β〈h〉,〈γ〉 to be the scalar coefficient which multiplies P〈h〉 in the

〈γ〉-th monomial of the homogeneous polynomial
(∑l

i=1 αi

)d1
P (α) using the lexico-

graphical ordering. Likewise, H〈h〉,〈γ〉 ∈ Rn×n is the term which left or right multiplies

P〈h〉 in the 〈γ〉-th monomial of
(∑l

i=1 αi

)d2 (
AT (α)P (α) + P (α)A(α)

)
using the lex-

icographical ordering. For an intuitive explanation as to how these β and H terms

are calculated, we consider a simple example. Precise formulae for these terms will

follow the example.

Example: Calculating the β and H coefficients.

64

Consider A(α) = A1α1 + A2α2 and P (α) = P1α1 + P2α2. By expanding Equa-

tion (4.8) for d1 = 1 we have (α1 + α2)P (α) = P1α
2
1 + (P1 + P2)α1α2 + P2α

2
2. The

coefficients β〈h〉,〈γ〉 are then extracted as

β1,1 = 1, β2,1 = 0, β1,2 = 1, β2,2 = 1, β1,3 = 0, β2,3 = 1.

Next, by expanding Equation (4.9) for d2 = 1 we have

(α1 + α2)
(
AT (α)P (α) + P (α)A(α)

)
=

(
AT

1 P1 + P1A1

)
α3
1 +

(
AT

1 P1 + P1A1 + AT
2 P1 + P1A2 + AT

1 P2 + P2A1

)
α2
1α2 +

(
AT

2 P1

+P1A2 + AT
1 P2 + P2A1 + AT

2 P2 + P2A2

)
α1α

2
2 +

(
AT

2 P2 + P2A2

)
α3
2.

The coefficients H〈h〉,〈γ〉 are then extracted as

H1,1 = A1, H2,1 = 0, H1,2 = A1 + A2, H2,2 = A1,

H1,3 = A2, H2,3 = A1 + A2, H1,4 = 0, H2,4 = A2.

4.3.1 General formulae for calculating coefficients β and H

The set {β〈h〉,〈γ〉} of coefficients can be formally defined recursively as follows. Let

the initial values for β〈h〉,〈γ〉 be defined as

β
(0)
〈h〉,〈γ〉 =





1 if h = γ

0 otherwise

for all γ ∈ Wdp and h ∈ Wdp . (4.14)

Then, iterating for i = 1, . . . d1, we let

β
(i)
〈h〉,〈γ〉 =

∑

λ∈W1

β
(i−1)
〈h〉,〈γ−λ〉 for all γ ∈ Wdp+i and h ∈ Wdp . (4.15)

Finally, we set {β〈h〉,〈γ〉} = {βd1
〈h〉,〈γ〉}.

To obtain the set {H〈h〉,〈γ〉} of coefficients, set the initial values as

H
(0)
〈h〉,〈γ〉 =

∑

λ∈Wda :λ+h=γ

A〈λ〉 for all γ ∈ Wdp+da and h ∈ Wdp . (4.16)

65

Then, iterating for i = 1, . . . d2, we let

H
(i)
〈h〉,〈γ〉 =

∑

λ∈W1

H
(i−1)
〈h〉,〈γ−λ〉 for all γ ∈ Wdpa+i and h ∈ Wdp. (4.17)

Finally, set {H〈h〉,〈γ〉} = {Hd2
〈h〉,〈γ〉}.

For the case of large-scale systems, computing and storing {β〈h〉,〈γ〉} and {H〈h〉,〈γ〉}

is a significant challenge due to the number of these coefficients. Specifically, the

number of terms increases with l (number of uncertain parameters in System (4.4)),

dp (degree of P (α)), dpa (degree of P (α)A(α)) and d1, d2 (Polya’s exponents) as

follows.

4.3.2 Number of coefficients β〈h〉,〈γ〉 and H〈h〉,〈γ〉

Given l, dp and d1, since h ∈ Wdp and γ ∈ Wdp+d1 , the number of coefficients β〈h〉,〈γ〉

is the product of L0 := card(Wdp) and L := card(Wdp+d1). Recall that card(Wdp) is

the number of all l-variate monomials of degree dp and can be calculated using (4.3)

as follows.

L0 = f(l, dp) =





0 for l = 0
(
dp + l − 1

l − 1

)
=

(dp + l − 1)!

dp!(l − 1)!
for l > 0.

(4.18)

Likewise, card(Wdp+d1), i.e., the number of all l−variate monomials of degree dp + d1

is calculated using (4.3) as follows.

L = f(l, dp + d1) =





0 for l = 0
(
dp + d1 + l − 1

l − 1

)
=

(dp + d1 + l − 1)!

(dp + d1)!(l − 1)!
for l > 0.

(4.19)

The number of coefficients β〈h〉,〈γ〉 is L0 ·L. In Figure 4.2, we have plotted the number

of coefficients β〈h〉,〈γ〉 in terms of the number of uncertain parameters l and for different

polya’s exponents.

66

1 2 3 4 5 6 7 8 9 10
10

0

10
2

10
4

10
6

10
8

Number of uncertain parameters l

N
um

be
r

of

β
co

ef
fic

ie
nt

s

d
1
=d

2
=0

d
1
=d

2
=2

d
1
=d

2
=4

d
1
=d

2
=6

d
1
=d

2
=8

d
1
=d

2
=10

Figure 4.2: Number of β〈h〉,〈γ〉 coefficients vs. the number of uncertain parameters
for different Polya’s exponents and for dp = 2

1 2 3 4 5 6 7 8 9 10
10

0

10
2

10
4

10
6

10
8

Number of uncertain parameters l

N
um

be
r

of
 H

 c
oe

ffi
ci

en
ts

d
1
=d

2
=0

d
1
=d

2
=2

d
1
=d

2
=4

d
1
=d

2
=6

d
1
=d

2
=8

d
1
=d

2
=10

Figure 4.3: Number of H〈h〉,〈γ〉 coefficients vs. the number of uncertain parameters
for different Polya’s exponents and for dp = da = 2

Given l, dp, da and d2, since h ∈ Wdp and γ ∈ Wdpa+d2 , the number of coefficients

H〈h〉,〈γ〉 is the product of L0 := card(Wdp) and M := card(Wdpa+d2). By using (4.3),

we have

M = f(l, dpa + d2) =





0 for l = 0
(
dpa + d2 + l − 1

l − 1

)
=

(dpa + d2 + l − 1)!

(dpa + d2)!(l − 1)!
for l > 0.

(4.20)

The number of H〈h〉,〈γ〉 coefficients is L0 · M . In Figure 4.3, we have plotted the

number of coefficients H〈h〉,〈γ〉 in terms of the number of uncertain parameters l and

67

1 2 3 4 5 6 7 8 9 10
10

−8

10
−6

10
−4

10
−2

10
0

10
2

10
3

10
4

10
5

10
6

Number of uncertain parameters l

M
em

or
y

re
qu

ire
d

to
 s

to
re

β

an
d

H
 c

oe
ffs

 (
G

by
te

s)

d

1
=d

2
=1,n=1

d
1
=d

2
=10,n=1

d
1
=d

2
=1,n=10

d
1
=d

2
=10,n=10

d
1
=d

2
=1,n=100

d
1
=d

2
=10,n=100

d
1
=d

2
=1,n=1000

d
1
=d

2
=10,n=1000

Figure 4.4: Memory required to store the coefficients β〈h〉,〈γ〉 and H〈h〉,〈γ〉 vs. number
of uncertain parameters, for different d1, d2 and dp = da = 2

for different polya’s exponents.

We have shown the required memory to store the coefficients β〈h〉,〈γ〉 and H〈h〉,〈γ〉 in

Figure 4.4 in terms of the number of uncertain parameters l and for different Polya’s

exponents. It is observed from Figure 4.4 that even for small degree dp of P (α) and

small degree da of the system matrix A(α), the required memory is in the Terabyte

range. Peet and Peet (2010) proposed a decentralized computing approach to the

calculation of {β〈h〉,〈γ〉} on a cluster computer. In the work, we extend this method

to the calculation of {H〈h〉,〈γ〉} and the SDP elements which will be discussed in the

following section. We express the LMIs associated with conditions (4.12) and (4.13)

as an SDP in both primal and dual forms. We will also discuss the structure of the

primal and dual SDP variables and the constraints.

68

4.3.3 The elements of the SDP problem associated with Polya’s theorem

Recall from Section 3.4 that a semi-definite program can be stated either in primal

or in dual format. Given C ∈ Sm, a ∈ RK and Bi ∈ Sm, here we consider

max
X∈Sm

tr(CX)

subject to B(X) = a

X ≥ 0, (4.21)

as the primal SDP form, where the linear operator B : Sm → RK is defined in (3.18).

The associated dual problem is

min
y,Z

aTy

subject to

K∑

i=1

Biyi − C = Z

Z ≥ 0 , y ∈ R
K . (4.22)

The elements C, Bi and a of the SDP problem associated with the LMIs in (4.12)

and (4.13) are defined as follows. We define the element C as

C := diag(C1, · · ·CL, CL+1, · · ·CL+M), (4.23)

where

Ci :=





δIn ·
(∑

h∈Wdp
β〈h〉,i

dp!
h1! ···hl!

)
, for 1 ≤ i ≤ L

0n, for L+ 1 ≤ i ≤ L+M,

(4.24)

where recall that L = card(Wdp+d1) is the number of monomials in
(∑l

i=1 αi

)d1
P (α),

M = card(Wdpa+d2) is the number of monomials in
(∑l

i=1 αi

)d2
P (α)A(α), n is the

dimension of System (4.4), l is the number of uncertain parameters and δ is a small

positive parameter.

69

For i = 1, · · · , K, define Bi elements as

Bi := diag(Bi,1, · · ·Bi,L, Bi,L+1, · · ·Bi,L+M), (4.25)

where K is the number of dual variables in (4.22) and is equal to the product of

the number of upper-triangular elements in each Pγ ∈ Sn (the coefficients in P (α))

and the number of monomials in P (α) (i.e. the cardinality of Wdp). Since there are

f(l, dp) =

(
dp + l − 1

l − 1

)
coefficients in P (α) and each coefficient has Ñ := 1

2
n(n + 1)

upper-triangular elements, we find K as

K =
(dp + l − 1)!

dp!(l − 1)!
Ñ . (4.26)

To define the Bi,j blocks, first we define the map V〈h〉 : Z
K → Z

n×n,

V〈h〉(x) :=
Ñ∑

j=1

Ej xj+Ñ(〈h〉−1) for all h ∈ Wdp , (4.27)

which maps each variable to Ej , where Ej , j = 1, · · · Ñ define the canonical basis for

Sn (subspace of symmetric matrices) as follows.

[Ej]i,k :=





1 if i = k = j

0 otherwise

, for j ≤ n and (4.28)

[Ej]i,k := [Fj]i,k + [Fj]
T
i,k, for j > n, (4.29)

where

[Fj]i,k :=





1 if i = k − 1 = j − n

0 otherwise.

(4.30)

Note that a different choice of basis would require a different function V〈h〉. Then, for

i = 1, · · · , K, we define Bi,j matrices as

Bi,j :=





∑
h∈Wdp

β〈h〉,jV〈h〉(ei), for 1 ≤ j ≤ L (I)

−∑h∈Wdp

(
HT

〈h〉,j−LV〈h〉(ei) + V〈h〉(ei)H〈h〉,j−L

)
, for L+ 1 ≤ j ≤ L+M, (II)

(4.31)

70

where we have denoted the canonical basis for Rn by ei = [0 ... 0

ith︷︸︸︷
1 0 ... 0], i =

1, · · · , n. Finally, to complete the SDP problem associated with Polya’s algorithm,

we choose a as

a = ~1 ∈ R
K . (4.32)

4.3.4 A parallel algorithm for setting-up the SDP

In this section, we propose a decentralized, iterative algorithm for calculating the

terms {β〈h〉,〈γ〉}, {H〈h〉,〈γ〉}, C and Bi as defined in (4.15), (4.17), (4.23) and (4.25). We

have provided an MPI implementation of this algorithm in C++. The source code

is available at https://www.sites.google.com/a/asu.edu/kamyar/Software. In

Algorithm 5, we have presented a pseudo-code for this algorithm, wherein N is the

number of available processors.

4.4 Complexity analysis of the set-up algorithm

Since verifying the positive definiteness of all representatives of a square matrix

with entries on proper real intervals is intractable (Nemirovskii (1993)), the question

of feasibility of (5.8) is also intractable. To solve the problem of inherent intractability

we establish a trade off between accuracy and complexity. In fact, we develop a

sequence of decentralized polynomial-time algorithms whose solutions converge to the

exact solution of the NP-hard problem. In other words, the translation of a polynomial

optimization problem to an LMI problem is the main source of complexity. This high

complexity is unavoidable and, in fact, is the reason we seek parallel algorithms.

Algorithm 5 distributes the computation and storage of coefficients {β〈h〉,〈γ〉} and

{H〈h〉,〈γ〉} among the processors and their dedicated memories, respectively. In an

ideal case, where the number of available processors is sufficiently large (equal to the

71

Inputs:

dp: degree of P (α), da: degree of A(α), n: number of states, l: number of

uncertain parameters, d1, d2: number of Polya’s iterations, Coefficients of A(α).

Initialization :

Set d̂1 = d̂2 = 0 and dpa = dp + da.

Calculate L0 as the number of monomials in P (α) using (4.18). Set L = L0.

Calculate M as the number of monomials in P (α)A(α) using (4.20).

Calculate L′ = floor(L
N
) as the number of monomials in P (α) assigned to each

processor.

Calculate M ′ = floor(M
N
) as the number of monomials in P (α)A(α) assigned

to each processor.

for i = 1, · · · , N , processor i do

Initialize βk,j for j = (i− 1)L′ + 1, · · · , iL′ and k = 1, · · ·L0 using (4.14).

Initialize Hk,m for m = (i− 1)M ′ + 1, · · · , iM ′ & k = 1, · · ·L0 using (4.16).
end

Calculating β and H coefficients:

while d̂1 ≤ d1 or d̂2 ≤ d2 do

if d̂1 ≤ d1 then

for i = 1, · · · , N , processor i do

Set dp = dp + 1. Set d̂1 = d̂1 + 1.

Update L using (4.19). Update L′ as L′ = floor(L
N
).

Calculate βk,j, j = (i− 1)L′ + 1, · · · , iL′ & k = 1, · · ·L0 using (4.15).
end

end

if d̂2 ≤ d2 then

for i = 1, · · · , N , processor i do

Set dpa = dpa + 1 and d̂2 = d̂2 + 1.

Update M using (4.20). Update M ′ as M ′ = floor(M
N
).

Calculate Hk,m for m = (i− 1)M ′ + 1, · · · , iM ′ and k = 1, · · ·L0.

using (4.17).
end

end
end

72

Calculating the SDP elements:

for i = 1, · · · , N , processor i do

Calculate the number of dual variables K using (5.24).

Set T ′ = floor(L+M
N

).

Calculate the blocks of the SDP element C as




Cj using (4.24) for j = (i− 1)L′ + 1, · · · , iL′

Cj = 0n for j = L+ (i− 1)M ′ + 1, · · · , L+ iM ′.

Set the sub-blocks of the SDP element C as

Ci = diag
(
C(i−1)T ′+1, · · · , CiT ′

)
. (4.33)

for j = 1, · · · , K do

Calculate the blocks of the SDP elements Bj as





Bj,k using (5.25)-I for k = (i− 1)L′ + 1, · · · , iL′

Bj,k using (5.25)-II for k = L+ (i− 1)M ′ + 1, · · · , L+ iM ′.

Set the sub-blocks of the SDP element Bj as

Bj,i = diag
(
Bj,(i−1)T ′+1, · · · , Bj,iT ′

)
. (4.34)

end

end

Outputs:

Sub-blocks Ci and Bj,i of the SDP elements for i = 1, · · · , N and

j = 1, · · · , K.

Algorithm 5: A parallel set-up algorithm for robust stability analysis over the

standard simplex

73

number of monomials in P (α)A(α), i.e. M) only one monomial (that corresponds to

L0 of coefficients β〈h〉,〈γ〉 and L0 of coefficients H〈h〉,〈γ〉) is assigned to each processor.

4.4.1 Computational complexity analysis

The most computationally expensive part of the set-up algorithm is the calculation

of the Bi,j blocks in (5.25). Considering that the cost of matrix-matrix multiplication

is ∼ n3, the cost of calculating each Bi,j block is ∼ card(Wdp) ·n3. According to (4.25)

and (5.25), the total number of Bi,j blocks is K(L+M). Hence, as per Algorithm 5,

each processor processes K
(
floor(L

N
) + floor(M

N
)
)
of the Bi,j blocks, where N is

the number of available processors. Therefore, the per processor computational cost

of calculating the Bi,j at each Polya’s iteration is

∼ card(Wdp) · n3 ·K
(
floor

(
L

N

)
+ floor

(
M

N

))
. (4.35)

By substituting for K from (5.24), card(Wdp) from (4.18), L from (4.19) and M

from (4.20), the per processor computation cost at each iteration is

∼
(
(dp + l − 1)!

dp!(l − 1)!

)2
n4(n+ 1)

2


floor




(dp + d1 + l − 1)!

(dp + d1)!(l − 1)!

N




+floor




(dpa + d2 + l − 1)!

(dpa + d2)!(l − 1)!

N





 ,

assuming that l > 0 andN ≤ M , i.e., the number of monomials in
(∑l

i=1 αi

)d2
P (α)A(α)

is at least as large as the number of available processors. Under the assumption that

the dynamical systems has large numbers of states and uncertain parameters (large n

and l), Table (4.1) presents the computational cost per processor of each Polya’s iter-

ation for three different numbers of available processors. For the case where dp ≥ 3,

the number of operations grows more slowly in n than in l.

74

Number of processors L0 L M

Computational

cost per processor
∼ (l2dp+d1 + l2dp+da+d2)n5 ∼ (l2dp+d1 + l2dp+da+d2)n5 ∼ l2dp+da+d2−d1n5

Table 4.1: Per processor, per iteration computational complexity of the set-up al-
gorithm. L0 is the number of monomials is P (α); L is the number of monomials in(∑l

i=1 αi

)d1
P (α); M is the number of monomials in

(∑l
i=1 αi

)d2
P (α)A(α).

4.4.2 Communication complexity analysis

Communication between processors can be modeled by a directed graph G(V,E),

where the set of nodes V = {1, · · · , N} is the set of indices of the available processors

and the set of edges E = {(i, j) : i, j ∈ V } is the set of all pairs of processors that

communicate with each other. For every directed graph, we can define an adjacency

matrix TG as follows. If processor i communicates with processor j, then [TG]i,j = 1,

otherwise [TG]i,j = 0. Here we only define the adjacency matrix for the part of

the algorithm that performs Polya’s iterations on P (α). For Polya’s iterations on

P (α)A(α), the adjacency matrix can be defined in a similar manner. For simplicity,

we assume that at each iteration, the number of available processors is equal to

the number of monomials in (
∑l

i=1 αi)
d1P (α). Using (4.19), let us define rd1 and

rd1+1 as the numbers of monomials in (
∑l

i=1 αi)
d1P (α) and (

∑l
i=1 αi)

d1+1P (α). For

I = 1, · · · , rd1 , define

EI := {lexicographical indices of monomials in

(
l∑

i=1

αi

)
αγ : γ ∈ Wdp+d1 and 〈γ〉 = I}.

Then, for i = 1, · · · , rd1+1 and j = 1, · · · , rd1+1, the adjacency matrix of the commu-

nication graph is

[TG]i,j :=





1 if i ≤ rd1 and j ∈ Ei and i 6= j

0 otherwise.

75

(a) (b)

Figure 4.5: Graph representation of the network communication of the set-up algo-
rithm. (a) Communication directed graph for the case α ∈ ∆3, dp = 2. (b) Commu-
nication directed graph for the case α ∈ ∆4, dp = 2.

Note that this definition implies that the communication graph of the set-up algorithm

changes at every iteration. To help visualize the graph, the adjacency matrix for the

case where α ∈ ∆2 is

TG :=




0 1 0 · · · 0 0 0 · · · 0

0 0 1 0 · · · 0

...
...

. . .
. . .

. . .
...

...
. . .

...

...
...

. . .
. . . 0

0 0 · · · · · · 0 1 0 · · · 0

0 · · · 0 0 · · · 0

...
. . .

...
...

. . .
...

0 · · · 0 0 · · · 0




∈ R
rd1+1×rd1+1 ,

where the nonzero sub-block of TG lies in R
rd1×rd1 . We can also illustrate the com-

munication graphs for the cases α ∈ ∆3 and α ∈ ∆4 with dp = 2 as seen in Figure 4.5.

For a given algorithm, the communication complexity is defined as the sum of

the size of all communicated messages. For simplicity, let us consider the worst case

76

Number of processors L0 L M

communication cost per processor ∼ ldpa+d2n2 ∼ ldpa+d2−d1n2 ∼ ldpn2

Table 4.2: Per processor, per iteration communication complexity of the set-up
algorithm. L0 is the number of monomials is P (α); L is the number of monomials in(∑l

i=1 αi

)d1
P (α); M is the number of monomials in

(∑l
i=1 αi

)d2
P (α)A(α).

scenario, where each processor is assigned more than one monomial and sends all

of its assigned coefficients β〈h〉,〈γ〉 and H〈h〉,〈γ〉 to other processors. In this case, the

algorithm assigns floor(L
N
) · card(Wdp) of coefficients β〈h〉,〈γ〉, each of size 1, and

(
floor(L

N
) + floor(M

N
)
)
· card(Wdp) of coefficients H〈h〉,〈γ〉, each of size n2, to each

processor. Thus, the communication complexity of the algorithm per processor and

per iteration becomes

card(Wdp)

(
floor

(
L

N

)
+ floor

(
M

N

)
n2

)
. (4.36)

This indicates that increasing the number of processors (up toM) actually leads to less

communication overhead per processor and improves the scalability of the algorithm.

By substituting for card(Wdp) from (4.18), L from (4.19) and M from (4.20) and

considering large l and n, the communication complexity per processor of each Polya’s

iteration can be represented as in Table 4.2.

4.5 A parallel SDP solver

Current state-of-the-art interior-point algorithms for solving linear and semi-definite

programs are: dual-scaling, primal-dual, cutting-plane/spectral bundle method. Al-

though we found it possible to use dual-scaling algorithms, we chose to pursue a

central-path following primal-dual algorithm. One reason that we prefer primal-dual

algorithms is because in general, primal-dual algorithms converge faster than dual-

scaling algorithms. This assertion is motivated by experience as well as bounds on

77

the convergence rate, such as those found in the literature (Helmberg et al. (1996);

Benson et al. (2000)). More importantly, we prefer primal-dual algorithms because

they have the property of preserving the structure (see (4.47)) of the solution at each

iteration. We will elaborate on this property in Theorem 15.

We prefer primal-dual algorithms over cutting plane/spectral bundle algorithms

because, as we show in Section 4.6, the centralized part of our primal-dual algorithm

consists of solving a symmetric system of linear equations (see (4.61)), whereas for the

cutting plane/spectral bundle algorithm, the centralized computation would consist of

solving a constrained quadratic program (see Sivaramakrishnan (2010), Nayakkankup-

pam (2007)) with the number of variables equal to the size of the system of linear

equations. Because centralized computation is a limiting factor in a parallel algo-

rithm (Amdahl’s law), and because solving symmetric linear equations is simpler

than solving a quadratic programming problem, we chose the primal-dual approach.

The choice of a central path-following primal-dual algorithm as in Helmberg et al.

(1996) and F. Alizadeh (1994) was motivated by results in Alizadeh et al. (1998)

which demonstrated better convergence, accuracy and robustness over the other types

of primal-dual algorithms. More specifically, we chose the approach in Helmberg

et al. (1996) over F. Alizadeh (1994) because unlike the Schur Complement Matrix

(SCM) approach of the algorithm in F. Alizadeh (1994), the SCM of Helmberg et al.

(1996) is symmetric and only the upper-triangular elements need to be sent/received

by the processors. This leads to less communication overhead. The other reason

for choosing Helmberg et al. (1996) is that the symmetric SCM of the algorithm

in Helmberg et al. (1996) can be factorized using Cholesky factorization, whereas the

non-symmetric SCM of F. Alizadeh (1994) must be factorized by LU factorization

(LU factorization is roughly twice as expensive as Cholesky factorization). Since

factorization of SCM comprises the main portion of the centralized computation in our

78

algorithm, it is crucial for us to use computationally-cheaper factorization methods

to achieve a better scalability.

Recall from Section 3.5 that in the primal-dual algorithm, both primal and dual

problems are solved by iteratively calculating primal and dual search directions and

step sizes, and applying these to the primal and dual variables. Let X be the primal

variable and y and Z be the dual variables. At each iteration, the variables are

updated as

Xk+1 = Xk + tp∆X (4.37)

yk+1 = yk + td∆y (4.38)

Zk+1 = Zk + td∆Z, (4.39)

where ∆X , ∆y, and ∆Z are the search directions defined in (3.34) and tp and td are

primal and dual step sizes. For the SDPs associated with Polya’s theorem (see (4.21)

and (4.22)), because the map G (defined in (3.18)) is zero, the predictor search di-

rections defined in (3.28)-(3.30) reduce to the following.

∆ŷ = Ω−1
(
−a +B(Z−1GX)

)
(4.40)

∆X̂ = −X + Z−1G

(
K∑

i=1

Bi∆ŷi

)
X (4.41)

∆Ẑ =

(
K∑

i=1

Biyi

)
− Z − C +

(
K∑

i=1

Bi∆ŷi

)
, (4.42)

where

G = −
K∑

i=1

Biyi + Z + C, (4.43)

and Ω = [B(Z−1B1X) · · · B(Z−1BKX)]. Similarly, the corrector search directions

79

defined in (3.31)-(3.33) reduce to

∆y = Ω−1
(
B(µZ−1)− B(Z−1∆Ẑ∆X̂)

)
(4.44)

∆X = µZ−1 − Z−1∆Ẑ∆X̂ − Z−1∆ZX (4.45)

∆Z =
K∑

i=1

Bi∆yi. (4.46)

In the following section, we discuss the structure of the decision variables of the SDP

defined by the Elements (4.23), (4.25) and (4.32).

4.5.1 Structure of the SDP variables

The key algorithmic insight of this study which allows us to use the primal-dual

approach presented in Algorithm 4 is that by choosing an initial value for the primal

variable with a certain block structure corresponding to the distributed structure

of the processors, the algorithm will preserve this structure on the primal and dual

variables at every iteration. Specifically, we define the following structured block-

diagonal subspace, where each block corresponds to a single processor.

Sl,m,n :=
{
Y ⊂ R

(l+m)n×(l+m)n : Y = diag(Y1, · · ·Yl, Yl+1, · · ·Yl+m) for Yi ∈ R
n×n
}

(4.47)

According to the following theorem, the subspace Sl,m,n is invariant under the pre-

dictor and corrector iterations in the sense that when Algorithm 4 is applied to the

SDP problem defined by the Elements (4.23), (4.25) and (4.32) with a primal starting

point X0 ∈ Sl,m,n, then the primal and dual variables remain in the subspace at every

iteration.

Theorem 15. Consider the SDP problem defined in (4.21) and (4.22) with elements

given by (4.23), (4.25) and (4.32). Suppose L and M are the cardinalities of Wdp+d1

andWdpa+d2 as defined in (4.19) and (4.20). If (4.37), (4.38) and (4.39) are initialized

80

by

X0 ∈ SL,M,n, y0 ∈ R
K , Z0 ∈ SL,M,n,

then for all k ∈ N,

Xk ∈ SL,M,n, Zk ∈ SL,M,n.

Proof. We proceed by induction. First, suppose for some k ∈ N,

Xk ∈ SL,M,n and Zk ∈ SL,M,n. (4.48)

We would like to show that this implies Xk+1, Zk+1 ∈ SL,M,n. To see this, observe

that according to (4.37), Xk+1 = Xk + tp∆Xk for all k ∈ N. From (3.34), ∆Xk can

be written as

∆Xk = ∆X̂k +∆Xk for all k ∈ N. (4.49)

To find the structure of ∆Xk, we focus on the structures of ∆X̂k and ∆Xk individually.

Using (4.41), ∆X̂k is

∆X̂k = −Xk + Z−1
k Gk

(
K∑

i=1

Bi∆ŷk

)
Xk for all k ∈ N, (4.50)

where according to (4.43), Gk is

Gk = C −
K∑

i=1

Biyi + Zk for all k ∈ N. (4.51)

First, we examine the structure of Gk. According to the definition of C and Bi

in (4.23) and (4.25), we know that

C ∈ SL,M,n and
K∑

i=1

Biyi ∈ SL,M,n for any y ∈ R
K . (4.52)

Since all the terms on the right hand side of (4.51) are in SL,M,n and SL,M,n is a

subspace, we conclude

Gk ∈ SL,M,n. (4.53)

81

Returning to (4.50), using our assumption in (4.48) and noting that the structure

of the matrices in SL,M,n is also preserved through multiplication and inversion, we

conclude

∆X̂k ∈ SL,M,n. (4.54)

According to (4.45), the second term in (4.49) is

∆Xk = µZ−1
k − Z−1

k ∆Ẑk∆X̂k − Z−1
k ∆ZkXk for all k ∈ N. (4.55)

To determine the structure of ∆Xk, first we investigate the structure of ∆Ẑk and

∆Zk. According to (4.42) and (4.46) we have

∆Ẑk =

K∑

i=1

Biyki − Zk − C +

K∑

i=1

Bi∆ŷki for all k ∈ N (4.56)

∆Zk =
K∑

i=1

Bi∆yki for all k ∈ N. (4.57)

Because all the terms in the right hand side of (4.56) and (4.57) are in SL,M,n, it

follows that

∆Ẑk ∈ SL,M,n, ∆Zk ∈ SL,M,n. (4.58)

Recalling (4.54), (4.55) and our assumption in (4.48), we have

∆Xk ∈ SL,M,n. (4.59)

According to (4.54), (4.58) and (4.59), the total step directions are in SL,M,n,

∆Xk = ∆X̂k +∆Xk ∈ SL,M,n

∆Zk = ∆Ẑk +∆Zk ∈ SL,M,n,

and it follows that

Xk+1 = Xk + tp∆Xk ∈ SL,M,n

Zk+1 = Zk + tp∆Zk ∈ SL,M,n.

82

Thus, for any y ∈ R
K and k ∈ N, if Xk, Zk ∈ SL,M,n, we have Xk+1, Zk+1 ∈ SL,M,n.

Since we have assumed that the initial values X0, Z0 ∈ SL,M,n, we conclude by induc-

tion that Xk ∈ SL,M,n and Zk ∈ SL,M,n for all k ∈ N.

4.5.2 A parallel implementation for the SDP solver

In this section, we propose a parallel algorithm for solving the SDP problems

associated with Polya’s algorithm. In particular, we show how to map the block-

diagonal structure of the primal variable and the primal-dual search directions de-

scribed in Section 4.5 to a parallel computing structure consisting of a central root

processor with N slave processors. Note that processor steps are simultaneous and

transitions between root and processor steps are synchronous. Processors are idle

when root is active and vice-versa. A C++ implementation of this algorithm us-

ing MPI and numerical linear algebra libraries CBLAS and CLAPACK is provided

at: www.sites.google.com/a/asu.edu/kamyar/Software. Let N be the number of

available processors and J := floor
(
L+M
N

)
. As per Algorithm 6, we assume pro-

cessor i has access to the sub-blocks Ci and Bj,i defined in (4.33) and (4.34) for

j = 1, · · · , K. Be aware that minor parts of Algorithm 6 have been abridged in order

to simplify the presentation.

4.6 Computational complexity analysis of the SDP algorithm

Complexity theory for parallel computation has been studied in some depth (Green-

law et al. (1995)). The class NC ⊂ P is often considered to be the class of problems

that can be parallelized efficiently. More precisely, a problem is in NC if there ex-

ist integers c and d such that the problem can be solved in O(log(n)c) steps using

O(nd) processors. On the other hand, the class P-complete is a class of problems

which are equivalent up to an NC reduction, but contains no problem in NC and

83

Inputs: Ci,Bj,i for i = 1, · · · , N and j = 1, · · · , K: the sub-blocks of the SDP

elements provided to processor i by the set-up algorithm; Stopping criterion ǫ.

Processors Initialization step:

for i = 1, · · · , N , processor i do

Initialize primal and dual variables X0
i , Z

0
i and y0 as

X0
i =





I(J+1)n, 0 ≤ i < L+M −NJ

IJn, L+M −NJ ≤ i < N,

,

Z0
i = X0

i and y0 = ~0 ∈ R
K ,

Calculate the complementary slackness as Si = tr(Z0
iX

0
i).

Send Si to the processor root.

end

Root Initialization step:

Root processor do

Calculate the barrier parameter as µ = 1
3

∑N
i=1 Si.

Set the SDP element a = ~1 ∈ RK .

Processors step 1:

for i = 1, · · · , N , processor i do

for k = 1, · · · , K do

Calculate the elements of Ω1 (R-H-S of System (4.61))

ωi,k = tr


Bk,i(Zi)

−1


−

K∑

j=1

yjBj,i + Zi +Ci


Xi




for l = 1, · · · , K do

Calculate the elements of the SCM as

λi,k,l = tr
(
Bk,i(Zi)

−1Bl,iXi

)
(4.60)

end
end

Send ωi,k and λi,k,l, k = 1, · · · , K and l = 1, · · · , K to the root processor.

end 84

Root step 1:

Root processor do

Construct the R-H-S of System (4.61) and the SCM as

Ω1 =




∑N
i=1 ωi,1

∑N
i=1 ωi,2

...

∑N
i=1 ωi,K




−a and Λ =







∑N
i=1 λi,1,1

∑N
i=1 λi,2,1
...

∑N
i=1 λi,K,1




, · · · ,




∑N
i=1 λi,1,K

∑N
i=1 λi,2,K

...

∑N
i=1 λi,K,K







Solve the following system of equations for the predictor dual step ∆ŷ ∈ RK .

Λ∆ŷ = Ω1 (4.61)

Send ∆ŷ to all processors.

Processors step 2:

for i = 1, · · · , N , processor i do

Calculate the predictor step directions

∆X̂i = −Xi + (Zi)
−1

(
−

K∑

j=1

yjBj,i + Zi +Ci

)
K∑

j=1

∆ŷj Bj,i Xi,

∆Ẑi =
K∑

j=1

yjBj,i − Zi −Ci +
K∑

j=1

∆ŷjBj,i.

for k = 1, · · · , K do

Calculate the elements of Ω2 (R-H-S of (4.62))

δi,k = tr(Bk,i(Zi)
−1), τi,k = tr(Bk,i(Zi)

−1∆Ẑi∆X̂i)

end

Send δi,k and τi,k, k = 1, · · · , K to the root processor.
end

Root step 2:

Construct the R-H-S of (4.62) as

Ω2 = µ

[
∑N

i=1 δi,1
∑N

i=1 δi,2 · · · ∑N
i=1 δi,K

]T
−

[
∑N

i=1 τi,1
∑N

i=1 τi,2 · · · ∑N
i=1 τi,K

]T

Solve the following system of equations for the corrector dual variable ∆y.

Λ∆y = Ω2 (4.62)

Send ∆y to all processors.

85

Processors step 3:

for i = 1, · · · , N , processor i do

Calculate the corrector step directions as follows.

∆Zi =

K∑

j=1

∆yjBj,i

∆Xi = −(Zi)
−1(∆ZiXi +∆Ẑi∆X̂i) + µ(Zi)

−1

Calculate the primal and dual total search directions as

∆Xi = ∆X̂i +∆Xi, ∆Zi = ∆Ẑi +∆Zi, ∆y = ∆ŷ +∆y.

Set the primal step size tp and dual step size td using an appropriate line

search method.

Update the primal and dual variables as

Xi ≡ Xi + tp∆Xi, Zi ≡ Zi + td∆Zi, y ≡ y + td∆y

end

Processors step 4:

for i = 1, · · · , N , processor i do

Calculate the contribution of Xi to primal cost and complementary

slackness as

φ̃i = tr
(
CiXi

)
and Si = tr (ZiXi) .

Send Si and φ̃i to the root processor.
end

Root step 4:

Update the barrier parameter as µ = 1
3

∑N
i=1 Si.

Calculate the primal and dual costs as φ =
∑N

i=1 φ̃i and ψ = aTy.

if |φ− ψ| > ǫ then

go to Processors step 1

end
else

Calculate the coefficients of P (α) as Pi =
∑Ñ

j=1Ejy(j+Ñi−1)) for

i = 1, · · · , L0.
end

Output:

Coefficients Pi of a polynomial P (α) such that P (α) > 0 for all α ∈ ∆l and

satisfies the Lyapunov inequalities in (5.8).

Algorithm 6: A parallel SDP algorithm

86

is thought to be the simplest class of “inherently sequential” problems. It has been

proven that Linear Programming (LP) is P-complete Greenlaw et al. (1995) and SDP

is P-hard (at least as hard as any P-complete problem) and thus is unlikely to admit a

general-purpose parallel solution. Given this fact and given the observation that the

problem we are trying to solve is NP-hard, it is important to thoroughly understand

the complexity of the algorithms we are proposing and how this complexity scales

with various parameters which define the size of the stability analysis problem. To

better understand these issues, we have broken our complexity analysis down into

several cases which should be of interest to the control community. Note that the

cases below do not discuss memory complexity. This is because in the cases when a

sufficient number of processors are available, for a system with n states, the memory

requirements per block are simply proportional to n2.

4.6.1 Complexity analysis for systems with large number of states

Suppose we are considering a problem with n states. For this case, the most

computationally expensive part of the algorithm is the calculation of the Schur com-

plement matrix Λ by the processors in Processors step 1 (and summed by the root

in Root step 1, although we neglect this part). In particular, the computational

complexity of the algorithm is determined by the number of operations required to

calculate (4.60), restated here.

λi,k,l = tr
(
Bk,i(Zi)

−1Bl,iXi

)
for k = 1, · · · , K and l = 1, · · · , K.

Since the cost of n × n matrix-matrix multiplication requires O(n3) steps and each

of Xi,Zi,Bl,i has floor(
L+M
N

) number of blocks in R
n×n, the number of operations

performed by the ith processor to calculate λi,k,l for k = 1, · · · , K and l = 1, · · · , K

87

is proportional to 



floor

(
L+M

N

)
K2n3 N < L+M

K2n3 N ≥ L+M

(4.63)

at each iteration, where i = 1, · · · , N . By substituting K in (4.63) from (5.24), for

N ≥ L+M , each processor performs

∼ ((dp + l − 1)!)2

(dp!)2((l − 1)!)2
n7 (4.64)

operations per iteration. Therefore, for systems with large number n of states and

fixed degree dp of P (α) and number l of uncertain parameters, the number of opera-

tions per processor required to solve the SDP associated with parameter-dependent

feasibility problem A(α)TP (α) + P (α)A(α) < 0, is proportional to n7. Solving the

LMI associated with the parameter-independent problem ATP+PA < 0 using our al-

gorithm or most of the SDP solvers such as Sturm (1999); Borchers and Young (2007);

Yamashita et al. (2003) also requires O(n7) operations per processor. Therefore, if

we have a sufficient number of available processors (at least L +M), the proposed

algorithm solves both the stability and robust stability problems by performing O(n7)

operations per processor.

4.6.2 Complexity of increasing accuracy/decreasing Conservativeness

We now consider the effect of raising Polya’s exponent. Consider the definition of

simplex as follows.

∆̃l
r =

{
α ∈ R

l :

l∑

i=1

αi = r, αi > 0

}

Suppose we now define the accuracy of the algorithm as the largest value of r found

by the algorithm (if it exists) such that if the uncertain parameters lie inside the

corresponding simplex, the stability of the system is verified. Typically, increasing

Polya’s exponent d in (4.7) improves the accuracy of the algorithm. If we again only

88

consider Processor step 1, according to (4.64), the number of processor operations is

independent of the Polya’s exponent d1 and d2. Because this part of the algorithm

does not vary with Polya’s exponent, we look at the root processing requirements

associated with solving the systems of equations in (4.61) and (4.62) in Root step 1

using Cholesky factorization. Each of these systems consists of K equations. The

computational complexity of Cholesky factorization is O(K3). Thus, the number of

operations performed by the root processor is proportional to

K3 =
((dp + l − 1)!)3

(dp!)3((l − 1)!)3
n6. (4.65)

In terms of communication complexity, the most significant operation between the

root and other processors is sending and receiving λi,k,l for i = 1, · · · , N , k = 1, · · · , K

and l = 1, · · · , K in Processors step 1 and Root step 1. Thus, the total communication

cost for N processors per iteration is

∼ N ·K2 = N
((dp + l − 1)!)2

(dp!)2((l − 1)!)2
n4. (4.66)

From (4.64), (4.65) and (4.66) it is observed that the number of processors operations,

root operations and communication operations are independent of Polya’s exponent

d1 and d2. Therefore, we conclude that for a fixed dp and sufficiently large number

of processors N (N ≥ L+M), improving the accuracy by increasing d1 and d2 does

not add any computation per processor or communication overhead.

4.6.3 Analysis of scalability/speed-up

The speed-up of a parallel algorithm is defined as SPN =
Ts
TN

, where Ts is the

execution time of the algorithm on a single processor and TN is the execution time of

the parallel algorithm using N processors. The speed-up is governed by

SPN =
N

D +NS
, (4.67)

89

where D is the decentralization ratio and is defined as the ratio of the total opera-

tions performed by all processors except the root to total operations performed by

all processors and root. S is the centralization ratio and is defined as the ratio of

the operations performed by the root processor to total operations performed by all

processors and the root. Suppose that the number of available processors is equal to

the number of sub-blocks in C defined in (4.23), i.e, equal to L+M . Using the above

definitions for D and S, Equation (4.64) as the decentralized computation and (4.65)

as the centralized computation, D and S can be approximated as

D ≃
N

((dp + l − 1)!)2

(dp!)2((l − 1)!)2
n7

N
((dp + l − 1)!)2

(dp!)2((l − 1)!)2
n7 +

((dp + l − 1)!)3

(dp!)3((l − 1)!)3
n6

(4.68)

and

S ≃

((dp + l − 1)!)3

(dp!)3((l − 1)!)3
n6

N
((dp + l − 1)!)2

(dp!)2((l − 1)!)2
n7 +

((dp + l − 1)!)3

(dp!)3((l − 1)!)3
n6

. (4.69)

According to (4.19) and (4.20) the number of processors N = L+M is independent

of n. Therefore,

lim
n→∞

D = 1 and lim
n→∞

S = 0.

By substituting D and S in (4.67) with their limit values, we have limn→∞ SPN = N .

Thus, for large n, by using L+M processors, the presented decentralized algorithm

solves large robust stability problems L +M times faster than the sequential algo-

rithms. For different values of the state-space dimension n, the theoretical speed-up

of the algorithm versus the number of processors is illustrated in Figure 4.6. As shown

in Figure 4.6, for problems with large n, by using N ≤ L+M processors the paral-

lel algorithm solves the robust stability problems approximately N times faster than

the sequential algorithm. As n increases, the trend of speed-up becomes increasingly

90

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

70

80

No. of Processors

S
pe

ed
−u

p

n=5
n=10
n=25
n=50
n=100
n=1000

Figure 4.6: Theoretical speed-up vs. No. of processors for different system dimen-
sions n for l = 10, dp = 2, da = 3 and d1 = d2 = 4, where L+M = 53625

linear. Therefore, for problems with a large number of states, our algorithm becomes

increasingly efficient in terms of processor utilization.

4.6.4 Synchronization and load balancing analysis

The proposed algorithm is synchronous in that all processors must return values

before the centralized step can proceed. However, in the case where we have fewer

processors than blocks, some processors may be assigned one block more than other

processors. In this case, some processors may remain idle while waiting for the more

heavily loaded blocks to complete. In the worst case, this can result in a 50% decrease

in the execution speed. We have addressed this issue in the following manner:

1. We allocate almost the same number (±1) of blocks of the SDP elements C and

Bi to all processors, i.e., floor(
L+M
N

)+1 blocks to r processors and floor(L+M
N

)

blocks to the other N−r processors, where r is the remainder of dividing L+M

by N .

2. We assign the same routine to all of the processors in the Processors steps of

Algorithm 6.

91

1 2
0

5

10

Index of processors
N

o.
 o

f b
lo

ck
s

N=2

1 2 3 4 5
0

2

4

6

Index of processors

N
o.

 o
f b

lo
ck

s

N=5

1 2 3 4 5 6 7 8 910
0

1

2

3

Index of processors

N
o.

 o
f b

lo
ck

s

N=10

1 2 3 4 5 6 7 8 9101112
0

1

2

Index of processors

N
o.

 o
f b

lo
ck

s

N=12

0 5 10 15 18
0

1

2

Index of processors

N
o.

 o
f b

lo
ck

s

N=18

0 5 10 15 20 24
0

0.5

1

Index of processors

N
o.

 o
f b

lo
ck

s

N=24

Figure 4.7: The number of blocks of the SDP elements assigned to each processor.
An illustration of load balancing.

If L +M is a multiple of N , then the algorithm assigns the same amount of data,

i.e., L+M
N

blocks of C and Bi to each processor. In this case, the processors are

perfectly synchronized. If L +M is not a multiple of N , then according to (4.63),

r of the N processors perform K2n3 extra operations per iteration. This fraction

is
1

1 + floor(L+M
N

)
≤ 0.5 of the operations per iteration performed by each of r

processors. Thus in the worst case, we have a 50% reduction, although this situation

is rare. As an example, the load balancing (distribution of data and calculation) for

the case of solving an SDP of the size L+M = 24 using different numbers of available

processors N is demonstrated in Figure 4.7. This figure shows the number of blocks

that are allocated to each processor. According to this figure, for N = 2, 12 and 24,

the processors are perfectly balanced, whereas for the case where N = 18, twelve

processors perform 50% fewer calculations.

92

Figure 4.8: The communication graph of the SDP algorithm

4.6.5 Communication graph of the algorithm

The communication directed graph of the SDP algorithm (see Figure 4.8) is static

(fixed for all iterations). At each iteration, root sends messages (dual predictor and

corrector search directions ∆ŷ and ∆y) to all of the processors and receives messages

(elements λi,k,l of the SCM defined in (4.60)) from all of the processors. The adjacency

matrix of the communication directed graph is defined as follows. For i = 1, · · · , N

and j = 1, · · · , N ,

[TG]i,j :=





1 if
(
i = 1 or j = 1

)
and

(
i 6= j

)

0 Otherwise.

4.7 Testing and validation

In this section, we present validation data in 4 key areas. First, we present analysis

results for a realistic large-scale model of Tokamak operation using a discretized PDE

model. Next, we present accuracy and convergence data and compare our algorithm

to the SOS approach. Next, we analyze scalability and speed-up of our algorithm as

we increase the number of processors and compare our results to the state-of-the-art

general-purpose parallel SDP solver SDPARA. Finally, we explore the limits of the

93

algorithm in terms of the size of the problem, when implemented on a moderately

powerful cluster computer and using a moderate processor allocation on the IBM

Blue Gene supercomputer at Argonne National Laboratory.

4.7.1 Example 1: Application to control of a discretized PDE model in fusion

research

The goal of this example is to use the proposed algorithm to solve a real-world

stability problem. A simplified model for the poloidal magnetic flux gradient in a

Tokamak reactor (Witrant et al. (2007)) is

∂ψx(x, t)

∂t
=

1

µ0a2
∂

∂x

(
η(x)

x

∂

∂x
(xψx(x, t))

)
(4.70)

with Dirichlet boundary conditions ψx(0, t) = 0 and ψx(1, t) = 0 for all t ∈ R+, where

ψx is the deviation of the flux gradient from a reference flux gradient profile, µ0 is

the permeability of free space, η(x) is the plasma resistivity and a is the radius of

the Last Closed Magnetic Surface (LCMS). To obtain the finite-dimensional state-

space representation of the PDE, we discretize the PDE in the spatial domain [0, 1]

at N = 7 points. The state-space model is then

ψ̇x(t) = A(η(x))ψx(t), (4.71)

94

j 1
2

3
2

5
2

7
2

9
2

11
2

13
2

15
2

xj 0.036 0.143 0.286 0.429 0.571 0.714 0.857 0.964

η̂(xj) 1.775e− 8 2.703e− 8 5.676e− 8 1.182e− 7 2.058e− 7 3.655e− 7 1.076e− 6 8.419e− 6

Table 4.3: Data for Example 1: Nominal values of the plasma resistivity

where A(η(x)) ∈ RN×N has the following non-zero entries.

a11 =
−4

3µ0∆x2a2

(
η(x 3

2
)

x 3
2

+
2η(x 3

4
)

x 3
4

)
,

a12 =
4

3µ0∆x2a2

(
η(x 3

2
)x2

x 3
2

)
,

aj,j−1 =
1

∆x2µ0a2

(
η(xj− 1

2
)

xj− 1
2

xj−1

)
for j = 2, · · · , N − 1,

aj,j =
−1

∆x2µ0a2

(
η(xj+ 1

2
)

xj+ 1
2

+
η(xj− 1

2
)

xj− 1
2

)
xj for j = 2, · · · , N − 1,

aj,j+1 =
1

∆x2µ0a2

(
η(xj+ 1

2
)

xj+ 1
2

xj+1

)
for j = 2, · · · , N − 1,

aN,N−1 =
4

3∆xµ0a2

η(xN− 1
2
)xN−1

xN− 1
2
∆x

,

aN,N =
−4

3∆xµ0a2

(
2η(xN+ 1

4
)xN

xN+ 1
4
∆x

+
η(xN− 1

2
)xN

xN− 1
2
∆x

)
,

where ∆x =
1

N
and xj := (j − 1

2
)∆x. Typically η(xj) are not precisely known (they

depend on other state variables), so we substitute for η(xj) in (4.71) with η̂(xj)+αk,

where η̂(xj) are the nominal values of η(xj) and αk for k = 1, · · · , 8 are the uncertain

parameters. The values for x1, · · · , xj and their corresponding values of η̂(xj) are

presented in Table 4.3. Note that we have used data from the Tore Supra reactor to

estimate the nominal values η̂(xj).

The uncertain system is then written as

ψ̇x(t) = A(α)ψx(t), (4.72)

95

where A is affine, A(α) = A0 +
∑8

i=1Aiαi, where

A1 =



























































































−14.09 6.47 0 0 0 0 0

0.41 −3.54 3.83 0 0 0 0

0 2.30 −10.24 8.97 0 0 0

0 0 6.41 −21.46 16.06 0 0

0 0 0 12.49 −39.71 28.91 0

0 0 0 0 23.66 −101.96 86.33

0 0 0 0 0 97.40 −1.74e3



























































































A2 =



























































































−2.86 1.66 0 0 0 0 0

1.62 −7.15 3.83 0 0 0 0

0 2.30 −10.24 8.97 0 0 0

0 0 6.41 −21.46 16.06 0 0

0 0 0 12.49 −39.72 28.91 0

0 0 0 0 23.66 −101.96 86.33

0 0 0 0 0 97.40 −1.74e3



























































































A3 =



























































































−1.25 6.47 0 0 0 0 0

0.41 −5.35 6.84 0 0 0 0

0 4.10 −13.25 8.97 0 0 0

0 0 6.41 −21.46 16.06 0 0

0 0 0 12.49 −39.71 28.91 0

0 0 0 0 23.66 −101.96 86.33

0 0 0 0 0 97.40 −1.74e3



























































































A4 =



























































































−1.25 6.47 0 0 0 0 0

0.41 −3.54 3.83 0 0 0 0

0 2.30 −12.25 11.77 0 0 0

0 0 8.41 −24.27 16.06 0 0

0 0 0 12.49 −39.72 28.91 0

0 0 0 0 23.66 −101.96 86.33

0 0 0 0 0 97.40 −1.74e3



























































































A5 =



























































































−1.25 6.47 0 0 0 0 0

0.41 −3.54 3.83 0 0 0 0

0 2.30 −10.24 8.97 0 0 0

0 0 6.41 −23.57 18.76 0 0

0 0 0 14.59 −42.42 28.91 0

0 0 0 0 23.66 −101.96 86.33

0 0 0 0 0 97.40 −1.74e3



























































































A6 =



























































































−1.25 6.47 0 0 0 0 0

0.41 −3.54 3.83 0 0 0 0

0 2.30 −10.24 8.97 0 0 0

0 0 6.41 −21.46 16.06 0 0

0 0 0 12.49 −41.88 31.56 0

0 0 0 0 25.82 −104.61 86.33

0 0 0 0 0 97.40 −1.74e3



























































































96

A7 =



























































































−1.25 6.47 0 0 0 0 0

0.41 −3.54 3.83 0 0 0 0

0 2.30 −10.24 8.97 0 0 0

0 0 6.41 −21.46 16.06 0 0

0 0 0 12.49 −39.71 28.91 0

0 0 0 0 23.66 −104.17 88.94

0 0 0 0 0 100.34 −1.74e3



























































































A8 =



























































































−1.25 6.47 0 0 0 0 0

0.41 −3.54 3.83 0 0 0 0

0 2.30 −10.24 8.97 0 0 0

0 0 6.41 −21.46 16.06 0 0

0 0 0 12.49 −39.71 28.91 0

0 0 0 0 23.66 −101.96 86.33

0 0 0 0 0 97.40 −1.74e3



























































































.

For a given ρ, we restrict the uncertain parameters αk to Sρ, defined as

Sρ := {α ∈ R
8 :

8∑

i=1

αi = −6|ρ|,−|ρ| ≤ αi ≤ |ρ|},

which is a simplex translated to the origin. We would like to determine the maximum

value of ρ such that the system is stable by solving the following optimization problem.

ρ∗ := max ρ

subject to System (4.72) is stable for all α ∈ Sρ. (4.73)

To represent Sρ using the standard unit simplex defined in (2.15), we define the

invertible map g : ∆8 → Sρ as

g(α) = [g1(α) · · · g8(α)] , gi(α) := 2|ρ|(αi − 0.5). (4.74)

Then, if we let A′(α) = A(g(α)), since g is one-to-one,

{A(α′) : α′ ∈ Sρ} = {A(g(α)) : α ∈ ∆8} = {A′(α) : α ∈ ∆8}.

Thus, stability of ψ̇x(t) = A′(α)ψx(t), for all α ∈ ∆l is equivalent to stability of

Equation (4.72) for all α ∈ Sρ.

97

10 20 30 40 50 60

10

20

30

40

50

No. of Processors

S
pe

ed
−u

p

Figure 4.9: Speed-up of set-up and SDP algorithms vs. number of processors for a
discretized model of magnetic flux in Tokamak

We solve the optimization problem in (4.73) using bisection. For each trial value of

ρ, we use the proposed parallel SDP solver in Algorithm 6 to solve the associated SDP

obtained by our parallel set-up Algorithm 5. The SDP problems have 224 constraints

with the primal variable X ∈ R1092×1092. The normalized value of ρ∗, i.e., ρ∗

η̂(x15/2)
is

found to be 0.0019, where η̂(x15/2) = 8.419 · 10−6 from Table 4.3. In this particular

example, the optimal value of ρ does not change with the degrees of P (α) and Polya’s

exponents d1 and d2, primarily because the model is affine. The SDPs are constructed

and solved on a parallel Linux-based cluster Cosmea at Argonne National Laboratory.

Figure 4.9 shows the algorithm speed-up vs. the number of processors. Note that

solving this problem by SOSTOOLS (Papachristodoulou et al. (2013)) on the same

machine is impossible due to the lack of unallocated memory.

4.7.2 Example 2: Accuracy and convergence

The goal of this example is to investigate the effect of the degree dp of P (α) and the

Polya’s exponents, d1, d2 on the accuracy of our algorithms. Given a computer with

98

a fixed amount of RAM, we compare the accuracy (as we defined in Section 4.6.2) of

the proposed algorithms to the SOS algorithm. Consider the system ẋ(t) = A(α)x(t)

where A is a polynomial degree 3 defined as

A(α) = A1α
3
1 + A2α

2
1α2 + A3α1α2α3 + A4α1α

2
3 + A5α

3
2 + A6α

3
3 (4.75)

with the constraint

α ∈ SL :=

{
α ∈ R

3 :

3∑

i=1

αi = 2L+ 1, L ≤ αi ≤ 1

}
,

where Ai matrices are defined as

A1 =




−0.61 −0.56 0.402

−0.48 −0.550 0.671

−1.01 −0.918 0.029



, A2 =




−0.484 −0.86 1.5

−0.732 −0.841 −0.126

0.685 0.305 0.106



, A3 =




−0.357 0.344 −0.661

−0.210 −0.505 0.588

0.268 0.487 −0.846



,

A4 =




−0.881 −0.436 0.228

0.503 −0.812 0.249

−0.012 0.542 −0.536



, A5 =




−0.703 −0.298 −0.178

0.402 −0.761 −0.300

−0.010 0.461 −0.588



, A6 =




−0.201 −0.182 −0.557

0.803 −0.412 −0.203

−0.440 0.011 −0.881



.

Defining g as in Example 1, the problem is

min L

s.t. ẋ(t) = A(g(α))x(t) is stable for all α ∈ ∆3. (4.76)

Using bisection in L, as in Example 1, we varied the parameters dp, d1 and d2. The

cluster computer Karlin at Illinois Institute of Technology with 24 Gbytes/node of

RAM (216 Gbytes total memory) was used to run our algorithm. The upper bounds

on the optimal L are shown in Figure 4.10 in terms of d1 and d2 and for different

dp. Considering the optimal value of L to be Lopt = −0.111, Figure 4.10 shows

how increasing dp and/or d1, d2 - when they are still relatively small - improves the

accuracy of the algorithm. Figure 4.11 demonstrates how the error in our upper

bound for Lopt decreases by increasing dp and/or d1, d2.

99

Table 4.4: Upper bounds found for Lopt by the SOS algorithm using different degrees
for x and α (inf: infeasible, O.M.: Out of Memory)

P
P
P
P
P
P
P
P
P
P
P
P
P
PP

Degree in x

Degree in α
0 1 2

1 Infeasible Infeasible Infeasible

2 Infeasible -0.102 Out of Memory

3 Infeasible Out of Memory Out of Memory

For comparison, we solved the same stability problem using the SOS algorithm (Pa-

pachristodoulou et al. (2013)) using only a single node of the same cluster computer

and 24 Gbytes of RAM. We used Putinar’s Positivstellensatz (see Section 2.3.4) to

impose the constraints
∑3

i=1 αi = 2L+1 and L ≤ αi ≤ 1. Table 4.4 shows the upper

bounds on L given by the SOS algorithm using different degrees for x and α. By

considering a Lyapunov function of degree two in x and degree one in α, the SOS

algorithm gives −0.102 as an upper bound on Lopt as compared with our value of

−0.111. Increasing the degree of α in the Lyapunov function beyond two resulted in

a failure due to lack of memory.

4.7.3 Example 3: Evaluating speed-up

In this example, we evaluate the efficiency of the algorithm in using additional pro-

cessors to decrease computation time. As mentioned in Section 4.6 on computational

complexity, the measure of this efficiency is termed speed-up and in Section 4.6.3,

we gave a formula for this number. To evaluate the true speed-up, we first ran the

set-up algorithm on the Blue Gene supercomputer at Argonne National Laboratory

using three random linear systems with different state-space dimensions and numbers

of uncertain parameters. Figure 4.12 shows a log-log plot of the computation time

100

0 2 4 6 8
−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Polya’s exponents d
1
 and d

2

A
pp

ro
xi

m
at

io
n

fo
r

op
tim

al
 v

al
ue

 o
f L

d
p
=0

d
p
=1

d
p
=2

d
p
=3

d
p
=4

d
p
=5

d
p
=6

d
p
=7

Figure 4.10: Upper bound on optimal L vs. Polya’s exponents d1 and d2, for
different degrees of P (α). (d1 = d2).

0 1 2 3 4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

Degree of P(α), d
p

|L
−L

op
t|/|

L
op

t|

d
1
=d

2
=0

d
1
=d

2
=1

d
1
=d

2
=2

d
1
=d

2
=3

d
1
=d

2
=4

d
1
=d

2
=5

d
1
=d

2
=6

d
1
=d

2
=7

d
1
=d

2
=8

Figure 4.11: Error of the approximation for the optimal value of L vs. degrees of
P (α), for different Polya’s exponents

101

of the set-up algorithm vs. the number of processors. One can be observed that

the scalability of the algorithm is practically ideal for several different state-space

dimensions and numbers of uncertain parameters.

To evaluate the speed-up of the SDP portion of the algorithm, we solved three

random SDP problems with different dimensions using the Karlin cluster computer.

Figure 4.13 gives a log-log plot of the computation time of the SDP algorithm vs. the

number of processors for three different dimensions of the primal variable X and the

dual variable y. As indicated in the figure, the three dimensions of the primal variable

X are 200, 385 and 1092, and the dimensions of the dual variable y are K = 50, 90

and 224, respectively. In all cases, dp = 2 and d1 = d2 = 1. The linearity of the Time

vs. Number of Processors curves in all three cases demonstrates the scalability of the

SDP algorithm.

For comparison, we plot the speed-up of our algorithm vs. that of the general-

purpose parallel SDP solver SDPARA 7.3.1 as illustrated in Figure 4.14. Although

similar for a small number of processors, for a larger number of processors, SDPARA

saturates, while our algorithm remains approximately linear.

4 10 20 40 60 80 120 200
10

−1

10
0

10
1

10
2

10
3

No. of processors

C
om

pu
ta

tio
n

tim
e

(s
)

n=10, l=5
n=10, l=10
n=10, l=15
n=10, l=20
n=20, l=5
n=20, l=10
n=20, l=15
n=20, l=20

Figure 4.12: Computation time of the parallel set-up algorithm vs. number of
processors for different dimensions of linear system n and numbers of uncertain pa-
rameters l- executed on Blue Gene supercomputer of Argonne National Labratory

102

1 10 20 40 60 80
10

−2

10
−1

10
0

10
1

10
2

10
3

No. of processors

C
om

pu
ta

tio
n

tim
e

(s
)

(L+M)n=200, K= 50
(L+M)n=385, K=90
(L+M)n=1092, K=224

Figure 4.13: Computation time of the parallel SDP algorithm vs. number of pro-
cessors for different dimensions of primal variable (L+M)n and of dual variable K-
executed on Karlin cluster computer

4.7.4 Example 4: Maximum state-space and parameter dimensions for a 9-node

Linux-based cluster computer

The goal of this example is to show that given moderate computational resources,

the proposed decentralized algorithms can solve robust stability problems for systems

with 100+ states. We used the Karlin cluster computer with 24 Gbytes/node of

RAM and nine nodes. We ran the set-up and the SDP algorithms to solve the robust

stability problem with dimension n and l uncertain parameters on one and nine nodes

of Karlin cluster computer. Thus, the total accessible memory was 24 Gbytes and

216 Gbytes, respectively. Using trial and error, for different n and d1, d2 we found

the largest l for which the algorithms do not terminate due to insufficient memory

(Figure 4.15). In all of the runs da = dp = 1. Figure 4.15 shows that by using

216 Gbytes of RAM, the algorithms can solve the stability problem of size n = 100

with 4 uncertain parameters in d1 = d2 = 1 Polya’s iteration and with 3 uncertain

parameters in d1 = d2 = 4 Polya’s iterations.

103

0 20 40 60 80
0

5

10

15

20

25

30

35

40

45

Number of processors N

S
pe

ed
−u

p

(L+M)n=200, K=50
(L+M)n=385, K=90
(L+M)n=1092, K=224
(L+M)n=200, K=50, SDPARA
(L+M)n=385, K=90, SDPARA
(L+M)n=1092, K=224, SDPARA

Figure 4.14: Comparison between the speed-up of the present SDP solver and
SDPARA 7.3.1, executed on Karlin cluster computer

20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

30

La
rg

es
t N

o.
 o

f u
nc

er
ta

in
 p

ar
am

et
er

s
l

Dimension of uncertain system n

d=1, 216 Gig
d=2, 216 Gig
d=3, 216 Gig
d=4, 216 Gig
d=1, 24 Gig
d=2, 24 Gig
d=3, 24 Gig
d=4, 24 Gig

20 30 40 50 60 70 80 90 100
0

5

10

15

20

25

Dimension of uncertain system n

La
rg

es
t N

o.
 o

f u
nc

er
ta

in
 p

ar
am

et
er

s
l

d=1, 216 Gig
d=2, 216 Gig
d=3, 216 Gig
d=4, 216 Gig
d=1, 24 Gig
d=2, 24 Gig
d=3, 24 Gig
d=4, 24 Gig

Figure 4.15: Largest number of uncertain parameters of n-dimensional systems
for which the set-up algorithm (Left) and SDP solver (Right) can solve the robust
stability problem of the system using 24 and 216 Gig of RAM

104

Chapter 5

PARALLEL ALGORITHMS FOR ROBUST STABILITY ANALYSIS OVER

HYPERCUBES

5.1 Background and motivation

In Chapter 4, we proposed a distributed parallel algorithm for stability analysis

over a simplex. Unfortunately, simplices are rather restrictive forms of uncertainty set

in that they do not allow for parameters which take values on intervals or polytopes.

Additionally, we hope to eventually extend our algorithms to the problem of nonlinear

stability, which requires search over positive polynomials defined over a set which

contains the origin. Since simplicies do not include the origin, our algorithms cannot

be readily applied to such problems.

In this chapter, our goal is to generalize our algorithms in Chapter 4 in order to

perform robust stability analysis on linear systems with uncertain parameters defined

over hypercubes. Several recent papers such as Chesi et al. (2005) and Bliman (2004a),

have proposed LMI-based techniques to construct parameter-dependent quadratic-in-

state Lyapunov functions for this class of systems. In particular, researchers (Chesi

(2005)) have recently turned to SOS methods and the Positivstellensatz results (see

Section 2.1) to construct increasingly accurate and increasingly complex LMI-based

tests for stability over hypercubes. Unfortunately, due to the inherent intractability

of the problem of polynomial optimization, SOS based algorithms typically run out

of memory for even relatively small-sized problems; see e.g., Table 4.4 of Section 4.7.

This makes it difficult to solve SOS-based algorithms on desktop computers. In this

chapter, we seek for a parallel methodology to distribute the required memory and

105

computation among hundreds of processors - each processor possessing a dedicated

memory.

5.1.1 Our Contributions

We start by proposing an extension to Polya’s theorem. This new result param-

eterizes every multi-homogeneous polynomial which is positive over a given multi-

simplex/hypercube. Based on this result, we propose a parallel algorithm to set-up a

sequence of block-structured LMIs (similar to the case of a single simplex). Solutions

to these LMIs define parameter-dependent Lyapunov functions for the system. Fi-

nally, we use our parallel SDP solver in Section 4.5 to efficiently solve these structured

LMIs. Similar to Algorithm 7, the proposed set-up algorithm in this chapter has no

centralized computation, memory or communication, hence resulting in a near-ideal

speed-up. Specifically, we show that the communication operations per processor is

proportional to 1
Nc
, where Nc is the number of processors used by the algorithm.

This implies that by increasing the number of processors, we actually decrease the

communication overhead per processor and improve the speed-up. Naturally, there

exists an upper-bound for the number of processors which can be used by the algo-

rithm, beyond which, no speed-up is gained. This upper-bound is proportional to the

number of uncertain parameters in the system and for practical problems will be far

larger than the number of available processors.

5.2 Notation and preliminaries on multi-homogeneous polynomials

Recall from Section 4.2 that we denote a monomial by αγ =
∏l

i=1 α
γi
i , where

α ∈ Rl is the vector of variables and γ ∈ Wd is the vector of exponents, were Wd is

the set of exponents defined in (4.2). Now consider the case where α = [α1, · · · , αn]

with αi ∈ Rli , and h = [h1, · · · , hn], where hi ∈ Wdpi
. Then, we define the set of

106

n-variate multi-homogeneous polynomials of degree vector D = [d1, · · · , dn] ∈ N
n as

(a generalization of (2.19))


P ∈ R[α1, · · · , αn] : P (α) =

∑

h1∈Wd1

· · ·
∑

h∈Wdn

P{h1,··· ,hn}α
h1
1 · · ·αhn

n



 . (5.1)

Note that for any i ∈ {1, · · · , n}, the element di of the degree vector D is the degree of

αhi
i in P . For brevity, we denote the index set {h1, · · · , hn} by Hn and {h1j , · · · , hnj

}

by Hn,j, where hij is defined as the jth element of hi ∈ Wdi using lexicographical

ordering. We define the unit multi-simplex ∆̃{l1,··· ,lN} as the Cartesian product of N

unit simplexes; i.e., ∆̃{l1,··· ,lN} := ∆l1 × · · · × ∆lN . Given ri ∈ R, let us define the

hypercube Φn ⊂ Rn as

Φn := {α ∈ R
n : |αi| ≤ ri, i = 1, · · · , n}.

Claim 1: For every non-homogeneous polynomial F (α) with α ∈ ∆̃{l1,··· ,ln}, there

exists a multi-homogeneous polynomial P such that

{
F (α) ∈ R : α ∈ ∆̃{l1,··· ,ln}

}
=
{
P (β) ∈ R : β ∈ ∆̃{l1,··· ,ln}

}
.

To construct P , first let NF be the number of monomials in F . Define t(k) :=
[
t
(k)
1 , · · · , t(k)n

]
for k = 1, · · · , NF , where t

(k)
i is the sum of the exponents of the vari-

ables inside ∆li, in the kth monomial of F . Then, one can construct P by multiplying

the kth monomial of F (according to lexicographical ordering) for k = 1, · · · , NF by

n∏

i=1

(
li∑

j=1

αij

)Ti−t
(k)
i

, Ti := max
k∈{1,··· ,NF }

t
(k)
i .

For more clarification, we provide the following example of constructing the multi-

homogeneous polynomial P .

Example: Consider the non-homogeneous polynomial

F (α) = F1(α1,1 + α12)α2,1 + F2α
2
1,2 + F3α2,2,

107

where (α11 , α12), (α21 , α22) ∈ ∆2, t(1) = t(2) = [1, 1], t(3) = [2, 0] and t(4) = [0, 1]. Then,

the multi-homogeneous polynomial P (α) is

P (α) = F1(α11 + α12)
2α21 + F2α

2
12
(α21 + α22) + F3(α11 + α12)

2α22

= F{(2,0),(1,0)}α
2
11
α21 + F{(2,0),(0,1)}α

2
11
α22 + F{(1,1),(1,0)}α11α12α21

+ F{(1,1),(0,1)}α11α12α22 + F{(0,2),(1,0)}α
2
12α21 + F{(0,2),(0,1)}α

2
12α22 .

Thus, the coefficients of the multi-homogeneous polynomial P are

P{(2,0),(1,0)} = F1, P{(2,0),(0,1)} = F3, P{(1,1),(1,0)} = 2F1

P{(1,1),(0,1)} = 2F3, P{(0,2),(1,0)} = F1 + F2, P{(0,2),(0,1)} = F2 + F3.

Claim 2: For every polynomial F (x) with x ∈ Φn, there exists a multi-homogeneous

polynomial P such that

{F (x) ∈ R : x ∈ Φn} =
{
P (α, β) ∈ R : α, β ∈ R

n and (αi, βi) ∈ ∆2 for i = 1, · · · , n
}
.

(5.2)

To construct P , we propose the following steps.

1. Define new variables αi :=
xi+ri
2 ri

∈ [0, 1] for i = 1, · · · , n.

2. Define Q(α1, · · · , αn) := F (2 r1α1 − r1, · · · , 2 rnαn − rn).

3. Define a new set of variables βi := 1− αi for i = 1, · · · , n.

4. Let NQ be the number of monomials in Q. Define t(k) :=
[
t
(k)
1 , · · · , t(k)n

]
for

k = 1, · · · , NQ, where t
(k)
i is the sum of the exponents of the variables inside

∆2, in the kth monomial of Q. Then, for k = 1, · · · , NQ, multiply the kth

monomial of Q (according to lexicographical ordering) by

n∏

i=1

(αi + βi)
Ti−t

(k)
i , Ti := max

k∈{1,··· ,NQ}
t
(k)
i .

108

We provide the following example to further clarify this procedure.

Example: Suppose F (x1, x2) = x21 + x2, with x1 ∈ [−2, 2] and x2 ∈ [−1, 1]. Define

α1 :=
x1+2
4

∈ [0, 1] and α2 :=
x2+1
2

∈ [0, 1]. Then, define

Q(α1, α2) := f(4α1 − 2, 2α2 − 1) = 16α2
1 − 16α1 + 2α2 + 3

By homogenizing Q we obtain the multi-homogeneous polynomial

P (α, β) =16α2
1(α2 + β2)− 16α1(α1 + β1)(α2 + β2) + 2α2(α1 + β1)

2

+ 3(α1 + β1)
2(α2 + β2), (α1, β1), (α2, β2) ∈ ∆2

with the degree vector D = [2, 1], where d1 = 2 is the sum of exponents of α1 and β1

in every monomial of P , and d2 = 1 is the sum of exponents of α2 and β2 in every

monomial of P .

In the following theorem (Kamyar and Peet (2012b)), we parameterize all of the

multi-homogeneous polynomials which are positive over a multi-simplex.

Theorem 16. (Polya’s theorem, multi-simplex version) A matrix-valued multi-homogeneous

polynomial F satisfies F (α, β) > 0 for all (αi, βi) ∈ ∆2, i = 1, · · · , n, if there exist

e ≥ 0 such that all the coefficients of

(
n∏

i=1

(αi + βi)
e

)
F (α, β)

are positive definite.

Proof. We use induction as follows.

Basis step: Suppose n = 1. Then, from the simplex version of Polya’s theorem

(Theorem 2) it follows that for every F (α, β) > 0 with (α, β) ∈ ∆2, there exists some

e ≥ 0 such that all of the coefficients of (α1 + β1)
eF (α, β) are positive definite.

109

Induction hypothesis: Suppose for every F (α, β) > 0 with (αi, βi) ∈ ∆2, i =

1, · · · , k there exists some e ≥ 0 such that all of the coefficients of

(
k∏

i=1

(αi + βi)
e

)
F (α, β)

are positive definite.

We need to prove that for every F (α, β) > 0 with (αi, βi) ∈ ∆2, i = 1, · · · , k+1 there

exists some e∗ ≥ 0 such that all of the coefficients of

(
k+1∏

i=1

(αi + βi)
e∗

)
F (α, β)

are positive definite. From the induction hypothesis it follows that for any fixed

(α̂, β̂) ∈ ∆2, if F (α1, · · · , αk, α̂, β1, · · · , βk, β̂) > 0 for all (αi, βi) ∈ ∆2, i = 1, · · · , k,

then there exists some e ≥ 0 such that all of the coefficients of

(
k∏

i=1

(αi + βi)
e

)
F (α1, · · · , αk, α̂, β1, · · · , βk, β̂) (5.3)

are positive definite. Using our notation in (2.19), we can expand (5.3) as

(
k∏

i=1

(αi + βi)
e

)
F (α1, · · · , αk, α̂, β1, · · · , βk, β̂) =

∑

h,g∈Nk

h+g=d+e·1k

fh,g(α̂, β̂)α
h1
1 β

g1
1 · · ·αhk

k β
gk
k ,

(5.4)

in which we have denoted the coefficients of Product (5.3) by fh,g(α̂, β̂) and we have

denoted the degree vector of F by d. Also 1k ∈ Nk denotes the vector of ones.

Because F is a homogeneous polynomial, fh,g are also homogeneous polynomials.

Since fh,g(α̂, β̂) > 0 for all (h, g) ∈ Md,e := {(h, g) ∈ N
k × N

k : h + g = d + e · 1},

Polya’s theorem implies that there exist lg,h ≥ 0 for any h, g ∈ Md,e such that all of

the coefficients of (α̂ + β̂)lg,hfg,h(α̂, β̂) are positive definite. Let us define

e∗ := max

{
max

h,g∈Md,e

{lg,h}, e
}
.

110

Then, clearly all of the coefficients in (α̂+ β̂)e
∗

fg,h(α̂, β̂) are also positive definite. By

multiplying both sides of (5.4) by (α̂ + β̂)e
∗

we have

(
k∏

i=1

(αi + βi)
e

)
(α̂ + β̂)e

∗

F (α1, · · · , αk, α̂, β1, · · · , βk, β̂)

=
∑

h,g∈Nk

h+g=d+e·1k

(α̂ + β̂)e
∗

fh,g(α̂, β̂)α
h1
1 β

g1
1 · · ·αhk

k β
gk
k . (5.5)

Since all of the coefficients of (α̂+ β̂)e
∗

fh,g(α̂, β̂) are positive definite, all of the coeffi-

cients of the monomials on the right hand side of (5.5) are positive definite. Moreover,

because e∗ ≥ e

(
k∏

i=1

(αi + βi)
e∗

)
(α̂+ β̂)e

∗

F (α1, · · · , αk, α̂, β1, · · · , βk, β̂) (5.6)

will also have all positive definite coefficients. Since we chose (α̂, β̂) arbitrarily from

the simplex ∆2, by replacing α̂ and β̂ with αk+1 and βk+1 in (5.6),

(
k+1∏

i=1

(αi + βi)
e∗

)
F (α, β) with (αi, βi) ∈ ∆2, i = 1, · · · , k + 1

will have all positive definite coefficients.

5.3 Setting up the problem of robust stability analysis over multi-simplex

In this section, we focus on the problem of robust stability of a system the form

ẋ(t) = A(α)x(t), (5.7)

where A(α) ∈ R
n×n is a multi-homogeneous polynomial of degree vector Da and

α ∈ ∆̃{l1,··· ,lN} denotes the parametric uncertainty in the system. Note that if A is

not homogeneous, one can use Claim 1 to find a multi-homogeneous representation

for A over the multi-simplex. Furthermore, if α ∈ ΦN , then one can use Claim 2 to

find an equivalent representation for A over the multi-simplex ∆̃{l1,··· ,lN}.

111

The following theorem gives necessary and sufficient conditions for asymptotic

stability of System (5.7).

Theorem 17. The linear system (5.7) is stable if and only if there exists a polynomial

matrix P (α) such that P (α) > 0 and

AT (α)P (α) + P (α)A(α) < 0 for all α ∈ ∆̃{l1,··· ,lN}. (5.8)

Unfortunately, the question of feasibility of the inequalities in Theorem 17 is

NP-hard. In this section, we show that applying Theorem 16 yields a sequence of

SDPs of increasing size (and precision) whose solutions converge to a solution of

the inequalities in Theorem 17. Motivated by the result in Bliman et al. (2006),

we consider P (α) to be homogeneous. In particular, let P be a multi-homogeneous

matrix-valued polynomial of form

P (α) =
∑

hN∈WdpN

· · ·
∑

h1∈Wdp1

PHN
αh1
1 · · ·αhN

N , (5.9)

with degree dp =
∑N

i=1 dpi and unknown coefficients PHN
∈ Sn. Moreover, let A(α)

be of the form

A(α) =
∑

h1∈Wda1

· · ·
∑

hN∈WdaN

AHN
αh1
1 · · ·αhN

N , (5.10)

with degree da =
∑N

i=1 dai . It follows from Theorem 16 that the Lyapunov inequalities

in Theorem 17 hold for all α ∈ ∆̃{l1,··· ,lN} if there exist some d1 ≥ 0 and d2 ≥ 0 such

that
N∏

i=1

(
li∑

j=1

αij

)d1

P (α) and (5.11)

−
N∏

i=1

(
li∑

j=1

αij

)d2 (
AT (α)P (α) + P (α)A(α)

)
(5.12)

have all positive definite coefficients. By substituting for A(α) and P (α) in (5.11)

and (5.12) from (5.10) and (5.9), we find that the inequalities of Theorem 17 hold if

112

there exists d1, d2 ≥ 0 such that

∑

h1∈Wd1

· · ·
∑

hN∈WdN

β{HN ,ΓN}PHN
> 0 (5.13)

for all γ1 ∈ Wdp1+d1 , · · · , γN ∈ WdpN+d1 , and

∑

h1∈Wd1

· · ·
∑

hN∈WdN

(
HT

{HN ,ΓN}PHN
+ PHN

H{HN ,ΓN}

)
< 0 (5.14)

for all γ1 ∈ Wdpa1+d2 , · · · , γN ∈ WdpaN+d2 , where recall that HN denotes {h1, · · · , hN},

ΓN denotes {γ1, · · · , γN} and dpai = dpi + dai for i = 1, · · · , N .

5.3.1 General formulae for calculating coefficients β and H

To calculate the
{
β{HN ,ΓN}

}
coefficients and

{
H{HN ,ΓN}

}
we provide the follow-

ing recursive formulae. These formulae are generalization of the recursive formulae

in 4.3.1 for the case of a single simplex. First, for all γ1 ∈ Wdp1
, · · · , γN ∈ WdpN

, and

for all h1 ∈ Wdp1
, · · · , hN ∈ WdpN

set

β
(0)
{HN ,ΓN} =





1 if h1 = γ1, · · · , hN = γN

0 otherwise.

(5.15)

Then, for i = 1, · · · , d1, for all γ1 ∈ Wdp1
+ i, · · · , γN ∈ WdpN

+ i and for all h1 ∈

Wdp1
, · · · , hN ∈ WdpN

, β
(i)
{HN ,ΓN} can be calculated using

β
(i)
{HN ,ΓN} =

∑

λN∈W1

· · ·
∑

λ1∈W1

β
(i−1)
{HN ,{γ1−λ1,··· ,γN−λN}}. (5.16)

Finally, set β{HN ,ΓN} = β
(d1)
{HN ,ΓN}, where γ ∈ Wdp+d1 .

To calculate
{
H{HN ,ΓN}

}
, first let

H
(0)
{HN ,ΓN} =

∑

λN∈WdaN
:

λN+hN=γN

· · ·
∑

λ1∈Wda1
:

λ1+h1=γ1

A{λ1,··· ,λN}. (5.17)

113

for γ1 ∈ Wdpa1
, · · · , γN ∈ WdpaN

and h1 ∈ Wdp1
, · · · , hN ∈ WdpN

. Then, for i =

1, . . . , d, γ1 ∈ Wdpa1+i, · · · , γ1 ∈ WdpaN+i and h1 ∈ Wdp1
, · · · , hN ∈ WdpN

we have

H
(i)
{HN ,ΓN} =

∑

λN∈W1

· · ·
∑

λ1∈W1

H
(i−1)
{HN ,{γ1−λ1,··· ,γN−λN}}. (5.18)

Finally, set H{HN ,ΓN} = H
(d2)
{HN ,ΓN}, where γ1 ∈ Wdpa1+d2 , · · · , γN ∈ WdpaN+d2 .

5.3.2 The SDP elements associated with the multi-simplex version of Polya’s

theorem

To solve the LMI conditions in (5.13) and (5.14), we express them in the form of a

dual Semi-Definite Programming (SDP) problem with a block-diagonal structure that

is suitable for parallel computation. Define the element C of the SDP formulation of

Conditions (5.13) and (5.14) as

C := diag(C1, · · ·CL, CL+1, · · ·CL+M), (5.19)

where for given Polya’s exponents d1 and d2,

L =
N∏

i=1

(dpi + d1 + li − 1)!

(dpi + d1)!(li − 1)!
(5.20)

is the number of monomials in
N∏
i=1

(
li∑

j=1

αi,j

)d1

P (α) and

M =
N∏

i=1

(dpi + dai + d2 + li − 1)!

(dpi + dai + d2)!(li − 1)!
(5.21)

is the number of monomials in

N∏

i=1

(
li∑

j=1

αi,j

)d2

(AT (α)P (α) + P (α)A(α)),

and for j = 1, · · · , L+M ,

Cj :=





ǫInζ
(j), if 1 ≤ j ≤ L

0n, if L+ 1 ≤ j ≤ L+M,

(5.22)

114

where ǫ > 0. In (5.22), we define ζ (j) ∈ N
L recursively as follows. First, let

ζ (0) =



(dpN + d1)!
lN∏
i=1

h(N,i,1)!

, · · · , (dpN + d1)!
lN∏
i=1

h(N,i,f(lN ,dPN
+d1))!


 ,

where we have denoted the exponent of the ith variable in the jth (according to

lexicographical ordering) element of WdPN
by h(N,i,j). Recall that

f(l, g) :=
(l + g − 1)!

g!(l − 1)!

is the number of monomials in a polynomial of degree g with l variables. Then, for

k = 1, · · · , N , define

ζ (k) := ζ (k−1) ⊗



(dpr(k) + d1)!

lr(k)∏
i=1

h(r(k),i,1)!

, · · · ,
(dpr(k) + d1)!

lr(k)∏
i=1

h(r(k),i,s(k))!


 ,

where r(k) := N − k + 1 and s(k) := f(lr(k), dpr(k) + d1). Finally, set ζ = ζ (N).

For i = 1, · · · , K, define the elements Bi of the SDP as

Bi = diag (Bi,1, · · · , Bi,L, Bi,L+1, · · · , Bi,L+M) , (5.23)

where

K =
n(n + 1)

2

N∏

i=1

(dpi + li − 1)!

dpi!(li − 1)!
, (5.24)

is the total number of dual variables in the SDP problem (i.e., the total number of

upper-triangular elements in all of the coefficients of P (α)) and where

Bi,j =





∑
hN∈WdpN

· · · ∑
h1∈Wdp1

β{HN ,ΓN,j}VHN
(ei), if 1 ≤ j ≤ L

−∑
hN∈WdpN

· · · ∑
h1∈Wdp1

HT
{HN ,ΓN,j−L}

VHN
(ei) + VHN

(ei)H{HN ,ΓN,j−L} if L+ 1 ≤ j ≤ L+M,

(5.25)

where recall from Section 5.2 that ΓN,j = {γ1j , · · · , γNj
}, where γij is the jth element

of Wdpi+d1 using lexicographical ordering, and

VHN
(x) =

Ñ∑

k=1

Ek xk+N(IHN
−1),

115

where Ek is the canonical basis for S
n defined in (4.28), IHN

is the lexicographical

index of monomial αh1
1 · · ·αhN

N , and Ñ := n(n+1)
2

. Finally, we complete the definition

of the SDP problem by setting a = ~1 ∈ RK . In the following section, we propose a

parallel set-up algorithm to calculate the SDP elements defined in this section.

5.3.3 A parallel algorithm for setting up the SDP

In this section, we propose a parallel set-up algorithm for computing the SDP

elements in (5.19) and (5.23). An abridged description of the algorithm is presented

in Algorithm 7, wherein we suppose the algorithm is executed on Nc number of

processors. A C++ parallel implementation of the algorithm is available at:

www.sites.google.com/a/asu.edu/kamyar/software.

5.4 Computational complexity analysis of the set-up algorithm

In this section, we discuss the performance of Algorithm 7 in terms of speed-up,

computation cost, communication cost and memory requirement.

5.4.1 Computational cost of the set-up algorithm:

The most computationally expensive part of the algorithm is calculation of the

elements Bi,j elements for i = 1, · · · , K and j = 1, · · · , L +M . If the number of

available processors is

Nc = L0 :=
N∏

i=1

(dpi + li − 1)!

(dpi)!(li − 1)!
,

then the number of operations per processor at each Polya’s iteration of Algorithm 7

is

∼ K · L0

(
floor

(
L

Nc

)
+ floor

(
M

Nc

))
n3

∼ n5
N∏

i=1

l
2dpi+dai+d2
i , (5.27)

116

Inputs:

N : dimension of multi-simplex; l1, · · · , lN : dimensions of simplexes; Dp, Da :

degree vectors of P and A; coefficients of A; d̂1, d̂2 : Polya’s exponents.

Initialization:

for i = 1, · · · , Nc, processor i do

Set d1 = d2 = 0 and dpa = dp + da.

Calculate the number of monomials in P (α), i.e., L using (5.20).

Calculate the number of monomials in P (α)A(α), i.e., M using (5.21).

Calculate the per-processor number of monomials in P (α) and P (α)A(α),

i.e.,
L′ = floor (L/Nc) and M ′ = floor (M/Nc) . (5.26)

for γ1, h1 ∈ Wdp1
, · · · , γN , hN ∈ WdpN

do

Calculate β{HN ,ΓN} using (5.15).

end

for γ1 ∈ Wdpa1
, · · · , γN ∈ WdpaN

and h1 ∈ Wdp1
, · · · , hN ∈ WdpN

do

Calculate H{HN ,ΓN} using (5.17).

end

end

Polya’s iterations:

for i = 1, · · · , Nc, processor i do

for d1 = 1, · · · , d̂1 do

Set dp = dp + 1. Update L and L′ according to (5.20) and (5.26).

for h1 ∈ Wdp1
, · · · , hN ∈ WdpN

do

Update β{HN ,ΓN} for γ(i−1)L′+1 ∈ Wdp
(i−1)L′+1

, · · · , γiL′ ∈ Wdp
iL′

as

in (5.16).
end

end

for d2 = 1, · · · , d̂2 do

Set dpa = dpa + 1. Update M and M ′ according to (5.21) and (5.26).

for h1 ∈ Wdp1
, · · · , hN ∈ WdpN

do

Update H{HN ,ΓN} for γ(i−1)M ′+1 ∈ Wdpa
(i−1)M′+1

, · · · , γiM ′ ∈ Wdpa
iM′

using (5.18).

end

end

end

117

Calculating the SDP elements:

for i = 1, · · · , Nc, processor i do

for j = (i− 1)L′ + 1, · · · , iL′, L+ (i− 1)M ′ + 1, · · · , iM ′ do

Calculate Cj using (5.22).

Calculate Bj for using (5.23).

end

end

Outputs:

The SDP elements C and Bi for i = 1, · · · , K.

Algorithm 7: A parallel set-up algorithm for robust stability analysis over the

multi-simplex

where recall that dpi is the degree of αhi
i in polynomial P (α) (see (5.9)), dai is the

degree of the variable αhi
i in the polynomial A(α) (see (5.10)), and d2 is the Polya’s

exponent. Note that for the case of systems with uncertain parameters inside a

simplex, (5.27) reduces to our results in Table 4.2. The number of operations versus

the dimension of hypercube N is plotted in Figure 5.1 for different Polya’s exponents

d := d1 = d2. The figure shows that for the case of analysis over a hypercube,

the number of operations grows exponentially with the dimension of the hypercube,

whereas in analysis over a simplex, the number of operations grows polynomially. This

is due to the fact that an N -dimensional hypercube is represented by the Cartesian

product of N two-dimensional simplices.

5.4.2 Communication cost of the set-up algorithm:

In the worst case scenario, where each processor sends all of its assigned coefficients

{H{HN ,γN}} to other processors (a very rare situation), the communication cost per

118

1 2 3 4 5 6 7 8 9 10
10

5

10
10

10
15

10
20

10
25

Dimension of hypercube and simplex N

N
um

be
r

of
 o

pe
ra

tio
ns

d=0, (H)
d=0, (S)
d=1, (H)
d=1, (S)
d=2, (H)
d=2, (S)
d=3, (H)
d=3, (S)

Figure 5.1: Number of operations versus dimension of the hypercube, for different
Polya’s exponents d1 = d2 = d. (H): hypercube and (S): simplex.

processor at each Polya’s iteration is

∼ L0

(
floor

(
L

Nc

)
+ floor

(
M

Nc

)
n2

)
∼ n2

N∏

i=1

l
dpai+d2
i , (5.28)

assuming the number of processors Nc = L0. Therefore, in this case, by increasing

the number of processors, the communication cost per processor decreases and the

scalability of the algorithm improves. for the case where the uncertain parameters

belong to a simplex, (5.28) reduces to our results in Table 4.2. Again, it can be

shown that the communication cost increases exponentially with the dimension of

the hypercube, whereas in analysis over a simplex, the communication cost increases

polynomially.

5.4.3 Speed-up and memory requirement of the set-up algorithm:

In the proposed set-up algorithm (Algorithm 7), calculation of the coefficients {β}

and {H} is distributed among all of the available processors such that there exists no

centralized computation. As a result, the algorithm can theoretically achieve ideal

119

1 2 3 4 5 6 7 8
10

−5

10
0

10
5

10
10

No. of uncertain parameters

R
eq

ui
re

d
m

em
or

y
(G

ig
ab

yt
e)

n=10,d=2 (H)

n=10,d=5 (H)

n=40,d=2 (H)

n=40,d=5 (H)

n=100,d=2 (H)

n=100,d=5 (H)

n=10,d=2 (S)

n=10,d=5 (S)

n=40,d=2 (S)

n=40,d=5 (S)

n=100,d=2 (S)

n=100,d=5 (S)

Figure 5.2: Required memory for the calculation of SDP elements vs. number of
uncertain parameters in hypercube and simplex, for different state-space dimensions
and Polya’s exponents d1 = d2. (H): hypercube, (S): simplex.

(linear) speed-up. In other words, the speed-up

SPN =
N

D +NS
=

N

1 + 0
= N,

Where D = 1 is the ratio of the operations performed by all processors simultane-

ously to the total operations performed simultaneously and sequentially, and S is

the ratio of the operations performed sequentially to the total operations performed

simultaneously and sequentially.

In Figure 5.2, we have shown the amount of memory required for storing the SDP

elements versus the number of uncertain parameters in the unit hypercube and the

unit simplex. The figure shows the required memory for different dimensions of the

state-space n and Polya’s exponents d. In all of the cases, we use dpi = dai = 1 for

i = 1, · · · , N . The figure shows that for the case analysis over the hypercube, the

required memory increases exponentially with the number of uncertain parameters,

whereas for the case of the simplex the required memory increases polynomially.

This is again because an N -dimensional hypercube is the Cartesian product of N

120

two-dimensional simplices, i.e., ∆2 × · · · ×∆2

︸ ︷︷ ︸
N times

.

5.5 Testing and validation

In this section, we evaluate the scalability and accuracy of our algorithm through

numerical examples. In example 1, we evaluate the speed-up of our algorithm through

numerical experiments. In examples 2 and 3, we evaluate the conservativeness of our

algorithm and compare it to other methods in the literature.

5.5.1 Example 1: Evaluating speed-up

A parallel algorithm is scalable, if by using Nc processors it can solve a problem Nc

times faster than solving the same problem using one processor. Thus, the speed-up of

the ideal scalable algorithm is linear. To test the scalability of our algorithm, we run

the algorithm using two random uncertain systems with state-space dimensions n = 5

and n = 10. The tests were performed on a linux-based Karlin cluster computer at

Illinois Institute of Technology. In all of the runs, Dp = [2, 2, 2, 2], Da = [1, 1, 1, 1] and

α ∈ Φ4. Figure 5.3 shows the computation time of the algorithm versus the number

of processors, for two different state-space dimensions and two different number of

Polya’s iterations (Polya’s exponents d = d1 = d2). The linearity of the curves in all

of the executions implies near-perfect scalability of the algorithm.

5.5.2 Example 2: Verifying robust stability over a hypercube

Consider the system ẋ(t) = A(α)x(t), where

A(α) = A0 + A1α
2
1 + A2α1α2α3 + A3α

2
1α2α

2
3,

α1 ∈ [−1, 1], α2 ∈ [−0.5, 0.5], α3 ∈ [−0.1, 0.1],

121

1 4 8 16 32 64 100

0.05

1

5

10

20

40

Number of processors

C
om

pu
ta

tio
n

tim
e

(s
)

n=5, d=2
n=5, d=5
n=10, d=2
n=10, d=5

Figure 5.3: Execution time of the set-up algorithm vs. number of processors, for
different state-space dimensions n and Polya’s exponents

where

A0 =




−3.0 0 −1.7 3.0

−0.2 −2.9 −1.7 −2.60

0.6 2.6 −5.8 −2.60

−0.7 2.9 −3.3 −2.10




A1 =




2.2 −5.4 −0.8 −2.2

4.4 1.4 −3.0 0.8

−2.4 −2.2 1.4 6.0

−2.4 −4.4 −6.4 0.18




A2 =




−8.0 −13.5 −0.5 −3.0

18.0 −2.0 0.5 −11.5

5.5 −10.0 3.5 9.0

13.0 7.5 5.0 −4.0




A3 =




3.0 7.5 2.5 −8.0

1.0 0.5 1.0 1.5

−0.5 −1.0 1.0 6.0

−2.5 −6.0 8.5 14.25



.

The problem is to investigate asymptotic stability of this system for all α in the given

intervals using Algorithm 7 and our solver in Algorithm 6. We first represented A(α)

defined over the hypercube [−1, 1]× [−0.5, 0.5]× [−0.1, 0.1] by a multi-homogeneous

polynomial B(β, η) with (βi, ηi) ∈ ∆2 and with the degree vector Db = [2, 1, 2]. Then,

in one Polya’s iteration (i.e., d1 = d2 = 1) our algorithm found the following Lyapunov

function as a certificate for asymptotic stability of the system.

V (x, β, η) = xTP (β, η)x = xT (β1(P1β2β3 + P2β2η3 + P3η2β3 + P4η2η3)

+η1(P5β2β3 + P6β2η3 + P7η2β3 + P8η2η3))x,

122

where β1 = 0.5α1+0.5, β2 = α2+0.5, β3 = 5α3+0.5, η1 = 1−β1, η2 = 1−β2, η3 = 1−β3
and

P1 =




5.807 0.010 −0.187 −1.186

0.010 5.042 −0.369 0.227

−0.187 −0.369 8.227 −1.824

−1.186 0.227 −1.824 8.127



P2 =




7.409 −0.803 1.804 −1.594

−0.803 6.016 0.042 −0.538

1.804 0.042 7.894 −1.118

−1.594 −0.538 −1.118 8.590




P3 =




6.095 −0.873 0.512 −1.125

−0.873 5.934 −0.161 0.503

0.512 −0.161 7.417 −0.538

−1.125 0.503 −0.538 6.896



P4 =




5.388 0.130 −0.363 −0.333

0.130 5.044 −0.113 −0.117

−0.363 −0.113 6.156 −0.236

−0.333 −0.117 −0.236 5.653




P5 =




7.410 −0.803 1.804 −1.594

−0.803 6.016 0.042 −0.538

1.804 0.042 7.894 −1.118

−1.594 −0.538 −1.118 8.590



P6 =




5.807 0.010 −0.187 −1.186

0.010 5.042 −0.369 0.227

−0.187 −0.369 8.227 −1.824

−1.186 0.227 −1.824 8.127




P7 =




5.388 0.130 −0.363 −0.333

0.130 5.044 −0.113 −0.117

−0.363 −0.113 6.156 −0.236

−0.333 −0.117 −0.236 5.653



P8 =




6.095 −0.873 0.512 −1.125

−0.873 5.934 −0.161 0.503

0.512 −0.161 7.417 −0.538

−1.125 0.503 −0.538 6.896



.

5.5.3 Example 2: Evaluating accuracy

In this example, we used our algorithm to find lower bounds on r∗ = max r such

that ẋ(t) = A(α)x(t) with

A(α) = A0 +

4∑

i=1

Aiαi,

A0=




−3.0 0 −1.7 3.0

−0.2 −2.9 −1.7 −2.6

0.6 2.6 −5.8 −2.6

−0.7 2.9 −3.3 −2.4



, A1=




1.1 −2.7 −0.4 −1.1

2.2 0.7 −1.5 0.4

−1.2 −1.1 0.7 3.0

−1.2 −2.2 −3.2 −1.4



, A2=




1.6 2.7 0.1 0.6

−3.6 0.4 −0.1 2.3

−1.1 2 −0.7 −1.8

−2.6 −1.5 −1.0 0.8



,

123

A3 =




−0.6 1.5 0.5 −1.6

0.2 −0.1 0.2 0.3

−0.1 −0.2 −0.2 1.2

−0.5 −1.2 1.7 −0.1



, A4 =




−0.4 −0.1 −0.3 0.1

0.1 0.3 0.2 0.0

0.0 0.2 −0.3 0.1

0.1 −0.2 −0.2 0.0




is asymptotically stable for all α ∈ {α ∈ R4 : |αi| ≤ r}. In Table 5.1, we have

shown the computed lower bounds on r∗ for different degree vectors Dp (degree vec-

tor of polynomial P in Theorem 17). In all of the cases, we set the Polya’s exponents

d1 = d2 = 0. For comparison, we have also included the lower-bounds computed by

the methods in Bliman (2004a) and Chesi (2005) in Table 5.1.

Table 5.1: The lower-bounds on r∗ computed by Algorithm 7 using different degree
vector Dp and using methods in Bliman (2004a) and Chesi (2005).

Dp =[0,0,0,0] Dp =[0,1,0,1] Dp =[1,0,1,0] Dp =[1,1,1,1] Dp =[2,2,2,2] Bliman (2004a) Chesi (2005)

Bound on r∗ 0.494 0.508 0.615 0.731 0.840 0.4494 0.8739

124

Chapter 6

PARALLEL ALGORITHMS FOR NONLINEAR STABILITY ANALYSIS

6.1 Background and Motivation

One approach to stability analysis of nonlinear systems is the search for a decreas-

ing Lyapunov function. For those systems with polynomial vector fields, Peet (2009)

has shown that searching for polynomial Lyapunov functions is necessary and suffi-

cient for stability on any bounded set. However, searching for a polynomial Lyapunov

function which proves local stability requires enforcing positivity on a neighborhood of

the equilibrium. Unfortunately, while we do have necessary and sufficient conditions

for positivity of a polynomial (e.g. Tarski-Seidenberg’s algorithm in Tarski (1951)

and Artin’s theorem in Artin (1927)), it has been shown that the general problem of

determining whether a polynomial is positive is NP-hard (L. Blum and Smale (1998)).

Based on Artin’s theorem, non-negativity of a polynomial is equivalent to existence

of a representation in the form of sum of quotients of squared polynomials. If we

leave off the quotient, the search for a Sum-of-Squares (SOS) is a common sufficient

condition for positivity of a polynomial. The advantage of the SOS approach is

that verifying the existence of an SOS representation is a semidefinite programming

problem. This approach was first articulated in Parrilo (2000). SOS programming

has been used extensively in stability analysis and control including stability analysis

of nonlinear systems (Tan and Packard (2008)), robust stability analysis of switched

and hybrid systems Prajna and Papachristodoulou (2003), and stability analysis of

time-delay systems (Papachristodoulou et al. (2009)).

The downside to the use of SOS (with Positivstellensatz multipliers) for stability

125

analysis of nonlinear systems with many states is computational complexity. Specif-

ically, this approach requires us to set up and solve large SDPs. As an example,

applying SOS method to find a degree 8 Lyapunov function for a nonlinear system

with 10 states requires at least 900 GB of memory and more than 116 days as compu-

tation time on a single-core 2.5 GHz processor. Although Polya’s algorithm implies

similar complexity to SOS, as we showed in Section 4.3.3, the SDPs associated with

Polya’s algorithm possess a block-diagonal structure. This allowed us to develop par-

allel algorithms (see Algorithms 5, 6, and 7) for robust stability analysis of linear

systems. Unfortunately, Polya’s theorem cannot be used to represent polynomials

which have zeros in the interior of the unit simplex (see Powers and Reznick (2006)

for an elementary proof of this). From the same reasoning as in Powers and Reznick

(2006) it follows that our multi-simplex version of Polya’s theorem (See theorem 16)

cannot be used to represent polynomials which have zeros in the interior of a multi-

simplex/hypercube. Our proposed solution to this problem is to reformulate the

nonlinear stability problem using only strictly positive forms. Specifically, we con-

sider Lyapunov functions of the form V (x) = xTP (x)x, where P is a strictly positive

matrix-valued polynomial on the hypercube. This way, we can use our multi-simplex

version of Polya’s theorem to search for a polynomial P (x) such that P (x) > 0 for

all x ∈ Φ \ {0} and 〈∇xTP (x)x, f(x)〉 < 0 for all x ∈ Φ - hence proving asymptotic

local stability of ẋ(t) = f(x(t)) for some f ∈ R[x].

Although Polya’s algorithm has been generalized to positivity over simplices and

hypercubes; as yet no further generalization to arbitrary convex polytopes exists. In

order to perform analysis on more complicated geometries such as arbitrary convex

polytopes, in this chapter, we look into Handelman’s theorem (see Theorem 19).

Some preliminary work on the use of Handelman’s theorem and interval evaluation

for Lyapunov functions on the hypercube has been suggested in Sankaranarayanan

126

et al. (2013) and has also been applied to robust stability of positive linear systems

in Briat (2013). One difficulty in using Handelman’s theorem in stability analysis is

that then theorem cannot be readily used to represent polynomials which have zeros

in the interior of a given polytope. To see this, suppose a polynomial g (g is not

identically zero) is zero at x = a, where a is in the interior of a polytope

ΓK := {x ∈ R
n : wT

i x+ ui ≥ 0, i = 1, · · · , K}.

Suppose there exist bα ≥ 0, α ∈ NK such that for some d ∈ N,

g(x) =
∑

α∈NK :‖αi‖1≤d

bα(w
T
1 x+ u1)

α1 · · · (wT
Kx+ uK)

αK .

Then,

g(a) =
∑

α∈NK :‖αi‖1≤d

bα(w
T
1 a+ u1)

α1 · · · (wT
Ka+ uK)

αK = 0.

From the assumption a ∈ int(ΓK) it follows that wT
i a + ui > 0 for i = 1, · · · , K.

Hence bα < 0 for at least one α ∈ {α ∈ NK : ‖α‖1 ≤ d}. This contradicts with

the assumption that all bα ≥ 0. Based on the this reasoning, one cannot readily

use Handelman’s theorem to search for a polynomial V such that V (x) > 0 for all

x ∈ ΓK \ {0} and V (0) = 0.

6.1.1 Our contributions

In this chapter, we consider a new approach to the use of Handelman’s theorem

for computing regions of attraction of stable equilibria by constructing piecewise-

polynomial Lyapunov functions over arbitrary convex polytopes. Specifically, we

decompose a given convex polytope into a set of convex sub-polytopes that share

a common vertex at the origin. Then, on each sub-polytope, we use Handelman’s

conditions to define linear programming constraints. Additional constraints are then

proposed which ensure continuity of the Lyapunov function over the entire polytope.

127

We then show the resulting algorithm has polynomial complexity in the number of

states and compare this complexity with algorithms based on SOS and Polya’s theo-

rem. Finally, we evaluate the accuracy of our algorithm by numerically approximating

the domain of attraction of two nonlinear dynamical systems.

6.2 Definitions and Notation

In this section, we present/review notations and definitions of convex polytopes,

facets of polytopes, decompositions and Handelman bases.

Definition 1. (Convex Polytope) Given the set of vertices P := {pi ∈ R
n, i =

1, · · · , K}, define the convex polytope ΓP as

ΓP := {x ∈ R
n : x =

K∑

i=1

µipi : µi ∈ [0, 1] and
K∑

i=1

µi = 1}.

Every convex polytope can be represented as

ΓK := {x ∈ R
n : wT

i x+ ui ≥ 0, i = 1, · · · , K},

for some wi ∈ R
n, ui ∈ R, i = 1, · · · , K. Throughout the chapter, every polytope that

we use contains the origin. Moreover, for brevity, we will drop the superscript K in

ΓK .

Definition 2. Given a bounded polytope of the form Γ := {x ∈ Rn : wT
i x + ui ≥

0, i = 1, · · · , K}, we call

ζ i(Γ) :=
{
x ∈ R

n : wT
i x+ ui = 0 and wT

j x+ uj ≥ 0 for j ∈ {1, · · · , K}
}

the i−th facet of Γ if ζ i(Γ) 6= ∅.

128

D1

D2

D3D4

D5

λ2(x)=0

λ1(x)=0
λ3(x)=0

Figure 6.1: An illustration of a D-decomposition of a 2D polytope. λi(x) := hTi,jx+
gi,j for j = 1, · · · , mi.

Definition 3. (D−decomposition) Given a bounded polytope of the form Γ := {x ∈

Rn : wT
i x + ui ≥ 0, i = 1, · · · , K}, we call DΓ := {Di}i=1,··· ,L a D−decomposition

of Γ if

Di :=
{
x ∈ R

n : hTi,jx+ gi,j ≥ 0, j = 1, · · · , mi

}

for some hi,j ∈ Rn, gi,j ∈ R, such that ∪L
i=1Di = Γ, ∩L

i=1Di = {0} and int(Di) ∩

int(Dj) = ∅.

In Figure 6.1, we have illustrated a D-decomposition of a two-dimensional polytope.

Definition 4. (The Handelman basis associated with a polytope) Given a polytope of

the form

Γ :=
{
x ∈ R

n : wT
i x+ ui ≥ 0, i = 1, · · · , K

}
,

we define the set of Handelman bases, indexed by

α ∈ Ed,K :=
{
α ∈ N

K : |α|1 ≤ d
}

(6.1)

as

Θd(Γ) :=

{
ρα(x) : ρα(x) =

K∏

i=1

(wT
i x+ ui)

αi , α ∈ Ed,K

}
.

129

Definition 5. (Restriction of a polynomial to a facet) Given a polytope of the form

Γ := {x ∈ Rn : wT
i x+ ui, i = 1, · · · , K}, and a polynomial P (x) of the form

P (x) =
∑

α∈Ed,K

bα

K∏

i=1

(wT
i x+ ui)

αi ,

define the restriction of P (x) to the k-th facet of Γ as the function

P |k(x) :=
∑

α∈Ed:αk=0

bα

K∏

i=1

(wT
i x+ ui)

αi.

We will use the maps defined below in future sections.

Definition 6. Given wi, hi,j ∈ Rn and ui, gi,j ∈ R, let Γ be a convex polytope as

defined in Definition 1 with D−decomposition DΓ := {Di}i=1,··· ,L as defined in Def-

inition 3, and let λ(k), k = 1, · · · , B be the elements of Ed,n, as defined in (6.1), for

some d, n,∈ N. For any λ(k) ∈ Ed,n, let p{λ(k),α,i} be the coefficient of bi,αx
λ(k)

in

Pi(x) :=
∑

α∈Ed,mi

bi,α

mi∏

j=1

(hTi,jx+ gi,j)
αj . (6.2)

Let Ni be the cardinality of Ed,mi
, and denote by bi ∈ RNi the vector of all coefficients

bi,α.

Define Fi : R
Ni × N → RB as

Fi(bi, d) :=


 ∑

α∈Ed,mi

p{λ(1),α,i}bi,α, · · · ,
∑

α∈Ed,mi

p{λ(B),α,i}bi,α




T

(6.3)

for i = 1, · · · , L. In other words, Fi(bi, d) is the vector of the coefficients of Pi(x)

after expansion.

Define Hi : R
Ni × N → R

Q as

Hi(bi, d) :=


 ∑

α∈Ed,mi

p{δ(1),α,i}bi,α , · · · ,
∑

α∈Ed,mi

p{δ(Q) ,α,i}bi,α




T

(6.4)

130

for i = 1, · · · , L, where we have denoted the elements of {δ ∈ N
n : δ = 2ej for j =

1, · · · , n} by δ(k), k = 1, · · · , Q, where ej are the canonical basis for Nn. In other

words, Hi(bi, d) is the vector of coefficients of square terms of Pi(x) after expansion.

Define Ji : R
Ni × N× {1, · · · , mi} → RB as

Ji(bi, d, k) :=



∑

α∈Ed,mi
αk=0

p{λ(1),α,i}bi,α · · · ,
∑

α∈Ed,mi
αk=0

p{λ(B),α,i}bi,α




T

(6.5)

for i = 1, · · · , L. In other words, Ji(bi, d, k) is the vector of coefficients of Pi|k(x)

after expansion.

Given a polynomial vector field f(x) of degree df , define Gi : R
Ni × N → RZ as

Gi(bi, d) :=


 ∑

α∈Ed,mi

s{η(1) ,α,i}bi,α , · · · ,
∑

α∈Ed,mi

s{η(P),α,i}bi,α



T

(6.6)

for i = 1, · · · , L, and where we have denoted the elements of Ed+df−1,n by η(k), k =

1, · · · , Z. For any η(k) ∈ Ed+df−1,n, we define s{η(k),α,i} as the coefficient of bi,αx
η(k) in

〈∇Pi(x), f(x)〉, where Pi(x) is defined in (6.2). In other words, Gi(bi, d) is the vector

of coefficients of 〈∇Pi(x), f(x)〉.

Define Ri(bi, d) : R
Ni × N → RC as

Ri(bi, d) :=
[
bi,β(1) , · · · , bi,β(C)

]T
, (6.7)

for i = 1, · · · , L, where we have denoted the elements of

Sd,mi
:= {β ∈ Ed,mi

: βj = 0 for j ∈ {j ∈ N : gi,j = 0}}

by β(k), k = 1, · · · , C. Consider Pi in the Handelman basis Θd(Γ). Then, Ri(bi, d) is

the vector of coefficients of monomials of Pi which are nonzero at the origin.

It can be shown that the maps Fi, Hi, Ji, Gi and Ri are affine in bi.

131

Definition 7. (Upper Dini Derivative) Let f : Rn → R
n be a continuous map. Then,

define the upper Dini derivative of a function V : Rn → R in the direction f(x) as

D+(V (x), f(x)) = lim sup
h→0+

V (x+ hf(x))− V (x)

h
.

It can be shown that for a continuously differentiable V (x),

D+(V (x), f(x)) = 〈∇V (x), f(x)〉.

6.3 Statement of the stability problem

We address the problem of local stability of nonlinear systems of the form

ẋ(t) = f(x(t)), (6.8)

about the zero equilibrium, where f : Rn → R
n. We use the following Lyapunov

stability condition.

Theorem 18. For any Ω ⊂ Rn with 0 ∈ Ω, suppose there exists a continuous function

V : Rn → R and continuous positive definite functions W1,W2,W3,

W1(x) ≤ V (x) ≤W2(x) for x ∈ Ω and

D+(V (x), f(x)) ≤ −W3(x) for x ∈ Ω,

then System (6.8) is asymptotically stable on {x : {y : V (y) ≤ V (x)} ⊂ Ω}.

In this paper, we construct piecewise-polynomial Lyapunov functions which may

not have classical derivatives. As such, we use Dini derivatives which are known to

exist for piecewise-polynomial functions.

Problem statement: Given the vertices pi ∈ Rn, i = 1, · · · , K, we would like

to find the largest positive s such that there exists a polynomial V (x) where V (x)

satisfies the conditions of Theorem 18 on the convex polytope
{
x ∈ R

n : x =
K∑

i=1

µipi : µi ∈ [0, s] and
K∑

i=1

µi = s

}
.

132

Given a convex polytope, the following result (Handelman (1988a)) parameterizes

the set of polynomials which are positive on that polytope using the positive orthant.

Theorem 19. (Handelman’s Theorem) Given wi ∈ Rn, ui ∈ R, i = 1, · · · , K, let Γ

be a convex polytope as defined in definition 1. If polynomial P (x) > 0 for all x ∈ Γ,

then there exist bα ≥ 0, α ∈ NK such that for some d ∈ N,

P (x) :=
∑

α∈Ed,K

bα

K∏

ji=1

(wT
i x+ ui)

αi .

Given a D-decomposition DΓ := {Di}i=1,··· ,L of the form

Di :=
{
x ∈ R

n : hTi,jx+ gi,j ≥ 0, j = 1, · · · , mi

}

of some polytope Γ, we parameterize a cone of piecewise-polynomial Lyapunov func-

tions which are positive on Γ as

V (x) = Vi(x) :=
∑

α∈Ed,mi

bi,α

mi∏

j=1

(hTi,jx+ gi,j)
αj for x ∈ Di and i = 1, · · · , L.

We will use a similar parameterization of piecewise-polynomials which are negative

on Γ in order to enforce negativity of the derivative of the Lyapunov function. We will

also use linear equality constraints to enforce continuity of the Lyapunov function.

6.4 Expressing the stability problem as a linear program

We first present some lemmas necessary for the proof of our main result. The

following lemma provides a sufficient condition for a polynomial represented in the

Handelman basis to vanish at the origin (V (0) = 0).

Lemma 1. Let DΓ := {Di}i=1,··· ,L be a D-decomposition of a convex polytope Γ, where

Di :=
{
x ∈ R

n : hTi,jx+ gi,j ≥ 0, j = 1, · · · , mi

}
.

133

For each i ∈ {1 · · · , L}, let

Pi(x) :=
∑

α∈Ed,mi

bi,α

mi∏

j=1

(hTi,jx+ gi,j)
αj ,

Ni be the cardinality Ed,mi
as defined in (6.1), and let bi ∈ RNi be the vector of the

coefficients bi,α . Consider Ri : R
Ni × N → RC as defined in (6.7). If Ri(bi, d) = 0,

then Pi(x) = 0 for all i ∈ {1 · · · , L}.

Proof. We can write

Pi(x) =
∑

α∈Ed,mi
\Sd,mi

bi,α

mi∏

j=1

(hTi,jx+ gi,j)
αi +

∑

α∈Sd,mi

bi,α

mi∏

j=1

(hTi,jx+ gi,j)
αi,

where

Sd,mi
:= {α ∈ Ed,mi

: αj = 0 for j ∈ {j ∈ N : gi,j = 0}}.

By the definitions of Ed,mi
and Sd,mi

, we know that for each α ∈ Ed,mi
\Sd,mi

for

i ∈ {1, · · · , L}, there exists at least one j ∈ {1, · · · , mi} such that gi,j = 0 and

αk > 0. Thus, at x = 0,

∑

α∈Ed,mi
\Sd,mi

bi,α

mi∏

j=1

(hTi,jx+ gi,j)
αi = 0 for all i ∈ {1, · · · , L}.

Recall the definition of the map Ri from (6.7). Since Ri(bi, d) = 0 for each i ∈

{1, · · · , L}, it follows from that bi,α = 0 for each α ∈ Sd,mi
and i ∈ {1, · · · , L}. Thus,

∑

α∈Sd,mi

bi,α

mi∏

j=1

(hTi,jx+ gi,j)
αi = 0 for all i ∈ {1, · · · , L}.

Thus, Pi(0) = 0 for all i ∈ {1, · · · , L}.

This Lemma provides a condition which ensures that a piecewise-polynomial func-

tion on a D-decomposition is continuous.

134

Lemma 2. Let DΓ := {Di}i=1,··· ,L be a D-decomposition of a polytope Γ, where

Di := {x ∈ R
n : hTi,jx+ gi,j ≥ 0, j = 1, · · · , mi}.

For each i ∈ {1 · · · , L}, let

Pi(x) :=
∑

α∈Ed,mi

bi,α

mi∏

j=1

(hTi,jx+ gi,j)
αj ,

Ni be the cardinality of Ed,mi
as defined in (6.1), and let bi ∈ R

Ni be the vector of the

coefficients bi,α. Given i, j ∈ {1, · · · , L}, i 6= j, let

Λi,j(DΓ) :=
{
k, l ∈ N : k ∈ {1, · · · , mi}, l ∈ {1, · · · , mj} : ζk(Di) 6= ∅ and ζk(Di) = ζ l(Dj)

}
.

(6.9)

Consider Ji : R
Ni × N× {1 · · · , mi} → RB as defined in (6.5). If

Ji(bi, d, k) = Jj(bj , d, l)

for all i, j ∈ {1, · · · , L}, i 6= j and k, l ∈ Λi,j(DΓ), then the piecewise-polynomial

function

P (x) = Pi(x), for x ∈ Di, i = 1, · · · , L

is continuous for all x ∈ Γ.

Proof. From (6.5), Ji(bi, d, k) is the vector of coefficients of Pi|k(x) after expansion.

Therefore, if

Ji(bi, d, k) = Jj(bj , d, l) for all i, j ∈ {1, · · · , L}, i 6= j

and (k, l) ∈ Λi,j(DΓ), then

Pi|k(x) = Pj|l(x) for all i, j ∈ {1, · · · , L}, i 6= j and (k, l) ∈ Λi,j(DΓ). (6.10)

On the other hand, from definition 5, it follows that for any i ∈ {1, · · · , L} and

k ∈ {1, · · · , mi},

Pi|k(x) = Pi(x) for all x ∈ ζk(Di). (6.11)

135

Furthermore, from the definition of Λi,j(DΓ), we know that

ζk(Di) = ζ l(Dj) ⊂ Di ∩Dj (6.12)

for any i, j ∈ {1 · · · , L}, i 6= j and any (k, l) ∈ Λi,j(DΓ). Thus, from (6.10), (6.11)

and (6.12), it follows that for any i, j ∈ {1, · · · , L}, i 6= j, we have Pi(x) = Pj(x) for

all x ∈ Di ∩ Dj . Since for each i ∈ {1, · · · , L}, Pi(x) is continuous on Di and for

any i, j ∈ {1 · · · , L}, i 6= j, Pi(x) = Pj(x) for all x ∈ Di ∩Dj , we conclude that the

piecewise polynomial function

P (x) = Pi(x) x ∈ Di, i = 1, · · · , L

is continuous for all x ∈ Γ.

Theorem 20. (Main Result) Let df be the degree of the polynomial vector field f(x)

of System (6.8). Given wi, hi,j ∈ Rn and ui, gi,j ∈ R, define the polytope

Γ := {x ∈ R
n : wT

i x+ ui ≥ 0, i = 1, · · · , K},

with D-decomposition DΓ := {Di}i=1,··· ,L, where

Di := {x ∈ R
n : hTi,jx+ gi,j ≥ 0, j = 1, · · · , mi}.

Let Ni be the cardinality of Ed,mi
, as defined in (6.1) and let Mi be the cardinality

of Ed+df−1,mi
. Consider the maps Ri, Hi, Fi, Gi, and Ji as defined in definition 6,

and Λi,j(DΓ) as defined in (6.9) for i, j ∈ {1, · · · , L}. If there exists d ∈ N such that

136

max γ in the linear program (LP),

max
γ∈R,bi∈RNi ,ci∈RMi

γ

subject to

bi ≥ 0 for i = 1, · · · , L

ci ≤ 0 for i = 1, · · · , L

Ri(bi, d) = 0 for i = 1, · · · , L

Hi(bi, d) ≥ 1 for i = 1, · · · , L

Hi(ci, d+ df − 1) ≤ −γ · 1 for i = 1, · · · , L

Gi(bi, d) = Fi(ci, d+ df − 1) for i = 1, · · · , L

Ji(bi, d, k) = Jj(bj , d, l) for i, j = 1, · · · , L and k, l ∈ Λi,j(DΓ) (6.13)

is positive, then the origin is an asymptotically stable equilibrium for System 6.8.

Furthermore,

V (x) = Vi(x) =
∑

α∈Ed,mi

bi,α

mi∏

j=1

(hTi,jx+ gi,j)
αj for x ∈ Di, i = 1, · · · , L

with bi,α as the elements of bi, is a piecewise polynomial Lyapunov function proving

stability of System (6.8).

Proof. Let us choose

V (x) = Vi(x) =
∑

α∈Ed,mi

bi,α

mi∏

j=1

(hTi,jx+ gi,j)
αj for x ∈ Di, i = 1, · · · , L

In order to show that V (x) is a Lyapunov function for system 6.8, we need to prove

the following:

1. Vi(x) ≥ xTx for all x ∈ Di, i = 1, · · · , L,

2. D+(Vi(x), f(x)) ≤ −γ xTx for all x ∈ Di, i = 1, · · · , L and for some γ > 0,

137

3. V (0) = 0,

4. V (x) is continuous on Γ.

Then, by Theorem 18, it follows that System (6.8) is asymptotically stable at the ori-

gin. Now, let us prove items (1)-(4). For some d ∈ N, suppose γ > 0, bi and ci for i =

1, · · · , L is a solution to linear program (6.13).

Item 1. First, we show that Vi(x) ≥ xTx for all x ∈ Di, i = 1, · · · , L. From the

definition of the D-decomposition in the theorem statement, hTi,jx + gi,j ≥ 0, for all

x ∈ Di, j = 1, · · · , mi. Furthermore, bi ≥ 0. Thus,

Vi(x) :=
∑

α∈Ed,mi

bi,α

mi∏

j=1

(hTi,jx+ gi,j)
αj ≥ 0 (6.14)

for all x ∈ Di\, i = 1, · · · , L. From (6.4), Hi(bi, d) ≥ 1 for each i = 1, · · · , L

implies that all the coefficients of the expansion of xTx in Vi(x) are greater than 1 for

i = 1, · · · , L. This, together with (6.14), prove that Vi(x) ≥ xTx for all x ∈ Di, i =

1, · · · , L.

Item 2. Next, we show that D+(Vi(x), f(x)) ≤ −γxTx for all x ∈ Di, i = 1, · · · , L.

For i = 1, · · · , L, let us refer the elements of ci as ci,β, where β ∈ Ed+df−1,mi
. From

(6.13), ci ≤ 0 for i = 1, · · · , L. Furthermore, since hTi,jx + gi,j ≥ 0 for all x ∈ Di, it

follows that

Zi(x) =
∑

β∈Ed+df−1

cβ,i

mi∏

j=1

(hTi,jx+ gi,j)
βj ≤ 0 (6.15)

for all x ∈ Di, i = 1, · · · , L. From (6.4), Hi(ci, d+ df − 1) ≤ −γ · 1 for i = 1, · · · , L

implies that all the coefficients of the expansion of xTx in Zi(x) are less than −γ for

i = 1, · · · , L. This, together with (6.15), prove that Zi(x) ≤ −γxTx for all x ∈ Di,

for i = 1, · · · , L. Lastly, by the definitions of the maps Gi and Fi in (6.6) and (6.3),

138

if Gi(bi, d) = Fi(ci, d+ df − 1), then

〈∇Vi(x), f(x)〉 = Zi(x) ≤ −γxTx for all x ∈ Di and i ∈ {1 · · · , L}.

SinceD+(Vi(x), f(x)) = 〈∇Vi(x), f(x)〉 for all x ∈ Di, it follows thatD
+(Vi(x), f(x)) ≤

−γxTx for all x ∈ Di, i ∈ {1 · · · , L}.

Item 3. Now, we show that V (0) = 0. By Lemma 1, Ri(bi, d) = 0 implies Vi(0) = 0

for each i ∈ {1, · · · , L}.

Item 4. Finally, we show that V (x) is continuous for x ∈ Γ. By Lemma 2,

Ji(bi, d, k) = Jj(bj , d, l) for all i, j ∈ {1, · · · , L}, k, l ∈ Λi,j(DΓ) implies that V (x)

is continuous for all x ∈ Γ.

Using Theorem 20, we define Algorithm 8 to search for piecewise-polynomial Lya-

punov functions to verify local stability of system (6.8) on convex polytopes. We have

provided a Matlab implementation for Algorithm 8 at: www.sites.google.com/a/

asu.edu/kamyar/Software.

6.5 Computational complexity analysis

In this section, we analyze and compare the complexity of the LP in (6.13) with

the complexity of the SDPs associated with Polya’s algorithm in Kamyar and Peet

(2013) and an SOS approach using Positivstellensatz multipliers. For simplicity, we

consider Lyapunov functions defined on a hypercube centered at the origin. Note

that we make frequent use of the formula

Nvars :=

d∑

i=0

(i+K − 1)!

i!(K − 1)!
,

which gives the number of basis functions in Θd(Γ) for a convex polytope Γ with K

facets.

139

Inputs:

Vertices of the polytope: pi for i = 1, · · · , K.

hi,j and gi,j for i = 1, · · · , K and j = 1, · · · , mi.

Coefficients and degree of the polynomial vector field in (6.8).

Maximum degree of the Lyapunov function: dmax

while d < dmax do

if the LP defined in (6.13) is feasible then

Break the while loop.

else

Set d = d+ 1˙

end

end

Outputs:

If the LP in (6.13) is feasible, then the output is the coefficients bi,α of the

Lyapunov function

V (x) = Vi(x) =
∑

α∈Ed,mi

bi,α

mi∏

j=1

(hTi,jx+ gi,j)
αj for x ∈ Di, i = 1, · · · , L

Algorithm 8: Search for piecewise polynomial Lyapunov functions using Han-

delman’s theorem

140

Figure 6.2: Decomposition of the hypercube in 1−,2− and 3−dimensions

6.5.1 Complexity of the LP associated with Handelman’s representation

Consider the following assumption on our D−decomposition.

Assumption 1. We perform the analysis on an n−dimensional hypercube, centered

at the origin. The hypercube is decomposed into L = 2n sub-polytopes such that

the i-th sub-polytope has m = 2n − 1 facets. Figure 6.2 shows the 1−, 2− and

3−dimensional decomposed hypercube.

Let n be the number of states in System (6.8). Let df be the degree of the

polynomial vector field in System (6.8). Suppose we use Algorithm 1 to search for a

Lyapunov function of degree dV . Then, the number of decision variables in the LP is

NH
vars = L




dV∑

d=0

(d+m− 1)!

d!(m− 1)!
+

dV +df−1∑

d=0

(d+m− 1)!

d!(m− 1)!
− (dV + 1)


 (6.16)

where the first term is the number of bi,α coefficients, the second term is the number

of ci,β coefficients and the third term is the dimension of Ri(bi, d) in (6.13). By

substituting for L and m in (6.16), from Assumption 1 we have

NH
vars = 2n




dV∑

d=0

(d+ 2n− 2)!

d!(2n− 2)!
+

dV +df−1∑

d=0

(d+ 2n− 2)!

d!(2n− 2)!
− dV − 1


 .

Then, for large number of states, i.e., large n,

NH
vars ∼ 2n

(
(2n− 2)dV + (2n− 2)dV +df−1

)
∼ ndV +df .

141

Meanwhile, the number of constraints in the LP is

NH
cons = NH

vars + L




dV∑

d=0

(d+ n− 1)!

d!(n− 1)!
+

dV +df−1∑

d=0

(d+ n− 1)!

d!(n− 1)!


 , (6.17)

where the first term is the total number of inequality constraints associated with

the positivity of bi and negativity of ci, the second term is the number of equality

constraints on the coefficients of the Lyapunov function required to ensure continuity

(Ji(bi, d, k) = Jj(bj , d, l) in the LP (6.13)) and the third term is the number of equality

constraints associated with negativity of the Lie derivative of the Lyapunov function

(Gi(bi, d) = Fi(ci, d+ df − 1) in the LP (6.13)). By substituting for L in (6.17), from

Assumption 1 for large n we get

NH
cons ∼ ndV +df + 2n(ndV + ndV +df−1) ∼ ndV +df .

The complexity of an LP using interior-point algorithms is approximately O(N2
varsNcons)

(Boyd and Vandenberghe (2004)). Therefore, the computational cost of solving the

LP (6.13) is

∼ n3(dV +df).

6.5.2 Complexity of the SDP associated with Polya’s algorithm

Recall our approach in Section 5.3 for applying Polya’s algorithm to analyze sta-

bility over hypercubes. In Kamyar and Peet (2013), we used the same approach

to construct Lyapunov functions for nonlinear ODEs with polynomial vector fields.

In particular, this approach uses semi-definite programming to search for the coef-

ficients of a matrix-valued polynomial P (x) which defines a Lyapunov function as

V (x) = xTP (x)x. Using a similar complexity analysis as in 5.4, we determine that

the number of decision variables in the associated SDP is

NP
vars =

n(n + 1)

2

dV −2∑

d=0

(d+ n− 1)!

d!(n− 1)!
.

142

The number of constraints in the SDP is

NP
cons =

n(n+ 1)

2
((dV + e− 1)n + (dV + df + e− 2)n) ,

where here we have denoted Polya’s exponent by e. Then, for large n, NP
vars ∼

ndV and NP
cons ∼ (dV + df + e − 2)n. Since solving an SDP with an interior-point

algorithm typically requires O(N3
cons +N3

varNcons +N2
varN

2
cons) operations (Boyd and

Vandenberghe (2004)), the computational cost of solving the SDP associated with

Polya’s algorithm is estimated as

∼ (dV + df + e− 2)3n.

6.5.3 Complexity of the SDP associated with SOS algorithm

To find a Lyapunov function for (6.8) over the polytope

Γ =
{
x ∈ R

n : wT
i x+ ui ≥ 0, i ∈ {1, · · · , K}

}

using the SOS approach with Positivstellensatz multipliers Stengle (1974), we search

for a polynomial V (x) and SOS polynomials si(x) and ti(x) such that for any ǫ > 0

V (x)− ǫxTx−
K∑

i=1

si(x)(w
T
i x+ ui) is SOS

−〈∇V (x), f(x)〉 − ǫxTx−
K∑

i=1

ti(x)(w
T
i x+ ui) is SOS.

Suppose we choose the degree of the si(x) to be dV − 2 and the degree of the ti(x) to

be dV + df − 2. Then, it can be shown that the total number of decision variables in

the SDP associated with the SOS approach is

NS
vars =

N1(N1 + 1)

2
+K

N2(N2 + 1)

2
+K

N3(N3 + 1)

2
, (6.18)

where N1 is the number of monomials in a polynomial of degree dV /2 , N2 is the

number of monomials in a polynomial of degree (dV − 2)/2 and N3 is the number of

143

monomials in a polynomial of degree (dV + df − 2)/2 calculated as

N1 =

dV /2∑

d=1

(d+ n− 1)!

(d)!(n − 1)!
, N2 =

(dV −2)/2∑

d=0

(d+ n− 1)!

(d)!(n − 1)!
and N3 =

(dV +df−2)/2∑

d=0

(d+ n− 1)!

(d)!(n − 1)!
.

The first terms in (6.18) is the number of scalar decision variables associated with

the polynomial V (x). The second and third terms are the number of scalar variables

in the polynomials si and ti, respectively. The number of constraints in the SDP is

NS
cons = N1 +KN2 +KN3 +N4, (6.19)

where

N4 =

(dV +df)/2∑

d=0

(d+ n− 1)!

(d)!(n− 1)!
.

The first term in (6.19) is the number of constraints associated with positivity of V (x),

the second and third terms are the number of constraints associated with positivity of

the polynomials si and ti, respectively. The fourth term is the number of constraints

associated with negativity of the Lie derivative. By substituting K = 2n (For the

case of a hypercube), for large n we have NS
vars ∼ N2

3 ∼ ndV +df−1 and

NS
cons ∼ KN3 +N4 ∼ nN3 +N4 ∼ n0.5(dV +df).

Finally, using an interior-point algorithm with complexity O(N3
cons + N3

varNcons +

N2
varN

2
cons) to solve the SDP associated the SOS algorithm requires ∼ n3.5(dV +df)−3

operations. As an additional comparison, we also consider the SOS algorithm for

global stability analysis, which does not use Positivstellensatz multipliers. For a large

number of states, we have NS
vars ∼ n0.5dV and NS

cons ∼ n0.5(dV +df). In this case, the

complexity of the SDP is

∼ n1.5(dV +df) + n2dV +df .

144

6.5.4 Comparison of the Complexities

We draw the following conclusions from our complexity analysis.

1. For large number of states, the complexity of the LP defined in (6.13) and

the SDP associated with SOS are both polynomial in the number of states,

whereas the complexity of the SDP associated with Polya’s algorithm grows

exponentially in the number of states. For a large number of states and

large degree of the Lyapunov polynomial, the LP has the least computational

complexity.

2. The complexity of the LP defined in (6.13) scales linearly with the number of

sub-polytopes L.

3. In Figure 6.3, we show the number of decision variables and constraints for the

LP and SDPs using different degrees of the Lyapunov function and different

degrees of the vector field. The figure shows that in general, the SDP associ-

ated with Polya’s algorithm has the least number of variables and the greatest

number of constraints, whereas the SDP associated with SOS has the greatest

number of variables and the least number of constraints.

6.6 Numerical results

In this section, we first use our algorithm to construct a Lyapunov function for

a nonlinear system. we then assess the accuracy of our algorithm in estimating the

region of attraction of the equilibrium point using different types of convex polytopes.

145

Figure 6.3: Number of decision variables and constraints of the optimization prob-
lems associated with Algorithm 1, Polya’s algorithm and SOS algorithm for different
degrees of the Lyapunov function and the vector field f(x)

Numerical Example 1:

Consider the following nonlinear system (G. Chesi and Vicino (2005)).

ẋ1 = x2,

ẋ2 = −2x1 − x2 + x1x
2
2 − x51 + x1x

4
2 + x52.

Using the polytope

Γ = {x1, x2 ∈ R
2 : 1.428x1 + x2 − 0.625 ≥ 0,−1.428x1 + x2 + 0.625 ≥ 0,

1.428x1 + x2 + 0.625 ≥ 0,−1.428x1 + x2 − 0.625 ≥ 0}, (6.20)

146

and D−decomposition

D1 := {x1, x2 ∈ R
2 : −x1 ≥ 0, x2 ≥ 0,−1.428x1 + x2 − 0.625 ≥ 0}

D2 := {x1, x2 ∈ R
2 : x1 ≥ 0, x2 ≥ 0, 1.428x1 + x2 + 0.625 ≥ 0}

D3 := {x1, x2 ∈ R
2 : x1 ≥ 0,−x2 ≥ 0,−1.428x1 + x2 + 0.625 ≥ 0}

D4 := {x1, x2 ∈ R
2 : −x1 ≥ 0,−x2 ≥ 0, 1.428x1 + x2 + 0.625 ≥ 0},

we set-up the LP in (6.13) with d = 4. The solution to the LP certified asymp-

totic stability of the origin and yielded the following piecewise polynomial Lyapunov

function. Figure 6.4 shows the largest level set of V (x) inscribed in the polytope Γ.

−1 −0.5 0 0.5 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x
1

x 2

D
2

D
3

D
4

D
1

Figure 6.4: The largest level-set of Lyapunov function (6.21) inscribed in Poly-
tope (6.20)

147

V (x) =





0.543x21 + 0.233x22 + 0.018x32 − 0.074x1x
2
2 − 0.31x31

+0.004x42 − 0.013x1x
3
2 + 0.015x21x

2
2 + 0.315x41 if x ∈ D1

0.543x21 + 0.329x1x2 + 0.233x22 + 0.018x32 + 0.031x1x
2
2

+0.086x21x2 + 0.3x31 + 0.004x42 + 0.009x1x
3
2 + 0.015x21x

2
2

+0.008x31x2 + 0.315x41 if x ∈ D2

0.0543x21 + 0.0233x22 − 0.0018x32 + 0.0074x1x
2
2 + 0.03x31

+0.004x42 − 0.013x1x
3
2 + 0.015x21x

2
2 + 0.315x41 if x ∈ D3

0.543x21 + 0.329x1x2 + 0.233x22 − 0.018x32 − 0.031x1x
2
2

−0.086x21x2 − 0.3x31 + 0.004x42 + 0.009x1x
3
2 + 0.015x21x

2
2

+0.008x31x2 + 0.315x41 if x ∈ D4

(6.21)

(6.22)

Numerical Example 2:

In this example, we test the accuracy of our algorithm in approximating the region

of attraction of a locally-stable nonlinear system known as the reverse-time Van Der

Pol oscillator. The system is defined as

ẋ1 = −x2, ẋ2 = x1 + x2(x
2
1 − 1). (6.23)

We considered the following convex polytopes:

1. Parallelogram ΓPs, Ps := {spi}i=1,··· ,4, where

p1 = [−1.31, 0.18], p2 = [0.56, 1.92], p3 = [−0.56,−1.92], p4 = [1.31,−0.18]

148

2. Square ΓQs, Qs := {sqi}i=1,··· ,4, where

q1 = [−1, 1], q2 = [1, 1], q3 = [1,−1], q4 = [−1,−1]

3. Diamond ΓRs , Rs := {sri}i=1,··· ,4, where

r1 = [−1.41, 0], r2 = [0, 1.41], r3 = [1.41, 0], r4 = [0,−1.41]

where s ∈ R+ is a scaling factor. We decompose the parallelogram and the diamond

into 4 triangles and decompose the square into 4 squares. We solved the following

optimization problem for Lyapunov functions of degree d = 2, 4, 6, 8:

max
s∈R+

s

subject to max γ in LP (6.13) is positive, where

Γ = ΓPs := {x ∈ R
2 : x =

4∑

i=1

µispi : µi ≥ 0 and

K∑

i=1

µi = 1}.

To solve this problem, we use a bisection search on s in an outer-loop and an LP

solver in the inner loop. Figure 6.5 illustrates the largest ΓPs, i.e.

ΓPs∗
:= {x ∈ R

n : x =
4∑

i=1

µis
∗pi : µi ≥ 0 and

4∑

i=1

µi = 1}

and the largest level-set of Vi(x) inscribed in ΓPs∗
, for different degrees of Vi(x). Sim-

ilarly, we solved the same optimization problem replacing ΓPs with the square ΓQs

and diamond ΓRs . In all cases, increasing d resulted in a larger maximum inscribed

sub-level set of V (x) (see Figure 6.6). We obtained the best results using the parallel-

ogram ΓPs which achieved the scaling factor s∗ = 1.639. The maximum scaling factor

for ΓQs was s∗ = 1.800 and the maximum scaling factor for ΓRs was s∗ = 1.666.

149

Figure 6.5: Largest level sets of Lyapunov functions of different degrees and their
associated parallelograms

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x
1

x 2

d=8

d=4

d=2

d=6

(a) Square polytopes

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

x
1

x
2

d=4

d=2

d=8

d=6

(b) Diamond polytopes

Figure 6.6: Largest level sets of Lyapunov functions of different degrees and their
associated polytopes

150

Chapter 7

OPTIMIZATION OF SMART GRID OPERATION: OPTIMAL UTILITY

PRICING AND DEMAND RESPONSE

7.1 Background and motivation

Reliable and efficient production and transmission of electricity are essential to the

progress of modern industrial societies. Engineers have strived for years to operate

power generating systems in a way to achieve the following objectives: 1) Reliability:

maintaining an uninterrupted balance between the generated power and demand; 2)

Minimizing the cost of generation and transmission of electricity; 3) Reducing the

adverse effects of the system on the environment by increasingly the use of renewable

sources such as solar energy. Unfortunately, the first two objectives are in conflict:

increasing reliability (often by increasing the maximum capacity of generation) results

in higher costs. Moreover, the dependence of reliability of power networks and costs

on integration of renewables is not yet well-understood.

One concern of electric utilities is that rapid increase in distributed solar gener-

ation may change customers’ consumption pattern in ways that current generating

units cannot accommodate for these changes. One example of such a change is shown

in Figure 7.1 (Arizona Public Service (2014)). In this figure, we have compared the

daily net demand profile of Arizona’s customers in 2014 with its projection in 2029.

Because of the misalignment between the solar generation peak (at noon) and the de-

mand peak (at 6 PM), as the solar penetration increases, the resulting demand profile

will reshape to a double-peak curve (see Figure 7.1). To respond to such variability

in the demand profile, utilities will be required to re-structure their generating ca-

151

5 10 15 20
1000

2000

3000

4000

5000

6000

7000

8000

9000

Time (hr)

N
et

 lo
ad

 (
M

W
)

Summer 2014
Summer 2029
Winter 2014
Winter 2029

Figure 7.1: Effect of solar power on demand: Net loads for typical summer and
winter days in Arizona in 2014 and for 2029 (projected), from Arizona Public Service
(2014)

pacity by installing generating units which possess a shorter start-up time and higher

generation ramp rates. Moreover, as solar generation by users increases, the total en-

ergy provided by the utility will decrease - implying a reduction in revenue for utility

companies which charge users based on their total energy consumption. This type

of change in the demand can indeed already be seen in a report by the US Energy

Information Administration (EIA) as a significant increase in the ratio of the annual

demand peak to annual average demand (see Figuew 7.2). Because utilities must

pay to build and maintain generating capacity as determined by peak demand, the

increasing use of solar will thus result in a decrease in revenue, yet no decrease in this

form of cost. Ultimately, utilities might have a significant fraction of solar users with

negative energy consumption (kWh) during the day and positive consumption during

the evening and morning. Due to net metering, such users might pay nothing for

electricity while contributing substantially to the costs of building and maintaining

generating capacity.

Recently, there has been extensive research on how to exploit smart grid fea-

152

1995 2000 2005 2010
1.5

1.6

1.7

1.8

1.9

2

Year

P
e
a
k
 t

o
 a

v
e
ra

g
e
 d

e
m

a
n

d

Real data − California
Trendline − New England
Real data − New England
Trendline − California

Figure 7.2: Peak to average demand of electricity and its trend-line in California
and New England from 1993 to 2012, data adopted from Shear (2014)

tures such as smart metering, energy storage, thermostat programming and vari-

able/dynamic pricing in order to reduce peak demands and cost of generation, en-

hance monitoring and security of networks, and prevent unintended events such as

cascade failures and blackouts. Smart metering enables two-way communications be-

tween consumers and utilities. It provides utilities with real-time data of consumption

- hence enables them to directly control the load and/or apply prices as a function of

consumption. Naturally, utilities have been studying this problem for some time and

with the widespread adoption of smart-metering (95% in Arizona), have begun to im-

plement various pricing strategies at scale. Examples of this include on-peak, off-peak

and super-peak pricing - rate plans wherein the energy price ($/kWh) depends on the

time of day. By charging more during peak hours, utilities encourage conservation

or deferred consumption during hours of peak demand. Quite recently, some utili-

ties have introduced demand charges for residential customers (SRP (2015),Rumolo

(2013)). These charges are not based on energy consumption, but rather the max-

imum rate of consumption ($/kW) over a billing period. While such charges more

accurately reflect the cost of generation for the utilities, in practice the effects of such

153

charges on consumption are not well-understood - meaning that the magnitude of the

demand charge must be set in an ad-hoc manner (typically proportional to marginal

cost of adding generating capacity).

An alternative approach to reducing peaks in demand is to use energy storage. In

this scenario, batteries, pumping and retained heat are used during periods of low de-

mand to create reservoirs of energy which can then be tapped during periods of high

demand - thus reducing the need to increase maximum generating capacity. Indeed,

the optimal usage of energy storage in a smart-grid environment with dynamic pricing

has been recently studied in, for example, Li et al. (2011). See Ma et al. (2014) for

optimal distributed load scheduling in the presence of network capacity constraints.

However, to date the high marginal costs of storage infrastructure relative to incen-

tives/marginal cost of additional generating capacity have limited the widespread use

of energy storage by consumers/utilities (EPRI-DOE (2003)). As a cost-free alter-

native to direct energy storage, it has been demonstrated experimentally by Braun

et al. (2002), Braun (2003), and in-silico by Braun et al. (2001) and Keeney and Braun

(1997) that the interior structure of buildings and appliances can be exploited as a

passive thermal energy storage system to reduce the peak-load of HVAC. A typical

strategy - known as pre-cooling - is to artificially cool the interior thermal mass (e.g.,

walls and floor) during periods of low demand. Then, during periods of high demand,

heat absorption by these cool interior structures supplements or replaces electricity

which would otherwise be consumed by the HVAC. Quantitative assessments of the

effect of pre-cooling on demand peak and electricity bills can be found in Braun and

Lee (2006) and Sun et al. (2013). Furthermore, there is an extensive literature on

thermostat programming for HVAC systems for on-peak/off-peak pricing (Lu et al.

(2005); Arguello-Serrano and Velez-Reyes (1999)) as well as real-time pricing (Old-

ewurtel and Morari (2010); Henze et al. (2004); Chen (2001)) using Model Predictive

154

Control (MPC). Kintner-Meyer and Emery (1995) consider optimal thermostat pro-

gramming with passive thermal energy storage and on-peak/off-peak rates. Braun and

Lee (2006) use the concept of deep and shallow mass to create a simplified analogue

circuit model of the thermal dynamics of the structure. By using this model and

certain assumptions on the gains of the circuit elements, Braun and Lee (2006) derive

an analytical optimal temperature set-point for the demand limiting period which

minimizes the demand peak. This scenario would be equivalent to minimizing the

demand charge while ignoring on-peak or off-peak rates. Finally, Henze et al. (2004)

use the heat equation to model the thermal energy storage in the walls and apply

MPC to minimize monthly electricity bill in the presence of on-peak and off-peak

charges.

7.1.1 Our contributions

In this chapter, we design a computational framework to achieve the three ob-

jectives of a modern power network: reliability, cost minimization and integration

of renewables to promote sustainability. This framework relies on smart metering,

thermal-mass energy storage, distributed solar generation and on-peak, off-peak and

demand pricing. This framework consists of two nested optimization problems: 1)

Optimal thermostat programming (user-level problem); 2) Optimal utility pricing

(utility-level problem). In the first problem, we consider optimal HVAC usage for a

consumer with fixed on-peak, off-peak and demand charges and model passive ther-

mal energy storage using the heat equation. We address both solar and non-solar

consumers. For a given range of acceptable temperatures and using typical data for

exterior temperature, we pose the optimal thermostat programming problem as a con-

strained optimization problem and present a Dynamic Programming (DP) algorithm

which is guaranteed to converge to the solution. This yields the temperature set-

155

points which minimize the monthly electricity bill for the consumer. For the benefit

of the consumers who do not have access to continuously adjustable thermostats, we

also develop thermostat programming solutions which include only four programming

periods, where each period has a constant interior temperature.

After solving the thermostat programming problem, we use this solution as a

model of user behaviour in order to quantify the consumer response to changes in

on-peak rates, off-peak rates, and demand charges. Then in the second optimization

problem, we apply a descent algorithm to this model in order to determine the prices

which minimize the cost-of-generation for the utility. Through several case studies, we

show that the optimal prices are NOT necessarily proportional to the marginal costs of

generation - meaning that current pricing strategies may be inefficient. Furthermore,

we show that in a network of solar and non-solar customers who use our optimal

thermostat, the influence of solar generated power on the electricity bills of non-

solar customers is NOT significant. Finally, we conclude that although the policy

of calculating the demand charge based on the peak consumption over a full-day

(rather than the on-peak hours) can substantially reduce the demand peak, it may

not reduce optimal cost of production. Our study differs from existing literature (in

particular Braun and Lee (2006), Braun (1990), Henze et al. (2004) and Kintner-

Meyer and Emery (1995)) in that it: 1) Considers demand charges (demand charges

are far more effective at reducing demand peaks than dynamic pricing) 2) Uses a PDE

model for thermal storage (yields a more accurate model of thermal storage) 3) Uses

a regulated model for the utility (although unregulated utility models are popular,

the fact is that most US utilities remain regulated) 4) Considers the effect of solar

generation on the electricity prices and cost of production.

156

7.2 Problem statement: user-level and utility level problems

In this section, we first define a model of the thermodynamics which govern heating

and cooling of the interior structures of a building. We then use this model to pose

the user-level (optimal thermostat programming) problem in Sections 7.2.3 and 7.2.4

as minimization of a monthly electricity bill (with on/peak, off-peak and demand

charges) subject to constraints on the interior temperature of the building. Finally,

we use this map of on-peak, off-peak and demand prices to electricity consumption to

define the utility-level problem in Section 7.2.5 as minimizing the cost of generation,

transmission and distribution of electricity.

7.2.1 A model for the building thermodynamics

In 1822, J. Fourier proposed a PDE to model the dynamics of temperature and

energy in a solid mass. Now known as the classical one-dimensional unsteady heat

conduction equation, this PDE can be applied to an interior wall as

∂T (t, x)

∂t
= α

∂2T (t, x)

∂x2
, (7.1)

where T : R+ × [0, Lin] → R represents the temperature distribution in the interior

walls/floor with nominal width Lin, and where α = kin
ρCp

is the coefficient of thermal

diffusivity. Here kin is the coefficient of thermal conductivity, ρ is the density and Cp

is the specific heat capacity. The wall is coupled to the interior air temperature using

Dirichlet boundary conditions, i.e., T (t, 0) = T (t, Lin) = u(t) for all t ∈ R
+, where

u(t) represents the interior temperature which we assume can be controlled instanta-

neously by the thermostat. In the Fourier model, the heat/energy flux through the

surface of the interior walls is modelled as

qin(T (t, x)) := 2Cin
∂T

∂x
(t, 0), (7.2)

157

where Cin = kinAin is the thermal capacitance of the interior walls and Ain is the

nominal area of the interior walls. We assume that all energy storage occurs in the

interior walls and surfaces and that energy transport through exterior walls can be

modelled using a steady-state version of the heat equation. This implies that the heat

flux qloss through the exterior walls is the linear sink

qloss(t, u(t)) :=
Te(t)− u(t)

Re

, (7.3)

where Te(t) is the outside temperature and Re = Le/(keAe) is the thermal resistance

of the exterior walls, where Le is the nominal width of exterior walls, ke is the coef-

ficient of thermal conductivity and Ae is the nominal area of the exterior walls. By

conservation of energy, the power required from the HVAC to maintain the interior

air temperature is

q(t, u(t), T (t, x)) = qloss(u(t), Te(t)) + qin(T (x, t)). (7.4)

See Figure 7.3 for an illustration of the model.

Eqn. (7.1) is a PDE. For optimization purposes, we discretize (7.1) in space, using

T (t) ∈ RM to replace T (t, x) ∈ R, where Ti(t) denotes T (t, i∆x), where ∆x := Lin

M+1
.

Then

Ṫ (t) = AT (t) +B u(t), (7.5)

where A =
α

∆x2




−2 1 0 0

1
. . .

. . . 0

0
. . .

. . . 1
0 0 1 −2


 , B =

α

∆x2




1
0
...
0
1



∈ R

M .

We then discretize in time, using Ṫ (t) ≈ (T (t + ∆t) − T (t))/∆t to rewrite Equa-

158

Te(t) Te(t)u(t) u(t)

T(t,x)

 Interior wall

(thermal storage)Exterior wall Exterior wall

Lin
0

Figure 7.3: A schematic view of our thermal mass model

tion (7.5) as a difference equation.

T k+1 =




T k+1
1

...

T k+1
M



= f(T k, uk) =




f1(T
k, uk)

...

fM(T k, uk)



= (I + A∆ t)T k +B∆t uk (7.6)

for k = 0, · · · , Nf − 1, where T k = T (k∆t) and uk = u(k∆t).

7.2.2 Calibrating the thermodynamics model

To find empirical values for the parameters α,Cin, Re and Lin in the thermody-

namic model in Section 7.2.1, we collected data from a 4600 sq ft residential building

in Scottsdale, Arizona. The building was equipped with a 5 ton two-stage and three

2.5 ton single-stage RHEEM/RUUD heat pumps, 4-set point thermostats, and 5-

min data metering for energy consumption and interior and exterior temperature. In

this experiment, we applied two different thermostat programming sequences for two

non-consecutive summer days. On the first day, we applied a pre-cooling strategy

which lowers the interior temperature to 23.9◦C during the off-peak hours and allows

the temperature to increase to 27.8◦C during the on-peak hours, i.e., 12:00 PM to

7:00 PM. In the second day, we applied the same pre-cooling strategy except that

the temperature is again lowered to 23.9◦C between 2:00 PM and 4:00 PM. We then

used Matlab’s least squares optimization algorithm to optimize the parameters such

159

Time (hr)

0 5 10 15 20 25

P
ow

er
 c

o
n
su

m
p
ti

o
n
 (

kW
)

0

5

10

15

20
Experimental
Simulation

(a) Power consumption corresponding to a

pre-cooling strategy for the interior tem-

perature setting

Time (hr)
0 10 20

P
ow

er
 c

o
n

su
m

p
ti

o
n

 (
kW

)

0

5

10

15 Experimental
Simulation

(b) Power consumption corresp. to

a pre-cooling strategy with additional

cooling from 14:00-16:00

Figure 7.4: Simulated and measured power consumptions

that the root-mean-squared error between the measured power consumption and the

simulated power consumption during the entire two days is minimized. The result

was the following values for the parameters: Lin = 0.4(m), α = 8.3 × 10−7(m2/s),

Re = 0.0015(K/W) and Cin = 45(Wm/K). In Figure 7.4, we have compared the

resulting simulated and measured power consumption for the entire two days.

7.2.3 User-level problem I: optimal thermostat programming

In this section, we define the problem of optimal thermostat programming. We

first divide each day into three periods: off-peak hours from 12 AM to ton with

electricity price poff ($/kWh); on-peak hours beginning at ton and ending at toff >

ton with electricity price pon ($/kWh); and off-peak hours from toff to 12 AM with

electricity price poff ($/kWh). In addition to the on-peak and off-peak charges, we

consider a monthly charge which is proportional to the maximum rate of consumption

during the peak hours. The proportionality constant is called the demand price

pd ($/kW). Given p := [pon, poff, pd], the total cost of consumption (daily electricity

160

bill) is divided as

Jt(u, T1, p) = Je(u, T1, pon, poff) + Jd(u, T1, pd), (7.7)

where Je is the energy cost, Jd is the demand cost and

u := [u0, · · · , uNf−1] ∈ R
Nf

is the vector temperature settings. The energy cost is

Je(u, T1, pon, poff) =
(
poff

∑

k∈Soff

g(k, uk, T
k
1) + pon

∑

k∈Son

g(k, uk, T
k
1)
)
∆t, (7.8)

where k ∈ Son if k∆t ∈ [ton, toff] and k ∈ Soff otherwise. That is, Son and Soff

correspond to the set of on-peak and off-peak sampling times, respectively. The

function g is a discretized version of q (Eqn. (7.4)):

g(k, uk, T
k
1) :=

T k
e − uk
Re

+ 2Cin
T k
1 − uk
∆x

. (7.9)

i.e., g the power consumed by the HVAC at time step k, where T k
e denotes the external

temperature at time-step k. If demand charges are calculated monthly, the demand

cost, Jd, for a single day can be considered as

Jd(u, T1, pd) :=
pd
30

max
k∈Son

g(k, uk, T
k
1). (7.10)

We now define the optimal thermostat programming (or user-level) problem as

minimization of the total cost of consumption, Jt, as defined in (7.7), subject to the

building thermodynamics in (7.6) and interior temperature constraints:

J⋆(p) = min
uk,γ∈R,T k∈RM

Je(u, T1, pon, poff) +
pd
30
γ

subject to g(k, uk, T
k
1) ≤ γ for k ∈ Son

T k+1 = f(T k, uk) for k ∈ Son ∪ Soff

Tmin ≤ uk ≤ Tmax for k ∈ Son ∪ Soff

T 0 = [Tinit(∆x), · · · , Tinit(M ∆x)]T , (7.11)

161

where Tmin, Tmax are the acceptable bounds on interior temperature. Note that this

optimization problem depends implicitly on the external temperature through the

time-varying function g.

7.2.4 User-level problem II: 4-setpoint thermostat program

Most of the commercially available programmable thermostats only include four

programming periods per-day, each period possessing a constant temperature. In this

section, we account for this contraint. First, we partition the day into programming

periods: Pi := [ti−1, ti], i = 1, · · · , 4 such that

4⋃

i=1

Pi = [0, 24], ti−1 ≤ ti, t0 = 0 and t4 = 24.

We call t0, · · · , t4 switching times. Similar to the previous model, ui ∈ [Tmin, Tmax]

denotes the temperature setting corresponding to the programming period Pi.

To simplify the mathematical formulation of our problem, we introduce some

additional notation. Define the set Si by k ∈ Si if k∆t ∈ Pi. Denote Li := maxk∈Si
k.

For clarity, we have depicted Li in Figure 7.5. Moreover, for each Pi, we define ∆ti as

the period between the last time-step of Pi and the end of Pi, i.e., ∆ti := ti − Li ∆t.

See Figure 7.5 for an illustration of ∆ti. In this framework, the daily consumption

charge is

It(u, T1, p) = Ie(u, T1, pon, poff) + Id(u, T1, pd)

where Ie is the energy cost

Ie(u, T1, pon, poff) =
4∑

i=1

(
∑

k∈Si

(
r(k)g(k, ui, T

k
1)∆t

)
+ r(Li)g(k, ui, T

Li
1)∆ti

)
, (7.12)

and Id is the demand cost Id(u, T1, pd) = maxk∈Son g(k, u, T
k
1), where L0 = 0 and r is

defined as

r(k) :=





pon toff ≤ k∆t < ton

poff otherwise.

162

Figure 7.5: An illustration for the programming periods of the 4-Setpoint thermostat
problem, switching times ti, pricing function r, Li and ∆ti.

Assuming that the demand cost for a single day is pd
30
maxk∈Son g(k, u, T

k
1), we define

the 4-setpoint thermostat programming problem as

min
u1,··· ,u4∈R

t1,t2,t3,γ∈R, T k∈RM

Ie(u, T1, pon, poff) +
pd
30
γ subject to

g(k, ui, T
k
1) ≤ γ for k ∈ Son, i ∈ {1, 2, 3, 4}

T k+1 = f(T k, ui) for k ∈ Si and i ∈ {1, 2, 3, 4}

Tmin ≤ ui ≤ Tmax for i ∈ {1, 2, 3, 4}

0 ≤ ti−1 ≤ ti ≤ 24 for i ∈ {1, 2, 3, 4}

T 0 = [Tinit(∆x), · · · , Tinit(M ∆x)]T , (7.13)

where t0 = 0 and t4 = 24.

7.2.5 Utility-level optimization problem

Regulated utilities must meet expected load while maintaining a balance between

revenue and costs. Therefore, we define the utility-level optimization problem as min-

imization of the total cost of generation, transmission and distribution of electricity

such that generation is equal to consumption, and the total cost is a fixed percent-

163

age of the revenue of the utility company. Note that in this dissertation, we focus

on vertically integrated utility companies - meaning that the company provides all

aspects of electric services including generation, transmission, distribution, metering

and billing services as a single firm. Let s(t) be the amount of electricity produced as

a function of time and let s := [s0, · · · , sNf−1], where sk = s(k∆t). The vector s is de-

termined by the electricity consumed by the users, which we model as a small number

of user groups which are lumped according to different building models, temperature

limits, and solar generating capacity so that aggregate user group i has Ni members.

Next, we define u⋆,ik (p) to be the minimizing user temperature setting for user i at

time k with prices p and T i,⋆,k
j (p) to be the minimizing interior wall temperatures for

aggregate user i at time k and discretization point j for prices p, where minimiza-

tion is with respect to the user-level problem defined in (7.11). Then the model of

electricity consumption by the rational user i at time step k for prices p is given by

g(k, u⋆,ik (p), T ⋆,k,i
1 (p)). Thus the constraint that production equals consumption at all

time implies

sk =
∑

i

Nig(k, u
⋆,i
k (p), T i,⋆,k

1 (p)) for all k = 0, · · · , Nf − 1. (7.14)

Now, since utility’s revenue equals the amount paid by the users, the model for revenue

from rational user i becomes Jt(u
⋆,i(p), T i,⋆

1 (p), p), where Jt is defined in (7.7). We

may now define the utility-level optimization problem as minimization of the total

cost subject to equality of generation and consumption and proportionality of revenue

and total costs.

min
pon,poff,pd∈R

C(s)

subject to sk =
∑

i

Ni g(k, u
⋆,i
k (p), T i,⋆,k

1 (p)) k = 0, · · · , Nf − 1

C(s) = λ
∑

i

Ni Jt(u
⋆,i(p), T i,⋆

1 (p), p), (7.15)

164

where λ ≤ 1 is usually determined by the company’s assets, accumulated deprecia-

tion and allowed rate of return. We refer to the minimizers p⋆on, p
⋆
off, p

⋆
d which solve

Problem (7.15) as optimal electricity prices.

Model of total cost, C(s), to utility company The algorithm defined in the

following section was chosen so that only a black-box model of utility costs is required.

However, for the case studies included in Section 7.4, we use two models of utility

costs based on ongoing discussions and collaboration with Arizona’s utility company

SRP. In the first model, we consider a linear representation of both fuel and capacity

costs.

C(s) := a
∑

k∈Son∪Soff

sk ∆t+ b max
k∈Son

sk, (7.16)

where a ($/kWh) is the marginal cost of producing the next kWh of energy and

b ($/kW) is the marginal cost of installing and maintaining the next kW of capacity.

Estimated values of the coefficients a and b for SRP can be found in SRP (2014) as

a = 0.0814$/kWh and b = 59.76$/kW . According to SRP (2014), these marginal

costs include fuel, building, operation and maintenance of facilities, transmission and

distribution costs. The advantage of this model is that the solution to the utility

optimization problem does not depend on the number of users, but rather the fraction

of users in each group.

Our second model for utility costs includes a quadratic term to represent fuel costs.

The quadratic term reflects the increasing fuel costs associated with the required use

of older, less-efficient generators when demand increases.

C(s) := τ
(∑

k∈Son∪Soff

sk ∆t
)2

+ ν
∑

k∈Son∪Soff

sk ∆t + b max
k∈Son

sk (7.17)

This model was calibrated using artificially modified fuel, operation and maintenance

data provided by SRP, yielding estimated coefficients τ =0.00401 $/(MWh)2 and

165

ν =4.54351 $/(MWh).

7.3 Solving user- and utility-level problems by dynamic programming

First, we solve the optimal thermostat programming problem using a variant of

dynamic programming. This yields consumption as a function of prices pon, poff, pd.

Next, we embed this implicit function in the Nelder-Mead simplex algorithm in order

to find prices which minimize the production cost in the utility-level optimization

problem as formulated in (7.15). We start the user-level problem by fixing the variable

γ ∈ R
+ and defining a cost-to-go function, Vk. At the final time Nf ∆t = 24, we have

VNf
(x) :=

pd
30
γ. (7.18)

Here for simplicity, we use x = T ∈ RM to represent the discretized temperature

distribution in the wall. We define the dilated vector of prices by pj = poff if j ∈ Soff

and pj = pon otherwise. Then, we construct the cost-to-go function inductively as

Vj−1(x) := min
u∈Wγ,j−1(x)

(pj−1 g(j − 1, u, x1)∆t + Vj(f(x, u))) (7.19)

for j = 1, · · · , Nf , where Wγ,j(x) is the set of allowable inputs (interior air tempera-

tures) at time j and state x:

Wγ,j(x) :=





{u ∈ R : Tmin ≤ u ≤ Tmax, g(j, u, x1) ≤ γ}, j ∈ Son

{u ∈ R : Tmin ≤ u ≤ Tmax}, j ∈ Soff.

Now we present the main result.

Theorem 21. Given γ ∈ R+, suppose that Vi satisfies (7.18) and (7.19). Then

166

V0(T
0) = J∗, where

J∗(p) = min
uk,T k∈RM

Je(u, T1, pon, poff) +
pd
30
γ

subject to g(k, uk, T
k
1) ≤ γ for k ∈ Son

T k+1 = f(T k, uk) for k ∈ Son ∪ Soff

Tmin ≤ uk ≤ Tmax for k ∈ Son ∪ Soff

T 0 = [Tinit(∆x), · · · , Tinit(M ∆x)]T . (7.20)

To prove Theorem 21, we require the following definitions.

Definition 8. Given poff, pon, pd, γ ∈ R+, Nf ∈ N+, and toff, ton,∆t ∈ R+ such that

ton
∆t
,
toff
∆t

∈ N, define the cost-to-go functions

Qj : R
Nf−j × R

Nf−j+1 × R
+ × R

+ → R for j = 0, · · · , Nf as

Qj(x, y, pon, poff) :=





poff

∑

k∈Soff

k/∈{0,··· ,j−1}

g(k, xk, yk) + pon
∑

k∈Son

g(k, xk, yk)


∆t +

3∑

i=1

Γi if 0 ≤ j < Non

Γ1 =


pon

∑
k∈Son

k/∈{Non,··· ,j−1}

g(k, xk, yk) + poff
∑

k∈Soff

k/∈{0,··· ,Non−1}

g(k, xk, yk)


∆t + Γ2 + Γ3 if Non ≤ j < Noff

Γ2 = poff
∑

k∈{j,··· ,Nf−1}

g(k, xk, yk)∆t+ Γ3 if Noff ≤ j < Nf

Γ3 =
pd
30
γ if j = Nf ,

(7.21)

where g is defined as in (7.9), and Non := ton
∆t

and Noff :=
toff
∆t

are the time-steps

corresponding to start and end of the on-peak hours.

167

Note that from (7.8), it is clear that Q0 = Je +
pd
30
γ.

Definition 9. Given γ, Tmin, Tmax ∈ R and Nf ,M ∈ N+, define the set

Uj(x) := {(uj, · · · , uNf−1) ∈ R
Nf−j :

g(k, uk, T
k
1) ≤ γ for all k ∈ Son,

T j = x and T k+1 = f(T k, uk) for all k ∈ {j, · · · , Nf − 1},

Tmin ≤ uk ≤ Tmax for all k ∈ Son ∪ Soff} (7.22)

for any x ∈ RM and for every j ∈ {0, · · · , Nf − 1}, where f and g are defined as

in (7.6) and (7.9).

Definition 10. Given Nf ,M ∈ N+, j ∈ {0, · · · , Nf − 1}, let

µj := [µj , · · · , µNf−1]

where µk : R
M → R for k = j, · · · , Nf − 1. Consider Uj as defined in (7.22) and f as

defined in (7.6). If

µj(w) := [µj(w), µj+1(T
j+1) · · · , µNf−1(T

Nf−1)] ∈ Uj(T
j)

for any w ∈ RM , where

T k+1 = f(T k, µk(T
k)), T j = w for k = j, · · · , Nf − 2,

then we call µj an admissible control law for the system

T k+1 = f(T k, µk(T
k)), k = j, · · · , Nf − 1

for any w ∈ R
M .

We now present a proof for Theorem 21.

168

Proof. Since the cost-to-go function Q0 = Je +
pd
30
γ, if we show that

min
µj(T

j)∈Uj(T j)
Qj(µj(T

j), T1, pon, poff) = Vj(T
j) (7.23)

for j = 0, · · · , Nf and for any T j ∈ RM , where

T1 := [T j, f(T j, µj(T
j)), · · · , f(TNf−1, µNf−1(T

Nf−1))],

then it will follow that J∗ = V0(T
0). For brevity, we denote µj(T

j) by µj, Uj(T
j) by

Uj and we drop the last two arguments of Qj. To show (7.23), we use induction as

follows.

Basis step: If j = Nf , then from (7.18) and (7.21) we have VNf
(TNf) = pd

30
γ.

Induction hypothesis: Suppose

min
µk∈Uk

Qk(µk, T1) = Vk(T
k)

for some k ∈ {0, · · · , Nf} and for any T k ∈ RM . Then, we need to prove that

min
µk−1∈Uk−1

Qk−1(µk−1, T1) = Vk−1(T
k−1) (7.24)

for any T k ∈ RM . Here, we only prove (7.24) for the case which Noff < k ≤ Nf − 1.

The proofs for the cases 0 ≤ k ≤ Non and Non < k ≤ Noff follow the same exact logic.

Assume that Noff < k ≤ Nf − 1. Then, from Definition 8

min
µk−1∈Uk−1

Qk−1(µk−1, T1)

= min
µk−1,··· ,µNf−1∈R

poff




Nf−2∑

j=k−1

g
(
j, µj , T

j
1

)

∆t

= min
µk−1,··· ,µNf−1∈R

poff


g
(
k − 1, µk−1, T

k−1
1

)
+

Nf−2∑

j=k

g
(
j, µj , T

j
1

)

∆t, (7.25)

where R := {x ∈ R : Tmin ≤ x ≤ Tmax}. From the principle of optimality (Bellman and

169

Dreyfus (1962)) it follows that

min
µk−1,··· ,µNf−1∈R

poff


g
(
k − 1, µk−1, T

k−1
1

)
+

Nf−1∑

j=k

g
(
j, µj, T

j
1

)

∆t

= min
µk−1∈R


poff g

(
k − 1, µk−1, T

k−1
1

)
∆t + min

µk,··· ,µNf−1∈R
poff

Nf−1∑

j=k

g
(
j, µj , T

j
1

)

∆t,

(7.26)

By combining (7.25) and (7.26) we have

min
µk−1∈Uk−1

Qk−1(µk−1, T1) = min
µk−1∈R

(
poff g

(
k − 1, µk−1), T

k−1
1

)
∆t

+ min
µk,··· ,µNf−1∈R

poff

Nf−1∑

j=k

g
(
j, µj, T

j
1

)

∆t. (7.27)

From Definition 8, we can write

min
µk,··· ,µNf−1

poff ∆t

Nf−1∑

j=k

g
(
j, µj , T

j
1

)
= min

µk∈Uk

Qk(µk, T1). (7.28)

Then, by combining (7.27) and (7.28) and using the induction hypothesis it follows

that

min
µk−1∈Uk−1

Qk−1(µk−1, T1) = min
µk−1∈R

(
poff g

(
k − 1, µk−1, T

k−1
1

)
∆t+ min

µk∈Uk

Qk(µk, T1)

)

= min
µk−1∈R

(
poff g

(
k − 1, µk−1, T

k−1
1

)
∆t+ Vk(T

k)
)

for any T k ∈ RM . By substituting for T k from (7.6) and using the definition of V

in (7.19) we have

min
µk−1∈Uk−1

Qk−1(µk−1, T1) = min
µk−1∈R

(
poff g

(
k − 1, µk−1, T

k−1
1

)
∆t

+Vk
(
f
(
T k−1, µk−1

(
T k−1

))))
= Vk−1

(
T k−1

)

for any T k−1 ∈ R
M . By using the same logic it can be shown that

min
µk−1∈Uk−1

Qk−1(µk−1, T1) = Vk−1(T
k−1)

170

for any k ∈ {0, · · · , Noff− 1} and for any T k−1 ∈ R
M . Therefore, by induction, (7.23)

is true. Thus, J∗ = V0(T
0).

The optimal temperature set-points for Problem (7.20) can be found as the se-

quence of minimizing arguments in the value function (7.19). However, this is not

a solution to the original user-level optimization problem in (7.11), as the solution

only applies for a fixed consumption bound, γ. However, as this consumption bound

is scalar, we may apply a bisection on γ to solve the original optimization problem

as formulated in (7.11). Details are presented in Algorithm 9. The computational

complexity of this algorithm is proportional to Nf ·nM
s ·nu, where Nf is the number of

discretization points in time,M is the state-space dimension of the discretized system

in (7.6), ns is the number of possible discrete values for each state, T and nu is the

number of possible discrete values for the control input (interior air temperature). In

all of the case studies in Section 7.4, we use Nf = 73,M = 3, ns = nu = 13. The

execution time of our Matlab implementation of Algorithm 9 for solving the three-

day user-level problem on a Core i7 processor with 8 GB of RAM was less than 4.5

minutes.

Finding a solution to the 4-Setpoint thermostat programming problem (7.13) is

significantly more difficult due to the presence of the switching times t1, t2, t3 as

decision variables. However, for this specific problem, a simple approach is to use

Algorithm 9 as an inner loop for fixed ti and then use a Monte Carlo search over

ti. For fixed ti, our Matlab implementation for Algorithm 9 solves the 4-Setpoint

thermostat programming problem in less than 17 seconds on a Core i7 processor with

8 GB of RAM. Our experiments on the same machine show that the total execution

time for a Monte Carlo search over 300 valid (i.e., ti ≤ ti+1) random combinations of

t1, t2, t3 is less than 1.41 hours.

171

To solve the utility-level problem in (7.15), we used Algorithm 9 as an inner loop

for the Nelder-Mead simplex algorithm (Olsson and Nelson (1975)). The Nelder-Mead

simplex algorithm is a heuristic optimization algorithm which is typically applied to

problems where the derivatives of the objective function and/or constraint functions

are unknown. Each iteration is defined by a reflection step and possibly a contraction

or expansion step. The reflection begins by evaluation of the inner loop (Algorithm 9)

at each of 4 vertices of a polytope. The polytope is then reflected about the hyperplane

defined by the vertices with the best three objective values. The polytope is then

either dilated or contracted depending on the objective value of the new vertex. In all

of our case studies in Section 7.4, this hybrid algorithm achieved an error convergence

of < 10−4 in less than 15 iterations. Using a Core i7 machine with 8 GB of RAM,

the execution time of the hybrid algorithm for solving the utility-level problem was

less than 2.25 hours.

7.4 Policy implications and analysis

In this section, we use Algorithms 9 and 10 in three case studies to assess the effects

of passive thermal storage, solar power and various cooling strategies on utility prices,

peak demand and cost to the utility company.

In Case I, we compare our optimal thermostat program with other HVAC pro-

gramming strategies and analyze the resulting peak demands and electricity bills for

a set of electricity prices.

In Case II, we apply the Nelder-Mead simplex and Algorithm 9 to the user-level

problem in (7.11) and the utility-level problem in (7.15) to compute optimal electricity

prices and optimal cost of production.

In Case III, we first define an optimal thermostat program for solar users. Then,

we examine the effect of solar power generation on the electricity prices of non-solar

172

Inputs: pon, poff, pd, Te, ton, toff, Re, Cin, Tinit, ∆t, ∆x, Tmin, Tmax, maximum number of

bisection iterations bmax, lower bound γl and upper bound γu for bisection search.

Main loop:

Set k = 0.

while k < bmax do

Set γ = γu+γl

2
.

if V0 in (7.19) exists then

Calculate u0, · · · , uNf−1 as the minimizers of the RHS of (7.19) using a policy

iteration technique.

Set γu = γ. Set u⋆
i = ui for i = 0, · · · , Nf−1.

else

Set γl = γ.

end

Set k = k + 1.

end

Outputs: Optimal interior temperature setting: u⋆
0, · · · , u⋆

Nf−1.

Algorithm 9: A bisection/dynamic programming algorithm for optimal ther-

mostat programming

users by solving a two-user single-utility optimization problem. We ran all cases for

three consecutive days prorated from a one month billing cycle with the time-step

∆t = 1 hr, spatial-step ∆x = 0.1 m and with the building parameters in Table 7.1.

These parameters were determined using the model calibration procedure described

in Section 7.2.2. We used an external temperature profile measured for three typical

summer days in Phoenix, Arizona (see Figure 7.6). For each day, the on-peak period

starts at 12 PM and ends at 7 PM. We used min and max interior temperatures as

Tmin = 22◦C and Tmax = 28◦C.

173

Inputs: a, b, reflection parameter θ, expansion parameter κ, contraction parameter ζ,

reduction parameter τ , initial prices p0di
, p0oni

such that p0di
+ p0oni

< 1 for i = 1, · · · , 4,

stopping threshold ǫ and inputs to Algorithm 9.

Initialization:

Set pdi
= p0di

, poni
= p0oni

, poffi
= 1− poni

− pdi
, poldi

= [1012, 1012, 1012] for i = 1, · · · , 4.

Main loop:

while
∑4

i=1
‖poldi

− pi‖22 > ǫ do

for i = 1, · · · , 4 do

Calculate opt. temp. setting u⋆
0,i, · · · , u⋆

Nf−1,i associated with prices pi using Alg. 9.

Calculate the cost Ci associated with u⋆
0,i, · · · , u⋆

Nf−1,i using (7.16) and (7.14).

end

Re-index the costs and their associated prices and temperature settings such that

C1 ≤ C2 ≤ C3 ≤ C4. Set p
⋆ = p1.

Calculate the centroid of all the prices as p̄ =
[∑4

i=1
poffi

,
∑4

i=1
poni

,
∑4

i=1
pdi

]
.

Calculate reflected prices as pr = p̄+ θ(p̄+ p4).

Calculate optimal temperature setting u⋆
0,r, · · · , u⋆

Nf−1,r and the cost Cr associated with

the reflected prices using Algorithm 9.

if C1 ≤ Cr < C3 then

Set pold4
= p4 and p4 = pr. Go to the beginning of the loop.

else if Cr < C1 then

Calculate expanded prices as pe = p̄+ κ(p̄+ p4).

Calculate optimal temperature setting u⋆
0,e, · · · , u⋆

Nf−1,e and the cost Ce associated

with expanded prices using Algorithm 9.

if Ce < Cr then Set pold4
= p4 and p4 = pe. Set p

⋆ = pe.

else Set pold4
= p4 and p4 = pr. Set p

⋆ = pr.

Go back to While loop.

else

Calculate contraction prices as pc = p̄+ ξ(p̄+ p4).

Calculate optimal temperature setting u⋆
0,c, · · · , u⋆

Nf−1,c and the cost Cc associated

with expanded prices using Algorithm 9.

if Cc < C4 then Set pold4
= p4 and p4 = pc. Go back to While loop.

else Set poldi
= pi for i = 2, 3, 4. Update prices as pi = p1+ τ(pi− p1) for i = 2, 3, 4.

end

end

Outputs: Optimal electricity prices p⋆.

Algorithm 10: An algorithm for computing optimal electricity prices

174

0 10 20 30 40 50 60 70

30

35

40

45

E
x
te

ri
o
r

te
m

p
er

at
u
re

 (
o
C

)

Time (hr)

Figure 7.6: External temperature of three typical summer days in Phoenix, Arizona.
Shaded areas correspond to on-peak hours.

Table 7.1: Building’s parameters as determined in Section 7.2.1

Lin(m) α(m2/s) Re(K/W) Cin(Wm/K) ∆x(m)

0.4 8.3× 10−7 0.0015 45 0.1

7.4.1 Effect of electricity prices on peak demand and production costs

In this case, we first applied Algorithm 9 to the optimal and 4-Setpoint thermostat

programming problems (See (7.11) and (7.13)) for a non-solar customer using the

electricity prices determined by APS in Table 7.2 (Rumolo (2013)). The resulting

electricity bills are given in Table 7.3 as the total cost paid for three days prorated from

a one month billing cycle with the external temperature profile shown in Figure 7.6.

Prorated in this case means that for a 30-day month, the bill is one-tenth of the

monthly bill based on repetition of the three-day cycle ten times. Practically, what

this means is that the period in Problems (7.11) and (7.13) is tripled while the demand

charge in Problems (7.11) and (7.13) uses a demand price 1
10
pd = 1.35 $

kW
. For

comparison, we have solved Problem (7.11) using the general-purpose optimization

solver GPOPS (Patterson and Rao (2013)). We have also compared our results with a

naive strategy of setting the temperature to Tmax (constant) and a pre-cooling strategy

with the temperature setting: u = 25◦C from 12 AM to 8 AM; u = Tmin = 22◦C from

8 AM to 12 PM; u = Tmax = 28◦C from 12 PM to 8 PM; u = 25◦C from 8 PM to

12 AM. As can be seen from Table 7.3, our algorithm offers significant improvement

175

Table 7.2: On-peak, off-peak & demand prices of Arizona utility APS

On-peak ($
kWh

) Off-peak ($
kWh

) Demand ($
kWh

)

APS 0.089 0.044 13.50

over heuristic approaches. The power consumption and the temperature setting as a

function of time for each strategy can be found in Figure 7.7. For convenience, the

on-peak and off-peak intervals are indicated on the figure.

To examine the impact of changes in electricity prices on peak demand, we next

chose several different prices corresponding to high, medium and low penalties for

peak demand. Again, in each case, our algorithms (optimal and 4-setpoint) are

compared to GPOPS and the same pre-cooling strategy. The results are summarized

in Table 7.4. Note that for brevity, in this section, we refer to the total cost of

generation, transmission and distribution as simply production cost. For each price,

the smallest computed production cost and associated demand peak are listed in

bold. The power consumption and the temperature settings as a function of time

for the optimal and 4-Setpoint strategies can be found in Figures 7.8 and 7.9. For

the optimal strategy, notice that by increasing the demand penalty, relative to the

low-penalty case, the peak consumption is reduced by 14% and 23% in the medium

and high penalty cases respectively. Furthermore, notice that by using the optimal

strategy and the high demand-limiting prices, we have reduced the demand peak

by 29% with respect to the constant strategy in Table 7.3. Of course, a moderate

reduction in peak demand at the expense of large additional production costs may

not be desirable. Indeed, the question of optimal distribution of electricity prices for

minimizing the production cost is discussed in Case II.

176

Table 7.3: CASE I: Electricity bills (for three days) and demand peaks for different
strategies. Electricity prices are from APS.

Temperature setting Electricity bill ($) Demand peak (kW)

Optimal (Theorem 21) 36.58 9.222

GPOPS (Patterson and Rao (2013)) 37.03 9.155

4-Setpoint (Theorem 21) 37.71 9.401

Pre-cooling 39.23 8.803

Constant 39.42 10.462

Table 7.4: CASE I: Costs of production (for three days) and Demand peaks for
various prices and strategies. Prices are non-regulated and SRP’s coefficients of utility
cost are: τ =0.00401 $/(MWh)2, ν =4.54351 $/(MWh)

Prices [poff, pon, pd] Demand-limiting Production cost Demand peak

[0.007, 0.010, 13.616] high 46.78$ (0.086 $
kWh

) 7.4132 kW

O
p
ti
m
al

[0.015, 0.045, 13.573] medium 51.56$ (0.116 $
kWh

) 8.2898 kW

[0.065, 0.095, 13.473] low 59.42$ (0.168 $
kWh

) 9.6749 kW

Prices [poff, pon, pd] Demand-limiting Production cost Demand peak

[0.007, 0.010, 13.616] high 53.47$ (0.114 $
kWh

) 8.5914 kW

4-
S
et
p
oi
n
t

[0.015, 0.045, 13.573] medium 55.19$ (0.130 $
kWh

) 8.910 kW

[0.065, 0.095, 13.473] low 61.24$ (0.169 $
kWh

) 9.974 kW

Prices [poff, pon, pd] Demand-limiting Production cost Demand peak

[0.007, 0.010, 13.616] high 49.53$ (0.109 $
kWh

) 7.9440 kW

G
P
O
P
S

[0.015, 0.045, 13.573] medium 56.48$ (0.142 $
kWh

) 9.1486 kW

[0.065, 0.095, 13.473] low 59.19$ (0.159 $
kWh

) 9.6221 kW

Prices [poff, pon, pd] Demand-limiting Production cost Demand peak

[0.007, 0.010, 13.616] high 54.75$ (0.116 $
kWh

) 8.8031 kW

P
re
co
ol
in
g

[0.015, 0.045, 13.573] medium 54.75$ (0.116 $
kWh

) 8.8031 kW

[0.065, 0.095, 13.473] low 54.75$ (0.116 $
kWh

) 8.8031 kW

177

0 10 20 30 40 50 60 70

22

24

26

28

0 10 20 30 40 50 60 70
0

5000

10000

P
o
w

er

co
n
su

m
p
ti

o
n
 (

W
)

0 50
−2

0
2

x 10
4

Theorem 1 Precooling Constant GPOPS 4-Setpoint

Time (hr)

Time (hr)

In
te

ri
o
r

te
m

p
er

at
u
re

 (
o
C

)

Figure 7.7: CASE I: Power consumption and temperature settings for various pro-
gramming strategies using APS’s rates.

0 10 20 30 40 50 60 70
0

5000

10000

15000

P
o
w

e
r

c
o
n
su

m
p
ti

o
n
 (

W
)

Time (hr)

0 10 20 30 40 50 60 70

22

24

26

28

In
te

ri
o
r

te
m

p
e
ra

tu
re

 (
o
C

)

Time (hr)

prices=[0.007,0.01,13.616] prices=[0.007,0.01,13.616] prices=[0.065,0.095,13.473]

Figure 7.8: CASE I: Power consumption and optimal temperature settings for high,
medium and low demand penalties. Shaded areas correspond to on-peak hours.

178

0 10 20 30 40 50 60 70
0

5000

10000

P
o
w

e
r

c
o
n
su

m
p
ti

o
n
 (

W
)

Time (hr)

0 10 20 30 40 50 60 70

22

24

26

28

In
te

ri
o
r

te
m

p
e
ra

tu
re

 (
o

C
)

Time (hr)

prices=[0.007,0.01,13.616] prices=[0.015,0.045,13.573] prices=[0.065,0.095,13.473]

Figure 7.9: CASE I: Power consumption and temperature settings for high, medium
and low demand penalties using 4-Setpoint thermostat programming.

7.4.2 Optimal thermostat programming with optimal electricity prices

In this case, we consider the quadratic model of fuel cost defined in Section (7.17).

A typical pricing strategy for SRP and other utilities is to set prices proportional

to marginal production costs. SRP estimates the mean marginal fuel cost at a =

0.0814$/kWh (See (7.16)). Linearizing our quadratic model of fuel cost and equating

to this estimate of the marginal cost yields an estimate of the mean load. Dividing

this mean load by the aggregate user defined in Case I yields an estimate of the mean

number of users of this class at N = 24, 405.

To compare the marginal pricing strategy with the optimal pricing strategy, we use

this mean number of users in the utility optimization problem under the assumption

that the building parameters in Section 7.2.2 represent a single aggregate rational

user. The resulting optimal prices, associated production cost, and associated peak

demand are listed in Table 7.5. For comparison, we also included in Table 7.5 the

production cost and demand peak for the same rational user subject to prices based

solely on the marginal costs, where these prices are scaled so that revenue equals

179

costs. In other words, we solved (7.15) for λ = 1, meaning that the regulated utility

does not make any profit from generation, transmission and distribution.

From Table 7.5, optimal pricing results in a slight reduction ($82,000) in pro-

duction costs. The discrepancy between optimal prices and marginal costs may be

surprising given that both the user and utility are trying to minimize the cost of

electricity. However, there are several reasons for this difference. The first and most

obvious reason is that the price structure for the user and the cost structure for the

utility are not perfectly aligned. In the first place, the utility has a quadratic in

consumption model for costs, where the user has a linear model. The second mis-

alignment is that the capacity cost for the utility is calculated as a maximum over 24

hours and the demand charge for the user is calculated only during peak hours. An

additional reason that marginal costs will not always be optimal prices is nonlinearity

of the cost function and heterogeneity of the users. To see this, suppose that cost

function exactly equaled the price function for each user. The problem in this case is

that the sum of the individual bills is NOT equal to the total production cost. This

can be seen in the demand charge, where supx f(x) + supx g(x) 6= supx(f(x) + g(x)).

Table 7.5: CASE II: Production costs (for three days) and demand peaks associated
with regulated optimal electricity prices (calculated by Algorithm 10) and SRP’s
electricity prices. SRP’s marginal costs: a = 0.0814 $

kWh
, b = 59.76 $

kW

Strategy [poff(
$

kWh
), pon(

$
kWh

), pd(
$

kW
)] Production cost Demand peak

Optimal [0.0564, 0.0667, 51.1859] 1,595,309 $ 195.607 MW

SRP [0.0668, 0.0668, 49.0018] 1,677,516 $ 211.79 MW

180

7.4.3 Optimal thermostat programming for solar customers - impact of distributed

solar generation on non-solar customers

We now evaluate the impact of solar power on the bills of non-solar users in a

regulated electricity market. We consider a network consisting of a utility company

and two aggregate users - one solar and one non-solar. For the non-solar user, we

define optimal thermostat programming as in (7.11). For the solar user, the optimal

thermostat programming problem is as defined in (7.11), where we have now redefined

the consumption function as

g(k, uk, T
k
1) :=

T k
e − uk
Re

+ 2Cin
T k
1 − uk
∆x

−Qk, (7.29)

where Qk is the power supplied locally by solar panels. We assume that solar penetra-

tion is 50%, so that both aggregate users contribute equally to revenue and costs to

the utility. For Qk, we used data generated on June 4-7 from a typical 13kW south-

facing rooftop PV array in Scottsdale, AZ. We applied Algorithm 10 separately to

each user, while considering (7.16) as the utility cost model. The results are presented

in Table 7.6. For comparison, we have also included optimal prices, prorated electric-

ity bills over three days and demand peaks of both users. From Table 7.6 we observe

that the difference between the electricity bill of a non-solar user in a single-user net-

work and the bill of a non-solar user in a two-user network (solar and non-solar) is

< 2%. This increase in bill for the solar user is < 8%. The utility-generated power,

solar-generated power and optimal temperature settings are shown in Figure 7.10.

181

0 10 20 30 40 50 60 70

−5000

0

5000

10000

15000

P
o
w

er
 c

o
n
su

m
p
ti

o
n

-
S

o
la

r
p
o
w

er

Time (hr)

0 10 20 30 40 50 60 70

0

5000

10000

S
o
la

r
g
en

er
at

ed

 p
o
w

er
 (

W
)

0 10 20 30 40 50 60 70

22

24

26

28

In
te

ri
o
r

te
m

p
er

at
u
re

 (
o
C

)

Solar
Non-solar

Time (hr)

Time (hr)

Figure 7.10: CASE III: Power consumption, solar generated power and optimal
temperature settings for the non-solar and solar users.

Table 7.6: CASE III: Optimal electricity prices, bills (for three days) and demand
peaks for various customers. Marginal costs from SRP: a = 0.0814 $

kWh
, b = 59.76 $

kW

Customers [p⋆off(
$

kWh
), p⋆on(

$
kWh

), p⋆d(
$

kW
)] Elect. Bill Demand peak

Solar &
[0.089, 0.115, 51.988]

$ 50.052 6.1947 kW

Non-solar $ 84.717 8.6787 kW

Single Non-solar [0.081, 0.108, 54.004] $ 83.333 8.3008 kW

Single Solar [0.088, 0.118, 58.556] $ 54.311 6.1916 kW

182

Chapter 8

SUMMARY, CONCLUSIONS AND FUTURE DIRECTIONS OF OUR

RESEARCH

8.1 Summary and conclusions

Thanks to the development of converse Lyapunov theory, a broad class of problems

in stability analysis and control can be formulated as optimization of polynomials.

In this dissertation, we focus on design and implementation of parallel algorithms for

optimization of polynomials. In Chapter 1, we provide a brief overview of the existing

state-of-the-art algorithms for solving polynomial optimization and optimization of

polynomials problems. As our contribution, we chose to design our optimization

algorithms based on two well-known results in algebraic geometry, known as Polya’s

theorem and Handelman’s theorem. Our motivation behind this choice is that these

theorems define structured parameterizations1 for positive polynomials - a property

that our parallel algorithms exploit to achieve near-linear speed-up and scalability.

In Chapter 2, we discuss how variants of Polya’s theorem, Handelman’s theo-

rem and the Positivstellensatz results can be applied to optimization of polynomials

defined over various compact sets, e.g., simplex, hypercube, convex polytopes and

semi-algebraic sets. We show that applying these theorems to an optimization of

polynomials problem yields convex optimization problems in the form of LPs and/or

SDPs. By solving these LPs and SDPs, one can find asymptotic solutions to the

optimization of polynomials problems (as we define in (2.12)). Subsequently, by com-

bining this method with a branch-and-bound algorithm, one can find solutions to

1A detailed discussion on the structure of these parameterizations can be found in Section 4.3.3

183

polynomial optimization problems (as we define in (2.10)).

In Chapter 3, we briefly review Newton-based descent algorithms for constrained

optimization of convex functions. In particular, we discuss a state-of-the-art primal-

dual interior-point path-following algorithm (Helmberg et al. (2005)) for solving semi-

definite programs. We later decentralize the computation of the search directions of

this algorithm to design a parallel SDP solver in Chapter 4.

In Chapter 4, we propose a parallel-computing approach to stability analysis of

large-scale linear systems of the form ẋ(t) = A(α)x(t), where A is a real-valued poly-

nomial, α ∈ ∆l ⊂ Rl and x ∈ Rn. This approach is based on mapping the structure

of the SDPs associated with Polya’s theorem to a parallel computing environment.

We first design a parallel set-up algorithm with no centralized computation to con-

struct the SDPs associated with Polya’s theorem. We then show that by choosing a

block-diagonal starting point for the SDP algorithm in Helmberg et al. (2005), the

primal and dual search directions will preserve their block-diagonal structure at every

iteration. By exploiting this property, we decentralize the computation of the search

directions - the most computationally expensive step of an SDP algorithm. The result

is a parallel algorithm which under certain conditions, can solve the NP-hard prob-

lem of robust stability of linear systems at the same per-core computational cost as

solving the Lyapunov inequality for a linear system with no parametric uncertainty.

Theoretical and experimental results verify near-linear speed-up and scalability of our

algorithm for up to 200 processors. In particular, our numerical tests on cluster com-

puters show that our MPI/C++ implementation of the SDP algorithm outperforms

the existing state-of-the-art SDP solvers such as SDPARA (Yamashita et al. (2003))

in terms of speed-up. Moreover, our experimental tests on a mid-size (9-node) Linux-

based cluster computer demonstrate the ability of our algorithm in performing robust

stability analysis of systems with 100+ states and several uncertain parameters. A

184

comprehensive complexity analysis of both set-up and solver algorithms can be found

in Sections 4.4 and 4.6.1.

In Chapter 5, we further extend our analysis to consider linear systems with un-

certain parameters inside hypercubes. We propose an extended version of Polya’s

theorem for positivity over a multi-simplex (Cartesian product of standard simpli-

cies). We claim that every polynomial defined over a hypercube has an equivalent

homogeneous representation over the multi-simplex. Therefore, our the multi-simplex

version of Polya’s theorem can be used to verify positivity over hypercubes. In the

next step, we generalize our parallel set-up algorithm from Chapter 4 to construct

the SDPs associated with our multi-simplex version of Polya’s theorem. Our com-

plexity analysis shows that for sufficiently large number of available processors, at

each Polya’s iteration, the per processor computation and communication cost of

the algorithm scales polynomially with the number of states and uncertain parame-

ters. Through numerical experiments on a large cluster computer, we show that the

algorithm can achieve a near-perfect speed-up.

In Chapter 6, we extend our approach to consider optimization of polynomials

defined over more complicated geometries such as convex polytopes. Specifically, we

apply Handelman’s theorem to construct piecewise polynomial Lyapunov functions

for nonlinear dynamical systems defined by polynomial vector fields. Unfortunately,

neither Polya’s theorem nor Handelman’s theorem can readily certify non-negativity

of polynomials which have zeros in the interior of a simplex/polytope. Our proposed

solution to this problem is to decompose the domain of analysis (in this case a poly-

tope) into several convex sub-polytopes with a common vertex at the equilibrium.

Then, by using Handelman’s theorem, we derive a new set of affine feasibility condi-

tions - solvable by linear programming - on each sub-polytope. Any solution to this

feasibility problem yields a piecewise polynomial Lyapunov function on the entire

185

polytope. In a computational complexity analysis, we show that for large number of

states and large degrees of the Lyapunov function, the complexity of the proposed

feasibility problem is less than the complexity of certain semi-definite programs asso-

ciated with alternative methods based on Sum-of-Squares and Polya’s theorem.

Finally, in chapter 7, we address a real-world optimization problem in energy plan-

ning and smart grid control. We consider the coupled problems of optimal control of

HVAC systems for residential customers and optimal pricing of electricity by utility

companies. Our framework consists of multiple users (solar and non-solar customers)

and a single regulated utility company. The utility company sets prices for the users,

who pay for both total energy consumed ($/kWh, including peak and off-peak rates)

and the peak rate of consumption in a month (a demand charge) ($/kW). The cost of

electricity for the utility company is based on a combination of capacity costs ($/kW)

and fuel costs ($/kWh). On the demand side, the users minimize the amount paid

for electricity while staying within a pre-defined temperature range. The users have

access to energy storage in the form of thermal capacitance of interior structures.

Meanwhile, the utility sets prices designed to minimize the total cost of generation,

transmission and distribution of electricity. To solve the user-level problem, we use

a variant of dynamic programming. To solve the utility-level problem, we use the

Nelder-Mead simplex algorithm coupled with our dynamic programming code - yield-

ing optimal on-peak, off-peak and demand prices. We then apply our algorithms to a

variety of scenarios in which show that: 1) Thermal storage and optimal thermostat

programming can reduce electricity bills using current rates from utilities Arizona

Public Service (APS) and Salt River Project (SRP). 2) Our optimal pricing can re-

duce the total cost to the utility companies. 3) In the presence of demand charges,

the impact of distributed solar generation on the electricity bills of the non-solar users

is not significant (< 2%).

186

8.2 Future directions of our research

In the following sections, we discuss how the proposed algorithms in this dis-

sertation can be extended to solve three well-known problems in controls: 1) Robust

stability analysis of nonlinear systems; 2) Synthesis of parameter-varying H∞-optimal

controller; 3) Computing value functions in approximate dynamic programming prob-

lems.

8.2.1 A Parallel algorithm for nonlinear stability analysis using Polya’s theorem

Consider the problem of local stability analysis of a nonlinear system of the form

ẋ(t) = A(x, α)x(t), (8.1)

where A : Rn × Rm → Rn×n is a matrix-valued polynomial and A(0, 0) 6= 0. From

converse Lyapunov theory, this problem can be expressed as a search for a polynomial

V : Rn × Rm → R which satisfies the Lyapunov inequalities

W1(x, α) ≤ V (x, α) ≤W2(x, α)

〈∇xV, f〉 ≤ −W3(x, α)

for all x, α ∈ Ω ⊂ R, where 0 ∈ Ω. However, as we discussed in Section 6.1, Polya’s

theorem (simplex and multi-simplex versions) cannot certify positivity of polynomials

which have zeros in the interior of the unit- and/or multi-simplex. Moreover, if F (x)

in (5.2) has a zero in the interior of Φn, then any multi-homogeneous polynomial

P (x, y) that satisfies (5.2) has a zero in the interior of the multi-simplex ∆2 × · · · ×

∆2 - hence cannot be parameterized by Polya’s theorem. One way to enforce the

condition V (0, 0) = 0 is to search for coefficients of a matrix-valued polynomial P

which defines a Lyapunov function of the form V (x, α) = xTP (x, α)x. It can be

187

shown that V (x, α) = xTP (x, α)x is a Lyapunov function for System (8.1) if and only

if γ∗ in the following optimization of polynomials problem is positive.

γ∗ = max
γ∈R,α,P∈R[x,α]

γ

subject to

[
P (x, α) 0

0 −Q(x, α)

]
− γI ≥ 0 for all x ∈ Φn, α ∈ Φm, (8.2)

where

Q(x, α) = AT (x, α)P (x, α)+P (x, α)A(x, α)

+
1

2


A

T (x, α)




xT ∂P (x,α)
∂x1

...

xT ∂P (x,α)
∂xn


+




xT ∂P (x,α)
∂x1

...

xT ∂P (x,α)
∂xn




T

A(x, α)


 .

As we discussed in Section 2.3.2, by applying bisection search on γ and using the

multi-simplex version of Polya’s theorem (Theorem 16) as a test for feasibility of

Constraint (8.2), we can compute lower bounds on γ∗. Suppose there exists a

matrix-valued multi-homogeneous polynomial S of degree vector ds ∈ Nn (ds =

[ds1, · · · , dsn, dsn+1, · · · , dsn+m], where for i ∈ {1, · · · , n}, dsi is the degree of yi and

for i ∈ {n+ 1, · · · , m}, dsi is the degree of βi) such that

{P (x, α) ∈ S
n : x ∈ Φn, α ∈ Φm} =

{S(y, z, β, η) ∈ S
n : (yi, zi), (βj , ηj) ∈ ∆2, i = 1, · · · , n, and j = 1, · · · , m}.

Likewise, suppose there exist matrix-valued multi-homogeneous polynomials B and

C of degree vectors db ∈ Nn and dc = ds ∈ Nn such that

{A(x, α) ∈ R
n×n : x ∈ Φn} =

{B(y, z, β, η) ∈ R
n×n : (yi, zi), (βj , ηj) ∈ ∆2, i = 1, · · · , n, and j = 1, · · · , m}

188

and

{[
∂P (x,α)

∂x1
x, · · · , ∂P (x,α)

∂xn
x
]
∈ R

n×n : x ∈ Φn, and α ∈ Φm
}
=

{
C(y, z, β, η) ∈ R

n×n : (yi, zi), (βj, ηj) ∈ ∆2, i = 1, · · · , n, and j = 1, · · · , m
}
.

Given γ ∈ R, it follows from Theorem 16 that the inequality condition in (8.2) holds

for all α ∈ Φl if there exist e ≥ 0 such that

(
n∏

i=1

(yi + zi)
e ·

m∏

j=1

(βj + ηj)
e

)(
S(y, z, β, η)− γI

(
n∏

i=1

(yi + zi)
dpi ·

m∏

j=1

(βi + ηi)
d̂pi

))

(8.3)

and

(
n∏

i=1

(yi + zi)
e ·

m∏

j=1

(βj + ηj)
e

)
(
BT (y, z, β, η)S(y, z, β, η) + S(y, z, β, η)B(y, z, β, η)

+
1

2

(
BT (y, z, β, η)CT (y, z, β, η) + C(y, z, β, η)B(y, z, β, η)

)

−γI
(

n∏

i=1

(yi + zi)
dqi ·

m∏

j=1

(βi + ηi)
d̂qi

))
(8.4)

have all positive coefficients, where dpi and d̂pi are the degrees of xi and αi in P (x, α),

and dqi and d̂qi are the degrees of xi and αi in Q(x, α). Now, let S,B and C be of the

following forms.

S(y, z, β, η) =
∑

h,g∈Nn+m

h+g=ds

Sh,gy
h1
1 z

g1
1 · · · yhn

n zgnn β
hn+1

1 η
gn+1

1 · · ·βhn+m
m ηgn+m

m (8.5)

B(y, z, β, η) =
∑

h,g∈Nn+m

h+g=db

Bh,gy
h1
1 z

g1
1 · · · yhn

n zgnn β
hn+1

1 η
gn+1

1 · · ·βhn+m
m ηgn+m

m (8.6)

C(y, z, β, η) =
∑

h,g∈Nn+m

h+g=dc

Ch,gy
h1
1 z

g1
1 · · · yhn

n zgnn β
hn+1

1 η
gn+1

1 · · ·βhn+m
m ηgn+m

m (8.7)

Note that the coefficients Ch,g can be written as linear combinations of Sh,g. For

brevity we have denoted Ch,g(Sh,g) as Ch,g. By combining (8.5), (8.6) and (8.7)

189

with (8.3) and (8.4) it follows that for a given γ ∈ R, the inequality condition in (8.2)

holds for all α ∈ Φn if there exist some e ≥ 0 such that

∑

h,g∈Nn+m

h+g=ds

f{q,r},{h,g}Sh,g > 0 for all q, r ∈ N
n+m : q + r = ds + 2 e · 1n+m (8.8)

and

∑

h,g∈Nn+m

h+g=ds

MT
{u,v},{h,g}Sh,g + Sh,gM{u,v},{h,g} +NT

{u,v},{h,g}C
T
h,g + Ch,gN{u,v},{h,g} < 0 (8.9)

for all u, v ∈ Nn+m : u+ v = ds + db + 2 e · 1n+m, where we define f{q,r},{h,g} to be the

coefficient of

Sh,g y
q1
1 z

r1
1 · · · yqnn zrnn βqn+1

1 η
rn+1

1 · · ·βqn+m
m ηrn+m

m

after substituting (8.5) into (8.3). Likewise, we define M{u,v},{h,g} to be the coefficient

of

Sh,g y
u1
1 z

v1
1 · · · yun

n zvnn β
un+1

1 η
vn+1

1 · · ·βun+m
m ηvn+m

m

and N{u,v},{h,g} to be the coefficient of

Ch,g y
u1
1 z

v1
1 · · · yun

n zvnn β
un+1

1 η
vn+1

1 · · ·βun+m
m ηvn+m

m

after substituting (8.6) and (8.7) into (8.4). For any γ ∈ R, if there exist e ≥ 0 and

{Sh,g} such that Conditions (8.8) and (8.9) hold, then γ is a lower bound for γ∗ as

defined in (8.2). Furthermore, if γ is positive, then origin is an asymptotically stable

equilibrium for System (8.1). Fortunately, Conditions (8.8) and (8.9) form an SDP

with a block-diagonal structure - hence an algorithm similar to Algorithm 7 can be

developed to set-up the SDP in parallel. Furthermore, our parallel SDP solver in

Section 4.5 can be used to efficiently solve the SDP.

190

8.2.2 Parallel computation for parameter-varying H∞-optimal control synthesis

Algorithm 5 can be generalized to consider a more general class of feasibility prob-

lems, i.e.,

N∑

i=1

(
Ai(α)X(α)Bi(α) +BT

i (α)X(α)AT
i (α) +Ri(α)

)
< −γI for all α ∈ ∆l,

where Ai, Bi and Ri are polynomials. Formulations such as this can be used to solve

a wide variety of problem in systems analysis and control such as H∞-optimal control

synthesis for systems with parametric uncertainty. To see this, consider a plant G

with the state-space formulation

ẋ(t) = A(α)x(t) +
[
B1(α) B2(α)

] [ω(t)
u(t)

]
,

[
z(t)

y(t)

]
=

[
C1(α)

C2(α)

]
x(t) +

[
D11(α)D12(α)

D21(α) 0

][
ω(t)

u(t)

]
, (8.10)

where α ∈ Q ⊂ R
l, x(t) ∈ R

n, u(t) ∈ R
m is the control input, ω(t) ∈ R

p is the external

input and z(t) ∈ Rq is the external output. Suppose (A(α), B2(α)) is stabilizable and

(C2(α), A(α)) is detectable for all α ∈ Q. According to P. Gahinet (1994) there exists

a state feedback gain K(α) ∈ Rm×n such that

‖S(G,K(α))‖H∞
≤ γ, for all α ∈ Q,

if and only if there exist P (α) > 0 and R(α) ∈ Rm×n such that K(α) = R(α)P−1(α)

and



[
A(α)B2(α)

][P (α)
R(α)

]
+
[
P (α)RT (α)

][AT (α)

BT
2 (α)

]
⋆ ⋆

BT
1 (α) −γI ⋆

[
C1(α)D12(α)

] [P (α)
R(α)

]
D11(α)−γI




< 0, (8.11)

191

for all α ∈ Q, where γ > 0 and S(G,K(α)) is the map from the external input ω

to the external output z of the closed loop system with a static full state feedback

controller. The symbol ⋆ denotes the symmetric blocks in the matrix inequality. To

find a solution to the robust H∞-optimal static state-feedback controller problem with

optimal feedback gain K(α) = P (α)R−1(α), one can solve the following optimization

of polynomials problem.

γ∗ = min
P,R∈R[α],γ∈R

γ

subject to



−P (α) ⋆ ⋆ ⋆

0
[
A(α)B2(α)

][P (α)
R(α)

]
+
[
P (α)RT (α)

][AT (α)

BT
2 (α)

]
⋆ ⋆

0 BT
1 (α) 0 ⋆

0
[
C1(α)D12(α)

] [P (α)
R(α)

]
D11(α) 0




−γ




0 0 0 0

0 0 0 0

0 0 I 0

0 0 0 I


 < 0

for all α ∈ Q.

(8.12)

In Problem (8.12), if Q = ∆l as defined in (2.15), then we can apply Polya’s theorem

as described in Section 2.3.1 to find a γ ≤ γ∗ and P and R which satisfy the inequal-

ity in (8.12). Suppose P,A,B1, B2, C1, D11 and D12 are homogeneous polynomials

(otherwise use the procedure in Section 4.2 to homogenize them). Let

F (P (α), R(α)) :=




−P (α) ⋆ ⋆ ⋆

0
[
A(α)B2(α)

][P (α)
R(α)

]
+
[
P (α)RT (α)

][AT (α)

BT
2 (α)

]
⋆ ⋆

0 BT
1 (α) 0 ⋆

0
[
C1(α)D12(α)

] [P (α)
R(α)

]
D11(α) 0




,

192

and denote the degree of F by df . Given γ ∈ R, the inequality in (8.12) holds if there

exist e ≥ 0 such that all of the coefficients of the polynomial

(
l∑

i=1

αi

)e



F (P (α), R(α))− γ




0 0 0 0

0 0 0 0

0 0 I 0

0 0 0 I




(
l∑

i=1

αi

)df




(8.13)

are negative-definite. Let P and R be of the forms

P (α) =
∑

h∈Wdp

Phα
h1
1 · · ·αhl

l , Ph ∈ S
n (8.14)

and

R(α) =
∑

h∈Wdr

Rhα
h1
1 · · ·αhl

l , Rh ∈ R
n×n, (8.15)

where Wdp and Wdr are the exponent sets defined in (4.2). By combining (8.14)

and (8.15) with (8.13) it follows from Polya’s theorem that for a given γ, the inequality

in (8.12) holds, if there exist e ≥ 0 such that

∑

h∈Wdp

(
MT

h,qPh + PhMh,q

)
+
∑

h∈Wdr

(
NT

h,qR
T
h +RhNh,q

)
< 0 for all q ∈ Wdf+e, (8.16)

where we defineMh,q ∈ Rn×n as the coefficient of Phα
q1
1 · · ·αql

l after substituting (8.14)

and (8.15) into (8.13). Likewise, Nh,q ∈ Rn×n is the coefficient of Rhα
q1
1 · · ·αql

l after

substituting (8.14) and (8.15) into (8.13). For given γ > 0, if there exist e ≥ 0 such

that LMI (8.16) has a solution, say Ph, h ∈ Wdp and Rg, g ∈ Wdr , then

K(α) =


 ∑

h∈Wdp

Phα
h1
1 · · ·αhl

l




 ∑

g∈Wdr

Rgα
g1
1 · · ·αgl

l




−1

is a feedback law of anH∞-suboptimal static state-feedback controller for System (8.10).

By performing bisection search on γ and solving (8.16) for each γ of the bisection,

one may find an H∞-optimal controller for System (8.10).

193

8.2.3 Parallel computation of value functions for approximate dynamic

programming

Consider the discrete-time optimal control problem

J∗ := min
uk∈U

∞∑

k=0

βkg(xk, uk)

subject to xk+1 = f(xk, uk) for k = 1, 2, 3, · · ·

x0 = z, xk ∈ X for k = 1, 2, 3, · · · , (8.17)

where f : Rn × Rm → Rn and g : Rn × Rm → Rn are given polynomials, β ∈ (0, 1] is

a discount factor, U ⊂ Rm, X ⊂ Rn, and z ∈ Rn is a given initial condition for the

dynamical system. It is well-known that dynamic programming approach (Bertsekas

et al. (1995)) provides sufficient conditions for existence of a solution to the optimal

control problem in (8.17). The key idea underlying dynamic programming is that

optimization over-time can often be considered as optimization in stages. In such

framework, optimal control is any decision which minimizes the sum of: 1. cost of

transition from current stage k to the next stage k + 1; and 2. cost of all stages

subsequent to k + 1, incurred by the decision made at stage k. This is referred to as

the principle of optimality and was first formulated by Bellman (Bellman and Kalaba

(1965)) as

J∗ = V ∗(z) = (PV ∗)(z) := inf
v∈U

{g(z, v) + β V ∗(f(z, v))} for all z ∈ X. (8.18)

The unique solution to Bellman’s equation is called the value function - can be thought

of as the minimum cost-to-go from the current state. Existence of the value functions

is a sufficient condition for existence of an optimal control. In fact, an optimal policy

µ∗ : X → U can be expressed in terms of the value function V ∗:

µ∗(z) = argmin
u∈U

{g(z, u) + β V ∗(f(z, u))}

194

for any x0 ∈ X . Thus, Bellman’s equation solves the optimal control problem by

providing a closed-loop feedback law for every initial condition.

It is shown that the Bellman’s operator P defined in (8.18) possesses the following

two properties:

1. Iteratively applying of Bellman’s operator P on any function h : X → R results

in a pointwise convergence to a value function, i.e.,

V ∗(x) = lim
k→∞

(Pkh)(x) for all x ∈ X. (8.19)

2. Bellman’s operator is monotonic: If V satisfies the Bellman’s inequality V (x) ≤

(PV)(x) for all x ∈ X , then V (x) ≤ (PkV)(x) for all x ∈ X and for any k ≥ 1.

From these two properties one can conclude that

V ≤ PkV for some k ≥ 1 ⇒ V ≤ V ∗.

Unfortunately, for k > 1, the constraint V ≤ PkV is non-convex in the coefficients

of polynomial V . A sufficient condition for V ≤ PkV is to search for polynomials V

and Wi, i = 1, · · · , k such that

V ≤ PW1, W1 ≤ PW2, · · · ,Wk−1 ≤ PV.

Note that all of these constraints are convex in the coefficients of V and Wi. Let V

and Wi be polynomials of forms

V (x) =
∑

α∈I(dV)

Vαx
α and Wi(x) =

∑

α∈I(dWi
)

Wi,αx
α,

where I(d) := {α ∈ N
n : ‖α‖1 ≤ d}. Then, any polynomial V which solves the convex

195

optimization problem

Jk := max
Vα,Wi,α

∑

α∈I(dV)

Vαz
α

subject to
∑

α∈I(dV)

Vαx
α ≤ P

∑

α∈I(dW1
)

W1,αx
α for all x ∈ X

∑

α∈I(dWi
)

Wi,αx
α ≤ P

∑

α∈I(dWi+1
)

Wi+1,αx
α for all x ∈ X and i = 1, · · · , k − 2

∑

α∈I(dWk−1
)

Wk−1,αx
α ≤ P

∑

α∈I(dV)

Vαx
α for all x ∈ X (8.20)

for any initial condition z ∈ X and some k ≥ 1, is an under-estimator for the value

function V ∗. Moreover, from monotonicity of P it follows that

J1 ≤ J2 ≤ · · · ≤ Jk ≤ · · · ≤ V ∗(z).

In other words, by increasing k, the lower bound Jk defined in (8.20) can only improve

or remain constant. By substituting for P in (8.20) from (8.18), removing the infimum

and enforcing the constraints of Problem 8.20 for all control inputs u ∈ U , we get the

following optimization of polynomials problem.

max
Vα,Wi,α

∑

α∈I(dV)

Vαz
α

subject to
∑

α∈I(dV)

Vαx
α ≤ g(x, u) + β

∑

α∈I(dW1
)

(W1,αf(x, u)
α) for x ∈ X, u ∈ U

∑

α∈I(dWi
)

Wi,αx
α ≤ g(x, u) + β

∑

α∈I(dWi+1
)

(Wi+1,αf(x, u)
α) for x ∈ X, u ∈ U, i = 1, · · · , k − 2

∑

α∈I(dWk−1
)

Wk−1,αx
α ≤ g(x, u) + β

∑

α∈I(dV)

(Vαf(x, u)
α) for x ∈ X, u ∈ U,

(8.21)

where for brevity, we have denoted f1(x, u)
α1 · · · fn(x, u)αn by f(x, u)α.

Problem (8.21) has some interesting computational properties. Since all of the

constraints in this problem have the same structure, if we choose the same degree for

196

V and Wi, it is then sufficient to set-up only one of the constraints in order to set-up

the entire Problem (8.21). If X and U are simplicies, Algorithm 5 can be used to

perform Polya’s iterations on the constraints of Problem (8.21). The result is a linear

program whose solution yields an under-estimator for the value function V ∗ defined

in (8.18). Likewise, if X and U are hypercubes (or polytopes), then Algorithm 7 (or

Algorithm 2) can be used to perform Polya’s iterations (or Handelman’s iterations)

on the constraints of Problem (8.21). Another interesting property of Problem (8.21)

is that increasing the accuracy of the under-estimations (by increasing k) amounts to

a linear growth in the number of decision variables and number of constraints.

197

REFERENCES

“Appendix schedule B - summary of marginal costs”, available at: http://www.
srpnet.com/prices/priceprocess/pdfx/Unbundled.pdf (2014).

“Standard electric price plans”, Salt River Project Agricultural Improvement and
Power District Corporate Pricing (November 2015).

Ackermann, J., A. Bartlett, D. Kaesbauer, W. Sienel and R. Steinhauser, Robust
Control: Systems with Uncertain Physical Parameters (Springer-Verlag New York,
Inc., Secaucus, NJ, USA, 2001).

Adams, W. and P. Loustaunau, An Introduction to Groebner Bases (American Math-
ematical Society, 1994).

Alizadeh, F., J. Haeberly and M. Overton, “Primal-dual interior-point methods for
semidefinite programming: Convergence rates, stability and numerical results”,
SIAM Journal of Optimization 8, 3, 746–768 (1998).

Amdahl, G. M., “Validity of the single processor approach to achieving large-scale
computing capabilities”, No. 30, pp. 483–485 (AFIPS Conference Proceedings,
1967).

Arguello-Serrano, B. and M. Velez-Reyes, “Nonlinear control of a heating, ventilating,
and air conditioning system with thermal load estimation”, IEEE Transactions on
Control Systems Technology 7, 1, 56–63 (1999).

Arizona Public Service, “2014 integrated resource plan: Executive summary”, (2014).

Artin, E., “Uber die zerlegung definiter funktionen in quadra”, Quadrate, Abh. Math.
Sem. Univ. Hamburg 5, 85–99 (1927).

Barmish, B. R. and C. L. DeMarco, “A new method for improvement of robust-
ness bounds for linear state equations”, (in Proceedings Conf. Inform. Sci. Syst.
Princeton University, 1986).

Bellman, R. and R. E. Kalaba, Dynamic programming and modern control theory
(Academic Press New York, 1965).

Bellman, R. E. and S. E. Dreyfus, Applied Dynamic Programming (Princeton Uni-
versity Press, 1962).

Ben-Tal, A. and A. Nemirovski, “Robust convex optimization”, Math. Operat. Res.
23, 4, 769–805 (1998).

Benson, S., Y. Ye and X. Zhang, “Solving large-scale sparse semidefinite programs
for combinatorial optimization”, SIAM Journal on Optimization 10, 2, 443–461
(2000).

198

Benson, S. J., “DSDP3: Dual scaling algorithm for general positive semidefinite pro-
grams”, Preprint ANL/MCS-P851-1000, Argonne National Labs (2001).

Benson, S. J., Y. Ye and X. Zhang, “Solving large-scale sparse semidefinite pro-
grams for combinatorial optimization”, SIAM Journal on Optimization 10, 443–461
(1998).

Bernstein, S., “Sur la repr sentation des polynomes positif”, Soobshch. Har’k. Mat.
Obshch. 2, 14, 227–228 (1915).

Bertsekas, D. P., D. P. Bertsekas, D. P. Bertsekas and D. P. Bertsekas, Dynamic
programming and optimal control, vol. 1 (Athena Scientific Belmont, MA, 1995).

Bhattacharyya, S. P., H. Chapellat and L. H. Keel, Robust Control: The Parametric
Approach (Prentice Hall, 1995).

Bliman, P.-A., “A convex approach to robust stability for linear systems with un-
certain scalar parameters”, SIAM Journal on Control and Optimization 42, 6,
2016–2042 (2004a).

Bliman, P. A., “An existence result for polynomial solutions of parameter dependent
LMIs”, Systems & Control Letters , 3-4, 165–169 (2004b).

Bliman, P.-A., R. Oliveira, V. Montagner and P. Peres, “Existence of homogeneous
polynomial solutions for parameter-dependent linear matrix inequalities with pa-
rameters in the simplex”, in “IEEE Conference on Decision and Control”, pp.
1486–1491 (2006).

Blondel, V. and J. Tsitsiklis, “A survey of computational complexity results in systems
and control”, Automatica 36, 9, 1249–1274 (2000).

Blondel, V. D. and J. N. Tsitsiklis, “Complexity of stability and controllability of
elementary hybrid systems”, Automatica 35, 3, 479–489 (1999).

Borchers, B. and J. G. Young, “Implementation of a primal dual method for SDP on
a shared memory parallel architecture”, Computational Optimization and Appli-
cations 37, 3, 355–369 (2007).

Boudaoud, F., F. Caruso and M. Roy, “Certificates of positivity in the bernstein
basis”, Discrete and Computational Geometry 39, 4, 639–655 (2008).

Boukas, E. K., “Static output feedback control for stochastic hybrid systems: LMI
approach”, Automatica 42, 1, 183–188 (2006).

Boyd, S. and L. Vandenberghe, Convex optimization (Cambridge university press,
2004).

Braun, J. E., “Reducing energy costs and peak electrical demand through optimal
control of building thermal storage”, ASHRAE transactions 96, 2, 876–888 (1990).

199

Braun, J. E., “Load control using building thermal mass”, Journal of solar energy
engineering 125, 3, 292–301 (2003).

Braun, J. E., T. Lawrence, C. Klaassen and J. House, “Demonstration of load shift-
ing and peak load reduction with control of building thermal mass”, Teaming for
Efficiency: Commercial buildings: technologies, design, performance analysis, and
building industry trends 3, 55 (2002).

Braun, J. E. and K. H. Lee, “Assessment of demand limiting using building thermal
mass in small commercial buildings”, Transactions on American Society of Heating,
Refrigerating and Air-Conditioning Engineers 112, 1, 547–558 (2006).

Braun, J. E., K. W. Montgomery and N. Chaturvedi, “Evaluating the performance
of building thermal mass control strategies”, HVAC&R Research 7, 4, 403–428
(2001).

Briat, C., “Robust stability and stabilization of uncertain linear positive systems via
integral linear constraints: L1-gain and L2-gain characterization”, International
Journal of Robust and Nonlinear Control 23, 17, 1932–1954 (2013).

Brown, C., “QEPCAD B: a program for computing with semi-algebraic sets using
CADs”, ACM SIGSAM Bulletin 37, 4, 97–108 (2003).

Castle, M., V. Powers and B. Reznick, “Polya’s theorem with zeros”, Journal of
Symbolic Computation 46, 9, 1039–1048 (2011).

Chang, Y. and B. Wah, “Polynomial programming using Groebner bases”, IEEE
Computer Software and Applications Conference pp. 236–241 (1994).

Chen, T. Y., “Real-time predictive supervisory operation of building thermal systems
with thermal mass”, Journal of Energy and Buildings 33, 2, 141–150 (2001).

Chesi, G., “Establishing stability and instability of matrix hypercubes”, System and
Control Letters 54, 381–388 (2005).

Chesi, G., A. Garulli, A. Tesi and A. Vicino, “Polynomially parameter-dependent
lyapunov functions for robust stability of polytopic systems: an lmi approach”,
IEEE Transactions on Automatic Control 50, 3, 365–370 (2005).

Collins, G. and H. Hoon, “Partial cylindrical algebraic decomposition for quantifier
elimination”, Journal of Symbolic Computation 12, 3, 299–328 (1991).

de Loera, J. and F. Santos, “An effective version of polya’s theorem on positive
definite forms”, Journal of Pure and Applied Algebra 108, 3, 231–240 (1996).

Deitz, S., High-level programming language abstractions for advanced and dynamic
parallel computations, Ph.D. thesis, Computer Science and Engineering Depart-
ment, University of Washington (2005).

Delzell, C., “Impossibility of extending polya’s theorem to forms with arbitrary real
exponents”, Journal of Pure and Applied Algebra 212, 12, 2612–2622 (2008).

200

Dennis Jr, J. E. and R. B. Schnabel, Numerical methods for unconstrained optimiza-
tion and nonlinear equations, vol. 16 (SIAM, 1996).

Dickinson, P. and J. Pohv, “On an extension of polya’s positivstellensatz”, Journal
of Global Optimization pp. 1–11 (2014).

Dolzmann, A. and T. Sturm, “Redlog: Computer algebra meets computer logic”,
ACM SIGSAM Bulletin 31, 2, 2–9 (1997).

Dullerud, G. and F. Paganini, A Course in Robust Control Theory, A Convex Ap-
proach (Springer-Verlag New York, 2000).

EPRI-DOE, “Handbook of energy storage for transmission and distribution appli-
cations”, 1001834, EPRI, Palo Alto, CA, and the U.S. Department of Energy,
Washington, DC (2003).

F. Alizadeh, M. L. O., J. P. A. Haeberly, “Primal-dual interior-point methods for
semidefinite programming”, Math Programming Symposium (Ann Arbor 1994).

Farin, G. E., Curves and surfaces for CAGD: a practical guide (Morgan Kaufmann,
2002).

G. Blekherman, P. P. and R. Thomas, Semidefinite optimization and convex algebraic
geometry (MOS-SIAM Series on Optimization, Philadelphia, 2013).

G. Chesi, A. T., A. Garulli and A. Vicino, “Lmi-based computation of optimal
quadratic lyapunov functions for odd polynomial systems”, International Journal
of Robust and Nonlinear Control 15, 1, 35–49 (2005).

G. Hardy, J. L. and G. Polya, Inequalities (Cambridge University Press, 1934).

Gahinet, P., P. Apkarian and M. Chilali, “Affine parameter-dependent lyapunov func-
tions and real parametric uncertainty”, IEEE Transactions on Automatic Control
41, 3, 436–442 (1996).

Gatermann, K. and P. Parrilo, “Symmetry groups, semidefinite programs, and sums
of squares”, Journal of Pure and Applied Algebra 192, 1, 95–128 (2004).

Geromel, J. and M. de Oliveira, “H2 and H∞; robust filtering for convex bounded un-
certain systems”, IEEE Transactions on Automatic Control 46, 1, 100–107 (2001).

Green, M. and D. J. N. Limebeer, Linear robust control (Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1995).

Greenlaw, R., H. Hoover and W. Ruzzo, Limits to parallel computation: P-
completeness theory (Oxford University Press, USA, 1995).

Gripenberg, G., “Computing the joint spectral radius”, Linear Algebra and its Ap-
plications 234, 43–60 (1996).

Gugercin, S. and A. Antoulas, “A survey of model reduction by balanced truncation
and some new results”, International Journal of Control 77, 8, 748–766 (2004).

201

Habicht, W., “Uber die zerlegung strikte definiter formen in quadrate”, Commentarii
Mathematici Helvetici 12, 1, 317–322 (1939).

Handelman, D., “Representing polynomials by positive linear functions on compact
convex polyhedra”, Pacific Journal of Mathematics 132, 1, 35–62 (1988a).

Handelman, D., “Representing polynomials by positive linear functions on compact
convex polyhedra”, Pac. J. Math 132, 1, 35–62 (1988b).

Hardy, G., J. E. Littlewood and G. Pólya, Inequalities (Cambridge University Press,
1934).

Helmberg, C. and F. Rendl, “A spectral bundle method for semidefinite program-
ming”, SIAM Journal on Optimization 10, 3, 673–696 (2000).

Helmberg, C., F. Rendl, R. J. Vanderbei and H. Wolkowicz, “An interior-point
method for semidefinite programming”, SIAM Journal of Optimization 6, 2, 342–
361 (1996).

Helmberg, C., F. Rendl, R. J. Vanderbei and H. Wolkowicz, “An interior-point
method for semidefinite programming”, Princeton University. Princeton, NJ, USA
(2005).

Henze, G., C. Felsmann and G. Knabe, “Evaluation of optimal control for active and
passive building thermal storage”, International Journal of Thermal Sciences 43,
2, 173–183 (2004).

Hilbert, D., “Uber die darstellung definiter formen als summe von formen
quadratens”, Math. Ann. 32, 342–350 (1888).

Hilbert, D., “Uber ternare definite formen”, Acta Math. 17, 169–197 (1893).

Jeyakumar, V., J.-B. Lasserre and G. Li, “On polynomial optimization over non-
compact semi-algebraic sets”, Journal of Optimization Theory and Applications
163, 3, 707–718 (2014).

Kalé, L., B. Ramkumar, A. Sinha and A. Gursoy, “The CHARM parallel program-
ming language and system: Part I–description of language features”, Parallel Pro-
gramming Laboratory Technical Report No. 95-02 (1994).

Kamyar, R. and M. Peet, “Decentralized computation for robust stability analysis
of large state-space systems using polya’s theorem”, American Control Conference
(2012a).

Kamyar, R. and M. Peet, “Decentralized computation for robust stability of large-
scale systems with parameters on the hypercube”, IEEE 51st Conference on Deci-
sion and Control pp. 6259–6264 (2012b).

Kamyar, R. and M. Peet, “Decentralized polya’s algorithm for stability analysis of
large-scale nonlinear systems”, IEEE Conference on Decision and Control pp. 5858–
5863 (2013).

202

Kamyar, R., M. Peet and Y. Peet, “Solving large-scale robust stability problems
by exploiting the parallel structure of polya’s theorem”, IEEE Transactions on
Automatic Control 58, 8, 1931–1947 (2013).

Keeney, K. and J. E. Braun, “Application of building precooling to reduce peak
cooling requirements”, ASHRAE transactions 103, 1, 463–469 (1997).

Kim, S., M. Kojima and H. Waki, “Generalized lagrangian duals and sums of squares
relaxations of sparse polynomial optimization problems”, SIAM Journal on Opti-
mization 15, 3, 697–719 (2005).

Kintner-Meyer, M. and A. F. Emery, “Optimal control of an HVAC system using
cold storage and building thermal capacitance”, Energy and Buildings 23, 1, 19–31
(1995).

Kuhn, H. W., A. W. Tucker and J. Neyman, “Nonlinear programming”, Proceedings
of the Second Berkeley Symposium on Mathematical Statistics and Probability pp.
481–492 (1951).

L. Blum, M. S., F. Cucker and S. Smale, Complexity and real computation (Springer-
Verlag, New York, 1998).

Lasserre, J. B., “Global optimization with polynomials and the problem of moments”,
SIAM Journal on Optimization 11, 3, 796–817 (2001).

Laurent, M., “Sums of squares, moment matrices and optimization over polynomials”,
Springer: The IMA Volumes in Mathematics and its Applications 149, 157–270
(2009).

Lavaei, J. and A. G. Aghdam, “Robust stability of LTI systems over semialgebraic
sets using sum-of-squares matrix polynomials”, IEEE Transactions on Automatic
Control 53, 1, 417–423 (2008).

Leroy, R., “Convergence under subdivision and complexity of polynomial minimiza-
tion in the simplicial bernstein basis”, Reliable Computing 17, 11–21 (2012).

Li, H. and M. Fu, “A linear matrix inequality approach to robust H∞ filtering”, IEEE
Transactions on Signal Processing, 45, 9, 2338–2350 (1997).

Li, N., L. Chen and S. Low, “Optimal demand response based on utility maximiza-
tion in power networks”, Proceedings of IEEE Power and Energy Society General
Meeting pp. 1–8 (2011).

Lombardi, H., “Effective real nullstellensatz and variants”, in “Effective Methods in
Algebraic Geometry”, pp. 263–288 (Springer, 1991).

Lu, L., W. Cai, Y. S. Chai and L. Xie, “Global optimization for overall HVAC systems
- Part II problem solution and simulations”, Energy Conversion and Management
46, 7, 1015–1028 (2005).

203

Ma, W.-J., V. Gupta and U. Topcu, “On distributed charging control of electric ve-
hicle with power network capacity constraints”, in “American Control Conference,
Portland”, (2014).

Monteiro, R., “Primal-dual path-following algorithms for semidefinite programming”,
SIAM Journal of Optimization 7, 3, 663–678 (1997).

Motzkin, T., “The arithmetic-geometric inequality”, Symposium on Inequalities, Aca-
demic Press pp. 205–224 (1967).

Nayakkankuppam, M., “Solving large-scale semidefinite programs in parallel”, Math-
ematical programming 109, 2, 477–504 (2007).

Nemirovskii, A., “Several NP-hard problems arising in robust stability analysis”,
Mathematics of Control, Signals and Systems 6, 2, 99–105 (1993).

Oldewurtel, F. and M. Morari, “Reducing peak electricity demand in building cli-
mate control using real-time pricing and model predictive control”, IEEE Conf. on
Decision and Control pp. 1927–1932 (2010).

Oliveira, R., P. Bliman and P. Peres, “Robust LMIs with parameters in multi-simplex:
Existence of solutions and applications”, IEEE 47th Conference on Decision and
Control pp. 2226–2231 (2008).

Oliveira, R. C. and P. L. Peres, “Parameter-dependent LMIs in robust analysis: char-
acterization of homogeneous polynomially parameter-dependent solutions via LMI
relaxations”, IEEE Transactions on Automatic Control 52, 7, 1334–1340 (2007).

Oliveira, R. C. L. F. and P. L. D. Peres, “A less conservative LMI condition for
the robust stability of discrete-time uncertain systems”, Syst. Control Lett. 43, 4,
371–378 (2001).

Oliveira, R. C. L. F. and P. L. D. Peres, “Stability of polytopes of matrices via affine
parameter-dependent Lyapunov functions: Asymptotically exact LMI conditions”,
Linear Algebra Appl. 405, 3, 209–228 (2005).

Olsson, D. M. and L. S. Nelson, “The Nelder-Mead simplex procedure for function
minimization”, Technometrics 17, 45–51 (1975).

P. Gahinet, P. A., “A linear matrix inequality approach to h infinity control”, Inter-
national Journal of Robust and Nonlinear Control 4, 4, 421–448 (1994).

Packard, A. and J. Doyle, “Quadratic stability with real and complex perturbations”,
IEEE Transactions on Automatic Control 35, 2, 198–201 (1990).

Papachristodoulou, A., J. Anderson, G. Valmorbida, S. Prajna, P. Seiler and
P. A. Parrilo, “SOSTOOLS: Sum of squares optimization toolbox for MATLAB”,
preprint, arXiv:1310.4716 (2013).

Papachristodoulou, A., M. M. Peet and S. Lall, “Analysis of polynomial systems
with time delays via the sum of squares decomposition”, IEEE Transactions on
Automatic Control 54, 5, 1058–1064 (2009).

204

Papchristodoulou, A. and S. Prajna, “Robust stability analysis of nonlinear hybrid
systems”, IEEE Transactions on Automatic Control 54, 5, 1034–1041 (2009).

Parrilo, P., “Structured semidefinite programs and semialgebraic geometry methods
in robustness and optimization”, Ph.D thesis, California Institute of Technology
(2000).

Parrilo, P., “Exploiting algebraic structure in sum of squares programs”, Positive
polynomials in control pp. 580–580 (2005).

Parrilo, P. A., “Polynomial games and sum of squares optimization”, in “Decision
and Control, 2006 45th IEEE Conference on”, pp. 2855–2860 (IEEE, 2006).

Patterson, M. A. and A. V. Rao, “GPOPS- II: A MATLAB software for solving
multiple-phase optimal control problems”, ACM Transactions on Mathematical
Software 39, 3, 1–41 (2013).

Peaucelle, D. and D. Arzelier, “Robust performance analysis with lmi-based meth-
ods for real parametric uncertainty via parameter-dependent lyapunov functions”,
IEEE Transactions on Automatic Control 46, 4, 624–630 (2001).

Peet, M., “Exponentially stable nonlinear systems have polynomial lyapunov func-
tions on bounded regions”, Automatic Control, IEEE Transactions on 54, 5, 979–
987 (2009).

Peet, M. M. and Y. V. Peet, “A parallel-computing solution for optimization of
polynomials”, (Proceedings of the American Control Conference, 2010).

Permenter, F. and P. A. Parrilo, “Selecting a monomial basis for sums of squares
programming over a quotient ring.”, in “CDC”, pp. 1871–1876 (2012).

Powers, V. and B. Reznick, “Polynomials that are positive on an interval”, Transac-
tions of the American Mathematical Society 352, 10, 4677–4692 (2000).

Powers, V. and B. Reznick, “A new bound for polya’s theorem with applications to
polynomials positive on polyhedra”, Journal of Pure and Applied Algebra 164,
221–229 (2001).

Powers, V. and B. Reznick, “A quantitative polya’s theorem with corner zeros”, ACM
International Symposium on Symbolic and Algebraic Computation (2006).

Prajna, S. and A. Papachristodoulou, “Analysis of switched and hybrid systems-
beyond piecewise quadratic methods”, in “Proceedings of the 2003 American Con-
trol Conference”, vol. 4, pp. 2779–2784 (2003).

Prestel, A. and C. Delzell, Positive polynomials: from Hilberts 17th problem to real
algebra (Springer New York, 2004).

Putinar, M., “Positive polynomials on compact semi-algebraic sets”, Indiana Univer-
sity Mathematics Journal 42, 969–984 (1993).

205

Ramos, D. and P. Peres, “An LMI approach to compute robust stability domains
for uncertain linear systems”, (Proceedings of the American Control Conference,
2001).

Ramshaw, L., A connect-the-dots approach to splines (Digital Systems Research Cen-
ter, 1987).

Repin, I. M., “Quadratic liapunov functionals for systems with delay”, Journal of
Applied Mathematics and Mechanics 29, 3, 669–672 (1965).

Reznick, B., “Some concrete aspects of hilbert’s 17th problem”, Contemporary Math-
ematics 253, 251–272 (2000).

Reznick, B., “On the absence of uniform denominators in hilberts 17th problem”,
Proceedings of the American Mathematical Society 133, 10, 2829–2834 (2005).

Rumolo, D., “APS rate schedule ECT-2 residential service”, available at: http:
//votesolar.org/wp-content/uploads/2013/07/ECT-2.pdf (2013).

S. Sankaranarayanan, X. C. and E. Abrahm, “Lyapunov function synthesis using han-
delman representations”, The 9th IFAC Symposium on Nonlinear Control Systems
(2013).

Sankaranarayanan, S., X. Chen and E. Abrahám, “Lyapunov function synthesis using
handelman representations”, in “The 9th IFAC Symposium on Nonlinear Control
Systems”, pp. 576–581 (2013).

Sassi, M. A. B., R. Testylier, T. Dang and A. Girard, “Reachability analysis of poly-
nomial systems using linear programming relaxations”, pp. 137–151 (2012).

Sassi, M. B. and A. Girard, “Computation of polytopic invariants for polynomial dy-
namical systems using linear programming”, Automatica 48, 12, 3114–3121 (2012).

Scheiderer, C., “Sums of squares on real algebraic surfaces”, Springer: manuscripta
mathematica 119, 4, 395–410 (2006).

Scheiderer, C., “Positivity and sums of squares: a guide to recent results”, Emerging
applications of algebraic geometry, Springer New York pp. 271–324 (2009).

Scherer, C. W., “LMI relaxations in robust control”, European Journal of Control
12, 1, 3–29 (2006).

Scherer, C. W. and C. W. J. Hol, “Matrix sum-of squares relaxations for robust
semi-definite programs”, Math. programming Ser. B 107, 1-2, 189–211 (2006).

Schmudgen, M., “The k-moment problem for compact semi-algebraic sets”, Mathe-
matische Annalen 289, 203–206 (1991).

Schweighofer, M., “Certificates for nonnegativity of polynomials with zeros on com-
pact semialgebraic sets”, manuscripta mathematica 117, 4, 407–428 (2005).

206

Shear, T., “Today in energy: Peak-to-average electricity demand ratio rising in New
England and many other U.S. regions”, US Energy Information Administration
(EIA), Independent statistics and Analysis (2014).

Sherali, H. and W. Adams, “A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems”, SIAM Journal on
Discrete Mathematics 3, 3, 411–430 (1990).

Sherali, H. and L. Liberti, Reformulation-linearization technique for global optimiza-
tion (Encyclopedia of Optimization, Springer, USA, 2009).

Sherali, H. and C. Tuncbilek, “A global optimization algorithm for polynomial
programming problems using a reformulation-linearization technique”, Journal of
Global Optimization 2, 101–112 (1992).

Sherali, H. and C. Tuncbilek, “New reformulation- linearization technique based re-
laxations for univariate and multivariate polynomial programming problems”, Op-
erations Research Letters 21, 1, 1–10 (1997).

Sivaramakrishnan, K. K., “A parallel interior point decomposition algorithm for block
angular semidefinite programs”, Comput. Optim. Appl. 46, 1, 1–29 (2010).

Slater, M., “Lagrange multipliers revisited”, Springer: Traces and Emergence of Non-
linear Programming pp. 293–306 (2014).

Stengle, G., “A Nullstellensatz and a Positivstellensatz in semialgebraic geometry”,
Mathematische Annalen 207, 2, 87–97 (1974).

Sturm, J., “Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric
cones”, Optimization methods and software 11, 1-4, 625–653 (1999).

Sun, Y., S. Wang, F. Xiao and D. Gao, “Peak load shifting control using different
cold thermal energy storage facilities in commercial buildings: a review”, Energy
Conversion and Management 71, 101–114 (2013).

Tan, W. and A. Packard, “Stability region analysis using polynomial and composite
polynomial lyapunov functions and sum-of-squares programming”, IEEE Transac-
tions on Automatic Control 53, 2, 565–571 (2008).

Tarski, A., A Decision Method for Elementary Algebra and Geometry (Random Cor-
poration monograph, Berekley and Los Angeles, 1951).

Topcu, U., A. K. Packard, P. Seiler and G. J. Balas, “Robust region-of-attraction
estimation”, IEEE Transactions on Automatic Control 55, 1, 137–142 (2010).

Tutuncu, R., K. Toh and M. Todd, “Solving semidefinite-quadratic-linear programs
using SDPT3, mathematical programming”, Mathematical Programming Series B
95, 189–217 (2003).

Waki, H., S. Kim, M. Kojima, M. Muramatsu and H. Sugimoto, “Algorithm 883:
SparsePOP—a sparse semidefinite programming relaxation of polynomial optimiza-
tion problems”, ACM Trans. Math. Softw. 35, 2 (2008).

207

Walker, D. and J. Dongarra, “MPI: a standard message passing interface”, Super-
computer 12, 56–68 (1996).

Wang, T.-C., S. Lall and M. West, “Polynomial level-set methods for nonlinear dy-
namical systems analysis”, in “Allerton conference on communication, control and
computing”, pp. 640–649 (2005).

Wang, T.-C., S. Lall and M. West, “Polynomial level-set method for polynomial
system reachable set estimation”, Automatic Control, IEEE Transactions on 58,
10, 2508–2521 (2013).

Witrant, E., E. Joffrin, S. Brémont, G. Giruzzi, D. Mazon, O. Barana and P. Moreau,
“A control-oriented model of the current profile in tokamak plasma”, Plasma
Physics and Controlled Fusion 49, 1075–1105 (2007).

Yamashita, M., K. Fujisawa and M. Kojima, “SDPARA: Semidefinite programming
algorithm parallel version”, Parallel Computing 29, 1053–1067 (2003).

Yamashita, M., K. Fujisawa and K. Nakata, “A high-performance software package
for semidefinite programs: SDPA 7”, Technical report B-460, Dep. of Mathematical
and Computing Sciences, Tokyo Institute of Technology (2010).

Zhang, X. and P. Tsiotras, “Parameter-dependent lyapunov functions for stability
analysis of LTI parameter dependent systems”, pp. 5168–5173 (in Proceedings of
the IEEE 42nd Conference on Decision and Control, 2003).

Zhang, X., P. Tsiotras and P. A. Bliman, “Multi-parameter dependent lyapunov
functions for the stability analysis of parameter-dependent LTI systems”, pp. 1263–
1268 (in Proceedings of IEEE International Symposium on, Mediterrean Conference
on Control and Automation, 2005).

Zhou, K. and J. Doyle, Essentials of Robust Control (Prentice Hall, 1998).

Zhou, K., J. C. Doyle, K. Glover et al., Robust and optimal control, vol. 40 (Prentice
hall New Jersey, 1996).

208

