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ABSTRACT

In this dissertation, we develop new data-driven techniques to solve three problems

related to generating predictive models of the immune system. These problems and

their solutions are summarized as follows.

The first problem is that, while cellular characteristics can be measured using flow

cytometry, immune system cells are often analyzed only after they are sorted into

groups by those characteristics. Instead of grouping cells we propose analyzing the

cellular characteristics by generating Probability Density Functions (PDFs) to model

the flow cytometry data. To generate a PDF to model the distribution of immune cell

characteristics we develop a new class of random variable called Sliced-Distributions

(SDs) in Chapter 3 and show that SDs outperform other state-of-the-art methods and

can differentiate between immune cells from healthy mice and those with Rheumatoid

Arthritis.

The second problem is that while immune system cells can be broken into dif-

ferent subpopulations, it is unclear which subpopulations are most significant. We,

therefore, formulate a new machine learning algorithm in Chapter 4 to identify sub-

populations that can best predict disease severity or the populations of other immune

cells. The proposed machine learning algorithm performs well when compared to

other state-of-the-art methods and is applied to an immunological dataset to identify

disease-relevant subpopulations of immune cells denoted immune states.

Finally, while immunotherapies have been effectively used to treat cancer, select-

ing an optimal drug dose and period of treatment administration is still an open

problem. In Chapter 5 we propose a method to estimate Lyapunov functions of a

system with unknown dynamics. We apply this method to generate a semialgebraic

set containing immunotherapy doses and period of treatment that leads to tumor

elimination. The problem of selecting an optimal pulsed immunotherapy treatment
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from this semialgebraic set is formulated as a Global Polynomial Optimization (GPO)

problem. In Chapter 6 a new method to solve GPO problems is proposed and optimal

pulsed immunotherapy treatments are identified for this system.
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Chapter 1

INTRODUCTION

The human immune system consists of over 25 billion individual white blood cells

alone [117, 150] that, in coordination, act to protect the body against threats such as

viruses and cancer. The adaptive immune system has been optimized over 500 million

years [56] of evolutionary pressure from pathogens to eliminate and recall threats, all

without any centralized control. Despite recorded interest in the immune system as

early as the 5th century BC [45, 146], we still do not completely understand the

complex relationships between the millions of cells that control such a vital system to

human life. Without understanding how the immune system functions, one can not

fully understand why it fails nor how it can be fixed. We are thus motivated by one

crucial question: How do we generate better models of the immune system?

Immune system cells interact through surface receptors with other immune sys-

tem cells and molecular signals to collectively respond to threats such as viruses or

cancer cells. Unfortunately, determining all the characteristics (such as cell surface

receptors or intracellular proteins) of the immune cells in the body is, as of yet, im-

possible. Fortunately, using techniques such as flow cytometry [94, 142], a sample of

an individuals immune system cells can be analyzed, and a limited number of cellular

characteristics (e.g. size, surface molecules, etc.) of the immune system cells can be

determined. An important question then, is what immune cell characteristics need

to be measured with flow cytometry to predict whether the immune systems will, for

example, eliminate a virus or cancer cells.

This dissertation therefore answers the question of how to generate better pre-

dictive models of the immune system by first developing techniques to determine
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what immune cell characteristics (using techniques such as flow cytometry) need to

be measured so that we can accurately predict labels such as whether an individual

is healthy or has a given disease. Next we focus on generating better data-driven

models that use these cell characteristics to predict more complicated labels such as

disease severity. Finally we generate a model to predict whether a given dosage and

treatment period of an immunotherapy will eliminate tumor cells in a patient.

Potential Impact of Improved Predictive Models of the Immune System

1 Immune Health Metrics: The normal range of the populations of simple

immune cells categories, such as the population of all white blood cells have

been rigorously studied (see for instance [117]). However, being inside a normal

range does not indicate that a persons immune system is operating normally,

especially since even among healthy individuals there is a large diversity in the

populations of immune system cells [18]. Thus better metrics to analyze diverse

populations of immune system cells are necessary to determine immune health

with greater precision.

2 Disease Metrics: Determining the immune system cells that best explain the

severity of a disease is important for determining optimal treatment strategies

since treatments could, for instance, be designed to target the immune system

cells causing the disease. In addition, tracking a disease metric throughout

treatment can be used to determine if the current treatment is modifying the

immune system as expected or if a new approach may be necessary.

3 Personalized Immunotherapy Treatments: Successful immunotherapy treat-

ments depends on the immune cells and, for cancer specifically, the local tumor

microenviroment [79]. Therefore, for optimal performance, the immunotherapy

drugs, dosage, and dosing schedule should be selected based on the populations
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and characteristics of the patients own immune cells.

To motivate the methods developed in this dissertation we will first describe what

is known about the immune system and highlight challenges which make it difficult

to model.

1.1 The Immune System

While the immune system has, clearly, existed for the entirety of human history

the first known record of the concept of immunity is attributed to Thucydides in the

5th century BC [45, 146]. Thucydides noted that survivors of the plague of Athens

in 430 BC were unable to contract the illness again and were thus “immune”. The

first attempt by humans to intentionally modulate this theorized process of immunity

occurred at least as early as 1000 AD in China where powdered smallpox lesions were

inhaled to induce immunity to smallpox.

Immunity to threats is perhaps one of the most important benefits of the im-

mune system since, as witnessed by Thucydides, it is often the best defense against

pathogens. With the advent of immunotherapies and vaccines immune system mech-

anisms can be exploited to, for instance, confer protection to pathogens without first

contracting the illness as is required for “natural” immunity. Unfortunately, the im-

mune response is not infallible nor are its mechanisms completely understood. For

instance, autoimmunity such as arthritis or type 1 diabetes are examples of when the

system mistakenly targets the body itself. While the symptoms of these diseases can

be treated, they can rarely be resolved [21, 49].

Thus, to understand why the immune system fails, and how these failures can be

treated, much interest in the immune system is firmly rooted in the process of self

versus non-self determination, wherein a potential threat is targeted for elimination

if it is identified as non-self or protected if it is identified as self. In the following
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sections we describe key immune system components that are related to self versus

non-self determination and propose models which describe the interactions between

the immune system cells as they collectively identify and eliminate threats.

1.2 Self Versus Non-Self Determination

Models of self versus nonself determination can describe, for example, how the

immune system fails to recognize a threat such as cancer, or incorrectly recognizes

healthy cells as a threat in autoimmunity. To describe how self versus nonself de-

termination works, we first describe how common threats to the immune system are

identified by the innate immune system. Next we illustrate, through observations,

that the innate immune system alone cannot properly eliminate pathogenic threats

and that the more complex adaptive immune system is necessary for self versus non-

self determination. Finally we end by illustrating how the immune system cells are

proposed to interact to between immune system cells using models proposed in the

literature.

1.2.1 The Innate Immune System

Many pathogenic threats share common molecular patterns of infection that are

not found in healthy human cells. These common patterns are exploited by the innate

immune system, whose role is to eliminate these “obvious” threats. The innate system

therefore has a simplistic method for self versus non-self determination that is limited

to a pre-determined set of common patterns.

Characteristics of pathogenic threats are called Pathogen-Associated Molecular

Patterns (PAMPs). Innate immune cells can recognize PAMPs that are associated

with bacteria, fungi and viruses but not human cells [112]. Upon recognizing a PAMP

innate immune system cells release signals to alert other immune system cells of a
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potential threat and can engulf and process nearby molecules to present to other

immune system cells. We define these signals and PAMPs as follows.

Signals and Molecules:

Cytokines: Cytokines are signaling molecules released and recognized by immune

system cells. These signals are used to modulate the immune response by, for example,

attracting immune system cells or promoting inflammation to increase the magnitude

of the immune response.

PAMPs: PAMPs are pathogen-associated molecular patterns that are commonly

found on a wide variety of pathogens. When innate immune system cells recognize

PAMPs they, for instance, release cytokine signals or eliminate pathogens.

Antigens: Antigens are molecules such as proteins, peptides and polysaccharides.

For example antigens can be part of a pathogen, and are thus specific to that pathogen,

as opposed to PAMPs which are related to a wide variety of pathogens. While the

innate immune system does not recognize antigens, they can present antigens to

other immune system cells (such as adaptive immune system cells presented in the

next subsection).

The role of the innate immune system then is primarily to recognize PAMPs,

release cytokines to alert other immune system cells of potential threats and present

antigens to other immune system cells. Some examples of innate immune system cells

include:

Innate Immune System Cells

Macrophages: Macrophages are a type of immune system cell which can engulf

and digest foreign substances. They are known to recognize PAMPs associated with

gram-negative and gram-positive bacteria using Toll-Like Receptors (TLRs) [112].
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Natural Killer (NK) Cells: Natural killer cells are a type of immune system cell

which also engulf and digest foreign substances. They are known to recognize PAMPs

associated with viruses, specifically single stranded and double stranded RNA [112].

Dendritic Cells: Dendritic cells can also engulf and digest foreign substances, but

are primarily known as Antigen-Presenting Cells (APCs) because they will process

and display antigen to other immune system cells via MHC I or MHC II molecules.

They are known to recognize PAMPs associated with viruses and bacteria [112].

The response to PAMPs is nearly immediate because of the large numbers of cir-

culating innate immune cells that can respond. Unfortunately, innate immune system

cells are dependent on a limited number of receptors and do not recognize specific

pathogens that have been encountered previously. Therefore the innate immune sys-

tem does not have a so called “memory” that could grant immunity to reinfection

that was observed by, for instance, Thucydides. In addition, when adaptive immune

system cells are defective as in DiGeorge’s, Wiskott-Aldrich or Job’s syndrome, the

individual is dependent on the innate immune system and is highly susceptible to

pathogens such as viruses and bacteria [112]. The adaptive response we describe in

the next subsection is thus crucial to eliminating pathogens that would otherwise

threaten the entire system.

1.2.2 The Adaptive Immune System:

The adaptive immune system itself consists of hundreds of millions of cells all

specific for different antigens - and thus pathogens associated to those antigens. When

an adaptive immune cell recognizes an antigen it can mount a targeted response

directly against the pathogen associated to the antigen and the cumulative response

of all of the adaptive immune cells composes the complete immune response. In

addition, adaptive immune system cells can differentiate into memory cells that live
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longer to confer longer lasting immunity to the individual. These adaptive immune

system cells that are antigen specific are further defined as follows.

Adaptive Immune System Cells

B Cells: B cells are a type of immune system cell which produce antibodies that

are specific for a particular antigen. Antibodies are molecules that attach to antigen

on pathogens marking the pathogen for elimination via phagocytosis by the innate

immune system. B cells can also secrete cytokines to modulate the immune response.

Cytotoxic T Cells: Cytotoxic T cells eliminate infected cells. These cells are partic-

ularly important for eliminating viruses since viruses are not susceptible to antibodies

while inside infected cells.

Helper T Cells: Helper T cells secrete cytokines to assist the immune response. The

cytokines these helper T cells release include those which aid B cells and antibody

production.

Regulatory T Cells: Regulatory T cells release cytokines to shut down the immune

response once the threat has been eliminated. Regulatory T cells can also suppress

T cells which are specific for self antigens to avoid autoimmunity.

Some innate immune system cells, such as macrophages and dendritic cells can

present antigen to T and B cells and are thus involved in the adaptive immune

response, though are not specifically adaptive cells. Likewise antibodies released

by the adaptive response enhance the phagocytosis of pathogens by macrophages,

illustrating how the two systems are interconnected.

An important question remains, however, as to how a T or B cell could be designed

to specifically target an antigen that the immune system has never encountered before.

The answer to this question lies in a process called somatic recombination.
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Somatic Recombination in T Cells

The adaptive immune system generates adaptive cells specific for an unseen antigen

by generating cells with random antigen receptors. If enough random receptors are

generated then the chances that at least one adaptive cell is specific for any given

antigen can be relatively high. Of course randomly generating antigen receptors could

lead to dangerous autoimmunity, for instance, if a receptor specific for a self antigen is

generated. The maturation process of adaptive cells is designed to filter out ineffective

or self-reactive cells. For brevity we will focus on the process of somatic recombination

in T cells, but note that somatic recombination also occurs in B cells.

T cell precursors travel from the bone marrow to the thymus where they proliferate

to generate nearly 5 · 107 total cells every day. However only 2 − 4% of these cells

become mature T cells by passing two filtering processes and rearranging segments of

their DNA to generate new antigen receptors, called T Cell Receptors (TCRs). We

focus on so called “conventional” T cells whose TCRs have an α and β gene and which

additionally have either the TCR co-receptor CD4 or CD8. However, immature T

cells can have neither co-receptor or even both co-receptors depending on their stage

of development.

For instance T cells first enter a double-negative stage and have neither CD4 or

CD8 co-receptors. In the double-negative stage the β gene of the TCR is rearranged

first to begin the random TCR generation process. If a β gene is rearranged and if

the coding sequence is without errors then the cells are said to have passed β selection

and can develop into double-positive cells.

In the double-positive stage developing T cells have both CD4 and CD8 co-

receptors and the α gene is rearranged to complete the somatic recombination of

the TCR. Once both the α and β genes have undergone somatic recombination the
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TCR has been randomly combined and is specific for an antigen that the immune

system may have never encountered before. To ensure that the TCR functions prop-

erly and is not self-reactive there are two selection stages to filter out T cells with

poor TCRs.

The first filter for developing T cells is called positive selection. In positive selec-

tion thymic cells present self antigen on Major Histocompatibility Complex (MHC)

molecules to developing T cells. In this stage if the TCR is functioning properly the

developing T cells should have a small response to the MHC molecule. Developing

T cells that either have no response, or too large of a response to the MHC and self

antigen presented by the thymic cells will not pass positive selection. After positive

selection the number of TCR will increase on the T cells as they finish developing.

The second filter for developing T cells is called negative selection. Since the

developing T cells have more TCR on the cell surface after passing positive selection,

T cells that are specific for self antigens will have larger responses in this stage. If the

developing T cells have a large response to the thymic self antigen presenting cells,

then the developing cell is either killed or becomes a regulatory T cell if it expresses

the CD4 co-receptor [112]. After passing both positive and negative selection the T

cells are fully developed and roam the body searching for antigen specific to their

TCR.

1.2.3 A Circuit Model of Self Non-self Determination

While it is not completely clear exactly how self versus nonself determination

works, it seems clear that helper and regulatory T cells modulate the immune response

through the release of cytokines and cell-cell interactions. We consider the regulatory

and helper T cell populations to be most important for the decision of self versus

nonself, as they can control the cytotoxic T and B cell populations through the
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release of cytokines and cellular interactions.

Furthermore, there is evidence that the dynamics of the antigen in the system also

has a large effect on the adaptive immune response. Most notably, in [80, 158], it was

shown that the adaptive immune response is stronger when antigen is introduced at

an exponentially increasing rate. Since pathogens such as bacteria and viruses grow

exponentially the ability to mount stronger responses against rapidly growing threats

is clearly advantageous.

In [126] it was shown how the widely recognized delay in regulatory T cell activa-

tion (see [75, 139]), could approximate a derivative response to antigen signaling. The

cells that compose the immune system are thus proposed to act as a large decentral-

ized control system that mimic a Proportional-Integral-Derivative (PID) controller.

To describe the proposed model we will next analyze the proportional, derivative,

and integral response of the PID type response.

The Proportional Response: To adequately eliminate threats the immune sys-

tem must respond to the antigen signal in the system. Suppose that for any time t the

function a(t) describes the amount of antigen in the system, E(t) is the population

of helper T cells and Tc(t) is the population of cytotoxic T cell. In [126] the popu-

lation of helper T cells grows when unactivated T helper cells recognize an antigen,

producing a proportional response to the antigen and the population decays as the

cells die. Likewise the helper T cells recruit unactivated cytotoxic T cells that are

specific for the antigen so that the threat posed by the antigen can be eliminated.

The proportional response of these populations can be described as follows.

Ė(t) = rEaa(t)Neq − dEE(t), Ṫc(t) = rEcE(t)Nc − dTcTc(t), (1.1)

where dE, dTc > 0 are death rates, Neq and Nc are populations of unactivated helper

and cytotoxic T cells, and rEa, rEc > 0 are recruitment rates. In Fig. 1.1 we illustrate
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the positive proportional response of the helper T cells to antigen stimulation.

The proportional response does grow in response to an antigenic threat to protect

the individual. Unfortunately the proportional response alone does not explain the

observed decision making process of the immune system. For instance self antigen,

which is always present in the system, should cause a consistent level of inflammation

and a proportional response alone would cause the immune system to be auto-reactive.
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Figure 1.1: A diagram of the immune

system dynamics from [126] for de-

termining self versus non-self. In this

model the derivative response with

respect to the antigen is physically

approximated in the immune system

by the relative delay in maturation

of regulatory immune system cells

when compared to helper T cells.

The Derivative Response: The derivative

response of the circuit model explains how the

immune system can differentiate between a self

antigen and a non-self antigen. The proposed

mechanism of self versus non-self differentia-

tion is based upon populations of regulatory

T cells R(t) which reduce immune responses

through direct contact with helper T cells, or

the release of cytokines. The antigen signal

released by healthy cells will be roughly con-

stant and the derivative of this signal will be

relatively small. The antigen signal released

by a threat, however, will begin small and in-

crease as the threat multiplies. In the case of

a threat the derivative of the antigen signal will be large.

The proposed mechanism of self versus non-self determination is based on a deriva-

tive response to the antigen signal. In [126], regulatory cells are modeled as being a

delayed response due to slower maturation rates of regulatory T cells, but that also

have a proportional response to antigen so that the population of regulatory T cells
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is defined as follows.

R(t) =
rR
dR
a(t− τ), (1.2)

where rR is the recruitment rate of the regulatory T cells and dR is the death rate.

It is assumed that the population of regulatory T cells acts on the population of

helper T cells ar a rate of rRE, and the combined proportional and derivative response

of the helper T cells can thus be defined as,

Ė(t) = rEaa(t)E(t)− rRE
rR
dR
a(t− τ)E(t), (1.3)

= (rEa −KRE)a(t)E(t) + τKRE
a(t)− a(t− τ)

τ
E(t) (1.4)

where KRE = rRE
rR
dR

and a(t)−a(t−τ)
τ

approximates the derivative of the antigen signal.

In Fig. 1.1 we illustrate the positive derivative response of the helper T cells to

antigen stimulation. If rEa u KRE then the response is primarily dependent on the

derivative of the antigen signal, thus implying that regulatory T cells can suppress

immune responses to self antigens (which should be relatively constant), but can

still recognize threats which produce an increasing antigen signal. In that case, the

proportional response illustrated in Fig. 1.1 is nonexistent. Unfortunately a derivative

response alone is not always capable of eliminating threats completely and may lead

to persistent infection.

To ensure infections are eliminated, a cytokine based switching mechanism is

proposed. IL-2 is a cytokine known to be important for the proliferation of immune

system cells and is released by helper T cells and the number of IL-2 molecules, p,

can be modeled as follows.

ṗ(t) = rpE(t)− dpp(t)

where p(t) = rpE(t)

dp
is the quasi-steady state approximation of the amount of IL-2 in

the system.
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Since IL-2 promotes proliferation of helper T cells, and is released by helper T

cells, these dynamics generate a positive feedback loop. This positive feedback loop

can be modeled as follows when using the quasi-steady state approximation of the

amount of IL-2 in the system.

Ė(t) = −dEE(t) + rEp(t)E(t) + u(t)

= −dEE(t) + rE
rp
dp
E(t)2 + u(t)

where dE is the death rate, rE is the rate of positive feedback of released IL-2 on the

helper T cell population and u(t) represents the dynamics of the derivative response.

In Fig. 1.1 we illustrate the positive feedback between the IL-2 population, p and

the helper T cell population. If the derivative response of the system is relatively

small, then the system is stable as the positive feedback can’t overcome the natural

decay rate of the helper T cells. However, for a large enough derivative response the

system becomes unstable and the helper T cell population experiences uncontrolled

exponential growth. Thus, the positive feedback loop is only “switched” on when a

threat with a large enough derivative response is recognized. Large enough derivative

responses triggers exponential growth so that threats can be eliminated by the immune

system.

Unfortunately uncontrolled exponential growth is unrealistic. To control this

growth an integral response was proposed in [126] to stabilize the system.

The Integral Response: An integral response is proposed to describe how the

immune system can stop the uncontrolled exponential growth of the helper T cell

population once a threat has been eliminated.

A subpopulation of regulatory T cells called iTreg cells are believed to be generated

by the helper T cell population. Thus the population of iTreg cells, Ri(t), is modeled
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as,

Ṙi(t) = −dRiRi(t) + νR
rp
dp
E(t)2 (1.5)

where dRi is the death rate and νR
rp
dp
E(t)2 models the effect of the helper T cell positive

feedback loop on the population of iTreg cells. The iTreg cells have a relatively low

death rate when compared to the other cell populations. Thus the population of iTreg

cells is approximately, Ri(t) u
∫ t

0

νRrp
dp
E(s)2ds.

Combining the proposed derivative and integral responses (and assuming rEa =

KRE) generates the helper T cell dynamics,

Ė(t) = −dEE(t) + rE
rp
dp
E(t)2 + τKRE

a(t)− a(t− τ)

τ
E(t)− rRiE

∫ t

0

νRrp
dp

E(s)2ds,

(1.6)

where rRiE is the rate at which the iTreg cells inhibits the helper T cell population.

In Fig. 1.1 we illustrate the negative integral feedback from the iTreg cell popula-

tion on the helper T cell population. Considering all of the dynamics, the proposed

model has an approximate derivative response to antigen that, if large enough, acts

as a trigger for uncontrolled growth of the helper T cells via a cytokine feedback loop.

This feedback loop is controlled by an integral like response from the population of

iTreg cells to contract the population of helper T cells once the antigen threat has been

eliminated. The PID like dynamics describes how millions of immune system cells

can unknowingly collaborate to determine if a threat is self or non-self and mount a

controlled response to protect the individual from threats.

The problem of self versus non-self recognition is important for understanding

how the immune system identifies threats and for identifying the mechanisms that

cause immune driven diseases such as rheumatoid arthritis. However, we are also

interested in treating diseases after the self versus nonself determination has already
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been decided, but, after the immune system has been unable to eliminate the threat.

To illustrate how immunotherapies can be used to help the immune system eliminate

a threat, we next consider a model of the dynamics between cancer cells, the immune

system, and an immunotherapy.

1.3 Antigen Recognition and Elimination

In some cases, even if a threat has been identified as nonself, poor immune re-

sponses can fail to eliminate the threat. For instance, cancers can release cytokines

which inhibit the immune response allowing uncontrolled tumor growth. In these

cases modeling the relationship between the threat, the immune system, and poten-

tial immunotherapies can aid in the selection of an immunotherapy, dosage, or period

of treatment to ensure the immune system eliminates the threat.

Antigen in the body is captured by antigen-presenting cells such as macrophages

and dendritic cells and presented on MHC I and MHC II molecules to activate adap-

tive immune system cells, which then proliferate extensively to eliminate the threat.

Activated cytotoxic T cells can directly eliminate infected cells that present their

TCR specific antigen, while B cells generate antibodies that mark the antigen for

destruction by, for instance, increasing the effectiveness of macrophage phagocytosis.

Helper T cells and regulatory T cells release cytokines which can increase (helper) or

decrease (regulatory) the number and effectiveness of cytotoxic T cells and B cells.

Thus, in many models the helper and regulatory T cells are the most important for

modeling the magnitude of the immune response.

To illustrate how these dynamics can be modeled we consider the model proposed

in [170] to describe the dynamics between tumor cells, a cytokine, and cytotoxic,

helper and regulatory T cells.
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1.3.1 An Immunological Cancer Model

The immune system usually generates immune responses to eliminate cancer cells.

However, in this subsection we will define a proposed model which describes how

tumor cells can release a cytokine to inhibit the immune response enabling the tumor

cells to grow uncontrollably.

First denote the tumor size as T , the cytokine TGF-β as B, cytotoxic T cells as

E, regulatory T cells as R and activated tumor-specific cytotoxic T-cells administered

with a vaccine as V . The dynamics of each of these states is defined as follows.

Ṫ = a0T (1− c0T )− δ0
ET

1 + c1B
− δoTV, Ḃ = a1

T 2

c2 + T 2
− dB,

Ė =
fET

1 + c3TB
− rE − δ0RE − δ1E, Ṙ = rE − δ1R,

V̇ = g(t)− δ1V, (1.7)

where the positive constants a0, c0, δ0, c1, a1, d, c3, f , and r define different rates at

which the cancer cells and immune system cells decay or proliferate. The values of

these constants were identified from other papers or were selected such that the model

trajectories best captured experimental data. In Fig. 1.2 we illustrate graphically the

relationship between the tumor, immune system cells and the cytokine signal, where

solid lines imply a positive relationship and dashed lines imply a negative relationship

between the state variables in the direction of the arrow.

We will discuss the dynamics of each of these states in more detail as follows.

Tumor Dynamics: This model assumes that the tumor follows a logistic popu-

lation growth, as defined by the term a0T (1 − c0T ). In this case the tumor cells

initially increase exponentially at a rate close to a0 but the rate decreases as the

cell population approaches the carrying capacity, 1
c0

, of the tumor. Elimination of

the tumor cells occurs at a rate proportional to the population of cytotoxic T and
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tumor cells and inversely proportional to the levels of TGF-β, and is given by δ0ET
1+c1B

.

The motivation behind this term comes from papers such as [160], which have shown

that TGF-β decreases the rate at which cytotoxic T cells can eliminate tumor cells.

However, since cytotoxic T cells injected via vaccination are activated outside of the

patient, it is assumed that they are fully differentiated and not affected by the levels

of TGF-β. Thus the injected cytotoxic T cells, V , eliminate tumor cells at a rate of

δoTV and are independent of the levels of TGF-β.

T

B V

E R

Figure 1.2: A diagram of the im-

mune system dynamics described in

Eq. (1.7).

Cytokine Dynamics: Experimental evi-

dence in [121], suggests that the rate at which

TGF-β is produced is low for small popula-

tions of tumor cells, but rapidly increases as

the tumor population increases. The dynamics

of the level of TGF-β is described in [5] where

it increases at a rate of a1
T 2

c2+T 2 and naturally

decays at a rate of d.

Cytotoxic T Cell Dynamics: For the cy-

totoxic T cell dynamics it is assumed that the amount of antigen in the system is

proportional to the volume of tumor cells. In this model the rate of cytotoxic T cell

activation is directly proportional to the number of interactions between the T cells

and tumor cells and is proportional to ET . To account for the negative effect of

TGF-β on the activation and recruitment of cytotoxic T cells, the rate of increase of

E is given by fET
1+c3TB

.

Regulatory T cells act to shut down the immune response and, in this model, the

effect on the population of cytotoxic T cells is given by the term−δ0RE. Furthermore,
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this model assumes that a proportion, r of cytotoxic T cells will be converted into

regulatory T cells as also seen in models in [91]. Finally the cytotoxic T cells will

naturally decay at a rate of −δ1.

Regulatory T Cell Dynamics: In this model the regulatory T cells are assumed

to be converted from cytotoxic T cells. Although regulatory T cells can originate

from helper T cells as well, this simplification is used to generate a model of minimal

complexity. Therefore the regulatory T cells increase at a rate proportional to the

cytotoxic T cell population, rE, and decay at a rate of δ1R.

Administered Cytotoxic T Cells: The administered cytotoxic T cells are as-

sumed to be fully differentiated and thus no longer dividing, so the population in-

creases only when an injection of cells is given according to the function g(t). An

injection of activated T cells is a type of immunotherapy called adoptive T cell trans-

fer. The injected T cells are usually taken from a patients own blood, and then grown

in large numbers outside of the patient before reinjection. This treatment has been

used to treat metastatic melanoma as described in [136].

These dynamics illustrate a simplified model of the complex interaction between

immune system cells and a threat (in this case tumor cells).

While this dissertation proposes data-driven techniques that do not require re-

searchers to generate dynamical models ()such as those described in this section)

the models help illustrate how the immune system cells in the previous section are

proposed to interact. Furthermore, in Chapter 5 and 6, we use the immunotherapy

model to simulate trajectory data that could be measured in a real experiment, and

use this simulated data with a proposed data-driven technique.
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1.4 Summary of Contributions and Organization

Predictive models can be broken into two categories - physics based or data-

driven. We have just illustrated examples of the former category, where fundamental

physical laws or observed relationships are used to generate models between proposed

explanatory variables and outputs of interest. However, when fundamental physical

laws are unknown or too complex to derive, for instance as often occurs when modeling

biological systems, data-driven models represent a tractable alternative.

Data driven decision making has already had a positive impact on quality of life,

for instance its application within the healthcare industry has decreased re-admission

and mortality rates and can provide patient specific treatments that are more effec-

tive [76, 103]. However the data-driven approach, when applied to the identification

and analysis of the immune system, comes with its own set of problems. To generate

predictive models of the immune system we have identified three problems whose

solutions will enable better modeling of complex systems.

The first two problems are identified in Subsection 1.4.1 and Subsection 1.4.2

and are solved using methods developed in Chapters 3 and 4 respectively. The final

problem, defined in Subsection 1.4.3 is solved using methods developed in Chapters 5

and 6, and thus it is recommended that these two chapters are read in order. In

addition, we provide relevant background information in Chapter 2 which may be

helpful if readers are unfamiliar with the topic at hand. A graphical illustration of

the recommended reading order is included in Fig. 1.3.

1.4.1 Problem 1: Generating Models of the Distribution of Measured Data

By performing flow cytometry on a sample of immune system cells it is possible

to measure characteristics (e.g. size, cell surface receptors) that determine how a cell
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Background Information

Chapter 4

Chapter 5

Chapter 3

Chapter 6

Conclusion (Chapter 7)

Figure 1.3: Recommended reading order of the material in this dissertation - All

chapters but Chapters 5 and 6 are independent of each other.

will interact with antigen, other immune system cells or cytokine signals. To analyze

the populations of immune cells they are usually sorted into different populations in

a process called gating. Unfortunately, a large variation in gating has been recorded

between researchers [102] implying that analyzing flow cytometry data is a subjective

process.

We propose treating immune cell populations as random variables and modeling

the distribution of the cellular characteristics as opposed to gating the flow cytometry

data. The distribution of the cellular characteristics can then be compared between

flow cytometry data sets without the need for gating.

Unfortunately, the distribution of the cellular characteristics of immune system

cells do not fall into any known distribution and are therefore difficult to model. The

first identified problem then is, given multivariate data from some unknown Data

Generating Mechanism (DGM), to identify methods to model the complex distribu-

tion of that data.

To model complex distributions of data, in Chapter 3 we propose a new class of

Probability Density Functions (PDFs) and formulate convex optimization problems to
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fit the parameters of the PDF to model the distribution of the cellular characteristics.

We show that the class of PDFs is dense in the set of all continuous PDFs. This means

that a PDF from this class exists that can perfectly model a random variable if its

corresponding PDF is continuous. This implies that we do not need to make strict,

and often invalid, assumptions that the data is normally distributed [6, 12].

To demonstrate the effectiveness of this approach we compare the proposed method

to other state of the art approaches to generate a model of the PDF of four publicly

available data sets. By withholding a testing partition of data, we use a standard set

of metrics to show that the proposed method outperforms the other state of the art

methods.

We also illustrate, using a mass cytometry dataset, how to generate models of the

PDF of the cellular characteristics of immune cells taken from populations of healthy

patients, and those taken from populations of patients with Rheumatoid Arthritis.

Despite differences in the PDFs among patients within the same groups, these models

are able to identify “immune features” that are consistently shared among the patients

in each group. These immune features therefore capture components of the immune

system that are assumed to be relevant to the disease.

Finally we note that this portion of the research is based on the work in [32, 33].

1.4.2 Problem 2: Generating Optimal Machine Learning Algorithms

Next, there exists hundreds of different immune cells and signals which could

potentially be classified as either helper [165, 105] or regulatory [138, 90]. Generating

a model which uses every potential subset of immune system cells would require a

large amount of difficult to acquire data to determine how these different immune

cells interact. Given populations of immune system cells (as opposed to cytometry

data as in the previous subsection), the second problem is to identify a subset of those
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populations which capture the essential features of the immune system.

Given inputs {xi}mi=1 (e.g. populations of immune cells) and outputs {yi}mi=1 (e.g.

disease severity), predictive models such as neural networks and kernel learning algo-

rithms generate a data-driven model, f , to predict the relationship between the inputs

and outputs. While neural networks and kernel learning algorithms have advanced sig-

nificantly in recent years, these machine learning algorithms have fundamental flaws.

For instance, while the activation functions used in neural networks have shown an

ability to represent complex patterns in data, there is no convex formulation of the

problem of training such a network - implying that trained neural networks may be

locally optimal but not globally optimal. In fact it was shown in [137] that even the

simplest two-layer ReLU neural networks have many local minimum and thus neural

network algorithms may return sub-optimal solutions. Whereas when a minimum is

found for a convex optimization problem it is guaranteed that that solution is globally

optimal.

Kernel methods also have state of the art performance on a number of bench-

marks. However, kernel methods require the selection of a kernel function, a problem

that is highly dependent on the data itself. To minimize the “human element” of

selecting a kernel function, kernel learning algorithms use a data-driven approach to

select an optimal kernel function. While these kernel learning algorithms generally

have convex formulations, they unfortunately learn only simple combinations of ker-

nel functions that must be selected a priori, therefore not completely removing the

“human element” of the algorithms performance. To judge the quality of a set of

kernel functions three nonempirical criteria were defined that simple combinations of

kernel functions are, unfortunately, unable to meet.

In Chapter 4 we develop the first machine learning algorithm which, to our knowl-

edge, meets all three of the proposed criteria for sets of kernel functions. Our proposed
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method (see [29, 30]) improves the accuracy of kernel based machine learning algo-

rithms such as the support vector machine by automatically selecting an optimal

kernel function (with respect to the data) from the class of Tessellated Kernel (TK)

functions we have developed. We show that support vector machines with optimal

TK kernels on average have improved accuracy when compared to other state of the

art methods of machine learning on a set of 12 datasets. Finally we use the machine

learning algorithm proposed in this chapter to identify populations of immune sys-

tem cells that capture key components of the immune system (populations we denote

“immune states”) - including populations that are related to the disease severity of

Rheumatoid Arthritis.

Finally we note that this portion of the research is based on the work in [28, 29, 30].

1.4.3 Problem 3: Generating Constrained Predictive Models and Identifying

Optimal Treatments

When the immune system is malfunctioning by, for instance, targeting the body

itself as in autoimmunity or failing to eliminate cancer cells, a number of immunother-

apies have been designed to modify the populations of immune system cells by block-

ing cell surface receptors or releasing cytokines. Examples include Ipilumumab and

Nivolumab which can deactivate effector cells [74, 163]. While these and other im-

munotherapies have shown promising results as cancer treatments, an important ques-

tion is how to determine an optimal immunotherapy drug, dosage, the timing of drug

administration. This is made difficult because an optimal immunotherapy treatment

must depend on the number of immune system cells and their cellular characteristics,

especially in the case of cancer immunotherapy [79]. The final problem posed in this

dissertation therefore is how to identify optimal immunotherapy treatments based

upon the population and characteristics of immune system cells, such as the number
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of effector and regulatory type cells.

We assume that the dynamics that govern the immune system response vary

slightly between different patients, and that the initial populations of immune system

cells are most important for predicting if an immunotherapy treatment will lead

to complete elimination of a tumor. We then generate a model of the Lyapunov

function of the system (that is dependent upon the selected treatment strategy) using

trajectory measurements of tumor growth starting from different initial populations of

immune system cells, treatment strategies, and different patients with slight variations

in the immune system dynamics.

For a selected treatment strategy, if the initial conditions of the patient are within

the Region Of Attraction (ROA) of the system (based on the Lyapunov function

model) then the treatment strategy is predicted to lead to complete tumor elimination

for that patient. The Lyapunov function model makes no assumptions on the form of

the underlying system dynamics. While Lyapunov functions are often used to prove

stability or to find regions of attraction of a system with known dynamics there exist

few methods wherein Lyapunov function estimates can be generated by trajectory

measurements alone.

We develop a new method to model Lyapunov functions from trajectory data in

Chapter 5. However, since Lyapunov functions are globally positive, we first develop

a convex optimization problem to select a positive function that best models given

input and output data according to either the least absolute deviations or least squares

metrics. We then develop a method of generating values of a converse Lyapunov

function using measurements of trajectories from different initial conditions, thus

generating a model of the Lyapunov function using only measured trajectory data.

We demonstrate the proposed approach by modeling the Lyapunov function of

simulated data from the cancer dynamics model described in Eq. (1.7). Fortunately,
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we may represent the treatment strategies which (for the given initial conditions) are

predicted to stabilize the system as a semi-algebraic set. We then show that selecting

an optimal pulsed immunotherapy treatment can be formulated as a global polynomial

optimization problem using the Lyapunov function model. This approach assumes

that the dynamical models of each patient will be identical. To address this assump-

tion we show that if the patient models are not identical (by varying the dynamical

models to simulate different patients) we are able to find robust immunotherapy treat-

ments that can effectively treat patients with varying immune dynamics, but are no

longer optimal for any given patient.

In Chapter 6 we formulate a new algorithm to solve global polynomial optimization

problems. To demonstrate that the algorithm, in conjunction with the model of the

Lyapunov function, can find optimal treatment strategies, we simulate 1000 random

patients and use the GPO algorithm to select optimal treatments. The simulations of

the immunotherapy model show that over 30% of the selected treatments are within

10% of the optimal treatment strategy, and that all of the treatments lead to complete

cancer elimination within 120 days - all based solely on measured trajectories of the

system dynamics.

Finally we note that this portion of the research is based on the work in [27, 31].
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Chapter 2

BACKGROUND MATERIAL

In this chapter we lay the foundation for the methods proposed in this dissertation.

In Section 2.1 and 2.2 we provide background material on convex optimization -

specifically delving into the topics of semidefinite programming and polynomial opti-

mization that are important for developments within all chapters of this dissertation.

Furthermore, in Section 2.3 we review Lyapunov theory which is most relevant to

Chapter 5 and in Section 2.4 we review methods of classification and regression using

support vector machines that are most relevant to Chapter 4. Finally in Section 2.5

we briefly review some uncertainty quantification methods which lays the foundation

for Chapter 3.

2.1 Convex Optimization Problems

All of the methods proposed in this dissertation generate predictive models by

solving optimization problems. An optimization problem has the form,

min
z∈Rn

f0(z) (2.1)

subject to: fi(z) ≤ 0 ∀ i = 1, ...,m,

where each fi : Rn → R is a function of the vector z ∈ Rn called the decision

variables. The function f0(z) is called the objective function, and the functions fi(z)

for i = 1, ...,m are constraint functions.

If we define the set of all feasible points as Z := {z ∈ Rn | fi(z) ≤ 0 ∀ i = 1, ...,m},

then z∗ ∈ Z is optimal if f0(z∗) ≤ f0(y) for all y ∈ Z.
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Optimization problems are divided into different classes depending on the types

of functions that compose the objective function and constraints. The first types of

optimization problem we will define are the class of convex and nonconvex optimiza-

tion problems. If the functions fi(z) for all i = 0, ...,m that compose the objective

and constraint functions are convex then we say the optimization problem is con-

vex, otherwise the optimization problem is nonconvex. We define convex functions

as follows.

Definition 1. A function g : X → R is convex if

g(tz + (1− 1)y) ≤ tg(z) + (1− t)g(y)

for all z, y ∈ X and all t ∈ [0, 1].

An important property of convex optimization problems are that any locally op-

timal decision variables are globally optimal. This implies that if a locally optimal

decision variable is found, it must be the globally optimal solution. Nonconvex opti-

mization problems do not have this property and there are seldom any ways to verify

if a locally optimal decision variable is globally optimal.

The classes of convex optimization can be further divided into the class of Linear

Programs (LPs), Quadratic Programs (QPs), and semidefinite programs (SDPs). Of

most significance to this dissertation is the class of semidefinite programs (which

contains the classes of LPs and QPs), which we cover in greater detail in the following

subsection.
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2.1.1 Semidefinite Programming

A semidefinite programming problem in its standard form can be represented as

follows.

min
Z∈Rn×n

trace(CZ) (2.2)

subject to: trace(AiZ) = bi ∀ i = 1, ...,m,

Z � 0,

where C ∈ Rn×n and Ai ∈ Rn×n for all i = 1, ...,m.

Optimization problems in the form of Eqn. (2.2) are convex optimization problems

that can be solved in polynomial time (see [3]) using solvers such as Sedumi and

Mosek [4, 153]. The constraint, Z � 0, restricts the decision variable Z to be within

the cone of symmetric positive semidefinite n× n matrices.

Semidefinite programming has found numerous implementations in optimal con-

trol with linear matrix inequalities. Linear Matrix Inequalities (LMIs) have been

applied to determine stability of linear systems and design optimal H2 and H∞ con-

trollers and observers for nominal and uncertain plant models. More examples of the

use of LMIs to solve problems related to control systems can be found in [47]. In this

dissertation however we focus on the application of semidefinite programming to the

optimization of polynomial functions.

2.1.2 Polynomial Optimization

We define polynomial optimization as an optimization problem where the vector of

decision variables z parameterize at least one degree bounded, possibly multivariate,

polynomial function. We denote this ring of polynomial functions in x ∈ Rn as R[x]

and the degree d bounded ring of polynomial functions as Rd[x].
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To show that any polynomial in Rd[x] can be linearly parameterized by a vector

of decision variables we must first denote the monomials of the variables x ∈ Rn.

The monomials in variables x ∈ Rn are denoted as xα :=
∏n

i=1 x
αi
i where α ∈ Nn.

Monomials can be ordered using various orderings on Nn. In this dissertation the

graded lexicographical ordering is used. This ordering is defined inductively as follows.

For a, b ∈ Nn, a ≤ b if
∑n

i=1 ai <
∑n

i=1 bi, or a1 = b1 and [a2, · · · , an] ≤ [b2, · · · , bn].

Denote by Z(x) the infinite ordered vector of all monomials, where xα < xβ if α < β.

Because we have used the graded lexicographical ordering, if we restrict ourselves to

the first
(
d+n
d

)
elements of Z, then this is the vector of all monomials of degree d or

less. We denote this truncated vector as Zd(x) and the length of Zd as q :=
(
d+n
d

)
.

Using this definition, it is clear that any polynomial has a vector representation as

pd(x; z) = zTZd(x) for some vector z ∈ Rq, where d is the degree of polynomial p.

In addition for any given y ∈ Rn we have that p(y; z) is a linear function with

respect to the decision variables z and can be represented as,

p(y; z) =

q∑
j=1

zj

n∏
i=1

yαii .

Therefore evaluating p at any point y is a linear function of the decision variables and

is a convex function of the decision variable z.

Furthermore, consider constraints of a polynomial function evaluated not over

a single given point y, but over an infinite amount of points y ∈ Y . For instance

consider the constraint,

p(y; z) ≥ 0, for all y ∈ Y,

where there exist an infinite number of constraints on the decision variables z. We

will discuss methods of enforcing this constraint in the following section.
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2.2 Optimization of Positive Polynomials

In this section a parametrization of a set of nonnegative polynomials is defined

using the Sum-Of-Squares (SOS) polynomial approach. Next a parametrization of

a set of polynomials nonnegative over a semialgebraic set is given based upon the

Positivstellensatz result. Finally we define the greatest lower bound problem and the

closely related Global Polynomial Optimization problem.

2.2.1 Sum-of-Squares Polynomials

In this subsection we define the set of SOS polynomials, and show that the set of

SOS polynomials is a convex set defined by positive semidefinite matrices. Formally,

we denote the set of SOS polynomials as

S[x] :=

{
s ∈ R[x] : s(x) =

l∑
i=1

p2
i (x), pi ∈ R[x], l ∈ N

}
, (2.3)

and the set of degree d bounded sum-of-squares polynomials is Sd[x].

Clearly any element of S[x] is a nonnegative polynomial. Furthermore, using the

vector representation of polynomials we can show that any SOS polynomial has a

matrix representation as follows.

l∑
i=1

p2
i (x) =

l∑
i=1

Zd(x)T ziz
T
i Zd(x) = Zd(x)T

(
l∑

i=1

ziz
T
i

)
Zd(x) = Zd(x)TMZd(x),

where M ∈ Rq×q is positive semidefinite since the matrix ziz
T
i � 0. Moreover, any

polynomial,

h(x) = Zd(x)TMZd(x).

is an SOS polynomial if M � 0, because

Zd(x)TMZd(x) = Zd(x)T
q∑
i=1

(
cic

T
i

)
Zd(x) =

q∑
i=1

Zd(x)T ziz
T
i Zd(x) =

l∑
i=1

p2
i (x),

30



where the vectors ci are the eigenvectors of the matrix M multiplied by the square root

of the corresponding eigenvalue. Therefore we have shown that any SOS polynomial

has a representation of this form,

h2d(x;M) = ZT
d (x)MZd(x),

for some M � 0.

A positive semidefinite M is a certificate of positivity on Rn for the polynomial h2d.

However, it is important to note that even if a polynomial cannot be parameterized

with a positive semidefinite M it still may be nonnegative on Rn. For instance the

motzkin polynomial is an example of a degree 2d bounded polynomial that is not an

SOS polynomial but is nonnegative on the domain Rn [111].

Next we use the Positivstellensatz result to find certificates for nonnegative poly-

nomials on subsets of Rn.

2.2.2 Putinar’s Positivstellensatz, Quadratic Modules and the Archimedean

Property

In this section, we review Putinar’s positivstellensatz which gives necessary condi-

tions for a polynomial to be positive on the semiaglebraic set S := {x ∈ Rn : gi(x) ≥

0, i = 1, . . . , l}, where gi ∈ R[x], S 6= ∅ and S is compact. The degree bounded

Putinar’s Positivstellensatz uses the polynomials gi that define S to deduce a cone

of polynomials which are non-negative on S. This cone is the quadratic module which

we define as follows.

Definition 2. Given a finite collection of polynomials gi ∈ R[x], we define the

quadratic module as

A :={p | p = σ0 +
l∑

i=1

σigi σi ∈ S[x]},
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and the degree-k bounded quadratic module as

A(k) :={p | p = σ0 +
l∑

i=1

σigi σi ∈ Sk[x]}.

Clearly, any polynomial in A is nonnegative on S. Furthermore, since for any

f, g ∈ R[x] we have that fg ∈ R[x], the constraint p ∈ A(k) can be represented

as a polynomial in matrix form and the constraint can be represented as an LMI.

Furthermore, if the module satisfies the Archimedean property, then Putinar’s Posi-

tivstellensatz states that any polynomial which is positive on S is an element of A.

That is, A parameterizes the cone of polynomials positive on S.

A quadratic module A is said to be Archimedean if there exists some p ∈ A

and R 6= 0 such that p(x) = R2 −
∑n

i=1 x
2
i . We say that {gi} is an Archimedean

representation of S if the associated quadratic module is Archimedean. Note that

the Archimedean property is a property of the functions gi which then define the

quadratic module and not a property of S. Specifically, if S is compact, and {gi}li=1

is not Archimedean, then we may construct an Archimedean representation {gi}l+1
i=1

where gl+1(x) = R2 −
∑n

i=1 x
2
i for any sufficiently large R > 0.

A consequence of Putinars Postivstellensatz is that the problem of computing

the greatest lower bound of a polynomial function over a semi-algebraic set can be

formulated as a convex optimization problem.

2.2.3 The Greatest Lower Bound Problem

The Greatest Lower Bound (GLB) problem is defined as,

λ∗ := max
λ∈R

λ (2.4)

such that: f(x)− λ > 0, ∀x ∈ S,
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where we define the feasible set S as

S := {x ∈ Rn : gi(x) ≥ 0, hj(x) = 0}. (2.5)

Unfortunately, there is no algorithm which solves the GLB exactly in polynomial

time. However asymptotically exact approaches to solving the GLB problem such as

SOS programming in [123], and its dual Moment-relaxation problem in [98] can be

used to approximate the GLB problem when the functions f , gi and hj are polyno-

mials. Both these approaches are well-studied and have associated Matlab toolboxes,

including SOSTOOLS [130] and Gloptipoly [73]. Both approaches yield a hierarchy

of primal/dual semidefinite programs (SDPs) with increasing sequences of optimal

values {p∗k}k∈N (SOS) and {d∗k}k∈N (Moment) such that p∗k ≤ d∗k ≤ f ∗. Furthermore,

under mild conditions, the algorithms are asymptotically accurate in the sense that

lim
k→∞

p∗k = lim
k→∞

d∗k = f ∗ [141].

Moreover, if the feasible set, S, as defined in (2.5), is nonempty and compact,

then there exist constants c1 and c2, depending on polynomials f , hj, and gi such

that |p∗k − f ∗| ∼= c2
c1
√

log(k)
[116].

A problem closely related to the GLB is the Global Polynomial Optimization

Problem.

2.2.4 Global Polynomial Optimization

Global Polynomial Optimization (GPO) is defined as optimization of the form

f ∗ := min
x∈Rn

f(x) (2.6)

such that: gi(x) ≥ 0 for i = 1, . . . , s

hj(x) = 0 for j = 1, . . . , t,

where f , gi, and hi are real-valued polynomials in decision variables x. Clearly the

GLB and GPO problems are closely related in that λ∗ = f ∗ = f(x∗), but are not
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equivalent in that the GLB problem does not find x∗.

As defined in Eq. 2.6, the GPO problem encompasses many well-studied sub-

classes including Linear Programming (LP) [88, 85], Quadratic Programming (QP) [106],

Integer Programming (IP), Semidefinite Programming (SDP) and Mixed-Integer Non-

linear Programming (MINLP) [99]. Because of its generalized form, almost any op-

timization problem can be cast or approximately cast as a GPO, including certain

NP-hard problems from economic dispatch [122], optimal power flow [64] and optimal

decentralized control [101]. As applied to control theory, GPO can be used for stabil-

ity analysis of polynomial dynamical systems by, e.g., verifying polytopic invariants

as in [110].

When f and gi are convex and hi are affine, the GPO problem is convex and may

be solved using barrier functions and gradient descent. When the GPO problem is not

convex, there also exist special cases in which the global optimum is guaranteed to be

found. For example, in [154] the unconstrained problem was solved using Groebner

bases. In the special case of x ∈ R1, the problem was solved in [144, 145]. In addition,

there exist several widely used heuristics which often yield reasonably suboptimal and

approximately or exactly feasible solutions to the GPO problem (e.g. [35, 151]), but

which we will not discuss here in depth.

The moment approach can be used to obtain an algorithm with finite termination

time, unfortunately, however, it has been shown that the class of problems for which

these methods terminate is a strict subset of the general class of GPO problems [115]

and furthermore, there are no tractable conditions verifying if the algorithm will

terminate or bounds on computational complexity in the case of finite termination.

Therefore, in Chapter 6 we propose a new method for solving GPO problems.
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2.3 Lyapunov Theory

Lyapunov Theory refers to the work of A. M. Lyapunov in which the definitions

of stability were standardized and methods for determining stability of systems were

proposed. Lyapunov considered systems of ordinary differential equations of the form

ẋ(t) = f(x(t)), x(0) = x0, (2.7)

where f : Rn → Rn and x0 ∈ Rn are respectively denoted the vector field and

initial conditions. If we define g(x0, t) to be the solution map of Eq. (2.7), where

g(x, 0) = x(0) and d
dt
g(x, t) = f(g(x, t)) for all x ∈ Rn and t ≥ 0 then we may define

asymptotic stability of a system on a set X as follows.

Definition 3. Given a nonlinear ODE, ẋ = f(x), the point x = 0 is asymptotically

stable on the set X if,

lim
t→∞

g(x, t) = 0, ∀x ∈ X (2.8)

where ∂tg(x, t) = f(g(x, t)) and g(x, 0) = x.

Lyapunov based methods estimate the region of attraction on a compact set X ∈

Rn by searching for a Lyapunov function V : Rn → R, and a scalar c such that the

time derivative of the Lyapunov function is negative for all values of x on the set

D := { x | V (x) ≤ c, x 6= 0}. The Lyapunov function, V , must be positive on the

set D but can be any type of function - for instance we see logarithmic Lyapunov

functions in [1].

If we consider polynomial Lyapunov functions then the search for Lyapunov proofs

of stability can be cast as a semi-definite programming problem using the Sum-of-

Squares (SOS) optimization discussed in the previous section. The toolbox SOS-

Tools [129], provides a general purpose sum-of-squares programming solver that can
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be used to solve multiple control systems problems using Semi-Definite Programming

(SDP) solvers such as SeDuMi [153]. Note, however, that even when the ODE of a

system is known, ẋ = f(x), and the function f : Rn → Rn is polynomial, methods

for finding the region of attraction involve a bilinear SOS optimization problem that

can be, at least approximately, solved using bisection [82] or genetic algorithms [70].

SDP techniques have also been used to find Lyapunov functions as a certificate of

stability for switched [15] and hybrid systems [81].

Most relevant to this dissertation are data based methods (of which there are

very few). However when an ODE and Lyapunov function are given, but the ODE

does not capture all the system dynamics, a data-based approach to estimate these

unmodeled dynamics and return an estimate of the region of attraction for the system

can be found in [9].

If an ODE does have an equilibrium point, then the set of converse Lyapunov

theorems guarantee the existence of Lyapunov functions that prove stability on the

region of attraction [69]. For example, such a converse Lyapunov function,

V (x) =

∫ ∞
0

‖g(x, t)‖2 dt, (2.9)

is guaranteed to exist.

Non-Lyapunov based methods for calculating stability and the region of attraction

generally involve numerically integrating the vector field of the ODE. One such nu-

merical method (see [26]) involves identifying the equilibrium points whose unstable

manifolds contains initial conditions that approach the equilibrium point of interest,

which is usually performed by integrating the vector field. The union of these man-

ifolds are then within the region of attraction. Other methods involve numerically

integrating the vector field in the forward and reverse direction and observing the

trajectories of a set of initial conditions as in [62].
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In Chapter 5 we develop a data based method for modeling a converse Lyapunov

function for an unknown system and use this model to estimate the region of attrac-

tion.

2.4 Support Vector Machines

One of the fundamental problems in machine learning is that of using labeled

data to predict the values of unlabeled data. For instance, assume a data generat-

ing mechanism has generated data points {xi}mi=1 ⊂ Rn with corresponding labels

{yi}mi=1 ⊂ R, then a common problem is to predict the labels of future points drawn

from the DGM.

Support Vector Machines (SVMs) are a machine learning method for binary clas-

sification (yi ∈ {−1, 1}) and regression problems (yi ∈ R) developed primarily by

Vladmir Vapnik in the 1990s [14, 36]. The support vector machine was designed to

minimize the error of predicting unlabeled data based on minimizing a bound on the

prediction error provided by Vapnik-Chervonenkis (VC) theory. In this section we

will pose both the 1-norm soft margin support vector machine as well as the epsilon

Support Vector Regression (ε-SVR) problem. We will propose improvements to these

machine learning algorithms in Chapter 4.

2.4.1 The 1-norm Soft Margin SVM:

Suppose we are given a set of m training data points {xi}mi=1 ⊂ Rn, each with

associated label yi ∈ {−1, 1} for i = 1, · · · ,m. We want to find a classifier, f , that

correctly classifies the training points (i.e. f(xi) = yi) as well as points that are not

included in the training data. A point is misclassified if f(xi) = −yi and we impose

a penalty C ∈ R+ on points in the training data that have been misclassified. We

define the primal version of the linear 1-norm soft margin problem as

37



min
w∈Rn, ζ∈Rm, b∈R

1

2
wTw + C

m∑
i=1

ζi s.t. yi(w
Txi + b) ≥ 1− ζi, ζi ≥ 0, (2.10)

where the learned map (classifier) from inputs to outputs is then f : Rn → {−1, 1}

where f(z) = sign(wT z + b).

This map maximizes the margin (distance) between training data with a negative

label, and those with a positive label. If the relationship between the inputs and

outputs is not linear, then we may introduce a positive kernel function, k to generate

nonlinear classifiers.

Definition 4. We say a function k : Y × Y → R is a positive kernel function if∫
Y

∫
Y

f(x)k(x, y)f(y)dxdy ≥ 0

for any function f ∈ L2[Y ].

For any given positive kernel k we may associate a function Φ such that k(x, y) =

〈Φ(x),Φ(y)〉 where 〈·, ·〉 is the dot product. In this case Optimization Problem (2.10)

might be posed as

min
w∈Rn, ζ∈Rm, b∈R

1

2
wTw + C

m∑
i=1

ζi (2.11)

s.t. yi(〈w,Φ(xi)〉+ b) ≥ 1− ζi, ζi ≥ 0,

and given the optimal values w∗ and b∗, the classifier would be f(x) = sign (〈w∗,Φ(x)〉+ b∗)

which maximizes the margin between points of negative and positive label in the ker-

nel space Φ(x). Although the primal form of SVM has certain advantages - see [133],

it is ill-suited to kernel learning. For this reason, we consider the dual formulation,

max
α∈Rm

m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyj〈Φ(xi),Φ(xj)〉 (2.12)

s.t.
m∑
i=1

αiyi = 0, 0 ≤ αi ≤ C ∀ i = 1, ...,m.
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In this case we may eliminate Φ from the optimization problem using 〈Φ(xi),Φ(xj)〉 =

k(xi, xj) where the elements k(xi, xj) define the kernel matrix. In this case, the

resulting classifier is only a function of k and becomes

f(z) = sign

(
m∑
i=1

α∗i yik(xi, z) + b

)
.

Note that b can be found a posteriori as the average of yj −
∑m

i=1 αiyik(xj, xi) for all

j such that 0 < αj < C - See [140]. This implies that the primal variable w is not

explicitly required for the calculation of b, and that the resulting learned classifier, f ,

may be expressed solely in terms of α and the kernel function.

Commonly used positive kernel functions include the gaussian kernel k1(x, y) =

e(−β||x−y||2), where β is the bandwidth (and must be chosen a priori) and the polyno-

mial kernel k2(x, y) = (1 + xTy)d where d is the degree of the polynomial. We next

formulate the Kernel Learning problem for the ε-SVR problem.

2.4.2 The ε-SVR Problem:

Suppose we are given a set of m training data points {xi}mi=1 ⊂ Rn, each with

associated output yi ∈ R for i = 1, · · · ,m. For a given “penalty” parameter C ∈ R+

and allowable loss ε ∈ R+, we define the primal version of the linear epsilon Support

Vector Regression (ε-SVR) problem as

min
w∈Rn, ξ∈Rm, ξ∗∈Rm, b∈R

1

2
wTw + C

m∑
i=1

(ξi + ξ∗i ) (2.13)

s.t. yi − wTxi − b ≤ ε+ ξi, ξi ≥ 0,

wTxi + b− yi ≤ ε+ ξ∗i , ξ∗i ≥ 0,

where the learned predictor from inputs to outputs is then f : Rn → R where f(x) =

wTx+ b.

As in the case of the binary support vector machine, the use of a positive kernel
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function, k, can be used to modify the learned predictor. Using the transformation

Φ, such that k(x, y) = 〈Φ(x),Φ(y)〉, Optimization Problem (2.13) can be posed as

min
w∈Rn, ξ∈Rm, ξ∗∈Rm, b∈R

1

2
wTw + C

m∑
i=1

(ξi + ξ∗i ) (2.14)

s.t. yi − wTΦ(xi)− b ≤ ε+ ξi, ξi ≥ 0,

wTΦ(xi) + b− yi ≤ ε+ ξ∗i , ξ∗i ≥ 0,

Given a solution, the predictor would be f(z) = 〈w,Φ(z)〉+ b.

As in the 1-norm soft margin problem we will consider the dual formulation,

max
α∈Rm,α∗∈Rm

− 1

2

m∑
i,j=1

(αi − α∗i )(αj − α∗j )〈Φ(xi),Φ(xj)〉 (2.15)

− ε
m∑
i=1

(αi + α∗i ) +
m∑
i=1

yi(αi − α∗i )

s.t.
m∑
i=1

αi − α∗i = 0, αi, α
∗
i ∈ [0, C] ∀ i = 1, ...,m.

In this case we may eliminate Φ from the optimization problem using 〈Φ(xi),Φ(xj)〉 =

k(xi, xj) where the elements k(xi, xj) define the kernel matrix. The resulting predictor

is only a function of k and becomes

f(z) =
m∑
i=1

(αi − α∗i )k(xi, z) + b.

Note that b can be found a posteriori through exploiting the Karush-Kuhn-Tucker

(KKT) conditions - See [147]. This implies that the primal variable w is not explicitly

required for the calculation of b, and that the resulting predictor, f , may be expressed

solely in terms of α, α∗ and the kernel function. In Chapter 4 we will propose a new

class of kernel function and a new algorithm to optimize this kernel function with

respect to the given data.
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2.5 Uncertainty Quantification

Consider the problem of using numerical algorithms to model the probability

density function of a continuous random variable based on data sampled from that

variable. Specifically, suppose we are given a parameterized set of probability dis-

tributions and would like to select the distribution which best models a set of data,

using some metric for fit (e.g. Maximum Likelihood Estimation (MLE)). This prob-

lem is often referred to as uncertainty quantification and is a critical part of analysis

in such fields such as climate change [124, 168], control [50, 25], and economic pol-

icy [167, 84]. Uncertainty quantification is a well-studied field of research [43, 156],

and as a result, there are many candidates for the parameterized class of models and

associated fitting algorithms.

As an illustration of how uncertainty can affect measured data consider Fig-

ures 2.1(a) and (b). In Fig. 2.1(a) we show a function with two inputs (X and Z)

and one output (Y ). However, assume that the input Z represents varying operating

conditions, noise, or some unmeasured characteristic. Then in Fig. 2.1(b) we show

the value of the output, Y , for different values of the input, X, over all possible values

of the unmeasured value Z. Clearly, the function no longer returns a single value for

a given input, but will vary depending upon the value of the unknown Z. When mea-

suring data from a DGM, the unmeasured affects imply that the exact relationship

between the inputs and outputs will be inexact, as illustrated in Fig. 2.1(b).

By quantifying the variability in the measured data, robust predictive models

can be generated to account for the unknown factors causing the variation in the

measured data. In this dissertation we use Probability Density Functions to model

the variability of data drawn from a DGM.
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(a) A function with two inputs (X,Z) and one

output (Y). All inputs are measured and the

output has no uncertainty.

(b) A function with one input (X), one unmea-

sured input (Z) and one output (Y). Since Z

is unmeasured the output is uncertain.

Figure 2.1: A plot of a function with two inputs (X,Z) and one output (Y). When

both inputs are known the output is always known (a), when only one input is known

the output is uncertain (b).

2.5.1 Important Definitions

We define L1(∆) as the set of all Lebesgue measurable functions f on ∆ ⊂ Rn

that satisfy
∫

∆
f(δ)dδ < ∞ and L1+(∆) as all L1 functions that are positive for all

values in ∆.

A Probability Density Function (PDF) on a bounded compact domain ∆ is a

convex subset of L1 functions [48] and is defined as follows.

Definition 5. We say a function f ∈ L1+(∆) is a Probability Density Function

on a bounded compact domain ∆ if,∫
∆

f(δ)dδ = 1 and, f(δ) ≥ 0 for all δ ∈ ∆.

From this definition we may define F∆ as the set of all bounded PDFs on a compact
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domain ∆.

F∆ :=

{
g ∈ L1+(∆) | g(δ) =

f(δ)∫
∆
f(δ)dδ

, f ∈ L1+(∆), sup
δ∈∆

f(δ) <∞
}
.

Density Two metrics for comparing the distance between two PDFs, f and g are

The squared Hellinger distance, d2
H(f, g) :=

∫
∆

(√
f(x)−

√
g(x)

)2

dx, and the L1

distance, dT (f, g) := 1
2

∫
∆
|f(x)− g(x)|.

In this paper we define density between two sets of PDFs using the Hellinger

metric.

Definition 6. Given two sets of PDFs F and G we say that F is dense in G if for

any g ∈ G and epsilon > 0 there exists an f ∈ F such that d2
H(f, g) ≤ ε.

Note, however, that the relationship between the Hellinger distance and the L1

distance is d2
H(f, g) ≤ dT (f, g) [93], implying that this definition of density holds if

we replace the squared Hellinger distance with the L1 distance.

2.5.2 Metrics for Selecting PDFs to Model Random Variables

To select a predictive model which best models the variability of measured data

we will use two different metrics - the likelihood and worst case likelihood metrics.

Likelihood Metrics

Suppose we are given a set of data, D := {δi}mi=1, drawn from some unknown DGM

where δ ∈ Rn is a continuous random variable. Here we will propose two metrics for

selecting a PDF from a given class to model the DGM.

The first metric is the likelihood of the data. For a PDF f , with given parameters

θ, the likelihood of the data is given by,

Lf (D) =
∏
δ∈D

f(δ; θ). (2.16)
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Finding the parameters, θ, which result in the maximum likelihood of the data is called

the Maximum Likelihood Estimation (MLE) optimization problem. This approach is

covered extensively in work such as [113].

A second metric used to evaluate a PDF with respect to given data is the worst

case likelihood of the data,

Wf (D) = min
δ∈D

f(δ; θ). (2.17)

Finding the parameters, θ, which result in the maximum worst case likelihood is called

the maximum Worst Case likelihood Estimation (WCE) optimization problem. The

level sets of the WCE optimized PDF functions are often used to characterize sets of

minimal volume that are likely to contain future data points.

Uncertainty Quantification with Gaussian Distributions

For example, consider the class of Gaussian PDFs. For any µ ∈ Rn and positive

matrix P � 0 ∈ Rn×n, we may obtain a Gaussian Probability Density Function of

the form

fG(δ;µ, P ) :=
e−

(δ−µ)T P (δ−µ)
2

(2π)n/2
√

det(P−1)
. (2.18)

For a given set of data the MLE optimization problem (for a Gaussian PDF) is

the following optimization problem.

max
µ∈Rn,P∈Rn×n

LfG(D) =
∏
δ∈D

fG(δ;µ, P )

The solution to the maximum likelihood problem for a Gaussian PDF has an ana-

lytical solution that can be computed efficiently where, µ∗ is the mean of the data,

and P ∗ is the inverse of the empirical covariance matrix, and is called the precision

matrix.
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For the same set of data the WCE problem (again for a Gaussian PDF) is the

following optimization problem,

max
µ∈Rn,P∈Rn×n

WfG(D) = max
µ∈Rn,P∈Rn×n

min
δ∈D

fG(δ;µ, P ).

Generally the worst case likelihood approach does a poor job of modeling the PDF

of the resulting DGM. However, it can be used to characterize volumes where future

data is likely to fall based on the level sets of the model PDF. The level sets of the

Gaussian distribution are semi-algebraic and are defined as follows.

Hβ = {δ : (Zd(δ)− µ)TP (Zd(δ)− µ) ≤ β}, (2.19)

The worst case likelihood approach tends to generate sets that contain all of the data

with significantly smaller volume than the maximum likelihood approach. In fact if

the worst case likelihood approach is used to find µ and P , and β = maxδ∈D(Zd(δ)−

µ)TP (Zd(δ)−µ), then we show in Chapter 3 that the set S is exactly the ellipsoid of

minimal volume containing all of the points in D.
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Chapter 3

UNCERTAINTY QUANTIFICATION USING POLYNOMIAL AND

SUM-OF-SQUARES OPTIMIZATION

To generate models that capture the diversity of immune system cells found in, for

instance flow cytometry or mass cytometry datasets, we will model the Probability

Density Function (PDF) of characteristics of the immune system cells. Analyzing

the PDF of the cellular characteristics of a patients immune system cells returns a

holistic model of the immune system when compared to sorting the cells into a finite

set of groups. PDF models can then be compared using metrics such as the Hellinger

distance [72] to determine immune system similarity between two individuals. How-

ever, the PDF of cytometry datasets often do not fall under any known distribution

like, for instance a Gaussian. Modeling the cellular characteristics with a PDF thus

requires state of the art techniques.

One approach to modeling the PDF of multivariate data is to use Gaussian Mix-

ture Models (GMMs) - a summation of multivariate normal PDFs. GMM distribu-

tions are a significantly richer class of distributions than multivariate normals and

examples of the use of GMMs to model random variables include adjacent vehicle

motion in [169], and modeling wind power generation in [87]. Unfortunately the use

of numerical algorithms for fitting GMMs to data suffers from the problem of non-

convexity of the optimization problem. Specifically, the MLE optimization problem

introduced in Chapter 2 for GMMs is a non-convex optimization problem. Thus any

distribution obtained from an expectation-maximization algorithm as applied to the

MLE problem for GMMs is likely to be sub-optimal, with no provable bounds on

performance [11].
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In this chapter we propose new sets of PDFs to model the distribution of mul-

tivariate data which are dense in the set of all bounded PDFs (F∆) on a compact

domain (Recall Definition 6 from Subsection 2.5.1 for the definition of density for sets

of PDFs). However, unlike the GMMs, the parameters of these sets are convex with

respect to the MLE optimization problem and the globally optimal parameters can

be found.

In Section 3.1 we propose a new set of distributions called Sliced Distributions

(SDs). We then define in Sections 3.2 and 3.3 two subsets of Sliced Distributions,

the Sliced-Exponential (SE) and Sliced-Normal (SN) distributions and prove that,

for any ε > 0 and PDF in f ∈ F∆, their exists a SE PDF g such that the squared

Hellinger distance between f and g is less than ε. Furthermore we introduce convex

optimization problems that can be used to fit a SD to a given set of data drawn from a

DGM. Then in Section 3.5 we compare SDs to classes of PDFs such as the Gaussian

and GMMs on standard metrics, and show that SDs generate superior models of

the distribution of publicly available datasets. We then apply the SDs to model the

difference in the PDF of immune cell characteristics between healthy patients and

those with rheumatoid arthritis using a mass cytometry dataset. Furthermore we

show that the PDF models can be used to predict whether a patient has RA or does

not have RA with an estimated accuracy of 92.86%.

3.1 Sliced-Distributions

In this section we define the set of Sliced Distributions which we will use to

represent the joint probability distribution of random variables. The general form of

the Probability Density Function (PDF) of a SD is as follows.

Definition 7. Let δ ∈ Rn be a random variable with support ∆ ⊂ Rn, Z : Rn → Rq

with q > n, and pf : Rq × Rk → R with support ∆Z be a given probability density
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function. Then the sliced PDF is given by,

pSD(δ) =


1
c
pf (Z(δ); θ) for all δ ∈ ∆

0 otherwise.

where c =
∫

∆
pf (Z(x))dx and θ represents parameters of the probability density func-

tion.

If Z is an injective non-surjective function then the set,

SZ := {z ∈ Rq|z 6= Z(δ) for any δ ∈ ∆}

is non-empty and the Sliced-Distribution, pSD(δ), is a slice of the PDF pf (z) on

∆Z/SZ where SZ is ”sliced” out of the distribution. We classify Sliced Distributions

by the function Z which lifts the data to a higher dimensional space, and by the

distribution in the higher dimensional space, pf .

To further illustrate the connection between the functions pf and Z, we define the

physical and feature spaces as follows.

Definition 8. For a given random vector δ ∈ Rq, a function Z : Rn → Rq and

corresponding PDF pf with support ∆Z ⊂ Rq, we say the physical space is Rn

and contains samples δ(i) of the random vector δ and the feature space is Rq and

contains transformed samples of the random vector z(i) := Z(δ(i)).

Therefore pf is a joint density function in the feature space, while pSD is a joint

density function in the physical space.

3.2 The Set of Sliced-Exponential Random Variables

In this section we propose the set of Sliced-Exponential (SE) random variables and

define two convex optimization problems that can be used to select the parameters
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of the SE that best model the distribution of given data, D := {δi ∈ Rn}mi=1. We

make no assumptions on the data D except that it is drawn from some unknown Data

Generating Mechanism (DGM).

We define the set of SE random variables as follows.

Definition 9. Given bounded ∆ ∈ Rn, λ, and d the Set of Sliced-Exponential

PDFs on ∆ is defined as E∆ := {f ∈ F∆ | f = fδ(δ;λ, d,∆), d ∈ N}, where the

PDF, fδ(δ;λ, d,∆) is given by

fδ(δ;λ, d,∆) =


e−λ

TZd(δ)−log(c) if δ ∈ ∆

0 otherwise,

(3.1)

and Zd(δ) are the monomials of degree less than d of δ and c =
∫

∆
e−λ

TZd(δ)dδ.

In Theorem 11 we will show that E∆ is dense in F∆, the set of all bounded PDFs.

In addition we prove that the likelihood of the data is convex with respect to the λ

parameter of the SE PDF. We use this fact in Subsections 3.2.2 and 3.2.3 to show

that the MLE and WCE optimization problems are convex.

3.2.1 Properties of SE Random Variables

We will show in this subsection that the set of SE random variables is dense in

the set of all random variables defined by bounded PDFs on a compact domain.

Lemma 10. On compact ∆, for any f ∈ F∆ and ε > 0, there exists an h ∈ L1(∆)

such that ∫
∆

∣∣∣∣ eh(δ)∫
∆
eh(x)dx

− f(δ)

∣∣∣∣ dδ < ε.

Proof. Since f ∈ F∆ we have that there exists an M <∞ such that supδ∈∆ f(δ) ≤M

and since ∆ is compact V∆ =
∫

∆
1∆(δ)dδ exists. Next for any α > 0, define the
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function

log(α)(x) =


log(x) x > α

log(α) x ≤ α,

and let fn(δ) = log( 1
n

)(f(δ)) which is an L1 function since f(δ) is L1. Furthermore,

we have that
∫

∆
efn(δ)dδ ≤

∫
∆
ef(δ) + 1

n
dδ ≤ 1 + 1

n
V∆ and therefore,

sup
δ∈∆

∣∣∣∣f(δ)− efn(δ)∫
∆
efn(δ)dδ

∣∣∣∣ ≤


maxδ∈∆ f(δ)− f(δ)

1+ 1
n
V∆
, for f(δ) > 1

n

1
n

1+ 1
n
V∆

for f(δ) ≤ 1
n

In the first case, maxδ∈∆ f(δ) − f(δ)

1+ 1
n
V∆

= M − M
1+ 1

n
V∆

, since M is the maximum

value of f(δ) on ∆. Therefore we have that,∫
∆

∣∣∣∣ efn(δ)∫
δ
efn(x)dx

− f(δ)

∣∣∣∣ dδ ≤ V∆ max

{
M − M

1 + 1
n
V∆

,
1
n

1 + 1
n
V∆

}
(3.2)

≤ V∆ max

{
MV∆

n+ V∆

,
V∆

n+ V∆

}
(3.3)

Let N = max
{
V 2

∆

ε
− V∆,

MV 2
∆

ε
− V∆

}
. Then in the first case when M ≥ 1,

∫
∆

∣∣∣∣ efN (δ)∫
∆
efN (x)dx

− f(δ)

∣∣∣∣ dδ ≤ MV 2
∆

N + V∆

≤ MV 2
∆

MV 2
∆

ε

≤ ε,

and in the second case when M ≤ 1,

sup
δ∈∆

∣∣∣∣ efN (δ)∫
∆
efN (δ)dδ

− f(δ)

∣∣∣∣ ≤ V∆

N + V∆

≤ V∆

V∆

ε

≤ ε.

Therefore h = fN ∈ L1(∆) completes the proof.

We next apply Lemma 10 to show that the set of Sliced-Exponential PDFs is

dense in the set of all bounded PDFs F∆.

Theorem 11. For any f ∈ F∆ and any ε > 0 there exists an h ∈ E∆ such that,

d2
H(f, h) < ε.
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Proof. By Lemma 10 we have that for any ε > 0 there exists a function h ∈ L1(∆)

such that
∫

∆

∣∣∣ eh(δ)∫
∆ eh(x)dx

− f(δ)
∣∣∣ dδ < ε. Polynomial functions are dense in the set of

continuous functions on compact sets, which are dense in L1(∆) [57], therefore there

exists a polynomial qε(δ) such that,
∫

∆

∣∣∣ eqε(δ)∫
∆ eqε(x)dx

− f(δ)
∣∣∣ dδ < ε.

Let h(δ) = qε(δ)− log(
∫

∆
eqε(δ)dδ) then h(δ) = eqε(δ)∫

∆ eqε(δ)dδ
and h(δ) ∈ E∆. Therefore∫

∆
|h(δ)− f(δ)| dδ < ε, and

d2
H(h, f) ≤

∫
∆

|h(δ)− f(δ)| dδ < ε.

We will show in the numerical results that even SEs of finite degree can model

the distribution of unknown DGMs better than other state of the art methods. Next

we will develop an optimization problem for optimizing the λ parameter of the SE.

3.2.2 Solving the MLE Optimization Problem for Sliced-Exponentials

This subsection describes how to select an optimal parameter λ to model the

distribution of a given set of data D := {δ(i)}mi=1 by solving the MLE optimization

problem for fixed values of ∆ and d.

Maximizing the Likelihood of the Data

We first define the MLE problem with respect to the set of Sliced-Exponentials. We

then define a convex optimization problem and show that it solves the MLE problem.

The likelihood of a given set of data D, for a model f is,

Lf (D) =
m∏
i=1

fδ(δ
(i)), (3.4)

and the solution of the MLE problem is the model f within a given set of PDFs that

maximizes Lf (D).
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Recall that for a support set ∆, our Sliced-Exponential PDF can be defined as,

fd(δ;λ,∆) =


e−λ

TZd(δ)−log(c) if δ ∈ ∆

0 otherwise.

(3.5)

The MLE problem with respect to the SE set of random variables and data from

a DGM D := {δ(i)}mi=1, is to find the parameter λML such that,

λML = arg max
λ∈Rq

Od,δ,s(λ) =
m∏
i=1

e−λ
TZd(δ(i))−log(c), (3.6)

however since there is no known analytical solution for c we will calculate its value

using Monte Carlo sampling.

First let S := {s(i)}bi=1 contain b points uniformly sampled from the set ∆. Then

we may estimate the normalization constant c using Monte Carlo sampling as,

c =

∫
∆

e−λ
TZd(δ)dδ ≈ v∆

b

b∑
i=1

e−λ
TZd(s(i)), (3.7)

where c becomes exact as b approaches infinity. We therefore estimate log(c) as,

log(c̃b(λ, d,S)) = log(v∆)− log(b) + log

(
b∑
i=1

e−λ
TZd(s(i))

)
. (3.8)

We will discuss how many samples, b to select for accurate estimation of the normal-

ization constant in Appendix A.1 and further analysis can be found in [40].

Now we may simplify the objective function Od,δ,s(λ) as,

Od,δ,s(λ) :=
m∏
i=1

e−λ
TZd(δ(i))−log(c̃b(λ,d,s))

= −
m∑
i=1

log (c̃b(λ, d, s)) + λTZd(δ)

=
m∑
i=1

− log

(
v∆

b

b∑
i=1

e−λ
TZd(s(i))

)
− λTZd(δ)

=
m∑
i=1

− log
(v∆

b

)
− log

(
b∑
i=1

e−λ
TZd(s(i))

)
− λTZd(δ). (3.9)
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Since the term m log(v∆

b
) is constant, minimizing the following expression,

min
λ∈Rq

{
m∑
i=1

log

(
b∑
i=1

e−λ
TZd(s(i))

)
+ λTZd(δ

(i))

}
, (3.10)

is equivalent to maximizing equation (3.9) and thus returns the solution to the MLE

problem.

Next we will prove that this optimization problem is convex.

The MLE Optimization Problem is Convex

Here we will find the gradient and Hessian of the objective function of Optimization

Problem (3.6). For a given degree d, data set δ, and sampled set, S, the objective

function of Optimization Problem (3.9) is

Od,δ,s(λ) :=
m∑
j=1

log

(
b∑
i=1

e−λ
TZd(s(i))

)
+ λTZd(δ

(j)). (3.11)

The gradient and Hessian of this objective function with respect to λ is therefore a

sum of the gradient and Hessian of functions of the following form,

f(λ, s, δ) = log

(
b∑
i=1

e−λ
TZd(s(i))

)
+ λTZd(δ). (3.12)

The partial derivative of f(λ, s, δ) with respect to each element in λ is

∂f

∂λj
=

∑b
i=1−Z

j
d(s

(i))e−λ
TZd(s(i))∑b

i=1 e
−λTZd(s(i))

+ Zj
d(δ) (3.13)

where Zj
d(s

(i)) is the jth element of the monomial basis of the ith datum in s. The

element corresponding to the k’th row and j’th column of of the Hessian can be

calculated as,

Hk,j =

(∑b
i=1 V

(k)
i V

(j)
i Ei

)(∑b
i=1 Ei

)
−
(∑b

i=1 V
(k)
i Ei

)(∑b
i=1 V

(j)
i Ei

)
(∑b

i=1 Ei

)2 (3.14)
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where Ei = e−λ
TZd(s(i)) and V

(j)
i = Zj

d(s
(i)).

Next we will prove that the Hessian matrix is positive semi-definite and, thus, the

function f(λ, s, δ) in Eq. (3.12) is convex with respect to λ.

Lemma 12. For V ∈ Rb×q where V (j) ∈ Rb is the jth column vector in the matrix

V, and E ∈ Rq+ where Ei is the ith element in E and s =
∑b

i=1Ei, then the Hessian

matrix H ∈ Rq×q is defined elementwise as,

Hk,j =

(∑b
i=1 V

(k)
i V

(j)
i Ei

)(∑b
i=1Ei

)
−
(∑b

i=1 V
(k)
i Ei

)(∑b
i=1 V

(j)
i Ei

)
(∑b

i=1Ei

)2

is positive semi-definite.

Proof. To prove that H is positive semi-definite and since
(∑b

i=1Ei

)2

is a positive

constant we will find a decomposition H
(∑b

i=1Ei

)2

= RRT which proves H is posi-

tive semi-definite.

Let β ∈ N(b2)×2 be every unique combination of i, l ∈ {1, 2, · · · , b} without replace-

ment. Then let rki =
√
Eβi,1(V

(k)
βi,1
− V (k)

βi,2
)
√
Eβi,2 which exists because Ei ≥ 0 for all

i = 1, ..., b. Then we have the following relationship,(
b∑
i=1

Ei

)2

Hk,j =

(
b∑
i=1

V
(k)
i V

(j)
i Ei

)(
b∑
i=1

Ei

)
−

(
b∑
i=1

V
(k)
i Ei

)(
b∑
i=1

V
(j)
i Ei

)

=
b∑
i=1

(
b∑

l=i+1

Ei(V
(k)
i − V (k)

l )(V
(j)
i − V

(j)
l )El

)

=
b∑
i=1

(
b∑

l=i+1

√
Ei(V

(k)
i − V (k)

l )
√
El
√
Ei(V

(j)
i − V

(j)
l )
√
El

)

=
(
rk
)T
rj

Now define, RT =

[
r(1) r(2) · · · r(q)

]
and we have that H = RRT

(
∑b
i=1 Ei)

2 , imply-

ing that H is itself positive semi-definite since RRT is positive semi-definite and(∑b
i=1 Ei

)2

is a positive scalar.
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We have now proven that the Hessian matrix is positive semi-definite.

Theorem 13. Optimization Problem (3.6) is convex.

Proof. The objective function of Optimization Problem (3.6) is a positive summation

of functions f(λ, s, δ) = log
(∑b

i=1 e
−λTZd(s(i))

)
+λTZd(δ) which have a positive semi-

definite Hessian matrix with respect to λ as proven in Lemma 12. Since positive sums

of convex functions are convex Optimization Problem (3.6) is convex.

To demonstrate the SEs with parameters optimized by solving the MLE problem,

we will next model the distribution of a publicly available data set using Optimization

Problem (3.9).

Example 1 For this example we use the publicly available Iris [55] data set, D :=

{δ(i) ∈ R4}150
i=1. For reference, Fig. 3.1 shows a scatterplot of the Iris dataset after it

has been scaled to fit within a hyper-cube centered at 0 with side lengths of 1. We

have selected the Iris dataset to use as an example since it is clearly multi-modal, and

does not fall into any known distribution.

In Fig. 3.2 we plot SE PDFs fit to lower-dimensional subsets of the Iris dataset.

Along the diagonal we plot the marginal PDFs of each variate δ1 through δ4 using

degree 8 SEs. In each of the non-diagonal subplots we plot the SE PDFs describing

two of the variates using degree 6 SEs. These plots show that low degree Sliced-

Exponentials may model a wide variety of random variables.

To show that SEs can characterize the multi-modal dependencies in higher dimen-

sional data sets we train a fourth degree SE on the Iris data set. Using slice sampling

we generate and plot 150 simulated data points from the trained SE in Fig. 3.3. For

comparison the log likelihood value of a normal distribution fit to this data is 596.4,

compared to a log likelihood value of 725.8 for the SE. This is a significant increase
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Figure 3.1: Subplots along the jth diagonal element show a histogram of measured δj

data, while subplots corresponding to the jth and ith position show a scatterplot of

measured data of δj versus δi for a rescaled version of the Iris dataset [55].

in the log likelihood of 19.57%.

Next we consider the WCE problem for generating optimal parameters λ.

3.2.3 A Convex Optimization Problem to Solve the Worst Case Estimation (WCE)

Problem

Optimizing the SE with respect to the worst case likelihood estimation yields SE

PDFs whose sets enclose the data more tightly than SEs optimized by solving the

maximum likelihood estimation problem. We first formally define the WCE problem
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Figure 3.2: Sliced-Exponential PDFs fit using Optimization Problem (3.10), subplots

along the jth diagonal element show a Sliced-Exponential PDF of degree 8 fit to

measured δj data, while subplots corresponding to the jth and ith position show a

Sliced-Exponential PDF of measured data of δj versus δi of the Iris dataset [55].

and show that we may find the value of λ, for a given degree d, which maximizes the

worst case likelihood on a set of data points, D, by solving a convex optimization

problem. The selection of an optimal degree d can be identified using cross-validation

techniques such as those proposed later in Section 3.5.1.
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Figure 3.3: Plot of a rescaled version of the Iris dataset [55] (blue) and data sampled

from the SE PDF (green) optimized using the solution of the MLE optimization

problem. Subplots along the jth diagonal element show a histogram of the sampled

δj data, while subplots corresponding to the jth and ith position show a scatterplot

of sampled data of δj versus δi.

Solving the WCE Optimization Problem for Sliced-Exponentials

We first derive the WCE problem with respect to the set of Sliced-Exponentials. We

then define a convex optimization problem and show that it solves the MLE problem.

The worst case likelihood of a model f on a given set of data D := {δ(i)}mi=1 is defined
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as,

Wf (D) = min
i∈{1,··· ,m}

fδ
(
δ(i)
)
,

and finding the model f from a set of models that maximizes Wf (D) is called the

Worst Case Estimation (WCE) problem.

For a support set ∆, recall that the Sliced-Exponential PDF is defined as,

fδ(δ;λ) =


e−λ

TZd(δ)−log(c) if δ ∈ ∆

0 if δ /∈ ∆.

(3.15)

Since there are no analytical solutions for the normalization constant of the PDF, we

will use the Monte Carlo based numerical integration constant defined in Eq. (3.8).

The solution of the WCE problem for the SE set is the optimal parameter λWC,

given by,

λWC := argmax
λ

min
i∈{1,··· ,m}

e−λ
TZd(δ(i))−log(c̃b(λ,d,s)). (3.16)

We may simplify the objective function as follows.

e−λ
TZd(δ(i))−log(c̃b(λ,d,s)) = − log (c̃b(λ, d, s))− λTZd(δ(i))

= − log

(
v∆

b

b∑
i=1

e−λ
TZd(s(i))

)
− λTZd(δ(i))

= − log
(v∆

b

)
− log

(
b∑
i=1

e−λ
TZd(s(i))

)
− λTZd(δ(i)). (3.17)

A convex lower bound on Eq. (3.17) may be implemented by constraining a decision

variable, t as follows,

t ≤ − log
(v∆

b

)
− log

(
b∑
i=1

e−λ
TZd(s(i))

)
− λTZd

(
δ(i)
)
∀i ∈ {1, · · · ,m}, (3.18)

and maximizing t subject to this constraint maximizes the worst case likelihood on

the data in D as defined in Eq. (3.16) for the degree d SE.
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(a) Level sets of SE PDFs that contain

all of the first and second variates of the

Iris data set where λ was optimized by

solving the WCE (red) or the MLE (blue)
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Figure 3.4: Level sets of SE PDFs fit using Optimization Problem (3.19) that contain

bi-variate subsets of the Iris data set (red) compared to level sets of the SE PDFs fit

using Optimization Problem (3.10) to the same data (blue).

Therefore, solving the optimization problem,

min
t∈R,λ∈Rq

{
−t | t+ log

(
b∑
i=1

e−λ
TZd(s(i))

)
+ λTZd(δ

(i)) ≤ 0 ∀ i ∈ {1, · · · ,m}

}
,

(3.19)

is equivalent to maximizing equation (3.17) minus the constant term log(v∆

b
).

Theorem 14. Optimization Problem (3.19) is convex.

Proof. The objective function of Optimization Problem (3.6) is affine and thus convex.

The function f(λ, s, δ) = log
(∑b

i=1 e
−λTZd(s(i))

)
+λTZd(δ) has a positive semi-definite

Hessian matrix with respect to λ as proven in Lemma 12 and is thus convex. Since pos-

itive sums of convex functions are convex each constraint, t+log
(∑b

i=1 e
−λTZd(s(i))

)
+

λTZd(δ
(i)) ≤ 0 is convex and Optimization Problem (3.6) is therefore a convex opti-

mization problem.
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For any SE with PDF fδ, we define the level set of smallest volume that contains

all of the points in D as,

Hβ := {δ | fδ(δ;λ) ≥ β}, (3.20)

for β = Wfδ(D). For any value of β ∈ R+, Hβ := {δ | fδ(δ;λ) ≥ β} is defined by

a polynomial inequality and is thus a semi-algebraic set. This can be seen with the

following algebraic manipulation,

0 ≤ log(fδ(δ;λ))− log(β) ≤ −λTZd(δ)− log(c)− log(β) ≤ −λTZd(δ)− κ,

where κ = log
(
c
β

)
and Hβ is equivalent to the semi-algebraic set {δ|−λTZd(δ)−κ ≥

0}.

To demonstrate the advantages of the SEs optimized by solving the WCE using

Optimization Problem (3.19) we will analyze the data-enclosing level sets of the SE

fit to a publicly available data set.

Example 2 For this example we also use the publicly available Iris [55] data set,

D := {δ(i) ∈ R4}150
i=1. For reference, Fig. 3.1 shows a scatterplot of the Iris dataset

after it has been scaled to fit within a hyper-cube centered at 0 with side lengths of

1.

In Fig. 3.4 we plot the level set HWfδ
(D), which is the set of minimal volume

that contains all of the Iris dataset, for SEs optimized by solving the MLE and

WCE optimization problem. Fig. 3.4 shows the bi-variate PDFs of the ML SEs

corresponding to the ith and jth parameters. Recall that as in Fig. 3.2 these sets

correspond to lower-dimensional subsets of the iris data set. Notice that the data-

enclosing set for a four dimensional SE can’t be shown in the same format. However,

uniformly distributed samples over such a set are shown in figure 3.5.
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Figure 3.5: Plot of a rescaled version of the Iris dataset [55] (blue) and data uni-

formly sampled from the level set HWfδ
(D) of an SE PDF (green) optimized by solv-

ing the WCE optimization problem. Subplots along the jth diagonal element show

a histogram of the sampled δj data, while subplots corresponding to the jth and ith

position show a scatterplot of sampled data of δj versus δi.

We calculated the volume of the minimum volume ellipsoid that contains the Iris

data to be 0.0164, whereas the volume of the sliced-exponential level set is 0.0036.

This implies that the volume of the sliced-exponential level set was 128% less than

volume of the minimum volume ellipsoid.

The level sets of SE PDFs can be used with polynomial optimization methods such

as sum-of-squares optimization [131, 123] to carry out formal robustness analysis and
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optimization, such as the polynomial level sets used in [50, 25]. In addition, the

reliability of such sets, which bound the probability of future samples drawn from the

same DGM falling within the set, can be assessed using scenario theory as in [41].

We perform a numerical analysis of the effect of the number of samples used to

calculate the numerical integration constant, and the effect of increasing the number

of samples or dimension of D on the solution to the MLE and WCE problems in

Appendix A.1.

Next we consider a closely related set of sliced distributions called sliced-normals.

3.3 Sliced-Normal Distributions

Here we define a subset of Sliced Distributions called the Sliced-Normal (SN)

distribution. As in the previous section we first prove that the set of Sliced-Normal

distributions is dense in the set of all bounded PDFs F∆.

Unfortunately for an equivalent degree, SNs have more parameters than SEs and

are thus more expensive to fit to data. Therefore we propose solving optimiza-

tion problems closely related to the MLE and WCE optimization problems that

have a significantly reduced computational complexity when compared to the Sliced-

Exponential MLE and WCE optimization problems.

In the feature space Sliced-Normal Distributions are multivariate normal distri-

butions where the transformation Z(δ) returns the monomial basis of δ. Specifically

we can write a degree bounded SN as,

p
(d)
SN(δ) =


1
c
e−

1
2

(Zd(δ)−µ)TP (Zd(δ)−µ) for all δ ∈ ∆

0 otherwise.

(3.21)

where c =
∫

∆
e−

1
2

(Zd(δ)−µ)TP (Zd(δ)−µ)dx, P > 0 is the positive definite precision matrix,
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and the set of SN distributions is,

FN := {p(d)
SN(δ) | d ∈ N}. (3.22)

The SN distributions differ from the SE distributions in that the polynomial ar-

gument is a sum-of-squares polynomial and is thus globally positive. Sum-of-squares

polynomials have more parameters than the polynomial parameterization used with

SEs.

3.3.1 Properties of Sliced-Normals

In this subsection we show that the SN set is dense in the set of all bounded PDFs

F∆. We begin by showing that for any SE distribution we may find an equivalent

SN distribution on ∆. Therefore the set of SN distributions must, like the set of SE

distributions, be dense in F∆.

Lemma 15. For any polynomial function, p(δ) and ε > 0 there exists a sum-of-

squares polynomial function q(δ) such that,∫
∆

∣∣∣∣ 1

cp
e(p(δ)) − 1

cq
eq(δ)

∣∣∣∣ dδ < ε,

where cp =
∫

∆
ep(δ)dδ and cq =

∫
∆
eq(δ)dδ.

Proof. Let m = minδ∈∆ p(δ), which must exist since polynomials are bounded on

compact sets. Then we have that,

1

cp
ep(δ) =

1

e−mcp
e−mep(δ)

=
1

e−mcp
ep(δ)−m

=
1

cf
e−f(δ),

where f = p(δ)−m and cf =
∫

∆
ef(δ)dδ. In addition f(δ) is nonnegative on ∆, and the

set of SOS polynomials is dense in the set of nonnegative polynomials on any compact
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set [97]. Therefore there exists an SOS polynomial q(δ) such that q(δ) = f(δ) = p(δ)

for all δ ∈ ∆ and we have that∫
∆

∣∣∣∣ 1

cp
ep(δ) − 1

cq
eq(δ)

∣∣∣∣ dδ < ε

Therefore on any compact ∆ the SN distributions is dense in the set of SE distri-

butions.

Lemma 16. The set of SN PDFs N∆ is dense in the set of bounded PDFs F∆.

Proof. From Lemma 15 we have that the set of sliced-normal PDFs N∆ are dense in

the set of sliced-exponential PDFs E∆ and from Theorem 11 we have that the set of

sliced-exponentials is dense in F∆.

While both the SE and SN sets are dense in F∆, the set of degree bounded

SEs has fewer decision variables for a given degree d polynomial. Therefore when

solving the MLE and WLE optimization problems exactly it is more computationally

efficient to solve these problems using the SE set. However, there exist a number of

computationally efficient solutions for finding SNs using metrics related to the MLE

and WLE problems that cannot be applied to the set of SEs. These solutions often

result in comparable models but at significantly less computational expense.

3.4 Efficient Modeling Approaches using Approximate Solutions

The MLE and WLE optimization problems in the physical space for the SN and

SE distributions can be computationally expensive to solve. This is primarily due

to the Monte Carlo sampling method which might require millions of samples to

accurately compute the normalization constant for each computation of the gradient,
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hessian or objective value. We next develop computationally inexpensive methods by

solving the MLE optimization problem in feature space.

3.4.1 Solving the MLE Optimization Problem in Feature Space

In feature space an SN PDF is equivalent to a normal PDF where there are

analytical solutions for the mean, µ and precision matrix P and thus Monte Carlo

sampling is not required to optimize these parameters.

Specifically, the MLE optimization problem in feature space is formulated as

max
P∈Rq×q , µ∈Rq

 log
∏
δ∈D

e−
(Zd(δ)−µ)T P (Zd(δ)−µ)

2

(2π)q/2
√

det(P−1)
: P � 0

 , (3.23)

because a SN distribution is a multivariate normal distribution in the feature space

and the normalization constant for a multivariate Gaussian is c = (2π)q/2
√

det(P−1).

This optimization problem is a special case of optimization problems of the form

max
P∈Rq×q , µ∈Rq

 log
m∏
i=1

e−
(hi−µ)T P (hi−µ)

2

c
√

det(P−1)
: P � 0

 . (3.24)

Such optimization problems admit an analytic solution, as can be found in, e.g. [67].

Specifically, for given {hi}, we have that the solution is µ∗ = 1
m

∑m
i=1 hi and P ∗ = Σ−1,

where Σ = 1
m

∑m
i=1 hih

T
i . Thus µ is the empirical mean and P is the empirical preci-

sion matrix of the data in feature space.

Unfortunately the optimal P ∗ and µ∗ selected by optimizing a multivariate Gaus-

sian distribution in the feature space may have a poor likelihood value in the physical

space. Thus we next consider a second method to improve the SN parameters to

increase the likelihood of the data.
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3.4.2 Rescaling the Feature Space Precision Matrix

In this section, we propose a convex optimization problem that maximizes the

likelihood of the SN for a given data sequence by scaling the suboptimal precision

matrix P obtained in the prior subsection. In this case, we assume that a degree d

has been selected and we are given previously selected values of the hyperparameters

P ∗ ∈ Rq×q and µ∗ ∈ Rq, presumably found using Optimization Problem (3.23). We

now consider SN ‘candidates’ of the following form,

p
(d)
SN(δ; γ) =


1
c
e−γ

1
2

(Zd(δ)−µ∗)TP ∗(Zd(δ)−µ∗) for all δ ∈ ∆

0 otherwise.

(3.25)

where P ∗ and µ∗ are fixed, ∆ ⊂ Rn is the support set of the SN, and γ is the rescaling

factor. This distribution can be cast as a SE distribution where the monomial basis

has been replaced with a polynomial function B(δ) = 1
2
(Zd(δ)− µ∗)TP ∗(Zd(δ)− µ∗)

thus implying λ ∈ R and this problem can be solved using the SE optimization

methods defined in Section 3.2. Since there is only one scalar decision variable, this

problem is computationally inexpensive compared to using a larger monomial basis

such as in the full set of SN or SE distributions. If γ∗ > 0, we have that P ∗ is still

positive definite, thus making the polynomial a sum of squares polynomial and the

distribution a SN distribution.

To demonstrate the SNs with parameters optimized by rescaling the MLE optimal

feature space solution, we will next model the distribution of a publicly available data

set using Optimization Problem (3.25).

Example 3 For this example we use the publicly available Iris [55] data set, D :=

{δ(i) ∈ R4}150
i=1. For reference, Fig. 3.1 shows a scatterplot of the Iris dataset after it
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Figure 3.6: Plot of a rescaled version of the Iris dataset [55] (blue) and data sampled

from the SN PDF (green) optimized using the rescaled precision matrix. Subplots

along the jth diagonal element show a histogram of the sampled δj data, while subplots

corresponding to the jth and ith position show a scatterplot of sampled data of δj

versus δi.

has been scaled to fit within a hyper-cube centered at 0 with side lengths of 1. We

have selected the Iris dataset to use as an example since it is clearly multi-modal, and

does not fall into any known distribution.

To show that SNs can characterize the multi-modal dependencies in higher dimen-

sional data sets we train a fourth degree SN on the Iris data set. Using slice sampling

we generate and plot 150 simulated data points from the trained SN in Fig. 3.6. For
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comparison the log likelihood value of a normal distribution fit to this data is 596.4,

compared to a log likelihood value of 875.7 for the SN. This is a significant increase

in the log likelihood of 37.94%.

We next consider approximate solutions to the WLE optimization problem.

3.4.3 Solving the WCE Optimization Problem in Feature Space

We may also compute approximate solutions to the WLE optimization problem

for the set of SN distributions. First we will show that the WLE optimization problem

for the set of degree 1 SN distributions is identical to the minimum volume ellipsoid

problem as defined in [162, 161]. Then we use the solution of the minimum volume

ellipsoid problem in the feature space to efficiently render SNs that are optimal in

the feature space as an alternative to solving the computationally expensive WCE

problem for SEs.

The minimum volume ellipsoid problem can be formulated as the following opti-

mization problem [162],

min
M∈Rq×q

− log(detM) (3.26)

such that:
[

1
Zd(δ)

]T
M
[

1
Zd(δ)

]
≤ n ∀ δ ∈ D, and M > 0.

Optimization Problem (3.26) can be solved efficiently even for cases where the number

of points m > 100, 000 and n > 50 using methods from [161]. Note that, since the

volume of the ellipse is not related to the first column and row of M an equivalent

optimization problem is given by,

min
M∈Rq×q

− log(detM2:q,2:q) (3.27)

such that:
[

1
Zd(δ)

]T
M
[

1
Zd(δ)

]
≤ q ∀ δ ∈ D, and M > 0,

where M2:q,2:q is the matrix M without the first row and column.
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The solution to the WLE optimization problem in feature space on the other hand

is given by,

P ∗, Q∗ = arg max
P∈Rq×q ,Q∈Rq+1×q+1

{
log|P | − α : zTi Qzi ≤ α, P � 0, Q � 0, Q2:q,2:q = P

}
.

(3.28)

By a change of variable R = q
α
Q, we have that the objective function of the WLE

optimization problem in feature space can be formulated as,

−log|Q2:q,2:q|+ α = −log
α

q

q

|R|+ α

= −log
α

q

q

|R2:q,2:q|+ α

= −(q) log(α) + (q) log(q)− log(|R2:q,2:q|) + α,

and the constraint can be formulated as,

zTi Rzi ≤ q.

Since α is unconstrained we find that α∗ = 1
q

and that R∗ can be found from,

R∗ = arg min
R∈Rq×q

{
−log|R2:q,2:q| : zTi Rzi ≤ q, R � 0

}
, (3.29)

which is identical to the minimum volume ellipsoid problem. Thus, if we solve the

minimum volume ellipsoid problem with the data, zi, we may recover the solution

to the WLE optimization problem for a SN. Let R∗ be the solution to the minimum

volume ellipsoid problem and we may recover the solution to Optimization Prob-

lem (3.28) as Q∗ := R∗

q2 .

Efficient algorithms developed specifically for the minimum volume ellipsoid prob-

lem such as those defined in [161], can therefore be used to find suboptimal solutions

to the WLE optimization problem for SNs.
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Figure 3.7: Plot of a rescaled version of the Iris dataset [55] (blue) and data uniformly

sampled from the level set HWfδ
(D) of an SN PDF (green) optimized by solving the

WCE optimization problem in feature space. Subplots along the jth diagonal element

show a histogram of the sampled δj data, while subplots corresponding to the jth and

ith position show a scatterplot of sampled data of δj versus δi.

Example 4 For this example we also use the publicly available Iris [55] data set,

D := {δ(i) ∈ R4}150
i=1. For reference, Fig. 3.1 shows a scatterplot of the Iris dataset

after it has been scaled to fit within a hyper-cube centered at 0 with side lengths of

1. To demonstrate the WLE method for SNs, we generate an optimal SN model by

solving the WLE optimization problem in feature space. We then plot uniformly dis-

tributed samples over the level set of minimal volume, HWfδ
(D), using sliced sampling
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in Fig. 3.7.

The volume of the minimum volume ellipsoid that contains the Iris data is 0.0164,

whereas the volume of the level set of the sliced-normal is 0.0013. This implies that the

volume of the sliced-normal level set was 170% less than the volume of the minimum

volume ellipsoid.

Next we compare SDs to other distributions by modeling the distribution of a set

of publicly available data sets and examining their performance on a test partition of

the data.

3.5 Numerical Results of SD Optimization

First we compare the SDs to the sets of Gaussians and Gaussian mixture models.

Then we apply the SDs to the problem of identifying cell populations that most

differ between patients with, and without Rheumatoid Arthritis. By identifying the

populations that differ the most between the two types of patients we will identify

cell populations that are potentially correlated to the disease.

3.5.1 Numerical Accuracy of SD Optimization

In this subsection we will use the MLE and WCE optimization problems to find

optimal SE and SN random variables that model the uncertainty in publicly available

data sets. We use a separate set of testing points to compare the accuracy of the SD

random variables to the set of Gaussian random variables and the set of Gaussian

mixture models.

Methodology: Specifically we partition the data into a training, validation, and

testing data partition. Some methods have regularization parameters that can be

used to increase the generalization of the algorithm and avoid overfitting. For these
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Table 3.1: The log likelihood (LL) of the uncertainty models on the test partition

data points and the computation time (T) for the MLE MN, EM GMM, MLE SE,

and WCE SE implementations. The data sets have dimension (n) and number of

training data points (m).

Dataset Model LL Time (s)

VOS MLE MN 474.524 ± 31.363 0.001 ± 0.001

n = 1 EM GMM 452.452 ± 20.898 0.053 ± 0.024

m = 5844 MLE SE 498.924 ± 28.124 1.015 ± 0.042

MLE SN 474.645 ± 30.892 0.231 ± 0.041

TV MLE MN -130.635 ± 47.948 0.002 ± 0.001

n = 2 EM GMM 4131.136 ± 13.554 3.459 ± 0.463

m = 40973 MLE SE 9461.196 ± 153.642 5.792 ± 0.766

MLE SN 6372.847 ± 274.507 4.567 ± 0.106

BP MLE MN 17838.586 ± 71.228 0.003 ± 0.001

n = 3 EM GMM 19853.676 ± 25.695 1.724 ± 0.299

m = 51850 MLE SE 33007.733 ± 517.990 34.396 ± 17.589

MLE SN 26306.683 ± 327.225 1.923 ± 1.512

Iris MLE MN 90.431 ± 8.091 0.000 ± 0.000

n = 4 EM GMM 76.037 ± 3.285 0.040 ± 0.019

m = 127 MLE SE 99.778 ± 10.862 6.878 ± 6.859

MLE SN 87.894 ± 13.550 0.882 ± 0.424

methods the validation partition is used to select the regularization parameter, and

then the method is retrained (with the selected regularization parameter) using the

training and validation partition. Model performance is then analyzed on the testing

partition of the data. We use the following data sets.
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Data: In this section we use the data sets, V OS, TV 1, BP , and IR as can be

found in [128, 119, 83, 55] in the UCI machine learning or OpenML databases.

To compare the proposed SEs and SNs to other methods we use the following

implementations. We repeat all tests 5 times with different partitions of the training,

validation, and test partitions and report the average and standard deviations of all

values.

[MLE SE] The MLE optimization problem (Optimization Problem (3.6)) is used to

select the optimal λ parameter of the SE. We use cross-validation to select the degree

of the SE random variable which generated the largest likelihood on the validation

partition of the data;

[FS MLE SN] The Feature Space (FS) based MLE optimization problem (Optimiza-

tion Problem (3.25)) is used to select the suboptimal rescaled P and µ parameters of

the SN. Optimal SNs can also be found using the techniques in [41], but will have a

larger computation time than an MLE SE of the same degree and is thus omitted. We

use cross-validation to select the degree of the SN random variable which generated

the largest likelihood on the validation partition of the data;

[WCE SE] The WCE optimization problem (Optimization Problem (3.6)) is used to

select the optimal λ parameter of the SE. We use cross-validation to select the degree

of the SE random variable which generated the largest worst case likelihood on the

validation partition of the data;

[FS WCE SN] The Feature Space (FS) WCE optimization problem (Optimization

Problem (3.28)) is used to select the optimal µ and P parameters of the SN. We use

cross-validation to select the degree of the SN random variable which generated the

1The data set TV originally contains data points with more than two dimensions, however, we

extract the time of day and traffic volume from the original data (the real valued variables) to create

our two dimensional data set.
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largest worst case likelihood on the validation partition of the data;

[MLE MN] The MLE optimization problem is solved to optimize the mean and

covariance matrix of a multivariate normal random variable as in [51]. In this case

no regularization parameters were used, however to ensure a fair comparison between

methods the normalization constant is computed using the same Monte Carlo samples

as are used in the SE and SN cases;

[EM GMM] The expectation-maximization problem is solved to optimize the mean

and covariance matrix of a mixture of k multivariate normal random variables. We

use, k, the number of multivariate normal distributions as a regularization parameter

and select k ∈ {1, · · · , 30} which had the largest likelihood on the validation partition

of the data. As in the MLE MN case we ensure a fair comparison between methods

by computing the normalization constant using the same Monte Carlo samples as are

used in the SE and SN cases.

Maximum Likelihood Comparison First we analyze the difference in likelihood

of the models with respect to the test data partition. A larger likelihood value on

the test partition implies that the model is a better fit for the data. In Table 3.1 we

compare the performance of the MLE SE, MLE SN, MLE MN, and EM GMM imple-

mentations on the test partition set. We report the likelihood on the test partition

and the computation time in Table 3.1.

In all cases the MLE SE model has a higher likelihood on the test partition than

all other implementations. This implies that in all cases the MLE SE model was more

likely to have generated the data in the test partition than the other models. The

FS-MLE SN implementation was second best in all cases but the Iris data set and

was faster than the MLE SE implementation. In cases with greater numbers of data

points and higher dimensional problems the FS-MLE SN is more computationally
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Table 3.2: The volume (V) of the level sets of the uncertainty models containing all

of the test partition data points and the computation time (T) for the MLE MN, EM

GMM, MLE SE, MLE SN, WCE SN and WCE SE implementations. The data sets

have dimension (n) and number of training data points (m).

Dataset Model V Time (s)

TV MLE MN 0.977 ± 0.000 0.003 ± 0.004

n: 2 EM GMM 0.978 ± 0.000 0.010 ± 0.000

m: 40973 SE MLE 0.992 ± 0.004 0.809 ± 0.129

SE WCE 0.742 ± 0.006 483.454 ± 319.870

SN FS WCE 0.899 ± 0.003 0.717 ± 0.122

BP MLE MN 0.924 ± 0.000 0.005 ± 0.003

n: 3 EM GMM 0.756 ± 0.008 0.671 ± 0.581

m: 51850 SE MLE 0.744 ± 0.071 3.466 ± 0.777

SE WCE 0.255 ± 0.044 1546.791 ± 477.062

SN FS WCE 0.780 ± 0.002 0.384 ± 0.006

IR MLE MN 0.048 ± 0.004 0.004 ± 0.002

n: 4 EM GMM 0.087 ± 0.021 0.003 ± 0.001

m: 127 SE MLE 0.034 ± 0.013 6.149 ± 6.410

SE WCE 0.013 ± 0.006 11.948 ± 11.261

SN FS WCE 0.012 ± 0.007 1.412 ± 0.486

efficient than the MLE SE implementation.

Worst Case Set Comparison We next train each algorithm on the training par-

tition of the TV , BP and IR data sets and analyze the volume of the level sets that

contain all of the test data partition. If we let Dt be the testing partition, then in

Table 3.2 we report the volume of the sets HWfδ
(Dt) and the computation time for

each algorithm.

The level set of minimal volume which contained the testing partition of data

had the smallest volume when modeled using the WCE SE algorithm in all cases but

76



the Iris data set where the SN FS-WCE implementation was slightly better. This

implies that the WCE SE algorithm most tightly enclosed the data in almost every

case, and generalized well to new data points. The time taken to generate the set of

minimal volume was longest for the WCE optimization problem. The FS-WCE SN

implementation performed well on all but the BP data set, where it was outperformed

by all but the MLE MN implementation. However, when compared to the SE WCE

implementation, the SN FS-WCE was significantly faster while offering comparable

performance in some cases. This makes the SN FS-WCE a good first choice for

generating tightly enclosing sets, while the SE WCE implementation can be used for

generating tighter enclosing sets but at a greater computational cost.

3.5.2 Applications of SDs to a Mass Cytometry Dataset

In this subsection we use a Sequential Forward Selection (SFS) algorithm to iden-

tify immune cell characteristics that differ the most between the average patient with

rheumatoid arthritis and an average healthy patients using a publicly available mass

cytometry dataset.

The Immune Dataset

The mass cytometry dataset consists of 5 samples of immune system cells taken from

healthy patients and 9 samples of immune system cells taken from RA patients. This

data was taken from the flowrepository [] and the methods of data collection are

described in [].

We analyze a group of 5 healthy patients Hk = {hki ∈ [0, 1]41}m
k
h

i=1 which contains∑5
k=1m

k
h = 1, 251, 491 total cell measurements and a second group of 9 RA patients

Rk = {rki ∈ [0, 1]41}m
k
r

k=1 which contains
∑9

k=1 m
k
r = 3, 231, 161 total cell measure-

ments.
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A Metric of Similarity

We treat all of the measured samples in H and R as random variables generated by

healthy patients and those with RA. To analyze the mass cytometry data from both

populations we will model the random variables as sliced-exponentials to generate SE

models for the healthy and RA patients respectively.

As in the definition of density between two sets of PDFs we use the squared

Hellinger distance as a metric of distance between PDFs. If d2
H(f, g) = 0, then the

PDFs f and g are identical on ∆, whereas larger values indicate a larger distance

between the PDFs.

Given a possible set of feature indices F := {1, · · · , n}, we define the set of

partitions of F as P(F ), and the set of all possible partitions of F of length w ≤ n

as follows.

Bw := {v ∈ Nw | v ∈ P(F )}

For a given selection of features, b ∈ Bw, we denote the associated projection Pb :

Rn → Rw so that (Pb(δ))i = δbi for δ ∈ Rn and i = 1, · · · , w. Suppose we let f
(H)
Pb(δ)

be

a model of the distribution of the b features in δ for the healthy population of patients

and f
(R)
Pb(δ)

be a model of the distribution of the b features in δ for the population of

patients with RA. Then, if we restrict the search to w features, the solution to the

following combinatoric optimization problem returns the features, b, which vary the

most between the healthy and RA patient populations.

max
b∈Bw

d2
H(f

(H)
Pb(δ)

, f
(R)
Pb(δ)

) (3.30)

As in Chapter 4 we will use a Sequential Feature Selection (SFS) algorithm as

described in [20] to perform feature selection to solve Optimization Problem (3.30).

SFS algorithms begin with an empty (or full) set of features and sequentially add (or
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(a) Dot plot of CD66b and CD11b recep-

tors measured using mass cytometry for

healthy patients.

(b) Dot plot of CD66b and CD11b recep-

tors measured using mass cytometry for

patients with RA.

Figure 3.8: Dot plot of CD66b and CD11b receptors measured using mass cytometry

for healthy patients (a) and patients with RA (b).

remove) the highest value (or cost) feature until the set of features is a certain size

or meets a performance metric. The SFS algorithm used in this paper is as described

in [42]. This SFS algorithm begins with b := ∅, and iteratively selects a locally optimal

feature (with respect to the objective function of Optimization Problem (3.30)) at

each step.

Results:

We solve Optimization Problem (3.30) using the SFS algorithm as described in [20]

using sliced-exponential models of degree one through five to model the PDFs of the

healthy and diseased cells. We select w = 3 to limit the search to the top three most

important cellular characteristics.

To determine which degree of sliced-exponential best captures the difference be-

tween cells from healthy patients and those with RA, we will analyze how well the

two models can be used to differentiate between RA and healthy patients.

Let f (H) and f (R) be sliced-exponential models of the healthy patient data in H
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Table 3.3: The leave-one-out classification accuracy AL(H,R) of predicting whether

a patient has RA or does not have RA using varying degree SE models of immune

system cells from healthy patients and RA patients.

SE Degree 1 2 3 4 5

AL(H,R) 85.71% 78.57% 78.57% 92.86% 92.86%

and RA patient data in R respectively. Given a set of data, D from a new patient

we will use the likelihood of both models on the data to determine if the patient is

healthy or has RA. Specifically, if Lf (H)(D) > Lf (R)(D) then the patient is predicted

to be healthy, otherwise they are predicted to have RA.

To estimate the predictive accuracy of the sliced-exponential models on new data

we will use the leave-one-out classification accuracy. Let, f (H,k) and f (R,k) be the

models of the healthy patient data and RA patient data - excluding for the k’th

patient in that set. Let I(x) be an indicator function that is equal to one if x > 0

and zero otherwise and the leave-one-out classification error can then be defined as,

AL(H,R) =
1

14

(
5∑

k=1

I
(
Lf (H,k)(Hk)− Lf (R)(Hk)

)
+

9∑
k=1

I
(
Lf (R,k)(Rk)− Lf (H)(Rk)

))
.

Thus AL(H,R) is the accuracy of predicting whether a patient in the training data

set is healthy or has RA using the healthy and RA models when they are trained

without that patients data. This is a better estimate of the predictive accuracy for

future patients whose data was not used to train the models.

We show the leave-one-out classification accuracy for varying degrees of sliced-

exponential models in Table 3.3. The best leave-one-out classification accuracy was

generated by the degree four and five sliced-exponentials which both achieved an

accuracy of 92.86% after misidentifying one healthy patient as having RA. This anal-

ysis shows that more complex models than exponential or normal distributions are

required to effectively model the differences in the densities of the average healthy
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(a) Sliced-Exponential PDF of healthy

immune system cells with CD66b and

CD11b measured using mass cytometry.

(b) Sliced-Exponential PDF of RA im-

mune system cells with CD66b and

CD11b measured using mass cytometry.

Figure 3.9: Sliced-Exponential PDF of healthy immune system cells (a) and RA

immune system cells (b) with CD66b and CD11b measured using mass cytometry.

patient and the average RA patient.

Given equal performance between two models, it is good practice to select the least

complex model. Therefore we will further analyze the degree four sliced-exponential

model.

The three cell characteristics that most differ between the healthy and diseased

populations (based on the degree 4 sliced-exponential models) consist of the CD66b,

CD11b and CD23 receptors. We show a dot plot of the cellular measurements taken

from healthy and RA patients for the first two receptors in Fig. 3.8(a) and 3.8(b).

To demonstrate that the populations of cells have complex densities (necessitat-

ing the use of SEs or other complex distributions) we show the joint PDFs of the

sliced-exponential model for the first two receptors of the healthy and RA patients in

Fig. 3.9. The complex bimodal density of the cellular characteristics captured by the

degree 4 sliced-exponential is what makes the leave-one-out classification accuracy

higher than the lower degree sliced-exponential models.

Further testing is necessary to determine a more accurate estimate of the predictive
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accuracy of this model. Furthermore, collecting mass cytometry data from patients

with other autoimmune diseases is necessary to determine if the models can differ-

entiate between patients with RA and other autoimmune diseases, or if the models

are capturing densities of cell populations that may be similar in other autoimmune

diseases.

3.6 Conclusion

This chapter proposes convex optimization problems to select optimal parameters

of sliced distributions that solve the MLE and WCE optimization problems to model

the distribution of given data. We showed that two sets of SD PDFs are dense in the

set of all bounded PDFs with respect to the Hellinger distance. The developments

herein allow for the efficient characterization of the distribution of data.

We use two metrics to demonstrate that the proposed methods, based on Sliced

Distributions, have superior performance with respect to modeling the distribution of

data when compared to Gaussian mixture models and multivariate normal models.

The first metric is based on the likelihood of the models to generate a test partition

of the data, while the second is based on the volume of the level sets of the model

PDFs that most tightly contain the test partition of the data. The models optimized

with respect to the maximum likelihood metric are superior with respect to the first

metric, while those optimized with respect to the worst case likelihood metric are

superior in the second metric.

Furthermore we show that SDs may be used to model mass cytometry data of

the average healthy patient and the average RA patient. By comparing the models

generated for each group, we identified a set of immune system characteristics whose

PDF models differed most between healthy patients and those with RA. These models

can differentiate between mass cytometry datasets taken from healthy and RA pa-
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tients with high accuracy, illustrating that the models captured important differences

in the immune system cells between the two groups. However, further testing with

larger datasets is necessary to more accurately determine the predictive accuracy of

the proposed models.
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Chapter 4

MACHINE LEARNING WITH POSITIVE KERNELS PARAMETERIZED BY

POSITIVE MATRICES

There exists hundreds of different subpopulations of immune cells and cytokine

signals which could potentially be classified as either helper [165, 105] or regula-

tory [138, 90]. Analyzing data to determine which of these potential cells and signals

is most relevant to the immunogenic or tolerogenic responses to antigen requires so-

phisticated machine learning methods. One such state of the art class of machine

learning algorithms is the class of kernel methods.

Kernel methods are a class of machine learning algorithm (the most relevant to this

chapter being the support vector machine) that return a function, f ∈ F , designed

to map a set of inputs to corresponding outputs. Specifically kernel methods can be

used on problems such as classification, regression and the clustering of data. The set

of functions, F , from which the kernel method may select a function is dependent on

the selection of some a priori selected kernel function. Therefore, the selection of a

kernel function determines the class of functions that can be searched over, directly

affecting the accuracy of the learned map from the inputs to outputs.

Kernel Learning (KL) algorithms such as those found in [171, 149, 172] automate

this task by finding the kernel, k ∈ K which optimizes an achievable metric such

as the soft margin (for classification). The set of kernels, k ∈ K, over which the

algorithm can optimize, however, strongly influences the performance of the resulting

classifier or predictor.

To understand how the choice of K influences performance and robustness, we pro-

pose three properties to characterize the set K - tractability, density, and universality.
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Specifically, K is tractable if K is convex (or, preferably, a linear variety) - implying

the KL problem is solvable using, e.g. the algorithms in [134, 78, 96, 132, 66]. The set

K has the density property if, for any ε > 0 and any positive kernel, k∗ there exists a

k ∈ K where ‖k − k∗‖ ≤ ε. The density property implies the kernel generalizes well

implying good performance on untrained data. The set K has the universal property

if any k ∈ K is universal (see Definition 17) - ensuring a classifier/predictor exists

that maps each unique training input to its corresponding output using any kernel

function in K.

Previously, there was no class of kernel that meets all three criteria - e.g. Gaus-

sians are not tractable or accurate; polynomials are not scalable. Therefore we have

proposed a new class that meet all three criteria - the Tessellated Kernel (TK) class.

Specifically, the TK class: admits a linear parameterization using positive matrices;

is dense in all kernels; and every element in the class is universal. This implies that

the use of TK kernels for learning the kernel can obviate the need for selecting can-

didate kernels in other Kernel Learning (KL) algorithms or parameters such as the

bandwidth of the Gaussian kernel. Numerical testing on soft margin Support Vector

Machine (SVM) problems show that algorithms using TK kernels outperform other

kernel learning algorithms, neural networks, and random forest algorithms. Finally we

apply KL with TKLs to the problem of identifying immune system cells in an animal

model that are correlated to the immune state of mice with Rheumatoid Arthritis.

Given a set of immune system populations, this analysis identifies the key populations

that are correlated to the disease severity and progression of the disease.

4.1 Introduction to Kernel Learning

This chapter addresses the problem of the automated selection of an optimal kernel

function for a given kernel-based machine learning problem (e.g. soft margin SVM).
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Kernel functions implicitly define a linear parametrization of nonlinear candidate

maps y = f(x) from vectors x to scalars y. Specifically, for a given kernel, the ‘kernel

trick’ allows optimization over a set of candidate functions in the kernel-associated hy-

pothesis space without explicit representation of the space itself. The kernel selection

process, then, is critical for determining the class of hypothesis functions and, as a

result, is a well-studied topic with common kernels including polynomials, Gaussians,

and many variations of the Radial Basis Function. In addition, specialized kernels

include string kernels [104, 52], graph kernels [59], and convolution kernels [71, 34].

The kernel selection process heavily influences the accuracy of the resulting fit and

hence significant research has gone into the optimization of these kernel functions in

order to select the hypothesis space which most accurately represents the underlying

physical process.

Recently, there have been a number of proposed kernel learning algorithms. For

support vector machines, the methods proposed in this chapter are heavily influenced

by the SDP approach proposed in [96] which directly imposed kernel matrix positiv-

ity on a subspace defined by the linear combination of candidate kernel functions.

There have been several extensions of the SDP approach, including the hyperker-

nel method in [120]. However, because of the complexity of semidefinite program-

ming, more recent work has focused on alignment methods for MKL as in, e.g. [39]

or gradient methods for convex and non-convex parameterizations of positive linear

combinations of candidate kernels, such as SimpleMKL [134] or the several varia-

tions in SHOGUN [149]. These MKL methods rely on kernel operations (addition,

multiplication, convolution) to generate large numbers of parameterized kernel func-

tions as in [37]. Examples of non-convex parameterizations include GMKL [78], and

LMKL [65]. Work focused on regularization includes the group sparsity metric [155]

and the enclosing ball approach [58]. See, e.g. [66] for a comprehensive review of
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MKL algorithms.

In this chapter, we focus on the class of “Universal Kernels” formalized in [109].

For a given compact metric space (input space), X , it is said that a function k :

X × X → R is a Positive Kernel (PK) if for any N ∈ N and any {xi}Ni=1 ⊂ X , the

matrix defined elementwise by Kij = k(xi, xj) is symmetric and Positive SemiDefinite

(PSD).

Definition 17. A kernel k : X × X → R is said to be universal on the compact

metric space X if it is continuous and there exists an inner-product space W and

feature map, Φ : X → W such that k(x, y) = 〈Φ(x),Φ(y)〉W and where the unique

Reproducing Kernel Hilbert Space (RKHS),

H := {f : f(x) = 〈v,Φ(x)〉, v ∈ W}

with associated norm ‖f‖H := infv{‖v‖W : f(x) = 〈v,Φ(x)〉} is dense in C(X ) :=

{f : X → R : f is continuous} where ‖f‖C := supx∈X |f(x)|.

Note that for any given PD kernel, the RKHSH exists, is unique, and can be char-

acterized (as described in [157]) using the Riesz representation theorem as the closure

of span{k(y, ·) : y ∈ X} with inner product defined for any f(x) =
∑n

i=1 cik(yi, x)

and g(x) =
∑m

i=1 dik(zi, x) as

〈f, g〉H :=
n∑
i=1

m∑
j=1

cidjk(yi, zj).

Universal kernels are preferred when large amounts of data are available, due to

the fact that the dimension of the hypothesis space increases for every additional data

point - resulting in the ability to construct highly specialized and accurate classifiers.

The most well-known example of a universal kernel is the Gaussian (generalized

in [174]). However, many other common kernels are not universal, including, sig-

nificantly, the polynomial class of kernels. This is significant because the class of
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generalized polynomial kernels (Eq. (4.9)) have the density and tractability prop-

erty, while the set of Gaussian kernels have the universality property but not the

tractability property.

The Class of Tessellated Kernels (TK) We proposed the class of kernel func-

tions (called Tessellated Kernels) which are not polynomials, yet which are defined by

polynomials and admit a linear parametrization in [29]. These kernels define classi-

fiers on a tessellated domain, each sub-domain (or tile) of which is a hyper-rectangle

with vertices defined by the input data - {xi}mi=1. In this way, each data point further

divides any tiles within which any of its features lie, resulting in increasing numbers

of disjoint tiles. The classifier itself, then, is piecewise polynomial - being polynomial

when restricted to any particular tile.

TK kernels have three important properties which make them uniquely well-suited

for kernel learning problems. First, these kernels admit a linear parameterization us-

ing positive semidefinite matrices - meaning we can use convex optimization to search

over the entire class of such kernels (tractability), which is proven in Corollary 28 and

implemented in Optimization Problem (4.23). This is like the class of generalized

polynomial kernels (See Eq. (4.9)) yet unlike other universal kernel classes such as

the Gaussian/RBF, wherein the bandwidth parameter appears in the exponential.

Second, the TK class is dense in all kernels (accuracy), meaning there exists a TK

kernel that can approximate any given kernel arbitrarily well. This is like the gen-

eralized polynomial class yet unlike the Gaussian/RBF class, wherein the resulting

kernel matrix is restricted to having all positive elements. Third, any kernel of the

TK class has the universal property (scalability). This is like the Gaussian/RBF class

and unlike the generalized polynomial kernels, none of which are universal. The TK

class is thus unique in that no other currently known class of kernel functions has all
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three properties of tractability, accuracy, and scalability.

4.1.1 Kernel Learning for Classification and Regression

We first present two standard algorithms for solving the kernel learning problem

for both classification and regression. These algorithms are general in the sense that

they apply to any given linear parameterization of kernel functions.

The Kernel Function: To find nonlinear models using SVMs we must introduce a

positive kernel function, k.

Definition 18. We say a function k : Y × Y → R is a positive kernel function if∫
Y

∫
Y

f(x)k(x, y)f(y)dxdy ≥ 0

for any function f ∈ L2[Y ].

Recall from Chapter 2 that applying a kernel function to the 1-norm soft margin

SVM problem yields the optimization problem (2.12),

max
α∈Rm

m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjk(xi, xj)

s.t.
m∑
i=1

αiyi = 0, 0 ≤ αi ≤ C ∀ i = 1, ...,m.

Furthermore applying a kernel function to the ε-SVR Problem yields the dual formu-

lation in optimization problem (2.15),

max
α∈Rm,α∗∈Rm

− 1

2

m∑
i,j=1

(αi − α∗i )(αj − α∗j )k(xi, xj)

− ε
m∑
i=1

(αi + α∗i ) +
m∑
i=1

yi(αi − α∗i )

s.t.
m∑
i=1

αi − α∗i = 0, αi, α
∗
i ∈ [0, C] ∀ i = 1, ...,m.
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Unfortunately Optimization Problems 2.12 and 2.15 require that the kernel function,

k(x, y), be chosen a priori, a choice which significantly influences the accuracy of

the resulting classifier f . Next we alter the optimization problem by considering the

kernel itself to be an optimization variable, constrained to lie in a given convex set of

candidate positive kernel functions, K.

The Kernel-learning Problem (1-norm SVM):

Since Optimization Problems 2.12 and 2.15 are the dual of the SVM/SVR opti-

mization problems, we want to select the kernel function k ∈ K that minimizes the

objective function of the dual.

For the 1-norm soft margin SVM, when the kernel itself is parameterized as an

optimization variable we therefore have the following convex optimization problem.

min
k∈K

max
α∈Rm

m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjk(xi, xj) (4.1)

s.t.
m∑
i=1

αiyi = 0, 0 ≤ αi ≤ C ∀ i = 1, ...,m

Likewise, in the case of the ε-SVR optimization problem the KL problem is given

as the following convex optimization problem.

min
k∈K

max
α∈Rm,
α∗∈Rm

− 1

2

m∑
i,j=1

(αi − α∗i )(αj − α∗j )k(xi, xj)− ε
m∑
i=1

(αi + α∗i ) +
m∑
i=1

yi(αi − α∗i )

(4.2)

s.t.
m∑
i=1

αi − α∗i = 0, αi, α
∗
i ∈ [0, C] ∀ i = 1, ...,m.

Having formulated the kernel learning problems, we now present two standard

approaches to parameterizing the set of candidate kernels, K, and solving the resulting

convex optimization problem.
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4.1.2 SDP-based kernel learning using positive kernel matrices

We first consider the method in [96], for the 1-norm soft margin SVM wherein

positive matrices were used to parameterize K for a given set of candidate kernels

{ki}li=1 as

K :=

{
k(x, y) =

l∑
i=1

µiki(x, y) : µ ∈ Rl, Kij = k(xi, xj), K � 0

}
, (4.3)

where the {xi}mi=1 ⊂ Rn are the training points of the SVM problem and the ki were

chosen a priori to be, for instance, Gaussian and polynomial kernels. It is significant

to note that the PSD constraint on the kernel matrix K, enforces that the kernel

matrix is PSD for the set of training data, but does not necessarily enforce that the

kernel function itself is PD - meaning that kernels in K are not necessarily positive

kernels.

Using this parameterized K, the kernel optimization problem for the 1-norm soft

margin support vector machine was formulated in [96] as the following semi-definite

program, where e is the vector of all ones.

min
µ∈Rl, t∈R, γ∈R, ν∈Rm, δ∈Rm

t (4.4)

subject to:

 G e+ ν − δ + γy

(e+ ν − δ + γy)T t− 2CδT e

 � 0

ν ≥ 0, δ ≥ 0, Gij = k(xi, xj)yiyj

k(x, y) =
l∑

i=1

µiki(x, y)

Note that here the original constraint K ≥ 0 in K has been replaced by an equivalent

constraint on G. This problem can now be solved using well-developed interior-point

methods as in [3] with implementations such as MOSEK in [4].

We next consider the method of [114], for the ε-SVR problem wherein, like the
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method in [96], a linear combination of positive matrices were used to parameterize

K. Using this parameterization of K, the kernel optimization problem for the ε-SVR

problem, as formulated in [114], is as follows, where again e is the vector of all ones.

min
µ∈Rl, t∈R, γ∈Rm, ν+

u ∈Rm, ν−u ∈Rm, ν−l ∈Rm
t (4.5)

subject to:

2K γ

γT t− 2CeT (ν+
u + ν−u )

 ≥ 0

ν+
u , ν

−
u , ν

−
l ≥ 0, εe+ ν+

u + ν−u − ν−l ≥ 0,

k(x, y) =
l∑

i=1

µiki(x, y)

In Optimization Problem (4.4) and (4.5), the size of the SDP constraint is (m +

1)× (m+ 1) which is problematic in that the complexity of the resulting SDP grows

as a polynomial in the number of training data. Methods that do not require this

large semi-definite matrix constraint are explored next.

4.1.3 Minimax Kernel Learning

In this subsection, we again take a set of basis kernels {ki}li=1 and consider the

set of positive linear combinations,

K :=

{
k : k(x, y) =

l∑
i=1

µiki(x, y), µi ≥ 0

}
. (4.6)

Any element of this set is a positive kernel, replacing the matrix positivity constraint

by a LP constraint. For classification the Kernel Learning problem in minimax form

is as follows.

min
µ≥0

max
α∈Rm

m∑
i=1

αi −
1

2

m∑
i,j=1

l∑
k=1

µkαiαjyiyjkk(xi, xj)

s.t.
m∑
i=1

αiyi = 0, αi ∈ [0, C] ∀ i = 1, ...,m
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Likewise for regression the Kernel Learning problem in minimax form is as follows.

min
µ≥0

max
α∈Rm,
α∗∈Rm

− 1

2

l∑
k=1

m∑
i,j=1

µk(αi − α∗i )(αj − α∗j )kk(xi, xj) +
m∑
i=1

yi(αi − α∗i )− ε(αi + α∗i )

s.t.
m∑
i=1

αi − α∗i = 0, αi, α
∗
i ∈ [0, C] ∀ i = 1, ...,m.

Use of these formulations is generally referred to as Multiple Kernel Learning

(MKL) and is solved directly in the minimax formulation rather than as an SDP

in [96, 114]. These formulations are an LP minimization problem in µ for fixed α

and a QP maximization problem in α for fixed µ. Recently, a number of highly

efficient two-step methods have been proposed which exploit this formulation, includ-

ing SimpleMK [134]. These methods alternate between fixing µ and optimizing α,

then fixing α and optimizing µ, adding the constraint that
∑

i µi = 1 using a pro-

jected gradient descent. Other two-step solvers include [66]. Two-step MKL solvers

typically have a significantly reduced computational complexity compared with SDP-

based approaches and can typically handle thousands of data points and thousands

of basis kernels. In Section 4.4 and 4.5 we apply the SDP and the minimax approach

respectively to the problem of Kernel Learning with Tessellated Kernels.

4.2 Positive matrices parameterize positive kernels

The methods proposed in the prior section generally require the kernel function to

be a positive summation, or sometimes a positive product, of a priori selected kernel

functions. In this section we review a new framework for using positive matrices to

parameterize positive kernels that we first proposed in [29]. This is a generalization

of a result initially proposed in [135]. In Subsection 4.2.1 we apply this framework to

obtain generalized polynomial kernels. In Subsection 4.2.2, we use the framework to

obtain the TK class.
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Proposition 19. Let N be any bounded measurable function N : X × Y → Rq on

compact X and Y and P ∈ Rq×q be a positive semidefinite matrix P ≥ 0. Then

k(x, y) =

∫
X
N(z, x)TPN(z, y)dz (4.7)

is a positive kernel function.

Proof. Since N is bounded and measurable, k(x, y) is bounded and measurable. Since

P ≥ 0, there exists P
1
2 such that P = (P

1
2 )TP

1
2 . Now for any f ∈ L2[Y ] define

g(z) =

∫
Y

P
1
2N(z, x)f(x)dx.

Then∫
Y

∫
Y

f(x)k(x, y)f(y)dxdy =

∫
Y

∫
Y

∫
X
f(x)N(z, x)TPN(z, y)f(y)dzdxdy

=

∫
X

(∫
Y

P
1
2N(z, x)f(x)dx

)T (∫
Y

N(z, y)P
1
2f(y)dy

)
dz

=

∫
X
g(z)Tg(z)dz ≥ 0.

For a given N , the map P 7→ k in Proposition 19 is linear. Specifically,

k(x, y) =
∑
i,j

Pi,jGi,j(x, y), where, Gi,j(x, y) =

∫
X
Ni(z, x)Nj(z, y)dz.

4.2.1 Generalized Polynomial Kernels (GPK)

Let Y = Rn and define Qd : Rn → Rq to be the vector of monomials of degree d. If

we now define NP (z, y) = Qd(y), then k as defined in Proposition 19 is a polynomial

of degree 2d. The following result is from [127].

Lemma 20. A polynomial k of degree 2d is a positive polynomial kernel if and only

if there exists some P ≥ 0 such that

k(x, y) = Qd(x)TPQd(y). (4.8)
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This lemma implies that a representation of the form of Equation (4.7) is necessary

and sufficient for a generalized polynomial kernel to be positive. For convenience, we

denote the set of generalized polynomial kernels of degree d as follows.

KdP := {k : k(x, y) = Qd(x)TPQd(y) : P ≥ 0} (4.9)

Unfortunately, however, polynomial kernels are never universal and hence we propose

the following universal class of TK kernels, each of which is defined by polynomials,

but which are not polynomial.

4.2.2 Tessellated Kernels

To begin, we define the indicator function for the positive orthant as

I+(z) =


1 z ≥ 0

0 otherwise,

where z ≥ 0 means zi ≥ 0 for all i. Now define Zd : Rn × Rn → Rq to be the

vector of monomials of degree d in R2n. We now propose the following choice of

N : Rn × Rn → R2q.

Nd
T (z, x) =

Zd(z, x)I+(z − x)

Zd(z, x)I+(x− z)

 =



Zd(z, x)

0

 z ≥ x

 0

Zd(z, x)

 x ≥ z

0 otherwise

(4.10)

Equipped with this definition, we define the class of Tessellated Kernels as follows.

KdT :=

{
k : k(x, y) =

∫
X
Nd
T (z, x)TPNd

T (z, y)dz, P ≥ 0

}
, KT := {k : k ∈ KdT , d ∈ N}
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4.2.3 Representation of TK kernels using polynomials

The following result shows that any k ∈ KT is piecewise polynomial. Specifically,

if we define the partition of Rn into 2n orthants - parameterized by β ∈ {0, 1}n as

{Xβ}β∈{0,1}n where

Xβ :=
{
x ∈ Rn : xj≥0 for all j:βj=0,

xi≤0 for all i:βi=1

}
, (4.11)

then for any k ∈ KT , k(x, y) = kβ(x, y) for any x− y ∈ Xβ.

Lemma 21. Suppose that for a < b ∈ Rn, Y = X = [a, b], N is as defined in

Eqn. (4.10),

P =

P11 P12

P21 P22

 � 0,

k is as defined in Eqn. (4.7) and {Xβ}β∈{0,1}n is defined in Eqn. (4.11). Then k(x, y) =

kβ(x, y) for any x− y ∈ Xβ where the kβ are polynomials defined as

kβ(x, y) =

b1∫
β1y1+(1−β1)x1

· · ·
bn∫

βnyn+(1−βn)xn

Zd(z, x)TQ1Zd(z, y)dz + k0(x, y),

where

k0(x, y) =

∫ b

x

Zd(z, x)TQ2Zd(z, y)dz +

∫ b

y

Zd(z, x)TQ3Zd(z, y)dz +

∫ b

a

Zd(z, x)TP22Zd(z, y)dz,

and

Q1=P11 − P12 − P21 + P22, Q2=P12 − P22, Q3=P21 − P22.

Proof. Given N as defined above, if we partition P =

P11 P12

P21 P22

 into equal-sized

blocks, we have

k(x, y) =

∫
X
N(z, x)TPN(z, y)dz =

2∑
i,j=1

∫
(x,y,z)∈Xij

Zd(z, x)TPi,jZd(z, y)dz

where
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Xij := {(x, y, z) ∈ R3n : I+((−1)j(z − x))I+((−1)j(z − y)) = 1}.

From the definition of Xij we have that,

X11 ={z ∈ X : zi ≥ p∗i (x, y), i = 1, · · · , n}

X12 ={z ∈ X : zi ≥ xi, i = 1, · · · , n}/X11

X21 ={z ∈ X : zi ≥ yi, i = 1, · · · , n}/X11

X22 =X/ (X11 ∪ X12 ∪ X21) .

where p∗i (x, y) = max{xi, yi} and p∗i (x, y) = βiyi + (1 − βi)xi. By the definitions of

X11,X12,X21, and X22 we have that,

k(x, y) =∫ b

p∗(x,y)

Zd(z, x)T(P11 − P12 − P21 + P22)Zd(z, y)dz +

∫ b

x

Zd(z, x)T(P12 − P22)Zd(z, y)dz

+

∫ b

y

Zd(z, x)T (P21 − P22)Zd(z, y)dz +

∫ b

a

Zd(z, x)TP22Zd(z, y)dz. (4.12)

Note that the number of domains Xβ used to define the piecewise polynomial k

is 2n, which does not depend on q (the dimension of Pij). Thus, even if Zd = 1,

the resulting kernel is partitioned into 2n domains. The size of Zd(x, y) ∈ Rq only

influences the degree of the polynomial defined on each domain.

The significance of the partition does not lie in the number of domains of the

kernel, however. Rather, the significance of the partition lies in the resulting classifier,

which, for a given set of training data {xi}mi=1, has a domain tessellated into (m+ 1)n

tiles, Xγ, where γ ∈ {0, · · · ,m}n. Although the training data is unordered, we create

an ordering using Γ(i, j) : {0, · · · ,m} × {1, n} → {1, · · · ,m} where Γ(i, j) indicates

that among the jth elements of the training data, xΓ(i,j) has the ith largest value.
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That is,

[xΓ(i−1,j)]j ≤ [xΓ(i,j)]j ≤ [xΓ(i+1,j)]j ∀i = 1, · · · ,m− 1, j = 1, · · · , n.

Now, for any γ ∈ {0, · · · ,m}n, we may define an associated tile

Xγ :=
{
z : [xΓ(γj ,j)]j ≤ zj ≤ [xΓ(γj+1,j)]j, j = 1, · · · , n

}
.

The classifier may now be represented as

f(z) =
m∑
i=1

αiyik(xi, z) + b

= fγ(z) ∀z ∈ Xγ.

To define the fγ, we associate with every tile γ and datum i an orthant β(i, γ) which

denotes the position of tile Tγ relative to datum xi - i.e. Tγ is in the orthant β(i, γ)

centered at the point xi. Specifically,

β(i, γ)j =


0 [xΓ(γj ,j)]j ≥ [xi]j

1 otherwise.

Now we may define

fγ(z) =
m∑
i=1

αiyikβ(i,γ)(xi, z)

which is a polynomial for every γ. In this way, each data point further divides the

domains which it intersects, resulting in (m + 1)n disjoint sub-domains, each with

associated polynomial classifier.

Thus we see that the number of domains of definition of the classifier grows quickly

in m, the number of training data points. For instance, with n = 2 there are 100 tiles

for just 9 data points. This growth is what makes TK kernels universal - as will be

seen in Section IV.
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In Figure 4.1(a) we see the function, f(z) =
∑m

i=1 αiyik(xi, z) + b, for a degree 1

TK kernel trained for a 1-dimensional labeling problem as compared with a Gaussian

kernel. We see that the TK classifier is continuous, and captures the shape of the

generator better than the Gaussian. Note that the TK classifier is not continuously

differentiable and the derivative can change precipitously at the edges of the tiles.

However, if we decrease the inverse regularity weight C in the objective function

of Optimization Problem (2.11), then this has the effect of smoothing the resulting

classifier. In Figure 4.1(a), as C decreases we see that the changes in slope at edges

of the tiles decrease.

To illustrate that the function k(xi, z) is a piecewise polynomial tessellated by the

training datum, we plot the value of an assortment of TK kernels in one dimension

in Figure 4.1(b). We use training datum xi = 5, and a selection of different positive

matrices where P1,2 = P2,1 = P2,2 = 0 and P1,1 = Ai for i = 1, . . . , 4 where

A1 =

1 0

0 0

 , A2 =

1 0

0 .1

 , A3 =

1 0

0 1

 , A4 =


0 0 0

0 1 0

0 0 1

 . (4.13)

In the first three cases the monomial basis is of degree 1, while in the fourth case the

monomial basis is of degree 2 - for simplicity we exclude monomials with z. These

different matrices all illustrate changes in slope which occur at the training datum.

4.3 Properties of the tessellated class of kernel functions

In this section, we prove that all TK kernels are continuous and universal and

that the TK class is pointwise dense in all kernels.
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(a) Optimal classifier, f(z) using a degree one
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of Gaussian kernels (dotted lines) with three

different penalty weights C.
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(b) Normalized kernel function k(5, z) using

P1,1 = Ai from (4.13) and P1,2 = P2,1 =

P2,2 = 0.

Figure 4.1: This figure depicts the optimal classifier for labeling a 1-dimensional data

set compared to Gaussian classifiers as well as the normalized kernel function, k(5, z),

using different P1,1 matrices and X = [0, 10].

4.3.1 TK kernels are continuous

Let us begin by recalling that for any P ≥ 0 and N(z, x),

k(x, y) =

∫
X
N(z, x)TPN(z, y)dz

is a positive kernel and recall that for the TK kernels, we have

N(z, x) =

Zd(z, x)I+(z − x)

Zd(z, x)I+(x− z)

 .
By the representer theorem this implies that the classifiers consist of functions of the

form

f(y) =
m∑
i=1

αi

∫
X
N(xi, z)

TPN(y, z)dz.

The following theorem establishes that such functions are necessarily continuous.
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Theorem 22. Suppose that for a < b ∈ Rn, Y = X = [a, b], P ≥ 0, N is as defined

in Eqn. (4.10) for some d ≥ 0 and k is as defined in Eqn. (4.7). Then k is continuous

and for any {xi}mi=1 and α ∈ Rm, the function

f(z) =
m∑
i=1

αik(xi, z),

is continuous.

Proof. Partition P as follows

P =

P11 P12

P21 P22

 > 0.

To prove that f(z) is continuous we need only prove that k(x, y) is continuous.

Applying Lemma 3 we may define k(x, y) as

k(x, y) =

{
kβ(x, y) if x− y ∈ Xβ. (4.14)

where the kβ are polynomials defined as

kβ(x, y) =

∫ b1

θβ,1(x,y)

· · ·
∫ bn

θβ,n(x,y)

Zd(z, x)TQ1Zd(z, y)dz + k0(x, y),

where x−y ∈ Xβ, θβ,i(x, y) = βiyi+(1−βi)xi, Q1 = P11−P12−P21 +P22, and k0(x, y)

is a polynomial. To expand kβ(x, y), we use multinomial notation for the monomials

in Zd. Specifically, we index the elements of Zd as Zd(z, x)i = zγixδi where γi, δi ∈ Nn

for i = 1, · · · , q and where therefore zγixδi =
∏n

j=1 z
γi,j
j x

δi,j
j . Then

b1∫
θβ,1(x,y)

· · ·
bn∫

θβ,n(x,y)

Zd(z, x)TQ1Zd(z, y)dz =

b1∫
θβ,1(x,y)

· · ·
bn∫

θβ,n(x,y)

∑
k,l

(Q1)k,l x
δkzγkzγlyδldz

=
∑
k,l

(Q1)k,l x
δkyδl

b1∫
θβ,1(x,y)

· · ·
bn∫

θβ,n(x,y)

zγk+γldz.

(4.15)
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Expanding the integrals in (4.15), each has the form∫ b1

θβ,1(x,y)

· · ·
∫ bn

θβ,n(x,y)

zγk+γl dz =
n∏
j=1

∫ bj

θβ,j(x,y)

z
γk,j+γl,j
j dzj

=
n∏
j=1

z
γk,j+γl,j+1
j

γk,j + γl,j + 1

∣∣∣bj
θβ,j(x,y)

=
n∏
j=1

b
γk,j+γl,j+1
j

γk,j + γl,j + 1
− θβ,j(x, y)γk,j+γl,j+1

γk,j + γl,j + 1
.

Since θβ,j(x, y) is equivalent to max(xj, yj), and can be written as the continuous

function,

θβ,j(x, y) =
1

2
(xj + yj + |xj − yj|),

we conclude that k(x, y) is the product and summation of continuous functions and

therefore k and the resulting classifiers are both continuous.

4.3.2 TK kernels are Universal

In addition to continuity, we show that any TK kernel with P � 0 has the universal

property. The following theorem shows that any TK kernel with P � 0 is necessarily

universal.

Theorem 23. Suppose k is as defined in Eqn. (4.7) for some P � 0, d ∈ N and N

as defined in Eqn. (4.10). Then k is universal for Y = X = [a, b], a < b ∈ Rn.

Proof. Without loss of generality, we assume Y = X = [0, 1]n. If P > 0, then there

exist εi such that P = P0 +
∑

i εiPi where P0 > 0 and

P1 =

0 0

0 1

⊗ [e1, 0, . . . , 0

]
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where {e1} is the first canonical basis of Rn. In this case

k(x, y) = k̂(x, y) +
n∏
i=1

εimin{xi, yi}︸ ︷︷ ︸
k1(x,y)

,

where k̂ is a positive kernel. Since the hypothesis space satisfies the additive property

(See [166, 13]), if k1 is a universal kernel, then k is a universal kernel.

Recall that for a given kernel, the hypothesis space, H, can be characterized as

the closure of span{k(y, ·) : y ∈ X}. Now, consider

span{k1(y, ·) : y ∈ X},

which consists of all functions of the form

f(x) =
∑
j

cj

n∏
i=1

min{[yj]i, xi}.

Now

min{[yj]i, xi} =


xi, if xi ≤ [yj]i

[yj]i, otherwise.

For n = 1, we may construct a triangle function of height 1 centered at y2 as

f(x) =
3∑
i=1

αi
ε
k1(yi, x) =



0, if x < y1

δ(x− y1), if y1 ≤ x < y2

1− δ(x− y2), if y2 ≤ x < y3

0, if y3 < x,

where δ = y1 − y2 = y2 − y3, and

α1 = −δ, α2 = 2δ, α3 = −δ.

By taking the product of triangle functions in each dimension, we obtain the pyramid

functions which are known to be dense in the space of continuous functions on a
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compact domain (See [143]). We conclude that k1 is a universal kernel and hence k

is universal.

This theorem implies that even if the degree of the polynomials is small, the kernel

is still universal. Specifically, in the case when n = 1 and d = 0, the set K0
T is universal

yet contains only three parameters (the elements of the symmetric P ∈ R2×2).

4.3.3 TK kernels are pointwise dense in all kernels

In the previous two subsections, we have shown that TK kernels are continuous

and universal. Furthermore, as shown in Section 4.2, the TK class admits a linear

parameterization. The remaining question, then, is whether TK kernels are superior

in some performance metric to other classes of universal kernels such as Gaussian

kernels. First, note that the universal property is of the kernel itself and which is

extended to a class of kernels by requiring all kernels in that class to satisfy the

property. However, although a kernel may be universal, it may not be well-suited to

SVM. Expanding on this point, although it is known that any universal kernel may

be used to separate a given set of data, it can be shown that for any given set of

normalized data, {xi, yi}, there exists a universal kernel, k, for which the objective

function of the solution to 1-norm soft margin problem is arbitrarily suboptimal - e.g.

by increasing the bandwidth of the Gaussian kernel.

To address the question of performance, we propose the pointwise density property.

This property is defined on a set of kernels and guarantees that there is some kernel in

the set of kernels for which the solution to the 1-norm soft margin problem is optimal.

Specifically, we have the following.

Definition 24. The set of kernels K is said to be pointwise dense if for any

positive kernel, k∗, any set of data {xi}mi=1, and any ε > 0, there exists k ∈ K such
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that ‖k(xi, xj)− k∗(xi, xj)‖ ≤ ε.

This definition implies that a set of kernels can approximate any given positive

kernel arbitrarily well. To illustrate the importance of the pointwise density property

we show that for a large class of kernel learning problems, the value of the optimal

kernel is not pointwise positive - i.e. k(x, y) 6≥ 0 for all x, y ∈ X . This is significant

because almost all commonly used kernels are pointwise non-negative. Indeed we find

that the elements of the optimal kernel matrix are negative as frequently as they are

positive.

Optimal kernels are not pointwise positive

To demonstrate the necessity of negative values in optimal kernel matrices, we will

analytically solve an SDP to find the optimal kernel matrix for the 1-norm SVM KL

problem.

The Optimal Kernel Matrix for 1-norm SVM

To demonstrate the necessity of negative values in optimal kernel matrices, we

analytically solve the following SDP derived from Optimization Problem (4.4) which

determines the optimal kernel matrix (K∗) given the labels y of a problem and a

“penalty” parameter C, but with no constraint on the form of the kernel function

(other than it be PD).

min
t∈R,K∈Rm×m,γ∈R,ν∈Rm,δ∈Rm

t, (4.16)

subject to:

 G e+ ν − δ + γy

(e+ ν − δ + γy)T t− CδT e

 ≥ 0

ν ≥ 0, δ ≥ 0, K ≥ 0, trace(K) = m, Gi,j = yiKi,jyj
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The following theorem finds an analytic solution of this optimization problem.

Theorem 25. Let yi ∈ {1,−1} for i = 1, · · · ,m and C ≥ 2
m

, then the solution to

Optimization Problem 4.16 is,

ν∗ = 0, γ∗ = −
m∑
i=1

yi
m
, δ∗ = 0, t∗ =

‖e− γ∗y‖2

m
,

and K∗ = m
‖e+γ∗y‖22

Y(e+ γ∗y)(e+ γ∗y)TY where Y = diag(y).

Proof. We first show that K∗ = UΣUT , where

U = Y
[

(e+ν∗−δ∗+γ∗y)
‖(e+ν∗−δ∗+γ∗y)‖2

· · ·
]
,Σ =

m 0

0 0

 .
Optimization Problem (4.16) is equivalent to

min
K∈Rm×m,γ∈R,ν∈Rm,δ∈Rm

(e+ ν − δ + γy)T (YKY)−1(e+ ν − δ + γy) + 2CδT e (4.17)

subject to: ν ≥ 0, δ ≥ 0, K ≥ 0, trace(K) = m.

This problem can be separated into subproblems as

min
γ∈R,ν∈Rm,δ∈Rm

ν≥0, δ≥0

min
K∈Rm×m,

K≥0, trace(K)=m

(e+ ν − δ + γy)T (YKY)−1(e+ ν − δ + γy) + 2CδT e.

Now, for any feasible K, we have that K ≥ 0 and σ̄(K) ≤ m and hence

(e+ ν − δ + γy)T (YKY)−1(e+ ν − δ + γy) ≥ 1

σ̄(K)
‖e+ ν − δ + γy‖2

2

≥ 1

m
‖e+ ν − δ + γy‖2

2 .

Now, we propose K = UΣUT and show that it is optimal, where

U = Y
[

(e+ν∗−δ∗+γ∗y)
‖(e+ν∗−δ∗+γ∗y)‖2

V

]
, Σ =

m 0

0 0

 .
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and V is any unitary completion of the matrix U . Then K ≥ 0, trace(K) = m, and

(e+ ν − δ + γy)T (YKY)−1(e+ ν − δ + γy)

= (e+ ν − δ + γy)T

[ (e+ν−δ+γy)
‖(e+ν−δ+γy)‖2

V

]m 0

0 0

[ (e+ν−δ+γy)
‖(e+ν−δ+γy)‖2

V

]T
−1

(e+ ν − δ + γy)

=
‖(e+ ν − δ + γy)‖2

2

m
.

We conclude that this K solves the first sub-problem and hence Optimization Prob-

lem (4.16) reduces to

min
γ∈R,ν∈Rm,δ∈Rm

ν≥0, δ≥0,

‖(e+ ν − δ + γy)‖2
2

m
+ 2CδT e. (4.18)

Now let ν∗, δ∗, γ∗ be as defined in the theorem statement. For the convex objective

f(δ, ν, γ) =
‖e+ ν − δ + γy‖2

2

m
+ 2CδT e

let ȳ = 1
m

∑m
i=1 yi and we have that

∂f

∂νi
(ν∗, δ∗, γ∗) =

2 + 2ȳyi
m

≥ 2 +−2(1)(1)

m
≥ 0,

and for C ≥ 2
m

∂f

∂δi
(ν∗, δ∗, γ∗) =

2mC − 2− 2ȳyi
m

≥ 4− 2− 2(1)(1)

m
≥ 0.

Finally

∂f

∂γ
(ν∗, δ∗, γ∗) =

1

m

m∑
i=1

2yi − 2ȳ = −2ȳ + 2
1

m

m∑
i=1

yi = 0.

Hence the KKT conditions are satisfied and since the optimization problem is convex,

(ν∗, δ∗, γ∗) is optimal.

This result shows that for binary labels, the optimal kernel matrix has an analytic

solution. Furthermore, if we consider the case where
∑m

i=1 yi = 0, then λ∗ = 0 and
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hence K∗ = yyT and K∗i,j = yiyj. This implies that the optimal kernel matrix consists

of an equal number of positive and negative entries - meaning that kernels functions

with globally positive values will not be able to approximate the optimal kernel ma-

trix well. Furthermore, for values of C less than 2
m

, we numerically find that the same

kernel matrix is still optimal - only the values of δ∗ and γ∗ are different.

The GPK and TK classes are pointwise dense in all kernels

Having demonstrated the significance of pointwise density, we now establish that both

the GPK and TK kernel sets satisfy this property. For this analysis, we relax the

strict positivity constraint P > 0 in the definition of the TK class. In this case, the

GPK class becomes a subset of the TK class. We then prove pointwise density of

the GPK class - a property which is then inherited by the TK class. The following

lemma shows that the GPK class is a subset of the TK class.

Lemma 26. KdP ⊂ KdT

Proof. If kp ∈ KdP , there exists a P1 ≥ 0 such that kp(x, y) = Zd(x)TP1Zd(y). Now

let J be the matrix such that JZd(z, x) = Zd(x) and define

P =
1∏n

j=1 (bj − aj)

JTP1J JTP1J

JTP1J JTP1J

 ≥ 0.
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Now let k be as defined in Equation (4.7). Then k ∈ KdT and

k(x, y) =
1∏n

j=1 (bj − aj)

∫ b

p∗(x,y)

Zd(z, x)TJT (P1 − P1 − P1 + P1) JZd(z, y)dz

+
1∏n

j=1 (bj − aj)

∫ b

x

Zd(z, x)TJT (P1 − P1) JZd(z, y)dz

+
1∏n

j=1 (bj − aj)

∫ b

y

Zd(z, x)TJT (P1 − P1) JZd(z, y)dz

+
1∏n

j=1 (bj − aj)

∫ b

a

Zd(z, x)TJTP1JZd(z, y)dz

=
1∏n

j=1 (bj − aj)

∫ b

a

Zd(x)TP1Zd(y)dz

=kp(x, y).

We conclude that kp = k ∈ KdT .

We now use polynomial interpolation to prove that GPK kernels are pointwise

dense.

Theorem 27. For any kernel matrix K∗ and any finite set {xi}mi=1, there exists a

d ∈ N and k ∈ KdP such that if Ki,j = k(xi, xj), then K = K∗.

Proof. Since K∗ ≥ 0, K∗ = MTM for some M . Using multivariate polynomial

interpolation (as in [60]), for sufficiently large d, we may choose Q such that

Q

[
Zd(x1) · · · Zd(xm)

]
= M.

Now let

k(x, y) = Zd(x)TPZd(y)

where P = QTQ ≥ 0. Now partition M as

M =

[
m1 · · · mm

]
.
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Then QZd(xi) = mi and hence

Kij = Zd(xi)
TQTQZd(xj)

= mT
i mj

= K∗ij.

GPK and TK kernels converge quickly to the optimal kernel

We next show that in practice, a degree of only 4 or 5 can be sufficient to approximate

the optimal kernel matrix with minimal error using either GPK and TK kernels.

Specifically, we consider the problem of approximating the optimal kernel matrix

for a given set of data {xi} and given set of kernels, K, using both the element-wise

matrix ‖·‖1 and ‖·‖∞ norms.

min
k∈K

‖K −K∗‖1

n2
s.t. Ki,j = k(xi, xj) (4.19)

min
k∈K
‖K −K∗‖∞ s.t. Ki,j = k(xi, xj) (4.20)

The sets of kernel functions we consider are: KγG - the sum of K Gaussians with

bandwiths γi; KdP - the GPKs of degree d; and KdT - the TK kernels of degree d. That

is, we choose K ∈ {KγG, Kd, KdT} where for convenience, we define the class of sums

of Gaussian kernels of bandwidths γ ∈ RK as follows.

KγG :=

{
k : k(x, y) =

K∑
i=1

µie
||x−y||22

γi : µi > 0

}
(4.21)

We now solve Optimization Problems (4.19) and (4.20) for KγG, KdP , and KdT as a

function of the degree of the polynomials, d and the number of bandwidths selected

(K). For this test, we use the spiral data set with 20 samples and corresponding

labels such that
∑m

i=1 yi = 0. Since half of the entries in K∗ are −1, and since the
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Figure 4.2: The objective of Optimization Problem 4.19 and 4.20 for the TK and

GPK classes of degree d and for a positive combination of m Gaussian kernels with

bandwidths ranging from .01 to 10. The number of bandwidths is selected so that

the number of decision variables (displayed above the figure) match in the Gaussian

and in the TK kernel case.

Gaussian kernel is globally positive, it is easy to see that for K = KγG the minimum

objective values of Optimization Problems (4.19) and (4.20) are lower bounded by 0.5

and 1 respectively, irrespective of the choice of bandwidths, γi and number of data

points. In Figs. 4.2(a) and 4.2(b) we numerically show the change in the objective

value of Optimization Problems (4.19) and (4.20) for the optimal Gaussian, GPK,

and TK kernels as we increase the complexity of the kernel function. For the TK and

GPK kernel functions, we increase the complexity of the kernel function by increas-

ing the degree of the monomial basis while scaling the x-axis to ensure equivalent

computational complexity.

The results demonstrate that, as expected, the Gaussian kernel saturates with an

objective value significantly larger than the lower bound of 0.5 for the 1-norm and

exactly at 1 for the ∞-norm (the projected lower bound). Meanwhile, as the degree
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increases, both the GPK and TK kernels are able to approximate the kernel matrix

arbitrarily well, with almost no error at degree d = 7. Furthermore, the TK kernels

converge somewhat faster.

4.4 SDP formulation of the TK kernel learning algorithm

Subsection 4.1.2 gave a convex formulation of the kernel learning problem using

the convex constraint k ∈ K. Having now defined the TK class of kernels, we now

address specific implementations of the TK kernel learning problem using both an

SDP method based on Optimization Problem (4.4) and a method that directly solves

the minimax formulation. In both cases, our goal for this section is to define an

explicit linear map from the elements of the positive matrix variable, P , to the values

of the kernel function k(xi, xj).

To construct our mapping, we first create an index of the elements in the basis

Zd(z, x) which is used in Nd
T (z, x) as defined in Eqn. (4.10). Recall Zd(z, x) is a

vector of all monomials of degree d or less of length q :=
(
d+2n
d

)
. We now specify

that the elements of Zd are ordered, and by default we use lexicographical ordering

on the exponents of the variables of the monomials. Specifically, we denote the jth

monomial in Zd(z, x) where z, x ∈ Rn as zγjxδj :=
∏n

i=1 z
γj,i
i x

δj,i
i where γj, δj ∈ Nn and

{[γj, δj]}qj=1 is ordered lexicographically. Note that {[γj, δj]}qj=1 = {x ∈ N2n : ‖x‖1 ≤

d}. Using this notation, we have the following representation of the TK kernel k.

Corollary 28. Suppose that for a < b ∈ Rn, Y = X = [a, b], and d ∈ N we define the

finite set Dd := {(γ, δ) ∈ N2n : ‖(γ, δ)‖1 ≤ d}. Let {[γi, δi]}qi=1 ⊆ Dd be some ordering

of Dd and define Zd(z, x)j = zγjxδj . Now let k be as defined in Eqn. (4.7) for some

P > 0 and where N is as defined in Eqn. (4.10). If we partition P =

 Q R

RT S

 then
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we have,

k(x, y) =

q∑
i,j=1

Qi,jgi,j(x, y) +Ri,jti,j(x, y) +RT
i,jti,j(y, x) + Si,jhi,j(x, y)

where gi,j, ti,j, hi,j : Rn × Rn → R are defined as

gi,j(x, y) := xδiyδjT (p∗(x, y), b, γi + γj + 1) (4.22)

ti,j(x, y) := xδiyδjT (x, b, γi + γj + 1)− gi,j(x, y)

hi,j(x, y) := xδiyδjT (a, b, γi + γj + 1)− gi,j(x, y)− ti,j(x, y)− ti,j(y, x),

where 1 ∈ Nn is the vector of ones, p∗ : Rn × Rn → Rn is defined elementwise as

p∗(x, y)i = max{xi, yi}, and T : Rn × Rn × Nn → R is defined as

T (x, y, ζ) =
n∏
j=1

(
y
ζj
j

ζj
−
x
ζj
j

ζj

)
.

Proof. The proof follows from Theorem 22.

Using a linear map from the elements of P to the value of k(x, y), we may now

write the SDP version of the TK kernel learning problem as follows.

min
t∈R, γ∈R, ν∈Rm, δ∈Rm, Q,R,S∈Rq×q

t (4.23)

subject to:

 G(P ) e+ ν − δ + γy

(e+ ν − δ + γy)T t− 2
mλ
δT e

 ≥ 0,

ν ≥ 0, δ ≥ 0, P =

 Q R

RT S

 > 0, trace(P ) ≤ 1,

Gk,l(P ) = ykyl

q∑
i,j=1

Qi,jgi,j(xk, xl) +Ri,jti,j(xk, xl) +RT
i,jti,j(xl, xk) + Si,jhi,j(xk, xl)

Optimization Problem (4.23), then, is an SDP and can, therefore, be solved effi-

ciently using standard SDP solvers such as MOSEK [4]. Note that we use the trace

constraint to ensure the kernel function is bounded.
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Typically SDP problems require roughly p2n2 number of operations, where p is the

number of decision variables and n is the dimension of the SDP constraint (See [44]).

The number of decision variables in (4.23) is moderate, increasingly linearly in the

number of training data points and the number of elements of P . However, this

optimization problem has a semi-definite matrix constraint whose dimension is linear

in m, the number of training data. As we will see in Section 4.6, the increase in

training data increases n and limits the amount of training data that can be processed

using Optimization Problem (4.23). To improve the scalability of the algorithm, we

consider a minimax formulation.

4.5 Minimax formulation of the TK kernel learning algorithm

In this section, we formulate the KL optimization problem as a minimax saddle

point problem for classification and regression. This formulation enables a decompo-

sition into convex primal and dual sub-problems, OPT A(P ) and OPT P (α) with no

duality gap. We then consider the Frank-Wolfe algorithm and show using Danskin’s

Theorem that the gradient step can be efficiently computed using the primal and dual

sub-problems. Finally, we propose efficient algorithms for computing OPT A(P ) and

OPT P (α): in the former case using an efficient SMO algorithm for convex QP and

in the latter case, using an analytic solution based on the SVD.

4.5.1 Primal-Dual Decomposition

For convenience, we define the feasible sets for the sub-problems as

X : = {P ∈ Rq×q : trace(P ) = q, P > 0}

Yc : = {α ∈ Rm :
∑m

i=1
αiyi = 0, 0 ≤ αi ≤ C},

Yr : = {α ∈ Rm :
∑m

i=1
αi = 0, αi ∈ [−C,C]}.
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In this section, we typically use the generic form Y∗ to refer to either Yc or Yr

depending on whether the algorithm is being applied to the classification or regression

problem. To define the objective function we use λ(α, P ) to indicate

λ(α, P ) :=−1

2

m∑
i=1

m∑
j=1

αiαj

∫ b

a

Nd
T (z, xi)

TPNd
T (z, yj)dz, (4.24)

where Nd
T are as defined in Eqn. (4.10). Additionally, we have κc(α) :=

∑m
i=1 αi and

κr(α) := −ε
∑m

i=1
|αi|+

∑m

i=1
yiαi.

where, again, we use κ∗ = κc for classification and κ∗ = κr for regression.

The KL optimization problem (OPT ) for TK kernels is now defined as the

following minimax saddle point optimization problem.

OPTP := min
P∈X

max
α∈Y∗

λ(e∗ � α, P ) + κ∗(α), (4.25)

where � indicates elementwise multiplication, ec = y (vector of labels) for classifica-

tion, and er = 1m (vector of ones) for regression.

Minimax Duality To find the dual of the KL optimization problem, we formulate

two sub-problems:

OPT A(P ) := max
α∈Y∗

λ(e∗ � α, P ) + κ∗(α) (4.26)

and

OPT P (α) := min
P∈X

λ(e∗ � α, P ) + κ∗(α). (4.27)

Now, we have that

OPTP = min
P∈X

OPT A(P )

and its dual is

OPTD = max
α∈Y∗

OPT P (α) = max
α∈Y∗

min
P∈X

λ(e∗ � α, P ) + κ∗(α). (4.28)
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The following lemma states that there is no duality gap between OPTP and OPTD -

a property we will use in our termination criterion.

Lemma 29. OPTP = OPTD. Furthermore, {α∗, P ∗} solve OPTP if and only if

OPT P (α∗) = OPT A(P ∗).

Proof. For any minmax optimization problem with objective function φ, we have

d∗ = max
α∈Y

min
P∈X

φ(P, α) ≤ min
P∈X

max
α∈Y

φ(P, α) = p∗,

and strong duality holds (p∗ − d∗ = 0) if X and Y are both convex and one is

compact, φ(·, α) is convex for every α ∈ Y and φ(P, ·) is concave for every P ∈ X ,

and the function φ is continuous [53]. In our case, these conditions hold for both

classification and regression where φ(P, α) = λ(α, P ) + κr(α) or λ(α� y, P ) + κc(α).

Hence OPTP = OPTD. Furthermore, if {α∗, P ∗} solve OPTP then

OPT P (α∗) = max
α∈Y

OPT P (α) = min
P∈X

OPT A(P ) = OPT A(P ∗).

Conversely, suppose α ∈ Y , P ∈ X , then

OPT P (α) ≤ max
α∈Y

OPT P (α) = OPT P (α∗) = OPT A(P ∗)

= min
P∈X

OPT A(P ) ≤ OPT A(P ).

Hence ifOPT A(P ) = OPT P (α), thenOPT A(P ) = OPT A(P ∗) = OPT P (α∗) =

OPT P (α) and hence P and α solve OPT A and OPT P , respectively.

Finally, we note that OPT A(P ) is convex with respect to P - a property we will

use in Thm. 33.

Lemma 30. Let OPT A(P ) be as defined in 4.26. Then, the function OPT A(P ) is

convex with respect to P .
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Algorithm 1: The Frank-Wolfe Algorithm for matrices.

Initialize P0 as any point in X .;

Step 1: Sk = arg minS∈X 〈∇Qf(Q)|Q=Pk , S〉

Step 2: γk = arg minγ∈[0,1] f(Pk + γ(Sk − Pk))

Step 3: Pk+1 = Pk + γk (Sk − Pk) , k = k + 1, return to step 1.

Proof. First without loss of generality let e∗ ∈ Rm be a vector of ones and e∗�α = α.

The function OPT A(P ) : Rn×n → R is convex if and only if for any X, V ∈ X ,

g(t) := OPT A(X + tV ) is convex in t for all t ∈ H := {s ∈ R |X + sV � 0}. To

prove convexity of g(t) we must prove that,

g(θt1 + (1− θ)t2) ≤ θg(t1) + (1− θ)g(t2)

for any θ ∈ [0, 1] and t1, t2 ∈ H. Since P1 = X + t1V and P2 = X + t2V are arbitrary

positive semi-definite matrices and λ(α, P ) is linear with respect to P we have that,

g(θt1 + (1−θ)t2) = max
α∈Y∗

λ(α, θP1 +(1−θ)P2)+κ∗(α)

= max
α∈Y∗

θ (λ(α, P1) + κ∗(α)) +(1−θ) (λ(α, P2)+κ∗(α))

≤ max
α∈Y∗

θ (λ(α, P1) + κ∗(α)) + max
α∈Y∗

(1− θ) (λ(α, P2) + κ∗(α))

≤ θg(t1) + (1− θ)g(t2).

4.5.2 Primal-Dual Frank-Wolfe Algorithm

For an optimization problem of the form, minS∈X f(S), where X is a convex subset

of matrices and 〈·, ·〉 is the Frobenius matrix inner product, the Frank-Wolfe (FW)

algorithm is defined as in Algorithm 1. In our case, we have f(Q) = OPT A(Q) so
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that

OPTP = min
P∈X

OPT A(P ).

Unfortunately, implementation of the FW algorithm requires us to compute

∇QOPT A(Q)|Q=Pk at each iteration. Fortunately, as shown in Subsections 4.5.3

and 4.5.4, we may efficiently solve the sub-problems OPT A and OPT P . Further-

more, in Theorem 32, we will show that these sub-problems can be used to efficiently

compute the gradient ∇QOPT A(Q)|Q=Pk - allowing for an efficient implementation

of the FW algorithm. Theorem 32 uses Danskin’s theorem, shown below as abridged

from [10].

Proposition 31 (Danskin’s Theorem-[10]). Let Y ⊂ Rm be a compact set, and let

φ : X × Y → R be continuous such that φ(·, α) : X → R is convex for each α ∈ Y.

Then if,

Y0(P ) =

{
ᾱ | φ(P, ᾱ) = max

α∈Y
φ(P, α)

}
.

consists of only one unique point, ᾱ, and φ(·, ᾱ) is differentiable at P then f(P ) =

maxα∈Y φ(P, α) is differentiable at P and

∇Pf(P ) = ∇Pφ(P, ᾱ),

where ∇Pφ(P, ᾱ) is the vector with coordinates

∂φ(P, ᾱ)

∂Pi
, i = 1, ..., n.

Using Danskin’s Theorem we may now efficiently calculate the partial derivative

for step 1a of the KL algorithm for TKs.

Lemma 32. If OPT A and OPT P are as defined in Eqns. (4.26) and (4.27), then

for any Pk ≥ 0, we have

arg min
S∈X
〈∇QOPT A(Q)|Q=Pk , S〉 = argOPT P (argOPT A(Pk)).
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Proof. For simplicity, we define D(α) as in Eqn. (4.29) such that λ(e∗ � α, P ) :=

〈D(α), P 〉. Now, since λ(α, P ) is strictly convex in α, for any Pk > 0, OPT A(Pk)

has a unique solution and hence we have by Danskin’s Theorem that

arg min
S∈X

〈
∇QOPT A(Q)|Q=Pk , S

〉
= arg min

S∈X

〈
∇Q

[
max
α∈Y∗

(〈D(α), Q〉+ κ∗(α))

]
Q=Pk

, S
〉

= arg min
S∈X

〈
∇Q [〈D(ᾱ), Q〉+ κ∗(ᾱ)]Q=Pk

, S
〉

where ᾱ = argOPT A(Pk). Hence,

arg min
S∈X

〈
∇Q [〈D(ᾱ), Q〉+ κ∗(ᾱ)]Q=Pk

, S
〉

= arg min
S∈X

〈
∇Q [〈D(ᾱ), Q〉]Q=Pk

, S
〉

= arg min
S∈X

〈
D(ᾱ), S

〉
= argOPT P (ᾱ)

= argOPT P (argOPT A(Pk)).

We now propose the efficient implementation of the FW algorithm, as defined in

Algorithm 2, based on efficient algorithms for computing OPT A and OPT P as will

be defined in Subsections 4.5.3 and 4.5.4.

In the following theorem, we use convergence properties of the FW algorithm to

show that Algorithm 2 has worst-case linear convergence.

Theorem 33. Algorithm 2 returns iterates Pk and αk such that, |λ(αk, Pk)+κ∗(αk)−

OPTP | < O( 1
k
).

Proof. If we define f = OPT A, then Theorem 32 shows that f is differentiable

and, if the Pk satisfy Algorithm 2, that the Pk also satisfy Algorithm 1. In addition,

Lemma 30 shows that f(Q) = OPT A(Q) is convex in Q. It has been shown in,

e.g. [77], that if X is convex and compact and f(Q) is convex and differentiable on
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Algorithm 2: An Efficient FW Algorithm for TKL. Note that the stopping

criterion is defined using the duality gap OPT P (αk)−OPT A(Pk) > 0, which

is equivalent to the stopping criterion used in the standard FW algorithm.

Initialize P0 = I, k = 0, α0 = OPT A(P0);

while OPT P (αk)−OPT A(Pk)≥ ε do

Step 1a: αk = argOPT A(Pk)

Step 1b: Sk = argOPT P (αk)

Step 2: γk = arg min
γ∈[0,1]

OPT A(Pk + γ(Sk − Pk))

Step 3: Pk+1 = Pk + γk(Sk − Pk), k = k + 1

end while

Q ∈ X , then the FW Algorithm produces iterates Pk, such that, f(Pk)−f(P ∗) < O( 1
k
)

where

f(P ∗) = min
P∈X

f(P ) = min
P∈X

OPT A(P ) = OPTP .

Finally, we note that

λ(αk, Pk) + κ∗(αk)

= λ(argOPT A(Pk), Pk) + κ∗(argOPT A(Pk))

= max
α∈Y∗

λ(α, Pk) + κ∗(α) = OPT A(Pk) = f(Pk)

which completes the proof.

In the following subsections, we provide efficient algorithms for computing the

sub-problems OPT A and OPT P .

4.5.3 Step 1, Part A: Solving OPT A(P )

For a given P > 0, OPT A(P ) is a convex Quadratic Program (QP). General

purpose QP solvers have a worst-case complexity which scales as O(m3) [173] where,
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when applied to OPT A, m becomes the number of samples. This computational

complexity may be improved, however, by noting that OPT A is compatible with the

representation defined in [22] for QPs derived from SVM. In this case, the algorithm

in LibSVM [22], can reduce the computational burden somewhat. This improved per-

formance is illustrated in Figure 4.5 where we observe the achieved complexity scales

as O(m2.1). Note that for the 2-step algorithm proposed in this manuscript, solving

the QP in OPT A(P ) is significantly slower that solving the Singular Value Decom-

position (SVD) required for OPT P (α), which is defined in the following subsection.

However, the achieved complexity of O(m2.1) is also significantly faster than solv-

ing the SDPs described in [96, 114, 29]. This complexity comparison will be further

discussed in Section 4.6.

4.5.4 Step 1, Part B: Solving OPT P (α)

For a given α, OPT P (α) is an SDP. Fortunately, however, this SDP is structured

so as to admit an analytic solution using the SVD.

To solve OPT P (α) we minimize λ(e∗ � α, P ) from Eq. (4.24) which, as per

Corollary 28, is linear in P and can be formulated as

OPT P (α) := min
P∈Rq×q

trace(P )=q
P>0

λ(e∗ � α, P ) := min
P∈Rq×q

trace(P )=q
P>0

〈D(α), P 〉

where,

Di,j(α) =
∑m

k,l=1
αkGi,j(xk, xl)αl, Gi,j(x, y) :=



gi,j(x, y) if i ≤ q
2
, j ≤ q

2

ti,j(x, y) if i ≤ q
2
, j > q

2

ti,j(y, x) if i > q
2
, j ≤ q

2

hi,j(x, y) if i > q
2
, j > q

2

(4.29)
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and g, t and h can be found in Corollary 28.

The following theorem gives an analytic solution for OPT P using the SVD.

Theorem 34. For a given α, denote symmetric Dα := D(α) ∈ Rq×q as defined in

Eqn. (4.29) and let Dα = V ΣV T be its SVD. Let v be the right singular vector corre-

sponding to the minimum singular value of Dα. Then P ∗ = qvvT solves OPT P (α).

Proof. Recall OPT P (α) has the form

min
P∈Rq×q

〈Dα, P 〉 s.t. P ≥ 0, trace(P ) = q.

Denote the minimum singular value of Dα as σmin(Dα). Then for any feasible P ∈ X ,

by [54] we have

〈Dα, P 〉 ≥ σmin(Dα)trace(P ) = σmin(Dα)q.

Now consider P = qvvT ∈ Rq×q. P is feasible since P ≥ 0, and trace(P ) = q.

Furthermore,

〈Dα, P 〉 = q trace(V ΣV TvvT ) = q trace(vTV ΣV Tv)

= q σmin(Dα)

as desired.

Note that the size, q, of Dα in OPT P (α) scales with the number of features, but

not the number of samples (m). As a result, we observe that the OPT P step of

Algorithm 2 is significantly faster than the OPT A step.

4.6 Implementation and complexity analysis

In this section we first analyze the complexity of Optimization Problem (4.23)

with respect to the number of training points as well as the selected degree of the

TK - KdT . We then perform the same analysis on Optimization Problem (4.25) with

respect to the number of training points and the number of random matrices selected.
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Figure 4.3: Log-Log plot of computation time vs number of training data for 2-feature

kernel learning.

Analysis of the SDP Approach: In Optimization Problem (4.23) the con-

straint that the kernel be a positive TK kernel can be expressed as an LMI constraint

with variables Pij. Using Optimization Problem (4.23), if P ∈ Rq×q, and m is the

number of training data, with a Mosek implementation, we find experimentally that

the complexity of the resulting SDP scales as approximately m2.6 +q1.9 as can be seen

in Fig. 4.3 and is similar to the complexity of other methods such as the hyperkernel

approach [120]. These scaling results are for training data randomly generated by

two synthetic 2-feature example problems (circle and spiral - See Fig. 4.4) for degrees

d = 1, 2, 3 and where d defines the length of Zd (and hence q) which is the vector of

all monomials in 2 variables of degree d or less.

Note that the length of Zd scales with the degree and number of features, n, as

q = (n+d−1)!
n!d!

. For a large number of features and a high degree, the size of Zd will

become unmanageably large. Note, however, that, as indicated in Section 4.3, even

when d = 0, every TK kernel is universal.

Analysis of the Minimax Approach:

In Figures 4.5, we plot the computation time of the FW TKL algorithm for both
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(d) Spiral data set

classified with [Sim-

pleMKL] (n=150)

Figure 4.4: a

s Compared with [SimpleMKL] for n Training Data.]Discriminant surface for circle

and spiral separator using method [TK] as compared with [SimpleMKL] for n

training data.

classification and regression on a desktop PC with an Intel i7-5960X CPU at 3.00 GHz

and 128 Gb of RAM as a function of m and q, where m is the number of samples

used to learn the TK kernel function and the size of P as q×q (so that q is a function

of the number of features and the degree of the monomial basis Zd). The data set

for these plots is Combined Cycle Power Plant (CCPP) from [164, 86], containing

4 features and m = 9568 samples. In the case of classification, labels with value

greater than or equal to the median of the output were relabeled as 1, and those

less than the median were relabeled as −1. To enable comparison with SimpleMKL,

we use an identical stopping criterion of 10−2. Figures 4.5(a-d) demonstrate that

the complexity of Algorithm 2 scales as approximately O(m2.28q0.57) for classification

and O(m2.34q2.40) for regression. These results are significantly lower with respect

to m than the value of O(m2.6q1.9) reported in [29] for binary classification using

the SDP implementation. Aside from improved scalability, the overall time required

for Algorithm 2 is significantly reduced when compared with the SDP algorithm
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Figure 4.5: In (a) and (b) we find log scale plots of the time taken to execute FW

TKL for P ∈ Rq×q. The line of best linear fit is included for reference. In (c) and (d)

we find log scale plots of the time taken to optimize TKL as a function of q for four

different values of m.

in [29], improving by two orders of magnitude in some cases. This is illustrated for

classification using four data sets in Table 4.1. This improved complexity is likely

due to the lower overhead associated with QP and the SVD.
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Table 4.1: We report the mean computation time (in seconds), along with standard

deviation, for 30 trials comparing the SDP algorithm in [29] and Algorithm 2. All

tests are run on an Intel i7-5960X CPU at 3.00 GHz with 128 Gb of RAM.

Method Liver Cancer Heart Pima

SDP 95.75 ± 2.68 636.17 ± 25.43 221.67 ± 29.63 1211.66 ± 27.01

Algorithm 2 0.12 ± 0.03 0.41 ± 0.23 4.71 ± 1.15 0.80 ± 0.36

4.7 Accuracy of the New TK Kernel Learning Algorithm for Regression

In this section, we compare the accuracy of the classification and regression solu-

tions obtained from the FW TKL algorithm to a selection of several other state of the

art methods. Specifically, we use the following implementations of these algorithms.

[TKL] Algorithm 2 with d = 1, ε = .1 and we scale the data so that xi ∈ [0, 1]n,

and then select [a, b] = [0 − δ, 1 + δ]n, where δ ≥ 0 and C are chosen by 2-fold

cross-validation;

[SMKL] SimpleMKL as implemented in [134] with a standard selection of Gaussian

and polynomial kernels with bandwidths arbitrarily chosen between .5 and 10 and

polynomial degrees one through three - yielding approximately 13(n+ 1) kernels. We

set ε = .1 as in TKL and C is chosen by 2-fold cross-validation;

[NNet] A neural network with 3 hidden layers of size 50 using MATLABs (patternnet

for classification and feedforwardnet for regression) implementation and stopped

learning after the error in a validation set decreased sequentially 50 times.

[RF] The Random Forest algorithm [16] as implemented on the scikit-learn python

toolbox [125] for classification and regression. We select between 50 and 650 trees (in

50 tree intervals) using 2-fold cross-validation.

[XGBoost] The XGBoost algorithm [24] for classification and regression. We select

between 50 and 650 trees (in 50 tree intervals) using 2-fold cross-validation;
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[AMKL] The AverageMKL implementation from the MKLpy python package [100],

averages a standard selection of Gaussian and polynomial kernels;

[PWMK] The PWMK implementation from the MKLpy python package [100], which

uses a heuristic based on individual kernel performance from [159] to learn the weights

of a standard selection of Gaussian and polynomial kernels;

[CKA] The CKA implementation from the MKLpy python package [100], uses the

centered kernel alignment optimization in closed form from [38] to learn the weights

of a standard selection of Gaussian and polynomial kernels.

Six classification and six regression datasets were chosen arbitrarily from [46, 22]

to contain a variety of number of features and number of samples. No other datasets

were tested for relative performance and datasets were not “pre-screened”. In both

classification and regression, our accuracy metric uses 5 random divisions of the data

into test sets (mt samples ∼= 20% of data) and training sets (m samples ∼= 80% of

data). Individual test results and their standard deviations are reported in Tables 4.2

and 4.3 for classification and regression respectively.

Regression analysis Out of the six different regression data sets the proposed al-

gorithm (TKL) scored above average on five of the data sets, an improvement over

all other algorithms but XGBoost which also scored above average on five of the

data sets. The average percent difference between the average MSE and the MSE for

PMKL was -23.16% which was better than all other tested algorithms including XG-

Boost. Unfortunately, the cost of this increased accuracy is an increased computation

time. The average percent difference between the average computation time and the

time for PMKL was 19.49%. However, TKL is also the top performing algorithm for

three of the six data sets.
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Classification analysis Out of the six different classification data sets the proposed

algorithm (TKL) scored above average on all of the data sets, an improvement over

all other algorithms. The average percent difference between the average TSA and

the TSA for TKL was 6.77% which was close to the top score of 6.84% by the AMKL

algorithm. The PWMK algorithm had an average percent difference of 8.52%, but

failed to converge on one of the data sets. Like in the regression case, the cost of this

increased accuracy is an increased computation time. The average percent difference

between the average computation time and the time for PMKL was 68.41%. However,

TKL is also the top performing algorithm for two of these data sets.

To further illustrate the importance of density property and the TKL framework

for practical regression problems, we used elevation data from [8] to learn a degree

2 TK kernel and associated SVM predictor representing the surface of the Grand

Canyon in Arizona. This data set is particularly challenging due to the variety of

geographical features. The result from the TKL algorithm can be seen in Figure 4.6(d)

where we see that the regression surface visually resembles a photograph of this

terrain, avoiding the artifacts present in the Gaussian-based method.

Next we use the TKL algorithm and a selection of other machine learning algo-

rithms to analyze an immune dataset.

4.8 Application of the TK Kernel Learning Algorithm to an Immune State

Identification Problem

The immune response is a dynamic process by which the body determines whether

an antigen is self or nonself. The state of this dynamic process is defined by the relative

balance and population of inflammatory and regulatory actors which comprise this

decision making process. The goal of immunotherapy as applied to, e.g. Rheumatoid

Arthritis (RA), then, is to bias the immune state in favor of the regulatory actors -
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thereby shutting down autoimmune pathways in the response. While there are several

known approaches to immunotherapy, the effectiveness of the therapy will depend on

how this intervention alters the evolution of this state. Unfortunately, this process

is determined not only by the dynamics of the process, but the state of the system

at the time of intervention - a state which is difficult if not impossible to determine

prior to application of the therapy.

In this section we use feature selection algorithms, in combination with the TK

kernel learning algorithm and other machine learning algorithms, to identify an im-

mune state using a data-driven approach. We initially define our immunological

dataset obtained from ongoing trials of RA immunotherapy. Then we define a set of

machine learning algorithms which use a given subset of data observables to identify

outputs of interest such as other observables or the RA outcome - as measured by

severity of inflammation.

To identify important features from the immunological dataset we propose a met-

ric for suitability of a given set of observables based partially on predictive power

of the associated model. The first part of this metric is based on minimality (not

prediction), wherein we impose a penalty based on the number of observables in the

set (cardinality) in order to reduce experimental and clinical complexity. Second, in

order to ensure that relevant immunological data is not lost, we also add a penalty

based on the error of the associated model to predict observables from the data not

included in the given set. Third, to measure efficacy of the prediction, we impose a

penalty based on the error in prediction of RA severity - a quantity we refer to as the

“disease state”.

Finally we use a variety of feature selection algorithms to determine the set of

observables which are optimally suited using the suitability metric described above.

We then report the results of applying the resulting algorithms to our dataset after
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applying different weights to the three parts of the suitability metric. We define the

optimal sets returned by each case as “immune states” and analyze the immune cells

that were selected by the feature selection algorithms in each case.

4.8.1 The Immune Dataset

Figure 4.7: A graphical description

of the experimental procedure of in-

ducing and treating RA in mice. The

first two steps induce RA, the next

two steps is the application of the

treatment and the final step is the

data generation using flow cytome-

try. CFA = complete Freund’s ad-

juvant, IFA = incomplete Freund’s

adjuvant.

We propose a methodology for identifying

observable measures for immune system health

from measured features of the immune sys-

tem. To better illustrate this methodology,

we consider the approach as applied to a par-

ticularly rich dataset obtained from an on-

going series of experiments involving the use

of biomaterials-based particles [107] containing

metabolites that promote self tolerance in in-

termediate/late stage RA in a DBA/1j mouse

model which develops severe arthritis when im-

munized with bovine collagen type 2 (bc2) au-

toantigen. In this experimental series, the par-

ticles were synthesized either with or without

autoantigen bc2 - a strategy designed to de-

termine if the particles can generate antigen-

specific anti-inflammatory response. An overview of the experimental procedure is

provided in Fig. 4.7. The chronology of the experiment is listed here in detail. The

data collection used for model generation occurs exclusively on either day 62 or 70.

Day 0 and 21: RA was induced in mice to generate an autoimmune response

for the development of severe polyarthritis. On day 35, the mice were divided into 3
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groups, each receiving a distinct therapeutic regimen.

Group 0 - Days 35/42: The control group consists of 5 control mice, each re-

ceiving two subcutaneous injections of phosphate buffered saline (PBS) near the hind

legs on days 35 and 42.

Group 1 - Days 35/42: Treatment group 1 consists of 5 mice. Each mouse

receives two injections of 0.5 mg of biomaterials-based particles without embedded

autoantigen bc2 near the hind legs on days 35 and 42.

Group 2 - Days 35/42: Treatment group 2 consists of 8 mice. Each mouse

receives two injections of 0.5 mg of biomaterials-based particles with embedded au-

toantigen bc2 near the hind legs on days 35 and 42.

Measurements Taken on Days 62/70: Paw thickness measurements are used

to determine arthritic scores for all mice and the end of study paw measurements

were obtained either on day 62 or 70, and are defined on the interval [0, 5]. Further-

more, flow cytometry was performed on cells collected from the popliteal lymph node,

cervical lymph node and spleen of each mouse on day 62 or 70. The flow cytome-

try procedure measured values for CD4 (T helper (Th) cell marker), CD8 (cytotoxic

T (Tc) cell marker), Ki67 (proliferation), CD25 (activation), Foxp3 (regulatory T

(Treg) cell transcription factor (TF)), Tbet (Th1/Tc1 TF), GATA3 (Th2/Tc2 TF),

RORyT (Th17/Tc17 TF), CD44 (effector memory marker), CD62L (central memory

marker), and a tetramer that is specific to the autoantigen. Based on this staining,

we identified 41 different combinations of markers which might be used to classify the

phenotype of a T cell and determined the percentage of either CD4 or CD8 T cells
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presenting the associated combination of markers.

Summary of Associated Dataset: The data consists of 84 samples, based on

18 mice, each sample is associated with a mouse and sample location. All samples

are taken on day 62/70, and each sample consists of 43 features and one label. The

first two features of each sample indicate group number (0-2) and sample location

(1-3). The remaining 41 features defining the percentage (0-100) of the CD4/CD8

population exhibiting the associated combination of markers. The label for each

sample is the arthritic score (0-5).

Based on this data we next propose several methods of machine learning to con-

struct predictive models which use subsets of the features to predict both the label

(disease progression) and discarded features. For generating these models, all features

are scaled to the interval [0, 1].

4.8.2 Selected Machine Learning Algorithms

We define six machine learning algorithms that will be used in combination with

a feature selection algorithm to determine the immune state. In each case below, we

assume the data set contains m samples, {xi, yi}mi=1, each with n features, xi ∈ Rn

and a label yi ∈ R.

Regularized Linear Regression (LR) The regularized linear regression algo-

rithm returns a predictive model y = f(x) = wTx + b, where w solves the following

optimization problem.

min
w∈Rn

m∑
i=1

(yi − wTxi − b)2 + α2||w||2 + α1||w||.

In this case, α1 ≥ 0 and α2 ≥ 0 are the regularization parameters. Linear regression

has the advantage of low computational complexity. However, the resulting predictor
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is linear and if the underlying physical process is nonlinear, accuracy of the predictive

model will be poor.

ε-loss Support Vector Regression (SVR) The support vector regression prob-

lem (Optimization Problem (2.15)) uses a predictive model of the form f(x) =∑m
i=1 αik(x, xi) where α ∈ Rm is the decision variable and k is a user selected positive

kernel function. The objective function penalizes any points where |f(xi) − yi| ≥ ε,

where ε is a tuning parameter by a regularization parameter C. SVR can generate ac-

curate nonlinear predictive models for appropriate choice of k. However, the selection

of the kernel heavily influences the resulting accuracy and this process of selection is

difficult to automate.

Kernel Learning (TKL) Kernel learning algorithms improve on the SVR problem

by automating the search for a kernel function. We have shown that the class of Tes-

sellated Kernel functions have the properties of universality, density, and tractability

- meaning the resulting algorithms are rather accurate and generalize well to new

data. The regularization parameters in this case are the ε and C as defined above for

SVR.

Decision Tree Algorithms Decision trees are composed of a series of conditional

statements that branch in a “tree” like manner. We say the “depth” of a decision

tree is how many conditional statements appear in a branch before leading to a label

denoted the “leaf”. Both the depth of the decision trees and the maximum number

of leaves are regularization parameters that can be modified by the user. Decision

trees are often weak predictors alone and in this paper we use ensemble (random

forest) or boosting (boosted trees) methods to increase predictive performance. These

algorithms are defined as follows.
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• Random Forest: The random forest algorithm is an ensemble machine learn-

ing method based on a combination of decision trees. Ensemble methods use a

combination of predictive models (trees) that individually have poor generaliza-

tion but when used in combination can have significantly improved predictions.

The number of decision trees combined in the random forest algorithm can be

used as a regularization parameter.

• Boosted Trees: Gradient boosting is another machine learning method also

based on a combination of decision trees. In the boosted algorithm trees are

added to the predictive model sequentially, and each additional tree is fit to

the current residuals of the model. A “learning rate” is a weight applied to the

addition of each decision tree, and is often used as a regularization parameter.

Small learning rates tend to improve the generalization of the predictive models.

Next we will focus on a metric we may use to identify the observables which are

most suitable to the task of predicting self vs nonself determination in autoimmune

disease.

4.8.3 Quantifying Suitability of a Given Set of Observables

To identify a set of observables for predicting self vs nonself determination we

rigorously define a metric for suitability in order to select the observables which lead

to superior predictive models.

First, for the sake of generality, we define the algorithm, OPT , which we use as a

placeholder for the machine learning algorithms described previously.

Definition of OPT : Given a dataset {xi, yi}mi=1 ⊂ Rn × Rq, OPT ({xi, yi}mi=1),

returns a predictive function, f = argOPT ({xi, yi}mi=1), where f : Rn → Rq.
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In cases where the machine learning algorithm returns a function with a single

output we train the machine learning algorithm q times, once for each output.

Next, given a possible set of feature indices F := {1, · · · , n}, we define the set of

all subsets of F as P(F ), and the set of all possible subsets of F of length w ≤ n as

follows.

Bw := {v ∈ Nw | v ∈ P(F )}

For a given selection of features, b ∈ Bw, we denote the associated projection Pb :

Rn → Rw so that (Pb(x))i = xbi for x ∈ Rn and i = 1, · · · , w.

To define a metric we consider three cost/penalty functions, M1,M2, and L. The

function L is a function of the cardinality of the number of features selected, L(|b|C).

The costs M1 and M2, however, measure how well the selection of features can be

used to predict the disease state and the discarded features respectively. To accurately

evaluate the performance of the predictor a partition of the data must be withheld

from the training algorithm, OPT , and used solely for the purpose of testing the

performance. For a given set of data, these metrics will vary depending on which data

points are used for training OPT and which are used to evaluate its performance.

To explicitly account for the effect of choice in partitioning of data samples, we now

define the set of samples S := {1, · · · ,m}, and the set of partitions of S as P(S). As

for features, we denote the set of sample partitions of length r as

Sr := {v ∈ Nr | v ∈ P(S)}

and for a given selection of samples, g ∈ Sr, we denote the associated projected data

set as Pg(X) := {xi ∈ X, i ∈ g}.

Therefore, the costs M1 and M2 are a function of the feature partition, b, and

the training partition, g ∈ Sr ∈ P(S), so that M1(b, g) and M2(b, g) are the Root

Mean Square Error (MSE) of predicting the test partition (S/g). Specifically, let
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R(f, x, y) =
√

1
m−r

∑
i∈S/g |f(xi)− yi|22 and we have

M1(b, g) = R(fb,g, Pb(x), y) M2(b, g) =
∑
j∈F/b

R(d
(j)
b,g, Pb(x), Pj(x))

fb,g = argOPT ({Pb(xgi), ygi}ri=1) d
(j)
b,g = argOPT ({Pb(xgi), Pj(xgi)}ri=1))

In the ideal case, we would average these costs over all possible partitions of

the data set to give an estimate of the predictive power of b ∈ Bw. However, such

an approach would result in very large computational overhead. Therefore, we use

the k-fold cross validation approach, wherein we divide the samples into k training

partitions of size m(k−1)
k

, which we label as g(i) ∈ Sm(k−1)
k

for i = 1, · · · , k. Then the

average cost of the feature partition b over the k sample partitions is

J(b) =
1

k

k∑
i=1

J ′(b, g(i)).

where

J ′(b, g) := β1M1(b, g) + β2M2(b, g) + L(|b|C) (4.30)

and where β1, β2 ≥ 0 are given weights.

First, we let β1 = 1 and β2 = L(w) = 0 - a case we denoted as the Minimal Disease

State (MDS). In this case, we are only concerned with predicting the progression of

the disease and are not concerned with predicting non-selected features or with the

number of features selected. Therefore, the number of features selected for each

algorithm is the number of features which generated the smallest J ′(b, g). Second, we

let β1 = 0 and β2 = 1 and

L(w) =


0 for w ≤ 10

∞ for w > 10.

In this case, we ignore the disease state and are only concerned with reducing the

number of features while retaining the ability to reconstruct discarded features - a
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case we denote as the Minimal Immune State (MIS). Finally, we let β1 = β2 = 1 and

L(w) as defined for the MIS. We denote this final case as the Minimal Immune and

Disease State (MIDS).

Now that we have defined the metric of suitability as a function of the partition,

b ∈ Bw we will define the following combinatoric optimization problem.

min
b∈Bw,w∈N

J(b) (4.31)

To perform feature selection to solve Optimization Problem (4.31) we will use a

Sequential Feature Selection (SFS) algorithm as described in [20]. This SFS algorithm

begins with b := ∅, and iteratively selects a locally optimal feature (with respect to

the objective function of Optimization Problem (4.31)) at each step.

Clearly, the effectiveness of Feature Selection depends on the ML algorithm (OPT )

used to generate the predictive model. Therefore, in the Results subsection, we test

all the machine learning algorithms proposed herein. Unfortunately, the accuracy of

the predictive model is influenced by user-selected parameters within the algorithm.

For reproducibility, we list here the selections for these parameter values.

Linear Regression: We test all 16 combinations of α1 ∈ [0, 0.1, 1, 5] and α2 ∈

[0, 0.1, 1, 5] and select the choice yielding the highest metric (J).

TKL: We use the default TK kernel parameters and test ε = .005, and C ∈

[.01, .1, .3, .5, 1] and select the choice yielding the highest metric (J).

SVR: We test all combinations of ε = .1, C ∈ [1, 5, 10] and 3 kernel functions (linear,

RBF, or 3rd degree polynomial) and select the choice yielding the highest metric (J).

For the RBF kernel the features are normalized by their variance and a bandwidth

of 1
n

is selected.

Random Forest We test 9 combinations of number of trees (ntrees ∈ [50, 100, 150])

and the maximum tree depth of (maxdepth ∈ [5, 10, 20]) and select the choice yielding
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the highest metric (J).

Boosted Trees We test 15 combinations of number of trees (ntrees ∈ [50, 100, 150, 250])

and learning rate (LR ∈ [0.01, 0.1, 0.5]) and select the choice yielding the highest met-

ric (J).

Alternative feature selection algorithms are used as a baseline by which we may

compare the wrapper method. We use three filter methods and one embedded method

in the analysis as follows.

Filter Methods

Given a set of data, filter methods use a rating function to rank each features relative

“importance”. After the features have been ranked, the user may select w features

to be kept and the remaining features will be discarded.

Mutual Information (MI) The Mutual Information criteria [7] is a statistical

function of two random variables that describes the amount of information contained

in one random variable relative to the other.

Analysis of Variance (ANOVA) The ANOVA method [92] is a commonly used

method for analyzing variable dependencies. The F-test is used to estimate the

features importance.

Principle component analysis (PCA) This method approximates the data with

linear manifolds [148]. The main methods used to perform PCA are based on the sin-

gular value decomposition and diagonalization of the correlation matrix. We calculate

the importance based on the first 3 eigenvectors.

In all cases, once a set of features has been selected, suitability (J) is determined

using each of the ML algorithms and we report the minimum of these values.

Embedded Methods
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Embedded FS methods attempt to embed the process of feature selection directly into

the model generation process - typically adding a cost for inclusion of a particular

feature in the model. These methods have been used for a similar application in

gene expression as in [68]. For this analysis, only a single embedded method was

considered.

Mean Decrease in Impurity (RF) The Gini Importance or Mean Decrease in

Impurity [17] is an embedded method for the Random forest algorithm. It calculates

the importance of features as the mean of the number of splits (over all trees) that

include this feature, weighted by the probability of reaching this node.

4.8.4 Results

Here we define three immune states generated by varying the weights of the metric.

These three immune states are lower dimensional subsets of the data which can be

used to either predict the progression of RA, reconstruct the full set of T cell markers

and populations, or perform both tasks simultaneously.

In all cases the SFS algorithms consistently outperformed the filter and embed-

ded methods. For this reason we focus the analysis on the SFS algorithms and the

frequency by which the SFS algorithms selected populations of immune system cells.

Case 1: Features for Predicting Disease Progression (MDS)

First we consider the problem of selecting features that are optimal for predicting

the disease progression.

Most Important Features Using the SFS Algorithms

In Fig. 4.8 we show the observables that were selected by each of the proposed algo-

rithms. Counting the number of times a feature was selected by the proposed SFS
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methods, the following features were chosen by at least three of the methods.

(1) CD4+GATA3+CD44+CD62(Lo) (3 times)

(2) CD4+GATA3+Ki67+ (3 times)

(3) CD4+Foxp3+CD25+ (3 times)

(4) CD4+Foxp3+CD25+Ki67+Autoantigen (3 times)

(5) CD4+Tbet+ (3 times)

Among the cytotoxic cells, the algorithms were most consistent, with all five of

the SFS algorithms selecting one feature in common.

(6) CD8+Ki67+ (4 times)

(7) CD8+GATA3+ (3 times)

(8) CD8+Tbet+ (3 times)

This group of cells consists of cytotoxic (6,7,8), Th memory (1), Th (2,5), and

Treg (3,4) T cell sub-populations. The location feature (origin of the tested cells), was

selected only once by an SFS based algorithm. This implies that there is significant

uniformity in the disease state among the lymph nodes and spleen.

In addition, only one selected feature (4) was autoantigen specific - indicating that

most of these T cell markers may be correlated to, not just the progression of RA,

but the progression of other similar autoimmune diseases as well.

Finally, the MDS consisted of biomarkers that were not data-rich but contained

general classes of T cells rather than the more specific sub-populations selected in

the MIS and MIDS cases. This suggests that the disease state is caused by a large
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irregularity in general populations of T cells rather than irregularities in a few smaller

specific populations.

In this case we do not include the treatment as a possible feature, since we are

primarily interested in the prediction of the disease state using sub-populations of

T cells as opposed to the already known correlation between treatment and disease

state. In the next two cases treatment is considered a feature.

Case 2: Features for Reconstructing Discarded Features (MIS)

Next we consider the problem of selecting features that are optimal for recon-

structing discarded features to determine a Minimal Immune State.

Most Important Features

In Fig. 4.9 we show the features that were selected by each of the proposed algo-

rithms. Unlike in the previous subsection, there was less of an agreement among the

high-performing SFS algorithms as to the most significant features. For MIS only

6 different features were selected by at least three algorithms. First, if we consider

markers specific to helper and regulatory cells, and counting the number of times

a feature was selected by the SFS methods (each method selected 10 features), the

following features were each chosen by at least half of the algorithms.

(1) CD4+GATA3+CD44+CD62L(Lo) (4 times)

(2) CD4+Tbet+Ki67+ (4 times)

(3) CD4+GATA3+Ki67+Autoantigen (3 times)

(4) CD4+Tbet+Autoantigen (3 times)

We note that two of the selected features are autoantigen specific as opposed to the

single autoantigen specific feature selected for cells in MDS.
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Among the cytotoxic cells, the algorithms were less consistent, with only three of

the SFS algorithms selecting similar sub-populations.

(5) CD8+Ki67 (3 times)

(6) CD8+GATA3+CD44+CD62(Lo) (3 times)

We note that the central memory T cells (CD62L) appear in both the helper

populations and the cytotoxic cell populations. No regulatory cells were consistently

selected by all five of the top performing algorithms, suggesting that no specific

regulatory cell type was most important for reconstructing the immune state.

In this case, data-rich biomarkers (those containing multiple markers), were se-

lected slightly more often when compared to MDS. The average number of markers

in the selected features is 3.33 in this case compared to 2.875 in the MDS case. This

may be due to the fact that estimating the entire immune state is significantly more

difficult then simply estimating the disease state alone, and more data-rich markers

may therefore be necessary.

Of particular note is the fact that the location feature (origin of the tested cells)

and the treatment feature (which treatment was applied) were both selected by almost

every algorithm. This implies that the immune state is not uniform across the lymph

nodes and spleen, and that the specific treatment given to the mice has a large impact

on the immune state.

Case 3: Features for Disease Progression and Reconstruction (MIDS)

Next we consider the problem of selecting features that are optimal for predicting

a combination of the MIS and MDS objectives, the Minimal Immune and Disease

State.
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Most Important Features Using the SFS Algorithms

In Fig. 4.10 we show the features that were selected by each of the proposed algo-

rithms. If we consider markers specific to helper and regulatory cells, the following

features were each chosen by at least three of the five SFS algorithms.

(1) CD4+GATA3+CD44+CD62L(Lo) (4 times)

(2) CD4+Tbet+Ki67+ (4 times)

(3) CD4+Tbet+Autoantigen (4 times)

(4) CD4+GATA3+Ki67+Autoantigen (3 times)

As in the MIS case two of the selected features are autoantigen specific, however

no cytotoxic cells were consistently selected by at least three of the SFS algorithms.

Similar to the MIS case, no regulatory cells were consistently selected by all five

of the top performing algorithms. Just as in the case of the MIS the location feature

(origin of the tested cells) were selected by almost every algorithm and the treatment

attribute was likewise selected by every algorithm.

However, in this case the algorithms were least consistent on selecting cytotoxic

cells, implying that no single cytotoxic cell type was consistently selected to both

reconstruct the immune system and determine the disease progression. This would

imply, therefore, that the Th cell populations are more essential to both predicting

the disease progression and reconstructing the immune state.

We note that the memory T cell sub-population CD4+GATA3+CD44+CD62L(Lo)

was selected in all three cases. It is clear that this sub-population is significant to

both the immune and disease states.
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4.9 Conclusion

We have proposed an efficient algorithm for TK kernel learning based on a primal-

dual decomposition combined with a FW type algorithm. The set of TK kernels is

tractable, dense, and universal, implying that KL algorithms based on TK kernels

are more robust than existing machine learning algorithms, an assertion supported

by numerical testing on 6 relatively large and randomly selected datasets.

We also considered the use of the KL learning problem in the identification of

three different states of the immune system of increasing complexity. Specifically, we

used a set of mouse-model experiments to obtain a robust dataset of T cell markers

and populations at the end stage of a proposed immunotherapy treatment. The first

state is the disease state, which is important for tracking the disease progression and

predicting the effectiveness of treatments. Next is the immune state which is the

minimal number of sub-populations needed to reconstruct the remaining discarded

features. Finally we find the combined overall immune state for predicting both the

disease state and reconstructing the discarded features. From these experiments we

were able to determine that the CD4+GATA3+CD44+CD62L(Lo) memory T cell

sub-population is significant to both the immune state and disease state of mice with

RA - and have developed a set of T cell sub-populations important for tracking the

disease progression and outcome of immunotherapy.

144



(a) An image from Google Maps of a sec-

tion of the Grand Canyon corresponding to

(36.04, -112.05) latitude and (36.25, -112.3)

longitude.

(b) Elevation data (m = 750) from [8] for

a section of the Grand Canyon between

(36.04, -112.05) latitude and (36.25, -112.3)

longitude.

(c) Predictor using a hand-tuned Gaussian

kernel trained on the elevation data in (b).

The Gaussian predictor poorly represents

the sharp edge at the north and south rim.

(d) Predictor from Algorithm 2 trained on

the elevation data in (b). The TK predictor

accurately represents the north and south

rims of the canyon.

Figure 4.6: Subfigure (a) shows a 3D representation of the section of the Grand

Canyon to be fitted. In (b) we plot elevation data of this section of the Grand

Canyon. In (c) we plot the predictor for a hand-tuned Gaussian kernel. In (d) we

plot the predictor from Algorithm 2 for d = 2.
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Figure 4.8: The green squares indicate that the feature selection method (left) selected

the feature (top). The methods are ordered from lowest objective function, J(b), at

the top to greatest objective at the bottom. The SFS methods and the features most

commonly selected by those methods are bolded.
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Figure 4.9: The green squares indicate that the feature selection method (left) selected

the feature (top). The methods are ordered from lowest objective function, J(b), at

the top to greatest objective at the bottom. The SFS methods and the features most

commonly selected by those methods are bolded.
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Figure 4.10: The green squares indicate that the feature selection method (left) se-

lected the feature (top). The methods are ordered from lowest objective function,

J(b), at the top to greatest objective at the bottom. The SFS methods and the

features most commonly selected by those methods are bolded.
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Chapter 5

PREDICTIVE MODELING WITH CONSTRAINED POLYNOMIALS USING

SUM-OF-SQUARES PROGRAMMING

A number of immunotherapies have been developed to modulate the immune re-

sponse when the immune system fails to recognize and eliminate a threat such as

cancer, or identifies self antigens as a threat as in Rheumatoid Arthritis. While im-

munotherapies are promising, for example as cancer treatments, the question that

arises is how to determine an optimal immunotherapy for a patient given the current

population of immune system cells [79]. Unfortunately, it is not always clear how

exactly an immunotherapy will affect the immune system cells, nor how the current

immune system cells can affect the immunotherapies effectiveness. Because the inter-

actions between immunotherapies and immune system cells are unclear, generating

physics based models, therefore, is not always tractable or efficient.

Rather than relying on physics based models of the immune system, in this chapter

we look at data-driven methods for calculating the region of attraction of a system

with unknown dynamics. Finding the Region Of Attraction (ROA) of nonlinear

Ordinary Differential Equations (ODEs) is a well-studied and important problem. For

instance, estimates of the region of attraction have been used in cases such as verifying

and validating flight control [19] and analyzing cancer dormancy equilibria [108].

Unfortunately, in many real-world cases the vector field defining the ODE may not

be known a priori and there exist few methods which can estimate the ROA. In this

chapter we consider systems of the form

ẋ(t) = f(x(t)), x(0) = x0, (5.1)
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where f : Rn → Rn is the vector field and x0 ∈ Rn is the initial condition.

Lyapunov functions and their predictive models, by design, must be globally pos-

itive. In Section 5.1 we first consider the problem of generating predictive models

that are constrained to be globally positive or positive over a semialgebraic set using

polynomial functions. Polynomial functions have been used to model system dynam-

ics for system identification [23], and have been used to generate predictive models

using, for instance, least squares regression [63]. In chapter 1 we showed that the set

of Sum-of-Squares polynomials have been used in toolboxes such as SOStools [130]

to solve important problems in control systems such as finding a Lyapunov func-

tion for a system with known dynamics. In this chapter we show that the class of

sum-of-squares polynomials can also be used to model Lyapunov functions given only

measured trajectory data of an unknown system.

We assume the vector field is unknown, but trajectory data is available. Specif-

ically, define g(x0, t) to be the solution map of Eq. (5.1), where g(x, 0) = x(0) and

d
dt
g(x, t) = f(g(x, t)) for all x ∈ Rn and t ≥ 0. Then we assume trajectory data is

available in the form of g(xi, k∆t) for k = 1, . . . ,m and i = 1, . . . ,m. The question

is then how to use this data to estimate the region of attraction.

In Section 5.2 we consider generating estimates of a converse Lyapunov function,

V (x) =

∫ ∞
0

‖g(x, t)‖2 dt, (5.2)

by observing and integrating trajectories g(xi, t) over possibly multiple initial condi-

tions xi. We then search for an optimal sum-of-squares polynomial by solving the

least absolute deviations optimization problem,

min
h∈H

m∑
i=1

|h(xi)− yi| , (5.3)

where H is the convex cone of sum-of-squares polynomials, xi ∈ Rn from i = 1, ...,m

to be the given initial conditions and yi = V (xi). We briefly note that there has been
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some work on using trajectory data to fit Lyapunov functions for purposes other

than estimating the region of attraction [89, 118]. However, these results provide no

labeling (i.e. the true or estimated value of V (xi) is unknown) and hence cannot be

used to estimate stability regions.

Upon obtaining the optimal Lyapunov function V ∗ ∈ H, we estimate the region

of attraction as a maximal level set of the Lyapunov function. We define the γ level

set as V ∗γ = { x | V ∗(x) ≤ γ} and, after selection of γ, use V ∗γ as the estimate of the

ROA.

Finally we model the Lyapunov function of the dynamics between cancer cell pop-

ulations, and immune system cell populations for a range of immunotherapy treat-

ments. We use simulated trajectory data of the population of tumor cells throughout

time from various initial values of the immune system cells and a range of immunother-

apy treatments. We assume in this case that the effect of the variation in patient

dynamics is negligible when compared to the differences in the initial conditions of

the immune system cells. Therefore the learned Lyapunov function is an average

estimate among a collection of different patients.

We show that the generated model can be used to predict whether an immunother-

apy treatment (within the given range) will lead to complete tumor elimination with

greater than 90% accuracy over a subset of initial conditions even when patient dy-

namics differ. The prediction requires only an initial measurement of the populations

of the tumor cells, some immune system cells and a cytokine. We then show that find-

ing an optimal immunotherapy treatment can be formulated as a global polynomial

optimization problem using the ROA model as a constraint.
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5.1 Generating Optimal Predictive Models with Sum-of-Squares Polynomial

Functions

In this section we consider the problem of generating polynomial models that are

constrained to be globally positive or positive over a set.

Recall the semialgebraic set S := {x ∈ Rn : gi(x) ≥ 0, i = 1, . . . , l}, where

gi ∈ R[x], S 6= ∅ and S is compact. We can enforce positivity of a polynomial p on S

as follows,

min
p∈Rk[x]

σi∈Sk[x] ∀i=0,...,l

C(p) (5.4)

such that: p = σ0 +
l∑

i=1

σigi,

where C is an objective function that is being minimized and the gi are the poly-

nomials in the semialgebraic set S. Let c be the decision variables that parametrize

p, then if C(p) is linear or quadratic with respect to the vector c, the problem can

be efficiently solved as a semi-definite program using interior point methods such as

those in [2] and a suitable solver such as Mosek [4] or SeDuMi [153].

5.1.1 Fitting Sum-of-Squares Polynomials to Data

Given data, {xi ∈ Rn, yi ∈ R}mi=1 one wants to find the function, p(x) that best

maps the xi to the corresponding yi. Two metrics used to select the model which

best maps inputs to outputs are the least squares and least absolute deviations metric.

The least squares and least absolute deviations regression objectives respectively are,

C(p) =
m∑
i=1

(p(xi)− yi)2 and, C(p) =
m∑
i=1

|p(xi)− yi|. (5.5)

The solution to Optimization Problem 5.4 using one of the objective functions in

Eq. (5.5), is the degree k polynomial function that is positive on the set S and best

maps the inputs to the outputs with respect to the given data and selected metric.
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Least Absolute Deviations

Here we consider the general problem of how we may fit a SOS function, say p :

Rn → R+ that is guaranteed to be positive on a semialgebraic set S and that maps

from xi to yi with minimal error. Perhaps the simplest method of function fitting

is to minimize some variation on
∑

i ‖p(xi)− yi‖. We first select a computationally

inexpensive approach of least absolute deviations, defined as

min
p∈Rd[x]

σi∈Sd[x] ∀ i=1,...,l

m∑
i=1

|p(xi)− yi| . (5.6)

such that: p(x) = σ0 +
l∑

i=1

σigi,

where p(x) is thus positive on S := {x ∈ Rn : gi(x) ≥ 0, i = 1, . . . , l}.

While the objective function is still not linear, we may define a dummy variable

γ ∈ Rm as well as 2m constraints to obtain the following optimization problem,

min
γ∈Rm
p∈Rd[x]

σi∈Sd[x] ∀ i=1,...,l

m∑
i=1

γi (5.7)

such that: p(x) = σ0 +
l∑

i=1

σigi,

p(xi)− yi ≥ γi, yi − p(xi) ≥ γi, ∀ i = 1, . . . ,m,

which is equivalent to optimization problem (5.6).

If we substitute the parameterization σj(x) = ZT
d (xi)PjZd(xi) in optimization
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problem (5.7), we have

min
γ∈Rm

Pi∈Rq×q ∀ i=0,...,l

m∑
i=1

γi (5.8)

such that: ZT
d (xi)P0Zd(xi) +

l∑
j=1

gj(xi)Z
T
d (xi)PjZd(xi)− yi ≥ γi ∀ i = 1, . . . ,m,

yi − ZT
d (xi)P0Zd(xi)−

l∑
j=1

gj(xi)Z
T
d (xi)PjZd(xi) ≥ γi ∀ i = 1, . . . ,m.

Since the value of ZT
d (xi)PjZd(xi) is linear with respect to the elements of P , this

optimization problem then has 2m linear constraints, j semidefinite matrix decision

variables of size q × q and a linear objective function. This problem can then be

efficiently solved as a semi-definite program using interior point methods such as

those in [2] and a suitable solver such as mosek [4] or SeDuMi [153].

Least Squares

We define the least squares version of the constrained polynomial optimization prob-

lem as,

min
p∈Rd[x]

σi∈Sd[x] ∀ i=1,...,l

m∑
i=1

(p(xi)− yi)2 (5.9)

such that: p(x) = σ0 +
l∑

i=1

σigi,

where p(x) is thus positive on S := {x ∈ Rn : gi(x) ≥ 0, i = 1, . . . , l}.

While the objective function is not linear, we may define a dummy variable γ ∈ Rm

as well as 2m constraints to obtain the following optimization problem,

min
γ∈Rm
p∈Rd[x]

σi∈Sd[x] ∀ i=1,...,l

m∑
i=1

γi (5.10)

such that: p(x) = σ0 +
l∑

i=1

σigi,

 γi p(xi)− yi

p(xi)− yi 1

 � 0 ∀ i = 1, . . . ,m,
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which is equivalent to optimization problem (5.9) since the LMI constraint enforces

γi ≥ (p(xi)− yi)2.

This optimization problem can be cast as an LMI and solved using semi-definite

programming. If we replace σi ∈ S[x] with σi(x) = Zd(x)TPiZd(x) for Pi ≥ 0 in

optimization problem (5.10), we have

min
γ∈Rm

Pi∈Rq×q ∀ i=0,...,l

m∑
i=1

γi (5.11)

such that: p(x) = ZT
d (xi)P0Zd(xi) +

l∑
j=1

gj(xi)Z
T
d (xi)PjZd(xi) γi p(xi)− yi

p(xi)− yi 1

 � 0 ∀ i = 1, . . . ,m.

Since the value of ZT
d (xi)PjZd(xi) is linear with respect to the elements of P , this

optimization problem then has m 2x2 LMI constraints, j semidefinite matrix decision

variables of size q× q and a linear objective function. This problem can then, like the

least absolute deviations version of the optimization problem, be efficiently solved as

a semi-definite program using interior point methods.

If p(x) is only required to be globally positive everywhere, as in the next section,

then p = σ0 and the problem only has one semidefinite matrix decision variable of

size q × q. In this case the solution to optimization problem (5.8) and (5.11) returns

the optimal function, p∗(x) = Zd(x)TP ∗Zd(x).

In the following section we show how these constrained polynomial functions can

be used to approximate the Region of Attraction from state measurements of a system

with unknown dynamics.
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(a) The initial condition data (black circles)

used in optimization problem 5.8 for the Van

Der Pol Oscillator. The area within the

black dotted line is a numerical estimate of

the region of attraction of the system using

the reverse time dynamics.
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(b) The initial condition data (black cir-

cles) used in optimization problem 5.8 for

the Predator-Prey model. The area within

the black dotted line is a numerical estimate

of the region of attraction of the system us-

ing the reverse time dynamics.

Figure 5.1: Subfigures (a) and (b) show the initial conditions used to generate the

data for optimization problem (5.8).

5.2 Data Based Estimation of the Region of Attraction

Recall that we consider systems of the form

ẋ(t) = f(x(t)), x(0) = x0, (5.12)

where f : Rn → Rn is the vector field and x0 ∈ Rn is the initial condition. We

assume trajectory data is available in the form of g(xi, k∆t) for k = 1, . . . ,m and

i = 1, . . . ,m, where g(x0, t) is the solution map of Eq. (5.12).
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5.2.1 Determining the Value of a Converse Lyapunov Function

We use trajectory data to define inputs of the form xi and associated outputs of

the form yi = log(1 + V (xi)) where V if the converse Lyapunov function defined in

Equation (5.2). If we let g(x, t) be the solution map to the nonlinear ODE, then

we define our trajectory data to be of the form of vectors a(i, j) = g(xi, j∆t) for

j = 1, ..., K where ∆t is the measurement time-step and xi are the initial conditions

used to generate the trajectories. Then

V (xi) =

∫ K∆t

0

‖g(x, t)‖2 dt+ V (a(i,K)).

If we take K sufficiently large, we may assume a(i,K) ≈ 0. If we likewise assume ∆t

is small, then we make the approximation

V (xi) =

∫ K∆t

0

‖g(x, t)‖2 dt ≈
K∑
j=0

‖a(i, j)‖2 ∆t. (5.13)

In practice, of course, we use a trapezoidal approximation of this integral. Ideally ∆t is

constant, however, the trapezoidal approximation of the integral does not require that

the trajectory be measured on a specific time step. Thus we may still approximate

the converse Lyapunov function in cases where measurements are taken in irregular

time steps.

We conclude that a given set of trajectories at K time instants associated with L

initial conditions gives us K · L values of V (x).

However, we do not use V (xi) as our label. This is because V (x) grows very

quickly as x approaches the edge of the region of attraction and decreases quickly

near the origin, resulting in several orders of magnitude variation. This variation

causes performance issues when solving Optimization Problem (5.8) - points of a

smaller magnitude have less influence on the value of the optimal function V ∗(x).

To resolve this issue we instead use data labels yi = log(1 + V (xi)) as data for the
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optimization algorithm where the values of V (xi) are obtained from Equation (5.13).

This means, however, that the actual output from the optimization solver is

p∗(x) = ZT
d (x)P ∗Zd(x) ∼= log(1 + V (x))

from whence we may obtain our estimate of the converse function as

V ∗(x) = 10p
∗(x) − 1.

Note that p∗(x) > 0 if and only if V (x) > 0 and p∗(x) = 0 if and only if V (x) = 0.

Furthermore, V̇ (x(t)) ≤ 0 implies ṗ∗(x(t)) ≤ 0 and hence p∗(x) is fitting to a valid

Lyapunov function for the system - albeit not the original converse from Section 2.

Estimating the Region of Attraction

Having shown how trajectory data can be used to provide training data to model a

Lyapunov function, we now discuss how to use that function to estimate the region

of attraction. We denote this fitted Lyapunov function as V ∗(x) = 10Z
T
d (x)P ∗Zd(x) − 1

which is the optimal globally positive sum-of-squares function returned by either

Optimization Problem 5.8 or Optimization Problem 5.11.

Recall from Chapter 1 that the level set of a Lyapunov function,

Vγ := {x ∈ Rn | V (x) ≤ γ}

can be used as an estimate of the region of attraction if the time derivative of the

Lyapunov function is also negative on the level set. However, if V is the converse

Lypaunov function, then any state x where V is finite is part of the region of attraction

(see [69]).

Therefore if one had the exact converse Lyapunov function (5.2), then by choosing

a suitably large γ one could estimate the region of attraction arbitrarily well. In this
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case however we have only an estimate, V ∗(x), of the Lyapunov function that is

optimal with respect to the trajectory data we are given. In areas where we do not

have trajectory information V ∗(x) is not likely to be accurate, so we must consider a

metric with which to select γ.

Consider the largest value of the converse Lyapunov function (5.2) of all the tra-

jectories used to find the optimal V ∗(x), which we will denote as γ∗ = max
j
{V ∗(xj)},

where j = 1, ...,m and xj are the initial conditions of the given trajectories. Then

we will only consider the level set of our optimal function, V ∗(x), that is less than or

equal to γ∗ since this is the smallest value of the actual converse Lyapunov function

(5.2) that should contain all of the trajectory measurements.

However, it is possible that γ∗ may be too large of a value and the estimate of

the region of attraction may contain points outside of the true region of attraction S.

We will then consider a factor of safety, 0 < η ≤ 1, to define a smaller estimate of the

region of attraction. We then have that our estimate for the region of attraction is

Eηγ∗ := { x |V ∗(x) ≤ ηγ∗},

where values of η that are closer to zero result in a smaller, more conservative estimate

of the region of attraction when compared to values of η that are closer to one.

In cases where test data is available, one may find the percentage of points that

are falsely determined to be within the region of attraction (false positives) and use

the proportion of these as a metric for selecting η. For instance, if a more conservative

estimate of the region of attraction is needed the value of η can be selected by choosing

the largest value of η which has no false positive results on the test set.

Next we perform a series of numerical tests to determine the efficacy of the pro-

posed method.
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(b) The computation time of Optimiza-

tion Problem (5.8) versus the size of the

semi-definite matrix, q =
(
n+d
n

)
. The

black circles are indicate the problem was

optimized with 2000 data points and the

black stars indicate the problem was op-

timized with 4000 data points.

Figure 5.2: Subfigures (a) and (b) plot the computation time of Optimization Problem

(5.8) with respect to the number of data points (a) and the size of the semi-definite

matrix (b).

5.3 Numerical Tests

In this section we provide the results from numerical tests on two nonlinear dynam-

ical systems to determine the accuracy of the method and its numerical complexity.

Then we perform a deeper analysis of a controlled nonlinear system which has five

state variables. In this case we generate a function which, given a control strategy,

returns a model of the Lyapunov function of the system dynamics for the control

strategy and can be used to estimate if the initial conditions of the patient are within

the ROA.
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Table 5.1: Test set accuracy of the SOS optimal function on the Van Der Pol Oscillator

and the Predator-Prey model data. Accuracy of the Lyapunov function is defined as

the sum of the absolute error of the function for each test point divided by the total

number of test points.

ODE d = 2 d = 4 d = 6

Van Der Pol 0.3828 0.3942 0.1708

Predator-Prey 0.6043 0.2850 0.1546

Immune-Dynamics 0.5950 0.3498 1.3991

5.3.1 Numerical Results for Estimating the Region of Attraction

Here we perform numerical testing to estimate the performance of the ROA model

on new data. Given new trajectory data that was not used to generate the model we

calculate the number of initial conditions correctly identified as being in the region

of attraction, falsely labeled as being in the region of attraction (false positives) and

those that are falsely labeled as not being in the region of attraction (false negatives),

including how the selection of γ affects those values. In addition we examine the effect

of the polynomial degree on the accuracy of the ROA estimate and the accuracy of

the region of attraction prediction, V ∗(x).

Example 1: Our first test system is the Van der Pol oscillator in reverse time,

defined as

ẋ1 = −x2

ẋ2 = x1 + x2(x2
1 − 1), (5.14)

which has a locally asymptotically stable equilibrium point at x1 = x2 = 0.

To generate the data set we use L = 50 different initial conditions taken from

within the region of attraction, between a radius of 1 and 4 from the equilibrium
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point x = 0. We simulate the trajectory of the nonlinear ODE for 10 seconds with

∆t = .1 and K = 100, although we only use the j = 1 through j = 4 time-steps

per trajectory for data generation, resulting in 200 data points of the form xi, yi.

In addition, we add normally distributed noise scaled as 10−2 where the labels are

typically in the interval yi ∈ [3, 13]. Fig. 5.1 shows the initial conditions used to

generate the data for optimization problem (5.8).

To evaluate the accuracy of the fit we generated a second test set of trajectory data

with 500 initial conditions xi evenly spread in the region of attraction and calculated

the value of the converse Lyapunov function at each point. In Table 5.2 we calculate

the average least absolute error of the ROA model on a test set of data. Increasing

the degree of the ROA model decreased the error on the test set of data indicating

that the degree 6 model performed best. A graphical representation of the region of

attraction is presented In Fig. 5.3(a) where the true region of attraction of the system

S and the estimated region of attraction for the 6th degree polynomial, Eηγ∗ for η = 1

are shown.

The 6th degree polynomial correctly identified 97.50% of the test set as being

within the region of attraction with a 2.48% false negative rate and a 0.02% false

positive rate, outperforming the lower degree polynomials in all categories except

the false positive rate. In some cases a lower false positive rate may be required; a

requirement that can be fulfilled by decreasing the value of η which decreases the false

positive rate by returning a smaller estimate of the region of attraction. In Table 5.3

we see that decreasing η shrinks the region of attraction, decreasing both the percent

of test data correctly categorized and the number of false positives.
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Table 5.2: The percentage of initial conditions that were correctly determined to be

within the region of attraction, falsely reported to be within the region of attraction

and falsely reported to be outside of the region of attraction by the optimal Lyapunov

function obtained from Optimization Problem (5.8).

ODE Degree True Pos. False Pos. False Neg.

2 96.16 % 0.00 % 3.84 %

Van Der Pol 4 95.92 % 0.00 % 4.08 %

6 97.50 % 0.02 % 2.48 %

2 61.22 % 35.22 % 3.56 %

Predator-Prey 4 93.89 % 1.89 % 4.22 %

6 96.11 % 2.11 % 1.78 %

2 90.83 % 1.79 % 9.17 %

Immune-Dynamics 4 96.33 % 4.98 % 3.67 %

6 81.88% 6.07 % 18.12 %

Example 2: The second test system is a biological model of predator-prey dynamics

as described in [61],

ẋ = x(−(x− α)(x− β)− γy)

ÿ = y(−c+ x), (5.15)

where α = 1, β = 3, γ = 0.5 and c = 2.1. Here α represents the minimum density

for successful mating, and β represents the asymptotic carrying capacity. We are

interested then in the region of attraction of the point x = 2.1, and y = 1.98, which

is a locally asymptotically stable equilibrium point. The region of attraction of this

point is the region over which the predator-prey system will asymptotically converge

to a non-zero, desirable, equilibrium point.
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To generate the data set we use L = 50 different initial conditions taken from

within the region of attraction, between a radius of 1 and 4 from the equilibrium

point x = 2.1, and y = 1.98. We simulate the trajectory of the nonlinear ODE for 10

seconds with ∆t = .1 and K = 100, although we only use the j = 1 through j = 4

time-steps per trajectory for data generation, resulting in 200 data points of the form

xi, yi. In addition, we add normally distributed noise scaled as 10−2 where the labels

are typically in the interval yi ∈ [3, 13]. Fig. 5.1 shows the initial conditions used to

generate the data for optimization problem (5.8).

In Table 5.2 we calculate the average least absolute error of the ROA model on a

test set of data. As in example 1, increasing the degree of the ROA model decreased

the error on the test set of data indicating that the degree 6 model performed best. A

graphical representation of the region of attraction is presented In Fig. 5.3(b) where

the true region of attraction of the system S and the estimated region of attraction

for the 6th degree polynomial, Eηγ∗ for η = 1 are shown.

The 2nd degree polynomial model performs nearly 30% worse with respect to

the accuracy when compared to example 1. Since the predator-prey model has a

more complicated region of attraction than example 1, the 2nd degree polynomial is

insufficient to capture this region. In fact we see an increase in accuracy of over 30%

from the 2nd degree to the 4th degree sum-of-squares polynomial and the 4th degree

polynomial models of example 1 and 2 have similar performance.

The 6th degree sum-of-squares polynomial model performed best, correctly iden-

tified 96.11% of the test set as being within the region of attraction with a 2.1% false

positive rate and a 1.78% false negative rate. In Table 5.3 we see that decreasing

η again decreases the percent of test data correctly categorized, but in this case it

causes a significant decrease in the number of false positives. In fact when decreasing

η from 1 to 0.8 we have that the false positive rate drops from 2.11% to 0.00%.
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5.3.2 Computational Complexity of the Optimization Problem

Using the data simulated using the nonlinear dynamics of the Examples 1 and 2

we will analyze the computational complexity of the optimization problem.

In Fig. 5.2 we plot the computation time for Optimization Problem (5.8) versus:

the number of data points in Subfigure (a); and versus the length of the semi-definite

matrix P ∈ Rq(d)×q(d) where q =
(
n+d
n

)
in Subfigure (b). The best least absolute

deviations fit to the complexity data in Subfigure (a) had a slope of .004 and .005 for

the degree two polynomial and the degree four polynomial respectively.

Based on the numerical data the complexity of optimization problem (5.8) scales

linearly with respect to m, the number of data points used in the optimization prob-

lem. With respect to the length of the semi-definite matrix, the computational com-

plexity is sublinear. This implies that modeling problems with large numbers of states

or higher degree polynomial models may be computationally expensive.

5.3.3 Modeling the Region of Attraction of a Biological System with

Pulsed-Immunotherapy

Here we perform an analysis of simulated trajectories of an immunotherapy for the

treatment of cancer. We separate the analysis of this system from Examples 1 and

2 because the ROA model can account for changes in the dynamics due to different

control strategies - unlike the previous two uncontrolled system examples.

Rather than modeling a single Lyapunov function, the learned function will return

a Lyapunov function for any of the supplied control strategies, of a given form. Then,

for a given control strategy, the model of the Lyapunov function can be used to predict

whether the initial conditions of the patient are within the ROA assuming the given

control strategy is applied.

167



-4 -3 -2 -1 0 1 2 3 4

-4

-3

-2

-1

0

1

2

3

4

X1

X
2

 

(a) The area contained within the black dot-

ted line is within the region of attraction of

the Van Der Pol Oscillator and the area con-

tained within the blue line is the estimate

of the region of attraction defined as Eηγ∗

where η = 1.
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(b) The area contained within the black dot-

ted line is within the region of attraction of

the predator-prey model and the area con-

tained within the blue line is the estimate

of the region of attraction defined as Eηγ∗

where η = 1.

Figure 5.3: Subfigures (a) and (b) show the estimated region of attraction Eγ∗ versus

the true region of attraction identified by observing the trajectories of the system in

reverse.

We consider a nonlinear system developed in [170] with five state variables, that

was first defined in Chapter 1,

Ṫ (t) = a0T (t)(1− c0T (t))− δ0
E(t)T (t)

1 + c1B(t)
− δoT (t)V (t),

Ḃ(t) = a1
T (t)2

c2 + T (t)2
− dB(t),

Ė(t) =
fE(t)T (t)

1 + c3T (t)B(t)
− rE(t)− δ0R(t)E(t)− δ1E(t),

˙R(t) = rE(t)− δ1R(t),

V̇ (t) = g(t)− δ1V (t), (5.16)

where the nominal values of the constants a0, c0, δ0, c1, a1, d, c3, f , and r are as
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defined in Table 1 in [170], the constant c2 = 7, 000 represents the addition of an

anti-TGF-β treatment and g(t) represents a pulsed immunotherapy treatment.

These dynamics define the relationship between tumor size T , TGF-β B, effector

immune cells E, regulatory immune cells R and activated tumor-specific cytotoxic

T-cells administered as a vaccine V . The effector immune cells and the immune cells

added into the system via vaccination act to deplete the number of tumor cells, while

the regulatory cells R and amount of TGF-β, B, act to decrease the number of effector

immune cells.

As opposed to the previous two examples we are primarily interested only in the

final state of one of the variables. In this case we are interested solely in the region

of attraction of the tumor dynamics, and while the other variables also reach an

equilibrium we are unconcerned with their final values.

Therefore we generate measurements of a converse Lyapunov function as the inte-

gral of the tumor state alone, as opposed to the integral of all states as in the previous

two examples. We model the input g(t) as a pulsed immunotherapy treatment where

the dose is denoted as dv, the period of treatment as pv, and the number of treat-

ments as nv. We model the dynamics for 60 days and assume that the treatment will

continue for the entire 60 day period to ensure tumor elimination.

The inputs for the resulting model are the initial values of T , B, E, R, and the

dose and number of treatments dv and nv. The training data is obtained by uniformly

sampling initial conditions for T (0) ∈ [0, 10], B(0) ∈ [0, .5], E(0) ∈ [50, 300], R(0) ∈

[0, 50], V (0) = 0 and dv ∈ [0, 10000] and nv ∈ [60, 60
7

]. The number of doses given

varies between once a day to once a week. In addition we simulate variability in the

dynamics of each patient by uniformly drawing the coefficients to be ±10% of the

nominal coefficient values.

To generate the data set we use L = 443 different initial conditions taken from
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Table 5.3: The percentage of initial conditions that were correctly determined to be

within the region of attraction, falsely reported to be within the region of attraction

and falsely reported to be outside of the region of attraction by the optimal Lyapunov

function obtained from Optimization Problem (5.8). All examples are for the degree

6 model of the ROA except for the Immune-dynamics which is a degree 4 model.

ODE η True Pos. False Pos. False Neg.

0.6 94.64 % 0.00 % 5.36 %

Van Der Pol 0.8 96.28 % 0.00 % 3.72 %

1 97.50 % 0.02 % 2.48 %

0.8 92.89 % 0.00 % 7.11 %

Predator-Prey 0.9 95.89 % 0.67 % 3.44 %

1 96.11 % 2.11 % 1.78 %

0.8 56.39 % 0.20 % 43.61 %

Immune-Dynamics 0.9 81.97% 1.18% 18.03%

1 96.33 % 4.98 % 3.67 %

within the region of attraction and 557 initial conditions taken outside the region

of attraction for a total of 1000 intial conditions. We simulate the trajectory of the

nonlinear ODE for 60 days with ∆t = 1 day and K = 60.

To select an optimal model of the Lyapunov function using points outside of the re-

gion of attraction, we will add one additional constraint to optimization problem (5.8)

as proposed in [95]. Suppose, {xi, yi}mi=1, be the initial conditions and converse Lya-

punov function values of initial conditions within the region of attraction, and let

{zi}moi=1 be initial conditions that do not converge and are thus outside the region of

attraction. Then the value of the Lyapunov function at values zi must be greater
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than ymax = arg maxi yi. Thus we solve the following modified optimization problem

to force the Lyapunov function values at zi to be greater than ymax.

min
γ∈Rm
P∈Rq×q

m∑
i=1

γi (5.17)

such that: ZT
d (xi)PZd(xi)− yi ≥ γi ∀ i = 1, . . . ,m

yi − ZT
d (xi)PZd(xi) ≥ γi ∀ i = 1, . . . ,m

ZT
d (zi)PZd(zi)− ymax ≥ 0 ∀ i = 1, . . . ,mo

Because of patient variability, the LAD metric used to fit p to the given data

implies that p should be a median estimate of the Lyapunov function for all patients.

However, the introduction of the previous constraint enforces the Lyapunov function

to overestimate the value of the Lyapunov function anywhere a treatment failed to

eliminate a patients tumor - increasing the number of true positives and false nega-

tives.

The Lyapunov function, and thus the ROA estimate, is dependent upon the se-

lected treatment strategy. Therefore given a dosage dv and number of doses nv, the

resulting polynomial model of the ROA is the semi-algebraic set S = {[T,B,E,R] ∈

R4 | p(T,B,E,R, dv, nv) ≤ α} where p is a polynomial returned by the proposed

algorithm and α is the value of the selected level set.

In Table 5.2 we calculate the average least absolute error of the ROA model

returned by Optimization Problem (5.17) on a test set of 10,000 data points. Unlike

examples 1 and 2, increasing the degree of the ROA model only decreased the error on

the test set of data for the degree 4 polynomial model. This implies that the degree

6 model overfit to the data and we restrict the analysis to the degree 4 polynomial

model.

The 4th degree sum-of-squares polynomial correctly identified 96.53% of the test
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set as being within the region of attraction with a 5.37% false positive rate. In

Table 5.3 we see that decreasing η again decreases the percent of test data correctly

categorized, but causes a significant decrease in the number of false positives. When

decreasing η from 1 to 0.8 we have that the false positive rate drops from 5.37% to

just 0.20% but unfortunately decreases the accuracy of true positives to just 56.39%.

Because of the low rate of false positives, we select a value of η = 1 and the semi-

algebraic set of the estimated ROA, for given nv and dv, is then

S1 = {[T,B,E,R] ∈ R4 | p(T,B,E,R, dv, nv) ≤ 7.4390}.

However, p can be used to do more than just estimate the region of attraction for

a given treatment strategy. Instead, suppose we are given the initial conditions, T (0),

B(0), E(0) and R(0) of a patient and want to search for a treatment strategy that

minimizes the volume of administered immunotherapy but still eliminates the tumor

in the patient.

Given a patients initial conditions T0, B0, E0 and R0 (and the model p), solving the

following optimization problem will return a predicted open loop treatment strategy,

where x1 is the dose and x2 is the number of doses, that leads to complete tumor

elimination while minimizing the volume of administered immunotherapy.

min
x∈R2

x1x2 (5.18)

subject to 7.4390− p(T0, B0, E0, R0, x1, x2) ≥ 0

Optimization Problem (5.18) is a type of Global Polynomial Optimization (GPO)

problem because the objective is bi-linear and p is a polynomial function. In the

next chapter we identify a new method for solving such problems. The solution to

this problem uses the ROA model to generate a predicted treatment strategy that

eliminate the cancer cells while minimizing the amount of treatment administered.
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Thus treatment strategies can be selected without any knowledge of the underlying

system dynamics.

5.4 Conclusion

We have proposed a new method for fitting a polynomial function to given data

using least absolute deviations or least squares while additionally constraining the

function to be positive over semi-algebraic sets. We validate this approach by mod-

eling a a nonnegative Lyapunov function of a system with unknown dynamics, and

show that the resulting models are constrained and effective.

The model of the Lyapunov function is then used to estimate the region of at-

traction of the nonlinear ODE given only data on the trajectory of the system over

a finite set of initial conditions. This method is independent of any knowledge of the

vector field, and the region of attraction can therefore be predicted without requiring

the system dynamics to be identified. We ran numerical tests on two systems with

two states, and one nonlinear controlled system with four states. We show how using

the ROA model can be used to identify an optimal pulsed immunotherapy treatment

strategy by solving a GPO problem - but leave further analysis of the system to the

next chapter.
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Chapter 6

SOLVING GLOBAL POLYNOMIAL OPTIMIZATION PROBLEMS

In Chapter 5 we formulated a global polynomial optimization problem whose

solution returns an optimal pulsed immunotherapy dosage and period of treatment,

that is based on the populations of immune system cells in the patient. In this Chapter

we develop a method for solving such global polynomial optimization problems, and

analyze the optimal treatments found by solving the optimization problem from the

previous chapter.

Global Polynomial Optimization (GPO) is defined as optimization of the form

f ∗ := min
x∈Rn

f(x) (6.1)

subject to gi(x) ≥ 0 for i = 1, · · · , s

hj(x) = 0 for j = 1, · · · , t,

where f , gi, and hi are real-valued polynomials in decision variables x.

As defined in Eq. 6.1, the GPO problem encompasses many well-studied sub-

classes including Linear Programming (LP) [88, 85], Quadratic Programming (QP) [106],

Integer Programming (IP), Semidefinite Programming (SDP) and Mixed-Integer Non-

linear Programming (MINLP) [99]. Because of its generalized form, almost any op-

timization problem can be cast or approximately cast as a GPO, including certain

NP-hard problems from economic dispatch [122], optimal power flow [64] and optimal

decentralized control [101]. As applied to control theory, GPO can be used for stabil-

ity analysis of polynomial dynamical systems by, e.g., verifying polytopic invariants

as in [110].
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More information on the GPO problem can be found in Chapter 2, including other

special cases where alternative methods can be used to solve this problem. In this sec-

tion however, we propose a polynomial-time algorithm for using SOS estimates of the

Greatest Lower Bound (GLB) to extract arbitrarily accurate approximate solutions.

Specifically, define the feasible set

S := {x ∈ Rn : gi(x) ≥ 0, hj(x) = 0}. (6.2)

The Greatest Lower Bound (GLB) problem associated to the GPO Problem (6.1) is

defined as

λ∗ :=max
λ∈R

λ (6.3)

subject to f(x)− λ > 0, ∀x ∈ S.

The GLB and GPO problems are closely related in that λ∗ = f ∗ = f(x∗), but

are not equivalent in that the GLB problem does not find x∗. Our approach is based

on the observation that while the GLB problem does not return x∗, it can be used

as a selection criteria in a bisection algorithm - See Section 6.3. This means that

an algorithm which solves the GLB problem with complexity O(k) can be combined

with bisection to find a point x ∈ Rn such that |x−x∗| ≤ ε for any ε and the resulting

complexity is of order O(kn log( r
ε
)) where r is the radius of a hyper-sphere containing

all feasible points.

In Section 6.4 we propose a sequence of algorithms, Ek, and show that they will

return in polynomial-time a point xk ∈ Rn that is sub-optimal to the GPO problem

in the following sense. If xk is the sequence of proposed solutions produced by the

sequence of algorithms Ek, we show that if the feasible set, S, of Problem (6.1) is

bounded, then there exist a sequence of feasible points yk ∈ S such that lim
k→∞
||xk −

yk|| = 0 and lim
k→∞

f(yk) = lim
k→∞

f(xk) = f ∗, where f ∗ is the objective value of the GPO

problem.
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In Section 6.5, we illustrate the effectiveness of the proposed algorithm by applying

it to an example problem wherein the existing moment based approach fails to extract

a solution. We then use the algorithm to solve Optimization Problem (5.18) from

Chapter (5) to demonstrate how an optimal pulsed immunotherapy treatment can be

identified even without knowledge of the underlying system dynamics.

6.1 Problem Statement

In this chapter, we consider simplified GPO problems of the form:

f ∗ := min
x∈Rn

f(x) (6.4)

such that: gi(x) ≥ 0 for i = 0, · · · , l

where f, gi ∈ R[x]. The class of problems in (6.4) is equivalent to that in (6.1), where

we have simply replaced every hi(x) = 0 constraint with some g1(x) = h(x) ≥ 0 and

g2(x) = h(x) ≤ 0. For every problem of Form (6.4), we define the associated feasible

set S := {x ∈ Rn : gi(x) ≥ 0}.

First we assume S 6= ∅, otherwise there would be no feasible point and therefore

no optimal point. Note that given gi, one may use SOS optimization combined with

Positivstellensatz results in [152] to determine feasibility of S.

Proposed Algorithm In this subsection, we propose a GLB and Branch and Bound-

based algorithm which, for any given ε > 0, will return some x ∈ Rn for which there

exists a point x ∈ S such that:

f(x)− f ∗ ≤ ε (6.5)

Before defining this algorithm, however, in the following section, we describe some

background on the dual SOS and Moment algorithms for generating approximate

solutions of the GLB Problem.
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6.2 SOS approach to solving the GLB problem

In this section, we briefly describe the use of SOS programming to define a hier-

archy of GLB problems. Recall from Chapter 2 that the quadratic module is defined

as follows.

Definition 35. Given a finite collection of polynomials gi ∈ R[x], we define the

quadratic module as

M :={p | p = σ0 +
l∑

i=1

σigi σi ∈ S[x]},

and the degree-k bounded quadratic module as

M (k) :={p | p = σ0 +
l∑

i=1

σigi σi ∈ Sk[x]}.

Consider the GPO Problem (6.4) where {gi} is an Archimedean representation of

the feasible set, S, with associated quadratic module M . We now define the degree-

unbounded version of the SOS GLB problem.

f ∗ = λ∗ := max
λ∈R

λ (6.6)

such that: f(x)− λ ∈M.

Since M is Archimedian, it follows that λ∗ = f ∗ (where f ∗ is as defined in (6.4)).

Although Problem (6.6) is convex, for practical implementation we must restrict the

degree of the SOS polynomials which parameterize M - meaning, we must restrict

ourselves to optimization on M (k). This defines a new sequence of GLB problems as

p∗k := max
λ∈R

λ (6.7)

such that: f(x)− λ ∈M (k).

Clearly, p∗i ≤ p∗j ≤ λ∗ for any i < j. Additionally, it was shown in [123] that lim
k→∞

p∗k =

p∗. Furthermore, it was shown in [141, 116] that bounds on the convergence rate of
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p∗k → λ∗ exist as a function of gi, f and k. Finally, the computational complexity

of pk is equivalent to that of a semidefinite program with order (l + 1)Λ(dk
2
e)2 scalar

variables, where l is the number of gi in Problem (6.4) and Λ(d) :=
(
d+n
d

)
.

6.3 Solving the GPO Problem using the ideal Branch and Bound

In this section we show that, given an algorithm that returns the exact solution

to the GLB problem, we can design an algorithm that returns x ∈ Rn such that

|x− x∗| ≤ ε, using 2
log 2

n log( r
ε
) computations of the GLB for any desired accuracy ε.

The Ideal Branch and Bound Algorithm

At every iteration, we have an active hyper-rectangle A(j) = [a, b];

1. Initialize the algorithm A(0) = [−rI, rI], j = 0;

2. Bisect A(j) = [a, b] = [a′, b′] ∪ [a′′, b′′] = A1 ∪ A2;

3. Compute the Greatest Lower Bound of

λ∗i :=max
λ∈R

λ (6.8)

subject to f(x)− λ > 0 , ∀x ∈ S ∩ Ai;

4. If λ∗1 > λ∗2, set A(j + 1) = A1, otherwise A(j + 1) = A2;

5. Set j = j + 1 and go to step 2;

At termination, we may choose any x ∈ A, which will be accurate within |x− x∗| ≤

r2−j/n.

Let us examine these steps in more detail.

Initialize the algorithm Since the set S is compact, there exists some r > 0 such

that S ⊂ Br(r). We may then initialize A = [−r1, r1], where 1 is the vector of all

1’s.
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Bisect Bisection of the hypercube occurs along the longest edge. Thus, after n

iterations, we are guaranteed a two-fold increase in accuracy. As a result, the largest

edge of the hypercube diminishes as 2−k/n, and we need to compute the GLB 2n log( r
ε
)

times to attain the desired accuracy.

Compute the Greatest Lower bound We assume that our solution to the GLB

problem is exact. In this case, we are guaranteed that an optimizing x will always lie

in Ai.

Complexity To attain a desired accuracy of ε requires
n log( r

ε
)

log(2)
number of bisections,

since the largest edge of the hypercube generates a two fold decrease in the error for

every n bisections. This means that the GLB must be computed
2n log( r

ε
)

log(2)
times and if

the GLB is of complexity O(k), then the complexity of the ideal algorithm must be

O(c1kn log( r
ε
)) where c1 = 2

log(2)
.

As an example, consider the simple two variate optimization problem,

min
x,y∈R

y (6.9)

subject to x+ 5 ≥ 0, xy − 10 ≥ 0,

15− x− y ≥ 0, x2 + 3y2 − 180 = 0.

Conceptually, the first eight iterations of the ideal branch and bound algorithm for

this two variate optimization problem are displayed in Figure 6.1. In this case, the

algorithm returns a sequence of nested rectangles A(k). Let A1(k) and A2(k) be the

bisection of A(k) and λ∗(A) be the greatest lower bound over domain A. If the optimal

feasible point x∗ lies in the rectangle A(k), and i(k) = arg min{λ∗(A1(k)), λ∗(A2(k))},

then x∗ is guaranteed to lie in Ai(k). Therefore, by induction, at every iteration k,

x∗ is guaranteed to lie in domain A(k) = Ai(k). Figure 6.1 illustrates the rectangle

discarded at each iteration, the optimal point x∗1 (which lies in Ak at each iteration)

and the associated optimal objective values λ∗(Ai(k)).

179



λ*(Α
2
(1))= −5 λ*(Α

1
(1))= 8 (Discard 1) 

x
1

*

Discard 4

Discard 3

Discard 5

Discard 6

λ*(Α
1
(2))= inf (Discard 2)

λ*(Α
2
(2))= −5

Figure 6.1: The ideal Branch and Bound Algorithm applied to the two-variate Opti-

mization Problem (6.9). Note that every iteration discards half of the active hyper-

rectangle.

6.4 Modified Branch and Bound Algorithm

Here, we present a slightly modified branch and bound algorithm that combined

with SOS/Moment relaxations, can approximate the solution to the GPO problem to

any desired accuracy, in a certain sense.

The Modified Branch and Bound Algorithm At every iteration, we have an

active hyper-rectangle A = [a, b], a set of feasible rectangles Z = {[ai, bi]}i each with

associated GLB λi.

1. Initialize the algorithm

2. Bisect A = [a, b] = [a′, b′] ∪ [a′′, b′′] = A1 ∪ A2

3. Compute the Greatest Lower Bound of

λ∗i := max
λ∈R

λ (6.10)

such that: f(x)− λ > 0 ,∀x ∈ S ∩ Ai.
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4. Find a locally optimal solution to

x∗i := min
x∈Rn

f(x) (6.11)

such that: x ∈ S ∩ Ai, gj(x) ≥ 0 for j = 0, · · · , l

5. If λ∗i ≤ f(x∗i )− ε, add Ai to Z and λi to Λ; otherwise add x∗i to P .

6. Discard any Zj where λ∗j > minp∈P f(p).

7. If Z is empty stop; otherwise set A = Zi where Zi is the smallest element of Z

and goto 2.

At termination, the globally optimal point is arg minp∈P f(p), which must be accurate

within ε even if the local solvers were unable to find a solution.

6.4.1 The GLB and GD Subroutines

Consider GPO Problem (6.4) and suppose the corresponding feasible set S :=

{x ∈ Rn : gi(x) ≥ 0}, is nonempty and compact with S ⊂ C(a, b), for some a, b ∈ Rn

with associated Archimedean quadratic module M .

Given A = [a, b], define the polynomials wi(x) := (bi − xi)(xi − ai). These poly-

nomials are then used to define the modified feasible set S ∩ A as

Sab := {x ∈ Rn : gi(x) ≥ 0, ∀i : 1 ≤ i ≤ s, wj(x) ≥ 0, ∀j : 1 ≤ j ≤ n}, (6.12)

Before defining the main sequential algorithm Ek, we will define the kth-order

SOS/Moment GLB subroutine, denoted Bk, which calculates the GLB in Step (3) of

the Modified Branch and Bound Algorithm, and the Sequential Quadratic Program-

ming subroutine which calculates a locally optimal point in Step (4) of the Modified

Branch and Bound Algorithm.
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GLB Subroutine λ∗k = Bk[a,b]

The corresponding modified degree-k bounded quadratic module for the hyper-rectangle

A is defined as,

M
(k)
a b :=

{
p : p =

s∑
i=0

σigi +
s+n∑
i=s+1

σiwi, σi ∈ ΣS, deg(σigi) ≤ k, deg(σiwi) ≤ k
}
,

(6.13)

where g0(x) = 1. This allows us to formulate and solve the modified k-th order SOS

GLB problem

λ∗k := max
λ∈R, σi∈ΣS ∀i=1...s+n

λ (6.14)

such that: f(x)− λ ∈M (k)
a b

and the corresponding dual GLB moment problem. The subroutine returns the value

λ∗k such that |f ∗ − λ∗k| ∼= c2
c1
√

log(k)
.

The Sequential Quadratic Programming Subroutine x∗k = G[a,b]

We may solve the original GPO problem, with the additional constraint that, x ∈ Ai,

using the following optimization problem,

Ga b := min
x∈Rn

f(x) (6.15)

such that: x ∈ S ∩ Ai, gj(x) ≥ 0 for j = 0, · · · , l. (6.16)

Since the derivatives of polynomial functions are smooth we may use algorithms such

as Sequential Quadratic Programming (SQP) to find a locally optimal solution using

MATLABs fmincon application of SQP. When the locally optimal solution returned

by the SQP is within ε of the GLB returned by the GLB subroutine, then x∗ is a

globally optimal solution with ε tolerance to the GPO problem on the hyper-rectangle

Ai. The locally optimal points returned by the SQP subroutine can also be used to

discard hyper-rectangles if the GLB on those hyper-rectangles are greater than f(x∗),
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since a globally optimal solution could not possibly exist on that hyper-rectangular

set.

6.4.2 Formal Definition of the Modified Branch and Bound Algorithm, Ek

We now define a sequence of Algorithms Ek such that for any k ∈ N, Ek takes

GPO Problem (6.4) and returns an estimated feasible point x∗.

The Sequence of Algorithms Ek:

In the following, we use the notation a ← b to indicate that the algorithm takes

value b and assigns it to a. The parameter l represents the number of branch and

bound loops and in Theorem 38 is set by the desired accuracy as l > n log2(L
√
n

ε
)

where n is the number of variables and L is a bound on the radius of the feasible set.

The inputs to the following algorithm Ek are the functions {gi} and f , the initial

hyper-rectangle such that S ⊂ [a, b], and the design parameters ε and l. The output

is the estimated feasible point, x.

Algorithm Ek :

input: ε ∈ R+, l ∈ N, a, b ∈ Rn, f, g1, . . . , gs ∈ R[x].

output: x ∈ Rn (as an ε accurate solution to GPO Problem (6.4)).

Initialize:

Z0 = [a, b]; Λ(0)← Bk(a(0), b(0)); m← 0;

While (m < l) : {

a∗, b∗ ←arg min
[a,b]∈Z

n∏
i=1

bi − ai;

r∗ ←arg max
j∈{1,...,n}

(b∗j − a∗j); a(1) ← a∗; b(2) ← b∗;
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For r from 1 to n :

b(1)
r ←


b∗r+a∗r

2
if r = r∗

b∗r otherwise

; a(2)
r ←


b∗r+a∗r

2
if r = r∗

a∗r otherwise,

;

Compute: λ1 ← Bk(a
(1), b(1)); λ2 ← Bk(a

(2), b(2)); p1 ← G(a(1), b(1));

p2 ← G(a(2), b(2)); m← m+ 1;

If: λi ≥ f(pi)− ε then add pi to P ;

Else: Add [a(i), b(i)] to Z and λi to Λ and
a(i) + b(i)

2
to M ;

Discard: Zj, Mj and Λ(j) where Λ(j) > min
p∈P

f(p);

Return x := arg minp∈P∪M f(p);

If the SQP algorithm fails to find a locally optimal solution within ε of the GLB,

the Ek algorithm can still return a point with guaranteed accuracy. In the following

section we will discuss the complexity and accuracy of the sequence of Algorithms

Ek.

6.4.3 Convergence and Complexity of Ek

In this subsection, we first show that for any k ∈ N, the greatest lower bounds ob-

tained by the subroutine Bk increase at each iteration of the Branch and Bound loop.

Next we show that for any desired accuracy, there exists a sufficiently large k, such

that Algorithm Ek returns a proposed solution with that accuracy. Since there are

no guarantees on the local solution found using Sequential Quadratic Programming

subroutine we assume the algorithm continues for at least l iterations and provide

bounds on the solution returned by Ek in the worst case scenario where the SQP

algorithm does not return any feasible points.
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The following lemma gives an algebraic property of the polynomials of the form

w(x) = (x− ai)(bi − x) which are used to define the augmented feasible set Sab.

Lemma 36. Let a ≤ c < d ≤ b ∈ R, g := (x − a)(b − x) and h := (x − c)(d − x).

Then, there exist α, β and γ ∈ R, such that

g(x) = αh(x) + β(x+ γ)2 , α, β ≥ 0

Proof. Without loss of generality, one can assume that a = 0 (consider the change of

variable z := x− a). Now let p2 := c, q2 := d− c, and r2 := b− d. First, we consider

the case where p2, r2 6= 0. This leads to two sub-cases:

Case 1 : r2 6= p2. Let

γ =
p4 + p2q2 −

√
p2r2(p2 + q2)(q2 + r2)

r2 − p2
, β =

p4 + p2q2

γ2 − p4 − p2q2
,

and α = β + 1. Verifying the equality g(x) = αh(x) + β(x + γ)2 is straightforward.

To show that β, α ≥ 0, we use the following.

β ≥ 0 ⇐⇒ γ2 > p4 + p2q2

⇐⇒
(
p4 + p2q2 −

√
p2r2(p2 + q2)(q2 + r2)

)2
> (p4 + p2q2)(r2 − p2)2

⇐⇒ (p4 + p2q2)2 + p2r2(p2 + q2)(q2 + r2)− (p4 + p2q2)(r2 − p2)2︸ ︷︷ ︸
L

>

2
(
p4 + p2q2

)√
p2r2(p2 + q2)(q2 + r2)︸ ︷︷ ︸

U

⇐⇒


L > 0

L2 > U2

After simplification we have:

L2 − U2 = p4q4(p2 + q2)2(p2 − r2)2 > 0, and

L = p2
(
p2 + q2

) (
p2 q2 + 2 p2 r2 + q2 r2

)
> 0

which completes the proof for Case 1.

Case 2 : r2 = p2. In this case, let

γ = −2p2 + q2

2
, β =

4p2(p2 + q2)

q4
, α = β + 1
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Equality and positivity for this case can then be easily verified. Now, suppose

r2 = p2 = 0. In this case, simply set β = 0, α = 1. If p2 = 0, r2 6= 0, set β =

b
d
− 1, α = b

d
, γ = 0. The case p2 6= 0, r2 = 0 is similar to p2 = 0, r2 6= 0,through the

change of variable z = b− x.

In the following lemma, we use Lemma 36 to show that for any a1, a2, b1, b2 ∈ Rn

such that a1 ≤ a2 < b2 ≤ b1 ∈ Rn, the feasible set of the SOS problem solved in

Subroutine Bk(a1, b1) is contained in that of Subroutine Bk(a2, b2).

Lemma 37. For any k ∈ N and a ≤ b ∈ Rn, let M
(k)
a b be the modified degree-k

bounded quadratic module associated to polynomials g1, . . . , gs, as defined in (6.13).

If γ ≤ α < β ≤ δ ∈ Rn, then M
(k)
γ δ ⊂M

(k)
αβ , for all k ≥ 2.

Proof. For any j = 1, . . . , n, let wj,1(x) := (βj − xj)(xj − αj), and wj,2(x) := (δj −

xj)(xj − γj). Since γj ≤ αj < βj ≤ δj, then it is followed from Lemma 36 that there

exist pj, qj, rj ∈ R such that

wj,2(x) = p2
j wj,1(x) + q2

j (xj + rj)
2.

Now, if h ∈M (k)
γ δ , we will show that h ∈M (k)

αβ . By definition, there exist σi, ωj,2 ∈ ΣS

such that h =
∑s

i=0 σigi +
∑n

j=1 ωjwj,2, where g0(x) = 1. Hence, we can plug in the

expression for wj,2 to get

h =
s∑
i=0

σi · gi +
n∑
j=1

ωj · (p2
j · wj,1 + q2

j · (xj + rj)
2)

= (σ0 +
n∑
j=1

q2
j · ωj · (xj + rj)

2)︸ ︷︷ ︸
σ0 new

+
s∑
i=1

σi · gi +
n∑
j=1

p2
j ωj︸︷︷︸

ωj new

·wj,1.

Clearly σ0 new, ωj new ∈ ΣS. Furthermore, since k ≥ 2, deg(σ0 new) ≤ k, and deg(ωj new·

wj,1) ≤ k which implies that h ∈M (k)
αβ .
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Now suppose {gi} all have degree d or less. Then for any k ≥ d + 2 and for any

hyper-rectangles C(c, d) ⊂ C(a, b), if λ(a,b) and λ(c,d) are the solutions obtained by

Subroutines Bk(a, b) and Bk(c, d) applied to GPO Problem (6.4), then Lemma 37

shows that λ(a,b) ≤ λ(c,d).

Now, for a fixed k ∈ N, let ε and l be the design parameters of Algorithm Ek

applied to GPO Problem (6.1). For m = 0, . . . , l, let (λ∗)m := λ(j∗), where j∗ is

as we defined in iteration m of the loop in Algorithm Ek. Using Lemma 37, it is

straightforward to show that (λ∗)m ≤ (λ∗)m+1 for m ≤ l − 1.

In the next theorem, we will show that for any given ε > 0, there exist k ∈ N

such that Algorithm Ek applied to GPO Problem (6.4) will provide a point x ∈ Rn

satisfying (6.5).

Theorem 38. Suppose GPO Problem (6.4) has a nonempty and compact feasible set

S. Choose a, b ∈ Rn such that S ⊂ C(a, b). For any desired accuracy, 0 < ε < 1,

let l > n log2(L
√
n

ε
) where L = maxi bi − ai. Then there exists a k ∈ N such that if

x = Ek(ε, l, a, b, f, gi), then there exists a feasible point y ∈ S such that f(y)− f ∗ ≤ ε

and ‖y − x‖ < ε, where f ∗ is the objective value of the GPO Problem (6.4).

Proof. Define P to be the set of all possible hyper-rectangles generated by the branch-

ing loop of Algorithm Ek (for any k) with number of branches bounded by l. The

vertices of all elements of P clearly lie on a grid with spacings |ai,bi|
2l

. Therefore, the

cardinality |P| is finite and bounded as a function of l, a and b. It has been shown

that for any Cα := C(e, f) ∈ P , there exists a kα ∈ N such that for any k′ ≥ kα, the

solution of Subroutine Bk′(e, f) is accurate with the error tolerance ε. Now define

k := max{kα | Cα ∈ P}.

We will now show that Algorithm Ek returns a point x with the desired accuracy.

First, we show that Algorithm Ek generates exactly l nested hyper-rectangles. The
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proof is by induction on m.

For m = 0, . . . , l − 1, let (a)m := a(j∗), (b)m := b(j∗), (C)m := C((a)m, (b)m),

(λ)m := Bk((a)m, (b)m), (a(1))m := a(1), (b(1))m := b(1), (a(2))m := a(2), (b(2))m :=

b(2), (C(1))m := C((a(1))m, (b
(1))m), (C(2))m := C((a(2))m, (b

(2))m) and (λ∗)m := λ(j∗)

where j∗, ã, b̃, â and b̂ are defined as in iteration m of Algorithm Ek.

We use induction on m to show that for all m ≤ l :

(C)m ⊂ (C)m−1.

The base case m = 0 is trivial. For the inductive step, first note that (λ∗)m ≤ f ∗ for

all m ≤ l and (λ∗)1 ≤ · · · ≤ (λ∗)l. The latter is obtained from Lemma 37 and the

former is because at each iteration, S ⊂
⋃m
i=0 C(a(i), b(i)).

The assumption that the solution of Subroutine Bk′(e, f) is accurate within ε,

implies that

Bk((a)m, (b)m) ≤ (λ∗)m + ε. (6.17)

Now we will show that again at iteration m+1 one of the hyper-rectangles (C(1))m

and (C(2))m must also satisfy Eqn. 6.17. Suppose this is not true. Then we can write

(λ∗)m+1 <Bk((ã)m, (b̃)m)− ε, (6.18)

(λ∗)m+1 <Bk((â)m, (b̂)m)− ε.

Now, since (λ∗)m+1 ≥ (λ∗)m, Eq. (6.18) implies

(λ∗)m <Bk((ã)m, (b̃)m)− ε, (6.19)

(λ∗)m <Bk((â)m, (b̂)m)− ε.

Using Eq. (6.19) and Eq. (6.17) one can write

Bk((a)m, (b)m) <Bk((b̃)m, (b̃)m)− ε, (6.20)

Bk((a)m, (b)m) <Bk((â)m, (b̂)m)− ε.
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This contradicts the fact that all Bk((ã)m, (b̃)m), Bk((â)m, (b̂)m) and Bk((a)m, (b)m)

have accuracy higher than ε. Therefore, it is clear that either (C(1))m or (C(2))m will be

bisected at iteration m+ 1. This fact, together with the induction hypothesis which

certifies that (C)m possesses the smallest volume between all the hyper-rectangles

obtained up to that iteration, guaranteeing that either (C(1))m or (C(2))m, will be

branched at the next iteration. Therefore, the algorithm will generate l nested hyper-

rectangles. Now, (λ∗)0 ∈ [f ∗ − ε, f ∗] implies that

(λ∗)m ∈ [f ∗ − ε, f ∗], for all m = 1, . . . , l. (6.21)

Eq. (6.17) and Eq.(6.21) together with the fact that (λ)m ≥ (λ∗)m imply

(λ)m ∈ [f ∗ − ε, f ∗ + ε] , ∀ m = 1, . . . , l. (6.22)

Finally, as a special case m = l, one can write:

f ∗ − ε ≤ Bk((a)l, (b)l) ≤ f ∗ + ε.

Now, note that the ε-accuracy of Bk((a)l, (b)l) implies that (C)l is feasible. It also

can be implied that (C)l ∩ S contains y such that f(y) ≥ Bk((a)l, (b)l) ≥ f(y) − ε.

Therefore, |f(y)− f ∗| ≤ ε.

Finally, if x is the point return by Algorithm Ek, then based on the definition

of l, it is implied that after the last iteration m = l − 1, the largest diagonal of the

branched hyper-rectangle is less than ε, hence ‖y − x‖2 ≤ ε, as desired.

Theorem 38 ensures that for any accuracy ε > 0 there exists a k ∈ N such that

Algorithm Ek returns ε-approximate solutions to the GPO problem with a logarithmic

bound on the number of branching loops. The following corollary shows that these

ε-approximate solutions can themselves approximately satisfy the constraints of the

original GPO as follows.

189



Corollary 39. Let GPO Problem (6.4) have nonempty and compact feasible set that

is contained in C(a, b) for some a, b ∈ Rn. For any given δ > 0, there exists ε > 0

such that if ε and x = E(ε, l, a, b, f, gi) satisfy the conditions in Theorem 38, then

|f(x)− f ∗| ≤ δ and gi(x) ≥ −δ, ∀i = 1, . . . , s. (6.23)

Proof. Let L be such that any polynomial h ∈ {f, g1, . . . , gs} satisfies |h(c)− h(d)| ≤

L|c − d|2, ∀c, d ∈ C(a, b). (Existence of L follows from the Lipschitz continuity of

polynomials on compact sets.) Choose ε such that ε ≤ δ/L. Let ε and x satisfy the

conditions in Thoerem 38. It is straightforward to show that x satisfies Eq. (6.23).

Unfortunately, of course, Theorem 38 does not provide a bound on the size of

k (although the proof implies an exponential bound). Fortunately, the SQP step of

algorithm Ek often finds the optimal point after just a few iterations of the algorithm,

implying that even if k is not large enough, an ε-approximate solution can still be

found.

Table 6.1: A comparison of starting conditions of interior point method and the

resulting number of suboptimal (OBV < f(x̂2)) or failed solutions over 50 trials.

Max Perturbation Suboptimal No Solution Trials

± 1 8 1 50

± 2 16 0 50

± 5 24 2 50

± 10 36 2 50
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6.5 Numerical Results

Here we consider two applications of the GPO algorithm proposed in this chapter.

In the first example we illustrate the importance of using the GPO method over

local solvers. In the second example we analyze the region of attraction model for a

pulsed immunotherapy cancer treatment that was generated in Chapter 5 to select

an optimal treatment strategy.

Example 1: Consider the following GPO problem.

min
x∈R6

f(x) = 7x1x
3
5 + 6x1x

2
5x6 + 9x2x

3
4 + 4x2x4x5+

3x2x5x6 + x3x4x5

subject to g1(x) = 100− (x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6) ≥ 0

g2(x) = x3
1 + x2

2x4 + x3x
2
5 ≥ 0

g3(x) = x2
2x1 + x3

5 + x4x1x2 ≥ 0

h1(x) = x1 + x2
2 − x2

3 + x4x5 = 0

h2(x) = x5x1 − x2
4 = 0.

In this example we have 6 variables, an objective function of degree 4 and several

equality and inequality constraints of degree 4 or less. Polynomial optimization prob-

lems similar to this example are important in economic dispatch models [122] or

optimal power flow [64] and since the ideal generated by equality constraints in this

case are not zero dimensional, the Moment approach to extracting solutions fails. We

applied Algorithm E5 to this problem with parameters ε = 0.005 and l = 200, using

Sedumi to solve the SDPs associated with the SOS and Moment problems.

The result is the point x̂ = [5.1274, 3.9372, 0.8043, −4.6793, 4.2704, −4.1748],

where all inequalities are feasible and the equality constraints h1 and h2 have errors
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(a) The simulated tumor volume of

the example problem using the optimal

pulsed immunotherapy treatment gen-

erated by solving Optimization Prob-

lem (6.24).

(b) The simulated tumor volume of

1000 randomized initial conditions using

the optimal pulsed immunotherapy treat-

ment generated by solving Optimization

Problem (6.24) for each problem set of

initial conditions.

Figure 6.2: Subfigures (a) and (b) plot simulations of tumor dynamics using the

optimal pulsed immunotherapy treatments found using the GPO algorithm.

of 1.015 × 10−9 and 0.019 × 10−9 respectively. Furthermore, the objective value is

f(x̂) = −3719 which closely tracks the GLB value of −3718.94.

To illustrate the importance of using this branch and bound technique over run-

ning the SQP algorithm with random initial guesses, we ran several batteries of tests,

successively decreasing the accuracy of the initial guess. Using x̂ as the centroid,

we proposed 50 randomly distributed initial guesses within a radius of 1, 2, 5 and 10.

These results are listed in Table 6.1 and indicate the increasing number of initial

guesses which resulted in either local optima or no feasible solution - ultimately at

76% for maximum radius 10.

Example 2: In this example we use the GPO solver to identify optimal treatments

using the ROA model of tumor-immune dynamics from Chapter 5. The system dy-
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namics are detailed in Eq. (1.7) in Chapter 1.

These dynamics define the relationship between tumor size T , TGF-β B, effector

immune cells E, regulatory immune cells R and activated tumor-specific cytotoxic

T-cells administered as a vaccine V . In Chapter 5 we found an optimal data-driven

model of the region of attraction for a given dosage dv and number of doses nv defined

as the following semi-algebraic set,

S1 := {[T,B,E,R] ∈ R4 | p(T,B,E,R, dv, nv) ≤ 7.4390}.

To demonstrate how the combination of the ROA model and the GPO solution can

identify optimal data-driven controllers for pulsed immunotherapy treatment we sim-

ulate a test case. Assume we have a patient with nominal system parameters and

the following initial conditions, T (0) = 5, B(0) = 0.1, E(0) = 100, R(0) = 50. Using

these initial conditions we can define a semialgebraic set of all treatment parameters,

dv and nv which are predicted to eliminate the tumor in 60 days. This set is defined as,

R1 := {[dv, nv] ∈ R2 | 3.9052 · 10−15d4
v + 1.8477 · 10−12d3

vnv + 7.3554 · 10−10d2
vn

2
v +

2.8338 · 10−7dvn
3
v + 1.1894 · 10−4n4

v − 1.5312 · 10−10d3
v − 7.3767 · 10−8d2

vnv − 2.9969 ·

10−5dvn
2
v−1.1793·10−2n3

v+2.4715·10−6d2
v+1.1979·10−3dvnv+0.4704n2

v−0.020609dv−

9.3673nv + 92.1062 ≤ 7.4390}

and assuming the model is accurate we may solve the following optimization problem

to identify an optimal treatment strategy for this patient.

min
x∈R2

dvnv (6.24)

subject to [dv, nv] ∈ R1.

We determined the optimal data-driven pulsed immunotherapy treatment of approx-

imately 2000 cells injected at a period of every 2.25 days. After simulation it was
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confirmed that this pulsed immunotherapy treatment does successfully eliminate the

tumor cells within 60 days. We show the population of tumor cells throughout time

for this nominal case in Fig. 6.2(a).

Since this data-driven modeling of the ROA is not exact we next test the ro-

bustness of the optimal solutions. To test the robustness of the optimal treatments

we randomly generate 1,000 different patients whose dynamic constants vary within

±10% and whose initial conditions are within T (0) ∈ [2, 6], B(0) ∈ [0.05, 0.15], E(0) ∈

[90, 110], R(0) ∈ [40, 60]. We found that 75.00% of the optimal treatments found using

Optimization Problem (6.24) eliminated the tumor within 60 day. In Fig. 6.2(b) we

plot the volume of tumor cells throughout time after applying the optimal treatment.

To determine how close to optimal the treatments are we decreased the dosage by

10% and found that only 35.69% of the treatments led to tumor elimination within 60

days. Likewise only 34.68% of treatments eliminated the tumor when the period of

treatment was increased by 10% of the optimal value. When decreasing the dosage by

10% and increasing the period by 10% only 3.85% of the cases eliminated the tumor

within 60 days, implying that over 71% of the treatments eliminated the cancer cells

and were within 10% of the optimal dose and period.

6.6 Conclusion

We have proposed a sequence of Algorithms Ek, k ∈ N to extract solutions to the

GPO problem based on a combination of Branch and Bound and SOS/Moment relax-

ations. The computational-complexity of Algorithm Ek is polynomial in k, polynomial

in the number of constraints and linear in the number of branches l. Additionally, for

any scalar ε > 0, there exist k ∈ N such that Algorithms Ek, in n log( r
ε
) number of

iterations, returns a point that is within the ε-distance of a feasible and ε-suboptimal

point. For a fixed degree of semidefinite relaxations, our numerical case study demon-
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strates convergence to an ε-suboptimal point returned by the Ek algorithm.

Additionally we were able to use the GPO algorithm in conjunction with a ROA

model from Chapter 5 to select optimal pulsed immunotherapy treatments for the

treatment of cancer. This method did not require any system models to be known,

instead relying on trajectory measurements to build a semialgebraic set used to model

the region of attraction, and the GPO algorithm to select an optimal point contained

within the model. Applying such a model in practice would require only an initial

measurement of the tumor volume, levels of TGF-β, and amounts of effector and

regulatory immune cells.
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Chapter 7

CONCLUSION

Motivated by three problems to generate better predictive models of the immune

system, we formulated convex optimization problems to generate improved data-

driven models of physical processes. These methods were applied to determine cellular

characteristics that differ most between healthy patients and those with rheumatoid

arthritis; identify populations of immune system cells that are most correlated to the

severity of rheumatoid arthritis in mice; and select an optimal dosage and period

of an immunotherapy treatment for cancer based upon the size of the tumor, initial

populations of effector and regulatory cell types, and the amount of a cytokine signal

in the tumor environment.

In this chapter we present concluding remarks for each problem.

Problem 1: Generating Models of the Distribution of Measured Data

In Chapter 3 we propose convex optimization problems to select optimal parameter

of Sliced Distribution PDFs to model the density of a random variable. Unlike other

sets of distributions, SD PDFs are dense in the set of all bounded PDFs in L1(∆).

This implies that we can use SDs to model the PDF of a random variable while

making only a few minor assumptions on the physical process which generated the

data. Additionally, we formulated convex optimization problems to select optimal

parameters for the SDs, so the globally optimal member of the degree bounded set of

distributions is guaranteed to be found, unlike other sets of PDFs such as Gaussian

mixture models.

The performance of SDs is compared to multivariate normals and Guassian mix-

ture models using two metrics to demonstrate that the proposed methods have supe-
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rior performance with respect to modeling the distribution of random variables. The

first metric is based on the likelihood of the models to generate a test partition of the

data, while the second is based on the volume of the level sets of the PDFs that most

tightly contain the test partition of the data. In both cases methods using the pro-

posed SDs perform better than the other tested distributions, though this improved

performance comes at an increase in computation time.

Finally we show that SDs may be used to model the variation in immune system

cell characteristics measured from mice with RA as well as healthy mice. By com-

paring the models generated for both groups, we identified a set of immune system

characteristics that differed most between healthy and diseased mice. These “immune

features” could be used to perfectly differentiate between mass cytometry datasets

taken from diseased and healthy mice, illustrating that the PDF models captured

essential features of the immune system that differ after the onset of RA.

Problem 2: Generating Optimal Machine Learning Algorithms

In Chapter 4 we proposed an efficient kernel learning algorithm which met three

criteria to ensure the resulting predictors are robust. Specifically we introduced an

efficient TK kernel learning algorithm based on a FW type algorithm which simulta-

neously selects an optimal TK kernel function and generates a predictor using that

kernel function. While the average computation time of the TK kernel learning algo-

rithm is larger than the other methods, the set of TK kernels is tractable, dense, and

universal, implying that KL algorithms based on TK kernels are more robust than

existing machine learning algorithms. This assertion is supported by numerical test-

ing on 12 moderately sized and randomly selected datasets, which yielded increases in

the average accuracy of the TK kernel learning algorithm over other state-of-the-art

alternatives.
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We also considered the use of the KL learning problem in the identification of three

different states of the immune system of increasing complexity. Specifically, we used

a set of mouse-model experiments to obtain a robust dataset of T cell markers and

populations at the end stage of a proposed immunotherapy treatment. From these

experiments we were able to determine that the CD4+GATA3+CD44+CD62L(Lo)

memory T cell sub-population is a significant population in that it is identified as an

essential component of the immune system and an essential component for estimating

the disease severity of mice with RA. Other immune system cell populations were also

identified that are highly correlated with, for example, estimating the disease severity,

or estimating the populations of other immune system cells.

Problem 3: Generating Constrained Predictive Models and Identifying

Optimal Treatments

In Chapter 5 we solve the problem of generating predictive models that are con-

strained to be, for example, globally positive. We formulate a convex method to

optimize the parameters of a polynomial function to fit given data with respect to

the least squares or least absolute deviations metrics and constraint the function to

be either globally positive, and thus a sum-of-squares polynomial, or to be positive

over a semi-algebraic set.

This method was used to generate predictive models of a converse Lyapunov func-

tion from trajectory data taken from a dynamical system. This dynamical system

models the relationship between tumor cells, immune system cells, and cytokines for

a given immunotherapy treatment. We assume that variability in the dynamical sys-

tems for different patients has a minor effect on the ROA, and that different patient

trajectories can be combined to model the average Lyapunov function of a group of

patients. Specifically, given trajectories from patients given pulsed immunotherapy
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treatments of different periods and dosages, we fit a function that generates a pre-

diction of the region of attraction of the system for a given period and dosage of

therapy.

Given the initial conditions of a patients immune system, the model can also be

used to predict if a given dosage and period of treatment will lead to elimination of

the tumor. Fortunately, for a set of initial conditions, the model of the dosage and

period of treatment that leads to complete tumor elimination in 60 days is a semi-

algebraic set. Therefore, given the initial conditions of a patients immune system,

we may solve a global polynomial optimization problem to select a treatment that is

predicted to eliminate the tumor within 60 days while minimizing the total dosage of

treatment.

Next in Chapter 6 we proposed a sequence of Algorithms Ek, k ∈ N to ex-

tract solutions to GPO problems based on a combination of Branch and Bound and

SOS/Moment relaxations. The computational-complexity of Algorithm Ek is poly-

nomial in k, polynomial in the number of constraints and linear in the number of

branches l. Additionally, for any scalar ε > 0, there exist a k ∈ N such that Al-

gorithms Ek, in O(log(1/ε)) number of iterations, returns a point that is within the

ε-distance of a feasible and ε-suboptimal point. For a fixed degree of semidefinite

relaxations, our numerical case study demonstrated convergence to an ε-suboptimal

point returned by the Ek algorithm.

This GPO algorithm was applied to solve the GPO problem formulated in Chap-

ter 5 to select an optimal dosage and period of a pulsed immunotherapy treatment to

eliminate the tumor cells. This method thus relies only on trajectory measurements

to generate a semialgebraic set that estimates the region of attraction. This region of

attraction estimate is then used to generate a GPO problem which is solved with the

GPO algorithm to select an optimal dosage and treatment period. The simulations
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of the immunotherapy model show that over 84% of the treatments returned by the

GPO algorithm are within 10% of the optimal treatment strategy, implying that even

though the dynamical systems of the patient differed slightly, the ROA estimate was

still able to find effective treatments for a majority of patients.
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[75] T. Höfer, O. Krichevsky, and G. Altan-Bonnet. Competition for il-2 between
regulatory and effector t cells to chisel immune responses. Frontiers in im-
munology, 3:268, 2012.

[76] J. Hu, A. Perer, and F. Wang. Data driven analytics for personalized healthcare.
In Healthcare Information Management Systems. Springer, 2016.

[77] M. Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization.
In Proceedings of the 30th international conference on machine learning, 2013.

[78] A. Jain, S. Vishwanathan, and M. Varma. SPF-GMKL: generalized multiple
kernel learning with a million kernels. In Proceedings of the ACM International
Conference on Knowledge Discovery and Data Mining, pages 750–758, 2012.

[79] L. Jeanbart and M. Swartz. Engineering opportunities in cancer immunother-
apy. Proceedings of the National Academy of Sciences, 112(47):14467–14472,
2015.

[80] P. Johansen, T. Storni, L. Rettig, Z. Qiu, A. Der-Sarkissian, K. Smith,
V. Manolova, K. Lang, G. Senti, B. Müllhaupt, et al. Antigen kinetics de-
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APPENDIX A

APPENDIX

A.1 NUMERICAL SCALABILITY OF SLICED EXPONENTIALS

In this section we consider the computational complexity of the MLE and WCE
optimization problems for SE. We first consider the effect of the number of samples
in S that are used to calculate the numerical integration constant. Then we consider
the effect of the number and dimension of the training data points and the degree of
the SE.

Evaluating the Effect of the Sample Number

The number of samples used to calculate the numerical integration constant in Op-
timization Problems 3.6 (MLE) and 3.16 (WCE) will have an effect on the optimal
λ∗ and the computation time of the algorithm. We perform numerical experiments
using the Iris data set and the MLE and WCE optimization methods to observe the
effect of the number of selected samples, S, on the computation time and objective
value of the resulting λ∗.

The dimension of the data effects the accuracy of the Monte Carlo integral esti-
mation. To compare the difference between data sets of different dimension we will
perform the tests first using only the first dimension of the Iris data set, then compare
those results to using the full Iris data set.

The MLE Optimization Problem To study the properties of Optimization Prob-
lem (3.6) with respect to the number of samples in S we plot the normalized log
likelihood and the normalized computation time of the MLE problem in Fig. A.1(a)
averaged over 15 trials. The log likelihood is calculated after the optimal parameter
λ∗ has been returned by Optimization Problem 3.6 using one million samples and
then normalized so that the one dimensional data set can be compared to the four
dimensional data set. The computation time is likewise normalized for comparison
between the one dimensional and four dimensional cases.

Note that in each case the computation time increases approximately linearly as a
function of the number of samples in S. The computation time does not increase lin-
early with respect to the dimension of the problem, which we explore in the following
subsection.

In the one dimensional case the log likelihood does not significantly change after
approximately 105 samples. On the other hand the log likelihood in the four dimen-
sional case was too small to be accurately computed in the case of 104 samples, and
required 8 ·105 samples before the log likelihood was accurate. In the one dimensional
case as few as 105 samples can be used where in the four dimensional case at least
eight times as many points are required.

The WCE Optimization Problem To study the properties of Optimization
Problem 3.16 with respect to the number of samples in S we plot the normalized
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(a) The normalized log likelihood and
computation time of a degree 10 SE
trained with the first dimension of the Iris
dataset (n=1) and a degree 4 SE trained
on the full data set (n=4).
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(b) The normalized worst likelihood and
computation time of a degree 10 WCSE
trained with the first dimension of the
Iris dataset (n=1) and a degree 4 WCSE
trained on the full data set (n=4).

Figure A.1: The normalized log likelihood and computation time to compute SE
and WCSE distributions after using one million points to calculate the normalization
constant.

worst case likelihood and the normalized computation time of the WCE problem in
Fig. A.1(b) averaged over 15 trials. The worst case likelihood is calculated after λ∗

has been returned by Optimization Problem 3.16 using one million samples and then
normalized so that the one dimensional data set can be compared to the four dimen-
sional data set. The computation time is likewise normalized for comparison between
the one dimensional and four dimensional data sets.

Note that like in the MLE case, the computation time increases approximately
linearly as a function of the number of samples in S. However, unlike the MLE case,
in both the one dimensional and four dimensional cases the worst case likelihood
does not significantly change after approximately 105 samples. The λ∗ of the WCE
problem thus is significantly less affected by the dimension of the problem than the
MLE problem.

Computational Complexity of Optimizing SE PDFs

Here we provide a numerical estimation of the complexity of the MLE and WCE opti-
mization problems with respect to the number of training data points, the dimension
and the degree of the SE. We first will specify two techniques employed to decrease
the computational complexity of solving the MLE and WCE problems.

Implementation To solve the MLE and WCE optimization problems we develop
two techniques to decrease the computation time. The first technique automatically
selects the number of samples used to numerically compute the integration constant.
The second solves the MLE and WCE problems by iteratively solving the problem
for smaller degree SEs first.

The Sampling Sub-Routine: To compute λ∗ we use a small initial sample of
mc points to calculate the numerical integration constant and a much larger sample of
m0 points to verify that the number of samples was adequate. Using the computed λ∗,
if the objective function using mc samples is within a threshold value of the objective
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(b) Computational complexity analysis of
the WCE problem, the different colored
lines represent different degree SEs.

Figure A.2: Computational complexity analysis of both the MLE and WCE opti-
mization problems as the degree or number of training samples is varied.

function using m0 then λ∗ is accepted, otherwise the number of samples is increased
by a factor of κ.

In this dissertation we select mc to be 103 samples, m0 to be 106 samples and
the threshold for accepting λ∗ is if the objective functions are within 5% of each
other. Finally we set κ = 10 so that we increase the number of samples by a whole
magnitude if the number of samples was not enough.

Iterative Solutions: To find an optimal degree k SE we apply an iterative
procedure, wherein we first find λ∗ for a degree d = 1 SE. We then use this λ∗ to
initialize the search for the optimal degree d+ 1 SE and repeat this process until we
have the optimal λ∗ of the degree k SE.

Data: In this section we use the data sets, V OS, TV 1, BP , and IR as can be
found in [128, 119, 83, 55] in the UCI machine learning or OpenML databases.

The MLE Optimization Problem For the MLE formulation we plot the com-
putational time in Figure A.2(a) as a function of the degree for each of the four data
sets in a log-log plot. Empirically the computational complexity is of order O(d1.2),
O(d2.3), O(d3.2), and O(d3.7) for dimension of 1 through 4 respectively.

The number of data points does not have a consistent effect on the computation
time of the MLE optimization problem. For instance, increasing the number of sam-
ples can decrease the computation time as the number of data points changes the
optimal λ.

The WCE Optimization Problem For the WCE optimization problem the num-
ber of data points has a more consistent effect on the computational time than the
MLE optimization problem. Therefore, we plot the computational time of the three
dimensional data set BP , in Figure A.2(b) where the number of points m are varied

1The data set TV originally contains data points with more than two dimensions, however, we
extract the time of day and traffic volume from the original data (the real valued variables) to create
our two dimensional data set.

216



along the x axis and we plot separate colors for degrees d between 1 and 4. From this
data we have empirically determined the computational complexity is approximately
O(m0.54d2.7) where m is the number of data points in D and d is the degree of the SE
random variable.

For large numbers of data points the MLE optimization problem will have a sig-
nificantly faster computation time.
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