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Copyrights and license information

PIETOOLS is free software: you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WAR-
RANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program;
if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
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Notation

R Set of real numbers (−∞,∞)
∂i

sx ∂ix
∂si where s is in a compact subset of R

ẋ ∂x
∂t

where t is in [0,∞)
Ln

2 [a, b] Set of Lebesgue-integrable functions from [a, b]→ Rn

RLm,n[a, b] Rm × Ln
2 [a, b]

Hn
k [a, b] {f ∈ Ln

2 [a, b] | ∂i
sf ∈ Ln

2 [a, b]∀i ≤ k}
0m×n Zero matrix of dimension m× n
0n Zero matrix of dimension n× n
In Identity matrix of dimension n× n
∆a Dirac operator on f : C → X, ∆a(f) = f(a), for a ∈ C
B(X, Y ) Space of bounded linear operators from X to Y
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Chapter 1

About PIETOOLS

PIETOOLS is a free MATLAB toolbox for manipulating Partial Integral (PI) operators and
solving Linear PI Inequalities (LPIs), which are convex optimization problems involving PI
variables and PI constraints. PIETOOLS can be used to:

• define PI operators in 1D and 2D

• declare PI operator decision variables (positive semidefinite or indefinite)

• add operator inequality constraints

• solve LPI optimization problems

The interface is inspired by YALMIP and the program structure is based on that used by
SOSTOOLS. By default the LPIs are solved using SeDuMi [11], however, the toolbox also
supports use of other SDP solvers such as Mosek, sdpt3 and sdpnal.

To install and run PIETOOLS, you need:

• MATLAB version 2014a or later (we recommend MATLAB 2020a or higher. Please note
some features of PIETOOLS, for example PDE input GUI, might be unavailable if an
older version of MATLAB is used)

• The current version of the MATLAB Symbolic Math Toolbox (This is installed in most
default versions of Matlab.)

• An SDP solver (SeDuMi is included in the installation script.)

1.1 PIETOOLS 2024 Release Notes
PIETOOLS 2024 introduces several functional and quality of life improvements to PIETOOLS,
including a unified and improved command-line interface for declaring both 1D and 2D PDEs,
support for H2 norm and improved demos.
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Major Updates:

1. PIETOOLS and PIESIM now include native support for 2D PDEs defined on a hyper-
rectangle.

• 2D PDEs can be declared using the command line interface
• 2D PDEs can be simulated in PIESIM (See Chap 6)
• 2D opvars and decision variables can be created using lpivar, poslpivar, etc
• function-valued inputs and boundary conditions can be declared (See Chap 4)
• the gain analysis and estimator design scripts now support 2D PDEs and PIEs
• Demo 9 now illustrates L2-gain analysis for a 2D PDE

2. Support for H2 analysis, estimation, and control are now supported (See Chap 13).

• New scripts include ‘lpiscript(pie,h2norm)’ and ‘lpiscript(pie,h2-observer)’
• Demo 8 now illustrates H2 norm analysis

3. Scripts now allow for non-coercive Lyapunov function candidates, improving the accuracy
of gain analysis and performance of optimal controller/observer synthesis.

4. All Demos have been streamlined and shortened to better illustrate functionality and
workflow.

• Two new demos have been added illustrating analysis of 2D PDEs and H2 norm
bounding

Minor Updates

1. Improved operator inversion routines have been incorporated in getobserver/getcontroller
to allow for more numerically reliable controller/observer gains.

2. Several routines in declaring and solving LPIs have been updated and renamed.

• sosprogram is now lpiprogram and updated to require that the spatial domain must
be specified at instantiation

• sosdecvar is now lpidecvar and sossetobj is now lpisetobj
• Routines lpi_eq and lpi_ineq have been updated to allow for scalar equality and

inequality constraints to be declared as well
• sossolve is now lpisolve
• sosgetsol is now lpigetsol and allows one to access operator-valued variables

directly

3. The function piess now allows one to construct a PIE object directly, using similar state-
space syntax to the Matlab command ‘ss’ – e.g. piess(T,A,B,C,D) where T,A,B,C,D
are opvar objects.
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4. The function pielft allows for the closed-loop interconnection (LFT) of two PIE objects.
e.g. pielft(pie1,pie2).

5. The directory lpi_programming has been added. Some users may need to update their
Matlab path definitions accordingly, simply run the script pietools_path_update.

1.2 Installing PIETOOLS
PIETOOLS 2024 is compatible with Windows, Mac or Linux systems and has been verified to
work with MATLAB version 2020a or higher, however, we suggest to use the latest version of
MATLAB.

Before you start, make sure that you have

1. MATLAB with version 2014a or newer. (MATLAB 2020a or newer for GUI input)

2. MATLAB has permission to create and edit folders/files in your working directory.

1.2.1 Installation
PIETOOLS 2024 can be installed in two ways.

1. Using install script: The script installs the following files — tbxmanager (skipped if
already installed), SeDuMi 1.3 (skipped if already installed), SOSTOOLS 4.00 (always
installed), PIETOOLS 2024 (always installed). Adds all the files to MATLAB path.

• Go to https://github.com/CyberneticSCL/PIETOOLS or
control.asu.edu/pietools/.

• Download the file pietools_install.m and run it in MATLAB.
• Run the script from the folder it is downloaded in to avoid path issues.

2. Setting up PIETOOLS 2024 manually:

• Download and install C/C++ compiler for the OS.
• Install an SDP solver. SeDuMi can be obtained from this link.
• Download SeDuMi and run install_sedumi.m file.

– Alternatively, install MOSEK, obtain license file and add to MATLAB path.
• Download PIETOOLS_2024.zip from this link, unzip, and add to MATLAB

path.
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Chapter 2

Scope of PIETOOLS

In this chapter, we briefly motivate the need for a new computational tool for the analysis and
control of ODE-PDE systems as well as DDEs. We lightly touch upon, without going into
details, the class of problems PIETOOLS can solve.

2.1 Motivation
Semidefinite programming (SDP) is a class of optimization problems that involve the optimiza-
tion of a linear objective over the cone of positive semidefinite matrices. The development of
efficient interior-point methods for SDP problems made LMIs a powerful tool in modern control
theory. As Doyle stated in [2], LMIs played a central role in postmodern control theory akin to
the role played by graphical methods like Bode plots, Nyquist plots, etc., in classical control the-
ory. However, most of the applications of LMI techniques were restricted to finite-dimensional
systems, until the sum-of-squares method came into the limelight. The sum-of-squares (SOS)
optimization methods found application in control theory, for example searching for Lyapunov
functions or finding bounds on singular values. This gave rise to many toolboxes such as SOS-
TOOLS [6], SOSOPT [7], etc., that can handle SOS polynomials in MATLAB. However, unlike
the LMI methods for linear ODEs, SOS methods for analysis and control of PDEs still required
ad-hoc interventions. For example, searching for a Lyapunov function that certifies stability of
a PDE, one usually hits a roadblock in the form of boundary conditions, requiring the use of
e.g. integration by parts, Poincaré inequality, or Hölder’s Inequality to resolve.

In an ideal world, we would prefer to define a PDE, specify the boundary conditions and let
a computational tool take care of the rest. To resolve this problem, either we teach a computer
to perform these “ad-hoc” interventions or come up with a method that does not require
such interventions, to begin with. To achieve the latter, we developed the Partial Integral
Equation (PIE) representation of PDEs, which is an alternative representation of dynamical
systems, parameterized by Partial Integral (PI) operators. The PIE representation can be used
to represent a broad class of distributed parameter systems and is algebraic – eliminating the
use of boundary conditions and continuity constraints [8], [1]. Consequently, many LMI-based
methods for analysis of finite-dimensional systems can be extended to infinite-dimensional ones
using PIEs. The PIETOOLS software offers the tools to do exactly that – making e.g. stability
analysis, controller synthesis, and simulation of linear infinite-dimensional systems as intuitive
as it is for finite-dimensional ones.
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2.2 PIETOOLS for Analysis, Control, and Simulation of
ODE-PDE Systems

Using PIETOOLS 2024 for controlling and simulating ODE-PDE models has been made intu-
itive, requiring little knowledge of the mathematical details on PIE operators. To illustrate, let
us see how we can simulate a simple ODE-PDE model, and synthesize a controller.

2.2.1 Defining Models in PIETOOLS
Any control problem necessarily starts with declaring the model, and PIETOOLS makes it
extremely simple to do so. Suppose that we are interested in modeling a coupled ODE-PDE
system, such as a system with ODE dynamics given by

ẋ(t) = −x(t) + u(t), (2.1)

with controlled input u, and PDE dynamics given by a one-dimensional wave equation

ẍ(t, s) = c2∂2
s x(t, s)− b∂sx(t, s) + sw(t), s ∈ (0, 1), t ≥ 0, (2.2)

with velocity c, added viscous damping coefficient b and external disturbance w. Since the PDE
has a second-order derivative in time, we should make a change of variables to appropriately
define a state space. For this example, we do so by introducing ϕ = (∂sx, ẋ), so that the
dynamics of ϕ are governed by

ϕ̇(t, s) =
[
0 1
c 0

]
∂sϕ(t, s) +

[
0 0
0 −b

]
ϕ(t, s) +

[
0
s

]
w(t), s ∈ (0, 1), t ≥ 0. (2.3)

We can also add a regulated output to our system, for instance

z(t) =
[
r(t)
u(t)

]
=
[
x(t, 1)− x(t, 0)

u(t)

]
=
[∫ 1

0 ϕ1(t, s)ds
u(t)

]
. (2.4)

To define the presented model in MATLAB, we first declare the spatial and temporal variable s
and t, and create the state, input, and output variables, using the pvar and pde_var functions:

>> pvar s t
>> x = pde_var(); phi = pde_var(2,s,[0,1]);
>> w = pde_var(‘in’); u = pde_var(‘control’);
>> z = pde_var(‘out’,2);

Then, we can define an equation in terms of these variables as a pde_struct object, using
standard operators such as ‘+’,‘-’,‘*’,‘diff’,‘subs’,‘int’, etc., declaring e.g. our wave
equation for c = 1 and b = 0.01 as:

>> b = 0.01; c = 1;
>> eq_dyn = [diff(x,t,1)==-x+u;

diff(phi,t,1)==[0 1; c 0]*diff(phi,s,1)+[0;s]*w+[0 0;0 -b]*phi];
>> eq_out= z==[int([1 0]*phi,s,[0,1]); u];
>> odepde = [eq_dyn;eq_out];

11



2.2.2 Declaring Boundary Conditions
A general PDE model is incomplete without boundary conditions, but in PIETOOLS, boundary
conditions can be declared in much the same way as the system dynamics. For example, to
declare the following Dirichlet and Neumann boundary conditions,

ẋ(t, s = 0) = 0, ∂sx(t, s = 1) = x(t),

we can simply call
» bc1 = [0 1]*subs(phi,s,0) == 0;
» bc2 = [1 0]*subs(phi,s,1) == x;
» odepde = [odepde;[bc1;bc2]];

Once the full system is declared, we clean up the structure and fill in any gaps by calling the
function initialize as

» odepde = initialize(odepde);

Whenever equations are successfully initialized, a summary of the encountered states, inputs,
and outputs is displayed in the Command Window. To verify if PIETOOLS got the right
equations, the user just needs to type the name of the system variable (”odepde” in this
example) in the command window without a semicolon for PIETOOLS to display the added
equations. We encourage the user to always check the equations before proceeding.

2.2.3 Simulating ODE-PDE Models
Having declared an ODE-PDE system, one of the first things a practitioner may do is to simulate
the system. If you look at traditional PDE literature, a big challenge in simulation of PDEs
is that every different kind of PDE requires different techniques to discretize. In PIETOOLS,
however, there is only one command to simulate any linear ODE-PDE coupled system of your
choice:

» solution = PIESIM(odepde, opts, uinput);

Here, aside from the desired system to simulate (our odepde), we have to declare two additional
arguments. The first are the options for simulation, determining e.g. the number of spatial
and temporal points in discretization of the solution. For our illustration, we pass the following
options to the function, informing PIESIM not to automatically plot the solution, to use 8
Chebyshev polynomials in expanding the solution in space, and to simulate the solutions up to
t = 12 seconds with a time-step of 3 · 10−2 seconds:

» opts.plot = ’no’;
» opts.N = 8;
» opts.tf = 12;
» opts.dt = 3*1e-2;

Next, in order to simulate solutions, we must of course also pass values for all of the inputs,
as well as initial values of the states, which is all done with the input uinput. In our case, we
wish to simulate the zero-state response of the system, perturbed by an exponentially decaying
sinusoidal signal, which we specify as
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» syms st sx real;
» uinput.ic.PDE = [0,0];
» uinput.ic.ODE = 0;
» uinput.u = 0;
» uinput.w = sin(5*st)*exp(-st);

Note that we set the control input to zero to simulate an open-loop response.
For more details on the PIESIM input arguments, we refer the reader to Chapter 6. With the

output structure solution, PIESIM returns discretized time-dependent arrays corresponding
to the time vector used in the simulations and the resulting state variables and output. The
simulated evolution of the second PDE state variable ϕ2(t) = ẋ(t) and regulated output r(t)
for our example is depicted in Figure 2.1.

Figure 2.1: Transient response of the state variable ẋ(t, s) and regulated output r(t) by
simulating the ODE-PDE model (2.1) and (2.3) with u(t) = 0 for external disturbance
w(t) = sin(5t)e−t.

2.2.4 Analysis and Control of the ODE-PDE Model Using PIEs
Apart from simulation, you may be interested in knowing whether the model is internally
stable or not. Moreover, what would be a good control input such that the effect of external
disturbances for a specific choice of output can be suppressed? In PIETOOLS, such analysis
and synthesis tasks are typically performed by first converting the ODE-PDE model to a new
representation called a Partial Integral Equation (PIE), which is parametrized by a special class
of operators, and then solving convex optimization problems (see Chapter. 7 for more details).

To illustrate, for our example (as for any model declared in PIETOOLS), conversion to a
PIE is simply done by calling the function convert as

13



» PIE = convert(odepde,‘pie’);

--- Reordering the state components to allow for representation as PIE ---

The order of the state components x has not changed.

--- Converting the PDE to an equivalent PIE ---

--- Conversion to PIE was successful ---

Note here that, although conversion to a PIE is done automatically, the user should be aware
that the order of e.g. state variables may be changed in the process. PIETOOLS will always
display a message informing the user of such changes, and in this case, we find that no re-
ordering is performed.

Once the model is converted to a PIE, analysis, and control can be performed by calling
one of the executive functions. There are numerous executive functions available, including for
stability analysis, for computing norms of the system, and for performing optimal estimator
and controller synthesis – see Chapter 13.

For our ODE-PDE model defined by (2.1) and (2.3), it can be proven that the system is
asymptotically stable only when b > 0. We can verify stability for the value b = 0.01 by calling
the stability executive for the PIE representation of our ODE-PDE model as follows

» settings = lpisettings(‘heavy’);
» lpiscript(PIE,‘stability’,settings);

Here, we must also declare settings used for running the stability test, which must be specified
as one of the following: extreme, stripped, light, heavy, veryheavy, or custom. For details
on the optimization settings, the reader is referred to section. 7.7.

For our system, PIETOOLS is able to successfully solve the stability program, and it will
inform the user of this fact by displaying the following output:

The System of equations was successfully solved.

Although our system is indeed found to be stable, our simulation results (Fig. 2.1) show that
solutions do not converge to zero very quickly, continuing to oscillate long after the disturbance
has already vanished. One way to quantify stability of the system is with the H∞ norm or
L2-gain of the system, measuring the worst-case amplification of the “energy“ of the regulated
output over that of the disturbance. To compute an upper bound γ on the value of this H∞
norm, we can run the corresponding executive for the PIE representation of our system as

» [∼,∼, gam] = lpiscript(PIE,’l2gain’,settings);

If successful, PIETOOLS will display the obtained bound on the H∞ norm as follows
The H-infty norm of the given system is upper bounded by:
51.5744

The obtained bound suggest that the H∞ norm of the system is quite large. To improve the
system’s rejection of disturbances, we therefore design a state-feedback controller that provides
a control input u(t) which minimizes the H∞ norm of the closed-loop system, provided that
such a controller exists. To synthesize this state feedback controller we can call yet another
executive:
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» [∼, Kval, gam_val] = lpiscript(PIE,’hinf-controller’,settings);

which will make PIETOOLS search for an operator K (stored in variable Kval) corresponding
to the optimal controller gain, and display the closed-loop H∞ norm if successful. For this
example, the resulting controller substantially improves performance, achieving an H∞ norm
of the closed-loop system of just 0.8183

The closed-loop H-infty norm of the given system is upper bounded by:
0.8183

The controller is generally a 4-PI linear operator, as detailed in Chapter. 3, which has an image
parameterized by matrix-valued polynomials. The resulting controller can be displayed by
entering its variable name in the command window. Keep in mind that PIETOOLS disregards
the monomials with coefficients lower than an accuracy defaulted to 10−4.

Using PIESIM, we can also simulate the response of the resulting closed-loop system. The
simulated evolution of the PDE state ẋ(t) and regulated output r(t) are plotted in Figure 2.2,
along with the feedback control effort u(t) used to achieve this response. The regulated output
response of the open- and closed-loop system are displayed together in Figure 2.3, showing
that the imposed feedback indeed makes the system “more stable”, driving the output to 0
substantially faster.

Figure 2.2: Transient response of the state variable ẋ(t, s) and regulated output r(t) on the
closed-loop system for external disturbance w(t) = sin(5t)e−t.

The full code used to produce the presented plots is provided in the file
“PIETOOLS_Code_Illustrations_Ch2_Introduction.m”. We also encourage the user to look
at the various PIETOOLS demo files for an overview on how to perform controller synthesis of
ODE-PDE synthesis and simulate the resulting closed-loop system.
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Figure 2.3: Open- (r(t)) and closed-loop (rcl(t)) transient response of the regulated output r(t)
for external disturbance w(t) = sin(5t)e−t.

2.3 Summary
In this chapter, we gave an introduction on how PIETOOLS can be used to solve various
control-relevant problems involving linear ODE-PDE models. The example depicted here was
highly sensitive to disturbances. Figure. 2.1 shows that, even after the applied disturbance has
ceased, the output signal r(t) remains affected, failing to converge to zero within the simulation
time. This behaviour is measured by the computed H∞ norm of the open-loop system.

On the other hand, with the synthesized feedback controller given by PIETOOLS, the
closed-loop system quickly rejects the disturbance, as is clear from Figures. 2.2. The increase
in performance can be certified by the considerable reduction in the value of the H∞ norm and
by comparing the behaviour of the outputs without and with the controller in Figure. 2.3.
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Chapter 3

PI Operators in PIETOOLS

PIETOOLS primarily functions by manipulation of Partial Integral (PI) operators, which is
made simple by introduction of MATLAB classes that represent PI operators. In PIETOOLS
2024, there are two types of PI operators: PI operators with known parameters, opvar/opvar2d
class objects, and PI operators with unknown parameters, dopvar/dopvar2d class objects. In
this chapter, we outline the classes used to represent PI operators with known parameters. The
information in this chapter is divided as follows: Section 3.1 and Section 3.2 provide brief math-
ematical background, and corresponding MATLAB implementation, about PI operators in 1D
and 2D, respectively. Section 3.3 provides an overview of the structure of opvar/opvar2d classes
in PIETOOLS. For more theoretical background on PI operators, we refer to Appendix A. For
more information on operations that can be performed on opvar/opvar2d class objects, we
refer to Chapter 10.

3.1 Declaring PI Operators in 1D
In this Section, we illustrate how 1D PI operators can be represented in PIETOOLS using opvar
class objects. Here, we say that an operator P is a 1D PI operator if it acts on functions v(s)
depending on just one spatial variable s, and the operation it performs can be described using
partial integrals. We further distinguish 3-PI operators, acting on functions v ∈ Ln

2 [a, b], and
4-PI operators, acting on functions [ v0

v1 ] ∈
[

Rn0
L

n1
2 [a,b]

]
. Both types of operators can be represented

using opvar class objects, as we show in the remainder of this section.

3.1.1 Declaring 3-PI Operators
We first consider declaring a 3-PI operator in PIETOOLS. Here, for given parameters R =
{R0, R1, R2}, the associated 3-PI operator P [R] : Ln

2 [a, b]→ Lm
2 [a, b] is given by

(
P [R]v

)
(s) = R0(s)v(s) +

∫ s

a
R1(s, θ)v(θ)dθ +

∫ b

s
R2(s, θ)v(θ)dθ, s ∈ [a, b], (3.1)

for any v ∈ Ln
2 [a, b]. In PIETOOLS, we represent such 3-PI operators using opvar class objects.

For example, suppose we wish to declare a very simple PI operator A : L2
2[−1, 1]→ L2

2[−1, 1],
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defined by
(
Av

)
(s) =

∫ s

−1

[
1 2
3 4

]
︸ ︷︷ ︸

R1

v(θ)dθ, s ∈ [−1, 1]. (3.2)

To declare this operator, we first initialize an empty opvar object A, by simply calling opvar
as:

>> opvar A
A =

[] | []
--------
[] | []

A.R =
[] | [] | []

>> A.I = [-1,1];

Here, the first line initialize a 0×0 opvar object with all empty parameters []. The second line,
A.I=[-1,1], then sets the spatial interval associated to the operator equal to [−1, 1], indicating
that it maps the function space L2[−1, 1].

Next, we set the parameters of the operator. For a 3-PI operator such as A, only the
paramaters in the field A.R will be nonzero, where A.R itself has fields R0, R1 and R2. For our
simple operator, only the parameter R1 in the 3-PI Expression (3.1) is nonzero, so we only have
to assign a value to the field R1:

>> A.R.R1 = [1,2; 3,4];
A =

[] | []
--------
[] | []

A.R =
[0,0] | [1,2] | [0,0]
[0,0] | [3,4] | [0,0]

where the fields A.R.R0 and A.R.R2 automatically default to zero-arrays of the appropriate
dimensions. With that, the opvar object A represents the PI operator A as defined in (3.2).

Next, suppose we wish to implement a slightly more complicated operator B : L2[0, 1] →
L2

2[0, 1], defined as

(
Bx
)
(s) =

[
1
s2

]
︸ ︷︷ ︸

R0

v(s) +
∫ s

0

[
2s

s(s− θ)

]
︸ ︷︷ ︸

R1

x(θ)dθ +
∫ 1

s

[
3θ

3
4(s2 − s)

]
︸ ︷︷ ︸

R2

x(θ)dθ, s ∈ [0, 1].

For this operator, the parameters Ri(s, θ) are all polynomial functions. Such polynomial func-
tions can be represented in PIETOOLS using the polynomial class (from the ‘multipoly’ tool-
box), for which operations such as addition, multiplication and concatenation have already
been implemented. This means that polynomials such as the functions Ri can be implemented
by simply initializing polynomial variables s and θ, and then using these variables to define the
desired functions:
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>> pvar s s_dum
>> R0 = [1; s^2]
R0 =

[ 1]
[ s^2]

>> R1 = [2*s; s*(s-s_dum)]
R1 =

[ 2*s]
[ s^2 - s*s_dum]

>> R2 = [3*s_dum; (3/4)*(s^2-s)]
R2 =

[ 3*s_dum]
[ 0.75*s^2 - 0.75*s]

Here, the first line calls the function pvar to initialize the two polynomial variables s and s_dum,
which we use to represent the spatial variable s and dummy variable θ, respectively. Then, we
can add and multiply these variables to represent any desired polynomial in (s, θ), allowing us
to implement the parameters R0(s), R1(s, θ) and R2(s, θ). Having defined these parameters,
we can then represent the operator B as an opvar object B as before:

>> opvar B;
>> B.I = [0,1];
>> B.var1 = s; B.var2 = s_dum;
>> B.R.R0 = R0; B.R.R1 = R1; B.R.R2 = R2
B =

[] | []
---------
[] | B.R

B.R =
[1] | [2*s] | [3*s_dum]

[s^2] | [s^2-s*s_dum] | [0.75*s^2-0.75*s]

Note here that, in addition to specifying the spatial domain [0, 1] of the variables using the
field B.I, we also have to specify the actual variables s (s) and θ (s_dum) that appear in the
parameters, using the fields B.var1 and B.var2. Here var1 should correspond to the primary
spatial variable, i.e. the variable s on which the function u(s) :=

(
Bv
)
(s) will actually depend,

and B.var2 should correspond to the dummy variable, i.e. the variable θ which is used solely
for integration.

Warning

By default, dummy variables in PIETOOLS are always assigned the same name as the
primary variable, but with _dum added (e.g. s and s_dum). If users declare their own
PI operators, they are highly recommended to use the same convention when setting their
primary spatial variables and dummy variables, to avoid unintended errors when performing
e.g. analysis and simulation.
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3.1.2 Declaring 4-PI Operators
In addition to 3-PI operators, 4-PI operators can also be represented using the opvar structure.
Here, for a given matrix P , given functions Q1, Q2, and 3-PI parameters R = {R0, R1, R2}, we
define the associated 4-PI operator P

[
P Q1
Q2 R

]
:
[

Rn0
L

n1
2 [a,b]

]
→
[

Rm0
L

m1
2 [a,b]

]
(
P
[

P Q1
Q2 R

]
v
)

(s) =
[

Pv0 +
∫ b

a Q1(s)v1(s)ds

Q2(s)v0 +
(
P [R]v1

)
(s)

]
, s ∈ [a, b],

for v = [ v0
v1 ] ∈

[
Rn0

L
n1
2 [a,b]

]
. To represent operators of this form, we use the same opvar structure

as before, only now also specifying values of the fields P, Q1 and Q2. For example, suppose we
wish to declare a 4-PI operator C :

[
R2

L2[0,3]

]
→
[

R
L2

2[0,3]

]
defined as

(
Cx
)
(s) =


P︷ ︸︸ ︷

[ −1 2 ] x0 +
∫ 3

0

Q1︷ ︸︸ ︷
(3− s2) x1(s)ds

[ 0 −s
s 0 ]︸ ︷︷ ︸
Q2

v0 +
[

1
s3

]
︸ ︷︷ ︸

R0

v1(s) +
∫ s

0

[
s−θ

θ

]
︸ ︷︷ ︸

R1

v1(θ)dθ +
∫ 3

s [ s
θ−s ]︸ ︷︷ ︸
R2

v1(θ)dθ,

, s ∈ [0, 3].

for v = [ v0
v1 ] ∈

[
R2

L1
2[0,3]

]
. To declare this operator, we first construct the polynomial functions

defining the parameters P through R2, using pvar objects s and tt to represent s and θ:
>> pvar s tt
>> P = [-1,2];
>> Q1 = (3-s^2);
>> Q2 = [0,-s; s,0];
>> R0 = [1; s^3]; R1 = [s-tt; tt]; R2 = [s; tt-s];

Having defined the desired parameters, we can then define the operator C as
>> opvar C;
>> C.I = [0,3];
>> C.var1 = s; C.var2 = tt;
>> C.P = P;
>> C.Q1 = Q1;
>> C.Q2 = Q2;
>> C.R.R0 = R0; C.R.R1 = R1; C.R.R2 = R2
C =

[-1,2] | [-s^2+3]
------------------
[0,-s] | C.R
[s,0] |

C.R =
[1] | [s-tt] | [s]

[s^3] | [tt] | [-s+tt]

using the field R to specify the 3-PI sub-component, and using the fields P, Q1 and Q2 to set the
remaining parameters.
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3.2 Declaring PI Operators in 2D
In addition to PI operators in 1D, PI operators in 2D can also be represented in PIETOOLS,
using the opvar2d data structure. Here, similarly to how we distinguish 3-PI operators and 4-PI
operators for 1D function spaces, we will distinguish 2 classes of 2D operators. In particular,
we distinguish the standard 9-PI operators, which act on just functions v ∈ L2

[
[a, b] × [c, d]

]
,

and the more general 2D PI operator, acting on coupled functions
[ v0

vx
vy
v2

]
∈

 Rn0
Lnx

2 [a,b]
L

ny
2 [c,d]

L
n2
2 [[a,b]×[c,d]

.

3.2.1 Declaring 9-PI Operators

For given parameters N =
[

N00 N01 N02
N10 N11 N12
N20 N21 N22

]
, the associated 9-PI operator P [N ] : Ln

2

[
[a, b]×[c, d]

]
→

Lm
2

[
[a, b]× [c, d]

]
is given by

(P[N ]v) (x, y) = N00(x, y)v(x, y) +
∫ y

c
N01(x, y, ν)v(x, ν)dν +

∫ d

y
N02(x, y, ν)v(x, ν)dν

+
∫ x

a
N20(x, y, θ)v(θ, y)dθ +

∫ x

a

∫ y

c
N11(x, y, θ, ν)v(θ, ν)dνdθ +

∫ x

a

∫ d

y
N12(x, y, θ, ν)v(θ, ν)dνdθ

+
∫ b

x
N20(x, y, θ)v(θ, y)dθ +

∫ b

x

∫ y

c
N21(x, y, θ, ν)v(θ, ν)dνdθ +

∫ b

x

∫ d

y
N22(x, y, θ, ν)v(θ, ν)dνdθ,

for any v ∈ L2
[
[a, b]× [c, d]

]
. In PIETOOLS 2024, we represent such operators using opvar2d

class objects, which are declared in a similar manner to opvar objects. For example, to delcare
a simple operator D : L2

2

[
[0, 1]× [1, 2]

]
→ L2

2

[
[0, 1]× [1, 2]

]
defined as

[
Dv

]
(s1, s2) =

∫ s1

0

∫ 2

s2

[
s2

1 s1s2
s1s2 s2

2

]
︸ ︷︷ ︸

N12

v(θ1, θ2)dθ2dθ1, (s1, s2) ∈ [0, 1]× [1, 2],

we first declare the parameter N12 defining this operator by representing s1 and s2 by pvar
objects s1 and s2

>> pvar s1 s2
>> N12 = [s1^2, s1*s2; s1*s2, s2^2];

Then, we initialize an empty opvar2d object D to represent D, and assign the variables (s1, s2)
and their domain [0, 1]× [1, 2] to this operator as

>> opvar2d D;
>> D.var1 = [s1;s2];
>> D.I = [0,1; 1,2];

Note here that, in opvar2d objects, var1 is a column vector listing each of the spatial variables
(s1, s2) on which the result u(s1, s2) =

(
Dv

)
(s1, s2) depends. Accordingly, the field I in an

opvar2d object also has two rows, with each row specifying the interval on which the variable in
the associated row of var1 exists. Having initialized the operator, we then assign the parameter
N12 to the appropriate field. Here, the parameters defining a 9-PI operator are stored in the
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3× 3 cell array D.R22, with R22 referring to the fact that these parameters map 2D functions
to 2D functions. Within this array, element {i,j} for i, j ∈ {1, 2, 3} corresponds to parameter
Ni−1,j−1 in the operator, and so we can specify parameter N12 using element {2,3}:

>> D.R22{2,3} = N12
D =

[] | [] | [] | []
--------------------------
[] | D.Rxx | [] | D.Rx2
--------------------------
[] | [] | D.Ryy | D.Ry2
--------------------------
[] | D.R2x | D.R2y | D.R22

D.Rxx =
[] | [] | []

D.Rx2 =
[] | [] | []

D.Ryy =
[] | [] | []

D.Ry2 =
[] | [] | []

D.R2x =
[] | [] | []

D.R2y =
[] | [] | []

D.R22 =
[0,0] | [0,0] | [0,0]
[0,0] | [0,0] | [0,0]
----------------------------
[0,0] | [0,0] | [s1^2,s1*s2]
[0,0] | [0,0] | [s1*s2,s2^2]
----------------------------
[0,0] | [0,0] | [0,0]
[0,0] | [0,0] | [0,0]

We note that, in the resulting structure, there are a lot of empty parameters, such as D.Rxx. As
we will discuss in the next subsection, these parameters correspond to maps to and from other
functions spaces, just like the parameters P and Qi in the opvar structure. Since the operator
D maps only functions L2

2

[
[0, 1]× [1, 2]

]
→ L2

2

[
[0, 1]× [1, 2]

]
, all parameters mapping different

function spaces are empty for the object D.
Suppose now we want to declare a 9-PI operator E : L2

[
[0, 1]× [−1, 1]

]
→ L2

[
[0, 1]× [−1, 1]

]
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defined by

(
Ev
)
(s1, s2) =

N00︷ ︸︸ ︷
x2y2 v(s1, s2) +

∫ s2

−1

N01︷ ︸︸ ︷
s1(s2 − θ2) v(s1, θ2)dθ2

+
∫ 1

s1
(s1 − θ1)s2︸ ︷︷ ︸

N20

v(θ1, s2)dθ1 +
∫ 1

s1

∫ s2

−1
(s1 − θ1)(s2 − θ2)︸ ︷︷ ︸

N21

v(θ1, θ2)dθ2dθ1

As before, we first set the values of the parameters Nij, using s1, s2, th1 and th2 to represent
s1, s2, θ1 and θ2 respectively:

>> pvar s1 s2 th1 th2
>> N00 = s1^2 * s2^2; N01 = s1*(s2-th2);
>> N20 = (s1-th1)*s2; N21 = (s1-th1)*(s2-th2);

Next, we initialize an opvar2d object E with the appropriate variables and domain as
>> opvar2d E;
>> E.var1 = [s1;s2]; E.var2 = [th1; th2];
>> E.I = [0,1; -1,1];

where in this case we set both the primary variables, using var1, and the dummy variables,
using var2. Note here that the domains of the first and second dummy variables are the same
as those of the first and second primary variables, and are defined in the first and second row
of I respectively. Finally, we assign the parameters Nij to the appropriate elements of R22

>> E.R22{1,1} = N00; E.R22{1,2} = N01;
>> E.R22{3,1} = N20; E.R22{3,2} = N21
E =

[] | [] | [] | []
--------------------------
[] | E.Rxx | [] | E.Rx2
--------------------------
[] | [] | E.Ryy | E.Ry2
--------------------------
[] | E.R2x | E.R2y | E.R22

E.R22 =

[s1^2*s2^2] | [s1*s2-s1*th2] | [0]
----------------------------------------------------

[0] | [0] | [0]
----------------------------------------------------
[s1*s2-s2*th1] | [s1*s2-s1*th2-s2*th1+th1*th2] | [0]

so that E represents the desired operator.
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3.2.2 Declaring General 2D PI Operators
The most general PI operators that can be represented in PIETOOLS 2024 are those mapping

Rn0
Lnx

2 [a,b]
L

ny
2 [c,d]

L
n2
2

[
[a,b]×[c,d]

]
→


Rm0

Lmx
2 [a,b]

L
my
2 [c,d]

L
m2
2

[
[a,b]×[c,d]

]
, defined by parameters R =

 R00 R0x R0y R02
Rx0 Rxx Rxy Rx2
Ry0 Ryx Ryy Ry2
R20 R2x R2y R22

 as

(
P[R]x

)
(s) =


R00v0 +

∫ b
a R0x(x)vx(x)dx +

∫ d
c R0y(y)vy(y)dy +

∫ b
a

∫ d
c R02(x, y)v2(x, y)dydx

Rx0(x)v0 +
(
P[Rxx]vx

)
(x) +

∫ d
c Rxy(x, y)vy(y)dy +

∫ d
c

(
P[Rx2]v2

)
(x, y)dy

Ry0(y)v0 +
∫ b

a Ryx(x, y)vx(x)dx +
(
P[Ryy]vy

)
(y) +

∫ b
a

(
P[Ry2]v2

)
(x, y)dx

R20(x, y)v0 +
(
P[R2x]vx

)
(x, y) +

(
P[R2y]vy

)
(x, y) +

(
P[R22]v2

)
(x, y)



for v =
[ v0

vx
vy
v2

]
∈


Rn0

Lnx
2 [a,b]

L
ny
2 [c,d]

L
n2
2

[
[a,b]×[c,d]

]
, where P [Rxx], P [Ryy], P [Rx2], P [Ry2], P [R2x] and P [R2y]

are 3-PI operators, and where P [R22] is a 9-PI operator. These types of PI operators are also
represented using the opvar2d class, specifying each of the parameters Rij using the associated

fields Rij. For example, suppose we want to implement a PI operator F :
 R

L2[0,2]

L2

[
[0,2]×[2,3]

]  →[
L2

2[0,2]

L2

[
[0,2]×[2,3]

] ], defined as

(
Fv

)
(x, y) =

[ Rx0︷︸︸︷
[ 1

x ] v0 +
R0

xx︷︸︸︷
[ x

x2 ] v1(x) +
∫ 2

x

R2
xx︷ ︸︸ ︷[
1

(θ−x)

]
v1(θ)dθ +

∫ 3
2
∫ x

0

R1
x2︷ ︸︸ ︷[
y

y2(x−θ)

]
v2(θ, y)dy

y2︸︷︷︸
R0

2x

v1(x) +
∫ x

0 y︸︷︷︸
R1

2x

v1(θ)dθ +
∫ x

0
∫ y

2 θν︸︷︷︸
R11

22

v2(θ, ν)dνdθ

]
,

for v =
[ v0

v1
v2

]
∈

 R
L2[0,2]

L2

[
[0,2]×[2,3]

] . To declare this operator, we define the parameters as before as

>> pvar x y theta nu
>> Rx0 = [1; x];
>> Rxx_0 = [x; x^2]; Rxx_2 = [1; theta-x];
>> Rx2_1 = [y; y^2 * (x-theta)];
>> R2x_0 = y^2; R2x_1 = y;
>> R22_11 = theta*nu;

and then declare the opvar2d object as
>> opvar2d F;
>> F.var1 = [x; y]; F.var2 = [theta; nu];
>> F.I = [0,2; 2,3];
>> F.Rx0 = Rx0;
>> F.Rxx{1} = Rxx_0; F.Rxx{3} = Rxx_2;
>> F.Rx2{2} = Rx2_1;
>> F.R2x{1} = R2x_0; F.R2x{2} = R2x_1;
>> F.R22{2,2} = R22_11;

yielding a structure
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>> F
F =

[] | [] | [] | []
---------------------------
[1] | F.Rxx | [] | F.Rx2
[x] | | |
---------------------------
[] | [] | F.Ryy | F.Ry2

---------------------------
[0] | B.R2x | F.R2y | F.R22

F.Rxx =

[x] | [0] | [1]
[x^2] | [0] | [theta-x]

F.Rx2 =

[0] | [y] | [0]
[0] | [-theta*y^2+x*y^2] | [0]

F.Ryy =

[] | [] | []

F.Ry2 =

[] | [] | []

F.R2x =

[y^2] | [y] | [0]

F.R2y =

[] | [] | []

F.R22 =

[0] | [0] | [0]
----------------------
[0] | [nu*theta] | [0]
----------------------
[0] | [0] | [0]

Representing the operator F .
In the following subsection, we provide an overview of how the opvar and opvar2d data

structures are defined.
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3.3 Overview of opvar and opvar2d Structure

3.3.1 opvar class

Let B :
[

Rn0

Ln1
2 [a, b]

]
→
[

Rm0

Lm1
2 [a, b]

]
be a 4-PI operator of the form

(
Bx
)
(s) =

[
Px0 +

∫ b
a Q1(s)x1(s)ds

Q2(s)x0 + R0(s)x1(s) +
∫ s

a R1(s, θ)x1(θ)dθ +
∫ b

s R2(s, θ)x1(θ)dθ

]
(3.3)

for x =
[
x0
x1

]
∈
[

Rn0

Ln1
2 [a, b]

]
. Then, we can represent this operator as an opvar object B with

fields as defined in Table 3.1.

B.dim = [m0,n0;
m1,n1]

2 × 2 array of type double specifying the dimensions of the function
spaces

[
Rm0

L
m1
2 [a,b]

]
and

[
Rn0

L
n1
2 [a,b]

]
the operator maps to and from;

B.var1 = s1 1× 1 pvar (polynomial class) object specifying the spatial variable s;
B.var2 = s1_dum 1× 1 pvar (polynomial class) object specifying the dummy variable θ;
B.I = [a,b] 1 × 2 array of type double, specifying the interval [a, b] on which the

spatial variables s and θ exist;
B.P = P m0 × n0 array of type double or polynomial defining the matrix P ;
B.Q1 = Q1 m0× n1 array of type double or polynomial defining the function Q1(s);
B.Q2 = Q2 m1× n0 array of type double or polynomial defining the function Q2(s);
B.R.R0 = R0 m1× n1 array of type double or polynomial defining the function R0(s);
B.R.R1 = R1 m1×n1 array of type double or polynomial defining the function R1(s, θ);
B.R.R2 = R2 m1×n1 array of type double or polynomial defining the function R2(s, θ);

Table 3.1: Fields in an opvar object B, defining a general 4-PI operator as in Equation (3.3)

3.3.2 opvar2d class

Let D :


Rn0

Lnx
2 [a,b]

L
ny
2 [c,d]

L
n2
2

[
[a,b]×[c,d]

]
→


Rm0

Lmx
2 [a,b]

L
my
2 [c,d]

L
m2
2

[
[a,b]×[c,d]

]
 be a PI operator of the form

(
Dx
)
(s) =


R00v0 +

∫ b
a R0x(x)vx(x)dx +

∫ d
c R0y(y)vy(y)dy +

∫ b
a

∫ d
c R02(x, y)v2(x, y)dydx

Rx0(x)v0 +
(
P[Rxx]vx

)
(x) +

∫ d
c Rxy(x, y)vy(y)dy +

∫ d
c

(
P[Rx2]v2

)
(x, y)dy

Ry0(y)v0 +
∫ b

a Ryx(x, y)vx(x)dx +
(
P[Ryy]vy

)
(y) +

∫ b
a

(
P[Ry2]v2

)
(x, y)dx

R20(x, y)v0 +
(
P[R2x]vx

)
(x, y) +

(
P[R2y]vy

)
(x, y) +

(
P[R22]v2

)
(x, y)


(3.4)

for v =
[ v0

vx
vy
v2

]
∈


Rn0

Lnx
2 [a,b]

L
ny
2 [c,d]

L
n2
2

[
[a,b]×[c,d]

]
, where P [Rxx], P [Ryy], P [Rx2], P [Ry2], P [R2x] and P [R2y] are

3-PI operators, and where P [R22] is a 9-PI operator. We can represent the operator D as an
opvar2d object D with fields as defined in Table 3.2.
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D.dim = [m0,n0;
mx,nx;
my,ny;
m2,n2;]

4 × 2 array of type double specifying the dimensions of the function

spaces


Rm0

Lmx
2 [a,b]

L
my
2 [c,d]

L
m2
2

[
[a,b]×[c,d]

]
 and


Rn0

Lnx
2 [a,b]

L
ny
2 [c,d]

L
n2
2

[
[a,b]×[c,d]

]
 the operator maps to and

from;
D.var1 = [s1; s2] 2×1 pvar (polynomial class) object specifying the spatial variables (x, y);
D.var2 = [s1_dum;

s2_dum]
2 × 1 pvar (polynomial class) object specifying the dummy variables
(θ, ν);

D.I = [a,b;
c,d]

2× 2 array of type double, specifying the domain [a, b]× [c, d] on which
the spatial variables (x, θ) and (y, ν) exist;

D.R00 = R00 m0 × n0 array of type double or polynomial defining the matrix R00;
D.R0x = R0x m0×nx array of type double or polynomial defining the function R0x(x);
D.R0y = R0y m0×ny array of type double or polynomial defining the function R0y(y);
D.R02 = R02 m0 × n2 array of type double or polynomial defining the function

R02(x, y);
D.Rx0 = Rx0 mx×n0 array of type double or polynomial defining the function Rx0(x);
D.Rxx = Rxx 3× 1 cell array specifying the 3-PI parameters Rxx;
D.Rxy = Rxy mx × ny array of type double or polynomial defining the function

Rxy(x, y);
D.Rx2 = Rx2 3× 1 cell array specifying the 3-PI parameters Rx2;
D.Ry0 = Ry0 my×n0 array of type double or polynomial defining the function Ry0(y);
D.Ryx = Ryx my × nx array of type double or polynomial defining the function

Ryx(x, y);
D.Ryy = Ryy 1× 3 cell array specifying the 3-PI parameters Ryy;
D.Ry2 = Ry2 1× 3 cell array specifying the 3-PI parameters Ry2;
D.R20 = R20 m2 × n0 array of type double or polynomial defining the function

R20(x, y);
D.R2x = R2x 3× 1 cell array specifying the 3-PI parameters R2x;
D.R2y = R2y 1× 3 cell array specifying the 3-PI parameters R2y;
D.R22 = R22 3× 3 cell array specifying the 9-PI parameters R22;

Table 3.2: Fields in an opvar2d object D, defining a general PI operator in 2D as in Equa-
tion (3.4)
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Part I

PIETOOLS Workflow for ODE-PDE
and DDE Models
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Chapter 4

Setup and Representation of PDEs and
DDEs

Using PIETOOLS, a wide variety of linear differential equations and time-delay systems can be
simulated and analysed by representing them as Partial Integral Equations (PIEs). To facilitate
this, PIETOOLS includes several input formats to declare Partial Differential Equations (PDEs)
and Delay-Differential Equations (DDEs), which can then be easily converted to equivalent PIEs
using the PIETOOLS function convert, as we show in Chapter 5. In this chapter, we present
two of these input formats, discussing in detail how linear PDE and DDE systems can be
easily implemented using the Command Line Parser for PDEs and Batch-Based input format
for DDEs. We refer to Chapter 8 for information on two alternative input formats for PDEs,
and we refer to Chapter 9 for two alternative input formats for time-delay systems, namely the
Neutral Delay System (NDS) and Delay Difference Equation (DDF) formats.

4.1 Command Line Parser for Coupled ODE-PDEs
In PIETOOLS 2024, the simplest and most intuitive format for declaring coupled ODE-PDE
systems is the Command Line Parser format. The Command Line Parser format represents
ODE-PDE systems in MATLAB as pde_struct objects, for which a variety of operations
(addition, multiplication, substitution) have been defined to allow for easy declaration of a
broad class of systems. In this section, we provide an overview on how to declare such systems
as pde_struct objects, referring to Section 8.2 for more background.

Note

In PIETOOLS 2022, a Command Line Parser format for declaring 1D ODE-PDE systems
was introduced, generating dependent variables using the state function and representing
the system as a sys class object. These functions are still available in PIETOOLS 2024, but
do not currently support declaration of 2D PDE systems, and are therefore not discussed
here. See Section 8.3 instead.
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4.1.1 Defining a coupled ODE-PDE system
For the purpose of demonstration, consider the following coupled ODE-PDE system in control
theory framework

ẋ(t) = −5x(t) +
∫ 1

0
∂sx(t, s)ds + u(t),

ẋ(t, s) = 9x(t, s) + ∂2
s x(t, s) + sw(t),

x(t, 0) = 0, ∂sx(t, 1) + x(t) = 2w(t),

z(t) =
[∫ 1

0 x(t, s)ds
u(t)

]
,

y(t) = x(t, 0).

The following code shows how this system can be declared using the Command Line Parser
format, and subsequently converted to a PIE.

Code Block 1

>> pvar t s;
>> x = pde_var(); X = pde_var(s,[0,1]);
>> w = pde_var(’in’); z = pde_var(’out’,2);
>> u = pde_var(’control’);
>> y = pde_var(’sense’);
>> out_eq = z==[int(X,s,[0,1]); u];
>> eqns = [diff(x,t)==-5*x+int(diff(X,s,1),s,[0,1])+u;

diff(X,t)==9*X+diff(X,s,2)+s*w;
subs(X,s,0)==0;
subs(diff(X,s),s,1)==-x+2*w;
y==subs(X,s,0)];

>> odepde = [eqns; out_eq];
>> odepde = initialize(odepde)
>> PIE = convert(odepde,’pie’);

We will break down each step used in the code above and explain the action performed by
each line of the code. Specifying any PDE system using the ‘Command Line Parser’ format
follows the same three simple steps listed below:

1. Define independent variables (s, t)

2. Define dependent variables (x, x, z, y, w and u)

3. Define the equations

4.1.1a Define independent variables

To define equations symbolically, first, the independent variables (spatial variable and time
variable) and dependent variables (states, inputs, and outputs) have to be declared. For exam-
ple, if the PDE is defined in terms of spatial variable s and temporal variable t, we would start
by defining these variables as polynomial objects, using the function pvar as shown below:
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» pvar t s; % independent variables are polynomial objects

Note that t will always be interpreted as the temporal variable in PIETOOLS.
Although we highly recommend always using s or s1 as spatial variable (as this is the default
used by PIETOOLS), the spatial variable can feasibly be given any name, so long as it is
properly assigned to e.g. a PDE state as we show next.

4.1.1b Define dependent variables

After defining independent variables, we need to define dependent variables such as ODE/PDE
states, inputs, and outputs (see aslo Chapter 2). Dependent variables are defined as pde_struct
objects, and can be declared using the function pde_var. For example:

>> x = pde_var(); X = pde_var(s,[0,1]);
>> w = pde_var(’in’); z = pde_var(’out’,2);
>> u = pde_var(’control’);
>> y = pde_var(’sense’);

The above code, when executed in MATLAB, creates six symbolic variables, namely x, X,
w, u, z, y. Here, the variables x and X are not explicitly assigned a particular type, and
will therefore default to be interpreted as state variables. Passing the polynomial variable s as
well as the interval [0,1] in declaring X, the variable is interpreted to be a PDE state variable
x(t, s) with spatial domain s ∈ [0, 1]. For the remaining variables, a type is explicitly specified,
declaring w to be an exogenous input, z to be a regulated output, u to be a controlled input,
and y to be a sensed output. In addition, the output z is declared to be vector-valued, with
length 2, which will be crucial when declaring the equation

z(t) =
[∫ 1

0 x(t, s)ds
u(t)

]
.

4.1.1c Define the equations

Having declared the dependent variables that appear in the PDE, we can now use standard
algebraic operations such as addition (+) and multiplication (*), as well as operations such as
integration (int), differentiation (diff), and substitution (subs) to declare our system. For
example, to declare the equation for z(t), we call

>> out_eq = z==[int(X,s,[0,1]); u];

We can also declare multiple equations together in a column vector, e.g. specifying the remain-
ing 5 equations and boundary conditions listed below

ẋ(t) = −5x(t) +
∫ 1

0
∂sx(t, s)ds + u(t)

ẋ(t, s) = 9x(t, s) + ∂2
s x(t, s) + sw(t), x(t, 0) = 0, ∂sx(t, 1) + x(t) = 2w(t)

y(t) = x(t, 0).

by calling
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>> eqns = [diff(x,t)==-5*x+int(diff(X,s,1),s,[0,1])+u;
diff(X,t)==9*X+diff(X,s,2)+s*w;
subs(X,s,0)==0;
subs(diff(X,s),s,1)==-x+2*w;
y==subs(X,s,0)];

To combine these equations into a single structure, we simply concatenate, and initialize, as
>> odepde = [eqns; out_eq];
>> odepde = initialize(odepde);

Here, the initialize function cleans up the PDE structure and checks for errors in the dec-
laration, providing an overview of the variables it encounters as

Encountered 2 state components:
x1(t), of size 1, finite-dimensional;
x2(t,s), of size 1, differentiable up to order (2) in variables (s);

Encountered 1 actuator input:
u(t), of size 1;

Encountered 1 exogenous input:
w(t), of size 1;

Encountered 1 observed output:
y(t), of size 1;

Encountered 1 regulated output:
z(t), of size 2;

Encountered 2 boundary conditions:
F1(t) = 0, of size 1;
F2(t) = 0, of size 1;

After initialization, the system can be converted to an equivalent PIE as
>> PIE = convert(odepde)
PIE =

pie_struct with properties:

dim: 1;
vars: [1×2 polynomial];
dom: [1×2 double];

T: [2×2 opvar]; Tw: [2×1 opvar]; Tu: [2×1 opvar];
A: [2×2 opvar]; B1: [2×1 opvar]; B2: [2×1 opvar];

C1: [2×2 opvar]; D11: [2×1 opvar]; D12: [2×1 opvar];
C2: [1×2 opvar]; D21: [1×1 opvar]; D22: [1×1 opvar];

The output is a pie_struct object, storing opvar objects representing the PI operators defining
the PIE representation of the input system – see Chapter 5 for more details. Once the PIE
structure is obtained, we can proceed to perform analysis, control, and simulation, as discussed
in detail in Chapters 6 and 7.
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Note on declaring equations

The = symbol is not used while defining equations. Instead == is used, since MATLAB
uses = as a protected symbol for assignment operation. Thus, any symbolic expression that
needs to be added takes the form expr==0 or exprA==exprB.

Note on PDE display

When displaying PDE variables and equations in the MATLAB Command Window, one
must keep the following in mind:

• PDE variables are always represented by a letter x for states, y for observed outputs,
z for regulated outputs, u for controlled inputs, and w for exogenous inputs;

• Each variable is displayed with an integer subscript corresponding to the unique ID as-
signed to this variable. This ID is crucial for PIETOOLS to distinguish different PDE
variables, but may become cumbersomely large when declaring multiple systems. To
avoid this issue, the ID counter can be reset by calling clear stateNameGenerator;

• When converting to a PIE, equations are always re-ordered to start with the ODE
states, followed by the PDE (PIE) states, observed outputs, regulated outputs, and
finally the boundary conditions. As such, the order of the different variables and
equations after initialization or conversion may not be the same as initially declared.

4.1.2 Declaring 2D PDEs
The Command Line Input format can also be used to declare PDE systems involving multiple
spatial variables. To illustrate, consider the following system of a coupled ODE, 1D PDE, and
2D PDE, with a distributed disturbance w and output y:

d

dt
x1(t) = −x1(t) + x4(t, b, d) + u1(t), t ≥ 0,

∂tx2(t, s1) = ∂2
s1x2(t, s1) + w(t, s1), s1 ∈ [a, b],

∂tx3(t, s2) = ∂2
s2x3(t, s2) + s2u2(t), s2 ∈ [c, d],

∂tx4(t, s1, s2) = ∂2
s1x4(t, s1, s2) + ∂2

s2x4(t, s1, s2) + 4x4(t, s1, s2),

y(t, s2) =
[

x3(t, s2)
x4(t, b, s2)

]
,

z(t) =
∫ b

a

∫ d

c
x4(t, s1, s2)ds2ds1,

x2(t, a) = x1(t), ∂s1x2(t, b) = 0,

x3(t, c) = x1(t), x3(t, d) = 0,

x4(t, s1, c) = x2(t, s1), x4(t, s1, d) = 0,

x4(t, a, s2) = x3(t, s2), ∂s1x4(t, b, s2) = 0.

In this case, we have an ODE state x1(t) ∈ R, two 1D PDE states x2(t) ∈ L2[a, b] and
x3(t) ∈ L2[c, d], and a 2D PDE state x4(t) ∈ L2[[a, b] × [c, d]]. In addition, we have two
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controlled inputs u1(t), u2(t) ∈ R and a regulated output z(t) ∈ R, as well as a distributed
disturbance w(t) ∈ L2[a, b], and vector-valued sensed output y(t) ∈ L2

2[c, d] at all times t ≥ 0.
We declare this system for [a, b] = [0, 1] and [c, d] = [−1, 1] as follows.

Code Block 2

>> clear stateNameGenerator
>> pvar t s1 s2
>> a = 0; b = 1; c = -1; d = 1;
>> x1 = pde_var();
>> x2 = pde_var(s1,[a,b]);
>> x3 = pde_var(s2,[c,d]);
>> x4 = pde_var([s1;s2],[a,b;c,d]);
>> w = pde_var(’in’,s1,[a,b]);
>> z = pde_var(’out’);
>> u1 = pde_var(’control’); u2 = pde_var(’control’);
>> y = pde_var(’sense’,2,s2,[c,d]);

>> odepde = [diff(x1,t)==-x1+subs(x4,[s1;s2],[b;d])+u1;
diff(x2,t)==diff(x2,s1,2)+w;
diff(x3,t)==diff(x3,s2,2)+s2*u2;
diff(x4,t)==diff(x4,s1,2)+diff(x4,s2,2)+4*x4;
y==[x3;subs(x4,s1,b)];
z==int(x3,[s1;s2],[a,b;c,d]);
subs(x2,s1,a)==x1; subs(diff(x2,s1),s1,b)==0;
subs(x3,s2,c)==x1; subs(x3,s2,d)==0;
subs(x4,s2,c)==x2; subs(x4,s2,d)==0;
subs(x4,s1,a)==x3; subs(diff(x4,s1),s1,b)==0];

>> odepde = initialize(odepde);
>> PIE = convert(odepde);

Note here that the two spatial variables on which x4 depends are declared as a column array
[s1;s2], with the corresponding interval on which each variable exists being specified in the
respective rows of the second argument [a,b;c,d]. Furthermore, since the disturbance w and
output y are distributed as well, the variables on which they depend (as well as the domain
of those variables) must be passed in the call to pde_var when declaring these objects. Since,
in addition, the output y is vector-valued, the size 2 of the output must be specified as well,
preceding the declaration of the spatial variable s2.

Note on declaring ND PDEs

Although pde_struct objects can be used to represents PDEs in arbitrary numbers of
spatial variables, PIETOOLS does not currently offer tools for analysis or simulation of
PDEs in three or more variables. Such features will be added in a later release.

4.1.3 More examples of command line parser format
In this subsection, we provide a few more examples to demonstrate the typical use of the
command line parser. More specifically, we focus on examples involving inputs, outputs, delays,
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vector-valued PDEs, etc., to demonstrate the capabilities of command line parser.

4.1.3a Example: Transport equation

Consider the Transport equation which is modeled as a PDE with 1st derivatives in time and
space given by

∂tx(t, s) = 5∂sx(t, s) + u(t), s ∈ [0, 2]
y(t) = x(t, 2),

x(t, 0) = 0.

Here, we use a control input in the domain and an observer at the right boundary with an
intention to design an observer based controller. This system can be defined using the Command
Line Input format as shown below.

Code Block 3

>> clear stateNameGenerator
>> pvar t s;
>> pde_var state X control u sense y;
>> X.vars = s; X.dom = [0,2];
>> odepde = [diff(X,t)==5*diff(X,s)+u;

subs(X,s,0)==0;
y==subs(X,s,2)];

>> odepde = initialize(odepde);
>> PIE = convert(odepde,’pie’);

In this case, we declare the PDE variables in a manner similar to how we declare the independent
variables, using the arguments state, control, and sense to declare the subsequent variables
to be state, controlled inputs, and sensed output variables. In doing so, the variable X will
be initially interpreted as an ODE state, which we resolve by manually setting the variables
X.vars and domain X.dom.

4.1.3b Example: PDE with delay terms

The Command Line Input format can also be used to declare systems with temporal delay. To
illustrate, consider a reaction-diffusion equation coupled to an ODE through a channel that is
delayed by an amount τ = 2. Specifically, we consider the following equations

ẋ(t) = −5x(t),
∂tx(t, s) = 10x(t, s) + ∂2

s x(t, s) + x(t− 2),
x(t, 0) = 0 = x(t, 1).

This system can be declared in PIETOOLS and converted to a PIE using the following code.

35



Code Block 4

>> clear stateNameGenerator
>> pvar s t
>> x = pde_var();
>> X = pde_var(s,[0,1]);
>> odepde = [diff(x,t)==-5*x;

diff(X,t)==diff(X,s,2)+subs(x,t,t-2);
subs(X,s,0)==0;
subs(X,s,1)==0];

>> odepde = initialize(odepde);
>> PIE = convert(odepde,’pie’);

Running this code, and in particular the last line PIE=convert(odepde), PIETOOLS will
display several warnings as

Added 1 state components:
x3(t,ntau2) := x1(t-ntau2);

Variable s has been merged with variable ntau_2.
All spatial variables have been rescaled to exist on the interval [-1,1].

The state components have been re-indexed as:
x1(t) --> x1(t)
x3(t,s1) --> x2(t,s1)
x2(t,s1) --> x3(t,s1)

This is because the PIE representation does not support temporal delays in any of the variables.
Instead, an additional state variable v(t, r) = x1(t − r) is introduced to represent the delayed
state. This state variable will be governed by a 1D transport equation, satisfying

∂tv(t, r) = −∂rv(t, r), r ∈ [0, 2], v(t, 2) = x(t). (4.1)

However, simply adding this equation to our reaction-diffusion PDE would yield a 2D system:
existing on (s, r) ∈ [0, 1] × [0, 2]. To reduce complexity, therefore, PIETOOLS automatically
rescales the variables s and r to both exist on the spatial domain [−1, 1], rescaling the PDE
variables and equations accordingly to represent the system as a 1D ODE-PDE system

ẋ1(t) = −5x1(t),
∂tx2(t, s) = ∂sx2(t, s), s ∈ [−1, 1],
∂tx3(t, s) = 10x3(t, s) + 4∂2

s x3(t, s) + x2(t,−1),
x3(t,−1) = 0 = x3(t, 1) x2(t, 1) = x1(t),

where now x1(t) = x(t), x2(t, s) = v(t, 1−s) = x(t+s−1) and x3(t, s) = x(t, 0.5(1+s)). Conse-
quently, the PIE representation will also involve three state variables, (x1(t), ∂sx2(t), ∂2

s x3(t, s)),
as indicated by the dimensions of e.g. the operator PIE.T
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>> PIE
PIE =

pie_struct with properties:
dim: 1;

vars: [1×2 polynomial];
dom: [1×2 double];

T: [3×3 opvar]; Tw: [3×0 opvar]; Tu: [3×0 opvar];
A: [3×3 opvar]; B1: [3×0 opvar]; B2: [3×0 opvar];

C1: [0×3 opvar]; D11: [0×0 opvar]; D12: [0×0 opvar];
C2: [0×3 opvar]; D21: [0×0 opvar]; D22: [0×0 opvar];

4.1.3c Example: Beam equation

Here we consider the Timoshenko Beam equations which are modeled as a PDE with 2nd-order
derivatives in both space and time. While this system cannot be directly input using the
command line parser format, we can redefine the state variables to convert it to a PDE with
first order temporal derivative as shown below.

ẅ = ∂s(ws − ϕ), ϕ̈ = ϕss + (ws − ϕ)
ϕ(0) = w(0) = 0, ϕs(1) = 0, ws(1)− ϕ(1) = 0.

By choosing x = [ẇ, ws − ϕ, ϕ̇, ϕs], we get

ẋ(t, s) =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

x(t, s) +


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ∂sx(t, s),


1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 1 0 0


[
x(t, 0)
x(t, 1)

]
= 0,

which is a vector-valued transport equation with a reaction term. We define this system using
the Command Line Input format as shown below.

Code Block 5

>> clear stateNameGenerator
>> pvar s t
>> x = pde_var(4,s,[0,1]);
>> A0 = [0,0,0,0;0,0,-1,0;0,1,0,0;0,0,0,0];
>> A1 = [0,1,0,0;1,0,0,0;0,0,0,1;0,0,1,0];
>> B = [1,0,0,0,0,0,0,0;0,0,1,0,0,0,0,0;0,0,0,0,0,0,0,1;0,0,0,0,0,1,0,0];
>> eqns = [diff(x,t)==A0*x+A1*diff(x,s);

B*[subs(x,s,0); subs(x,s,1)]==0];
>> PDE = initialize(eqns);
>> PIE = convert(PDE,’pie’);
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As seen above, the presence of vector-valued states does not change the typical workflow to
define the PDE. As long as the dimensions of the parameters and vectors used in the equations
match, the process and steps remain the same.

4.2 Alternative Input Formats for PDEs
In addition to the command line parser input format, PIETOOLS 2024 offers a graphical user
interface (GUI) for declaring 1D PDEs, that allows users to simultaneously visualize the PDE
that they are specifying. We briefly introduce this input format in Subsection 4.2.1, referring
to Chapter 8 for more details.

4.2.1 A GUI for Declaring PDEs
Aside from the Command Line Input format, the GUI is the easiest way to declare linear 1D
ODE-PDE systems in PIETOOLS, providing a simple, intuitive and interactive visual interface
to directly input the model. The GUI can be opened by running PIETOOLS_PIETOOLS_GUI from
the command line, opening a window like the one displayed in the picture below:

Figure 4.1: Example of empty GUI window.

Then, the desired PDE can be declared following steps 1 through 4, first specifying the state
variables, inputs and outputs, then declaring the different equations term by term, and finally
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adding any boundary conditions. It also allows PDE models to be saved and loaded, so that
e.g. the system

ẋ(t, s) = ∂2
s x(t, s) + sw(t), s ∈ [0, 1]

z(t) =
∫ 1

0
x(t, s)ds,

x(t, 0) = 0, x(t, 1) = 0,

can be retrieved by simply loading the file
PIETOOLS_PDE_Ex_Heat_Eq_with_Distributed_Disturbance_GUI
from the library of PDE examples, returning a window that looks like

Figure 4.2: GUI window after loading the file
PIETOOLS_PDE_Ex_Heat_Eq_with_Distributed_Disturbance_GUI from the library of PDE
examples.

The declared system can be parsed by clicking Get PDE Objects, returning a structure
PDE_GUI in the MATLAB workspace that can be used for further analysis. For more details on
how to use the GUI, we refer to Section 8.1.
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4.3 Batch Input Format for DDEs
The DDE data structure allows the user to declare any of the matrices in the following general
form of delay-differential equation.ẋ(t)

z(t)
y(t)

 =

A0 B1 B2
C1 D11 D12
C2 D21 D22


x(t)
w(t)
u(t)

+
K∑

i=1

Ai B1i B2i

C1i D11i D12i

C2i D21i D22i


x(t− τi)
w(t− τi)
u(t− τi)



+
K∑

i=1

∫ 0

−τi

Adi(s) B1di(s) B2di(s)
C1di(s) D11di(s) D12di(s)
C2di(s) D21di(s) D22di(s)


x(t + s)
w(t + s)
u(t + s)

 ds (4.2)

In this representation, it is understood that

• The present state is x(t).
• The disturbance or exogenous input is w(t). These signals are not typically known or

alterable. They can account for things like unmodelled dynamics, changes in reference,
forcing functions, noise, or perturbations.

• The controlled input is u(t). This is typically the signal which is influenced by an actuator
and hence can be accessed for feedback control.

• The regulated output is z(t). This signal typically includes the parts of the system to
be minimized, including actuator effort and states. These signals need not be measured
using senors.

• The observed or sensed output is y(t). These are the signals which can be measured using
sensors and fed back to an estimator or controller.

Note that this input format extends the possibilities of the command-line parser, which
does offer support for the user to add the terms with distributed delays Adi(s),B1di(s), B2di(s),
C1di(s), D11di(s), D12di(s), C2di(s), D21di(s), and D22di(s). To add any term to the DDE struc-
ture in this Batch input format, simply declare its value. For example, to represent

ẋ(t) = −x(t− 1), z(t) = x(t− 2)

we use
» DDE.tau = [1 2];
» DDE.Ai{1} = -1;
» DDE.C1i{2} = 1;

All terms not declared are assumed to be zero. The exception is that we require the user to
specify the values of the delay in DDE.tau. When you are done adding terms to the DDE struc-
ture, use the function DDE=PIETOOLS_initialize_DDE(DDE), which will check for undeclared
terms and set them all to zero. It also checks to make sure there are no incompatible dimen-
sions in the matrices you declared and will return a warning if it detects such malfeasance. The
complete list of terms and DDE structural elements is listed in Table 4.1.
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ODE Terms:
Eqn. (4.2) DDE. Eqn. (4.2) DDE. Eqn. (4.2) DDE.

A0 A0 B1 B1 B2 B2
C1 C1 D11 D11 D12 D12
C2 C2 D21 D21 D22 D22

Discrete Delay Terms:
Eqn. (4.2) DDE. Eqn. (4.2) DDE. Eqn. (4.2) DDE.

Ai Ai{i} B1i B1i{i} B2i B2i{i}
C1i C1i{i} D11i D11i{i} D12i D12i{i}
C2i C2i{i} D21i D21i{i} D22i D22i{i}

Distributed Delay Terms: May be functions of pvar s
Eqn. (4.2) DDE. Eqn. (4.2) DDE. Eqn. (4.2) DDE.

Adi Adi{i} B1di B1di{i} B2di B2di{i}
C1di C1di{i} D11di D11di{i} D12di D12di{i}
C2di C2di{i} D21di D21di{i} D22di D22di{i}

Table 4.1: Equivalent names of Matlab elements of the DDE structure terms for terms in
Eqn. (4.2). For example, to set term XX to YY, we use DDE.XX=YY. In addition, the delay τi is
specified using the vector element DDE.tau(i) so that if τ1 = 1, τ2 = 2, τ3 = 3, then DDE.tau=[1
2 3].

4.3.1 Initializing a DDE data structure
The user need only add non-zero terms to the DDE structure. All terms which are not added
to the data structure are assumed to be zero. Before conversion to another representation or
data structure, the data structure will be initialized using the command
DDE = initialize_PIETOOLS_DDE(DDE)

This will check for dimension errors in the formulation and set all non-zero parts of the DDE
data structure to zero. Note that, to make the code robust, all PIETOOLS conversion utilities
perform this step internally.

4.4 Alternative Input Formats for TDSs
Although the delay differential equation (DDE) format is perhaps the most intuitive format
for representing time-delay systems (TDS), it is not the only representation of TDS systems,
and not every TDS can be represented in this format. For this reason, PIETOOLS includes
two additional input format for TDSs, namely the Neutral Type System (NDS) representation,
and Differential-Difference Equation (DDF) representation. Here, the structure of a NDS is
identical to that of a DDE except for 6 additional terms:ẋ(t)

z(t)
y(t)

 =

A0 B1 B2
C1 D11 D12
C2 D21 D22


x(t)
w(t)
u(t)

+
K∑

i=1

Ai B1i B2i Ei

C1i D11i D12i E1i

C2i D21i D22i E2i




x(t− τi)
w(t− τi)
u(t− τi)
ẋ(t− τi)
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+
K∑

i=1

∫ 0

−τi

Adi(s) B1di(s) B2di(s) Edi(s)
C1di(s) D11di(s) D12di(s) E1di(s)
C2di(s) D21di(s) D22di(s) E2di(s)




x(t + s)
w(t + s)
u(t + s)
ẋ(t + s)

ds.

These new terms are parameterized by Ei, E1i, and E2i for the discrete delays and by Edi, E1di,
and E2di for the distributed delays, and should be included in a NDS object as, e.g. NDS.E{1}=1.
On the other hand, the DDF representation is more compact but less transparent than the DDE
and NDS representation, taking the form

ẋ(t)
z(t)
y(t)
ri(t)

 =


A0 B1 B2
C1 D11 D12
C2 D21 D22
Cri Br1i Br2i


x(t)
w(t)
u(t)

+


Bv

D1v

D2v

Drvi

 v(t)

v(t) =
K∑

i=1
Cviri(t− τi) +

K∑
i=1

∫ 0

−τi

Cvdi(s)ri(t + s)ds.

In this representation, the output signal from the ODE part is decomposed into sub-components
ri, each of which is delayed by amount τi. Identifying these sub-components is often challenging,
so in most cases it will be preferable to use the NDS or DDE representation instead. How-
ever, the DDF representation is more general than either the DDE or NDS representation, so
PIETOOLS also includes an input format for declaring DDF systems. For more information
on how to declare systems in the DDF or NDS representation, and how to convert between
different representations, we refer to Chapter 9.
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Chapter 5

Conversion of PDEs and DDEs to PIEs
and Closing the Loop

In the previous chapter, we showed how general linear ODE-PDE and DDE systems can be
declared in PIETOOLS. In order to analyze such systems, PIETOOLS represents each of them
in a standardized format, as a Partial Integral Equation (PIE). This format is parameterized
by partial integral, or PI operators, rather than by differential operators, allowing PIEs to be
analysed by solving optimization problems on these PI operators (see Chapter 7).

In this chapter, we show how an equivalent PIE representation of PDE and DDE systems can
be computed in PIETOOLS. In particular, in Section 5.1, we first provide a simple illustration
of what a PIE is. In Sections 5.2 and 5.3, we then show how a PDE and a DDE can be converted
to a PIE, and in Section 5.4, we show how a PDE with inputs and outputs can be converted to
a PIE. To reduce notation, we demonstrate the PDE conversion only for 1D systems, though
we note that the same steps also work for 2D PDEs.

5.1 What is a PIE?
To illustrate the concept of partial integral equations, suppose we have a simple 1D PDE

ẋ(t, s) = 2∂sx(t, s) + 10x(t, s), s ∈ [0, 1], (5.1)
x(t, 0) = 0.

In this system, the PDE state x(t) at any time t ≥ 0 is a function of s, that has to satisfy
the boundary condition (BC) x(t, 0) = 0. Moreover, the state must be at least first-order
differentiable with respect to s, for us to be able to evaluate the derivative ∂sx(t, s). As such, a
more fundamental state would actually be this first-order derivative ∂sx(t) of the state, which
does not need to be differentiable, nor does it need to satisfy any boundary conditions. We
therefore define xf(t, s) := ∂sx(t, s) as the fundamental state associated with this PDE. Using
the fundamental theorem of calculus, we can then express the PDE state in terms of the
fundamental state as

x(t, s) = x(t, 0) +
∫ s

0
∂sx(t, θ)dθ = x(t, 0) +

∫ s

0
xf(t, θ)dθ =

∫ s

0
xf(t, θ)dθ,
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where we invoke the boundary condition x(t, 0) = 0. Substituting this result into the PDE, we
arrive at an equivalent representation of the system as∫ s

0
ẋf(t, θ)dθ = 2xf(t, s) +

∫ s

0
10xf(t, θ)dθ, s ∈ [0, 1], (5.2)

in which the fundamental state xf(t) does not need to satisfy any boundary conditions, nor
does it need to be differentiable with respect to s. We refer to this representation as the Partial
Integral Equation, or PIE representation of the system, involving only partial integrals, rather
than partial derivatives with respect to s. It can be shown that for any well-posed linear PDE –
meaning that the solution to the PDE is uniquely defined by the dynamics and the BCs – there
exists an equivalent PIE representation. In PIETOOLS, this equivalent representation can be
obtained by simply calling convert for the desired PDE structure PDE, returning a structure
PIE that corresponds to the equivalent PIE representation.

5.2 Converting a PDE to a PIE
Suppose that we have a PDE structure PDE, defining a 1D heat equation with integral boundary
conditions:

ẋ(t, s) = ∂2
s x(t, s), s ∈ [0, 1]

with BCs x(t, 0) +
∫ 1

0
x(t, s)ds = 0, x(t, 1) +

∫ 1

0
x(t, s)ds = 0 (5.3)

In this system, the state x(t, s) at each time t ≥ 0 must be at least second order differentiable
with respect to s, so we define the associated fundamental state as xf(t, s) = ∂2

s x(t, s). We
implement this system in PIETOOLS using the Command Line Input format as follows:

>> pvar s t
>> x = pde_var(s,[0,1]);
>> PDE_dyn = diff(x,t) == diff(x,s,2);
>> PDE_BCs = [subs(x,s,0) + int(x,s,[0,1]) == 0;

subs(x,s,1) + int(x,s,[0,1]) == 0];
>> PDE = [PDE_dyn; PDE_BCs];

Then, we can derive the associated PIE representation by simply calling
>> PIE = convert(PDE,‘pie’)
PIE =

pie_struct with properties:

dim: 1;
vars: [1×2 polynomial];
dom: [0 1];

T: [1×1 opvar]; Tw: [1×0 opvar]; Tu: [1×0 opvar];
A: [1×1 opvar]; B1: [1×0 opvar]; B2: [1×0 opvar];

C1: [0×1 opvar]; D11: [0×0 opvar]; D12: [0×0 opvar];
C2: [0×1 opvar]; D21: [0×0 opvar]; D22: [0×0 opvar];
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In this structure, the field dim corresponds to the spatial dimensionality of the system, with
dim=1 indicating that this is a 1D PIE. The fields vars and dom define the spatial variables in
the PIE and their domain, with

>> PIE.vars
ans =

[ s, s_dum]

>> PIE.dom
ans =

0 1

indicating that s is the primary variable, s_dum the dummy variable (used for integration), and
both exist on the domain s, sdum ∈ [0, 1]. We note that the remaining fields in the PIE structure
are all opvar objects, representing PI operators in 1D. Moreover, most of these operators are
empty, being of dimension 1× 0, 0× 1 or 0× 0. This is because the PDE (5.3) does not involve
any inputs or outputs, and therefore its associated PIE has the simple structure(

T ẋf
)
(t, s) =

(
Axf

)
(t, s),

where the operator T maps the fundamental state xf back to the PDE state x as(
T xf

)
(t, s) = x(t, s).

For the PDE (5.3), we know that xf(t, s) = ∂2
s x(t, s). The associated operators T and A are

represented by the opvar objects T and A in the PIE structure, for which we find that
>> T = PIE.T
T =

[] | []
---------
[] | T.R

T.R =
[0] | [s*s_dum-0.25*s_dum^2-0.75*s_dum] | [s*s_dum-0.25*s_dum^2-s+0.25*s_dum]

>> A = PIE.A
A =

[] | []
---------
[] | A.R

A.R =
[1] | [0] | [0]

We conclude that the PDE (5.3) is equivalently represented by the PIE∫ s

0

((
s− 1

4θ − 3
4

)
θ
)

︸ ︷︷ ︸
PIE.T.R.R1

ẋf(t, θ)dθ +
∫ 1

s

((
s− 1

4θ + 1
4

)
θ − s

)
︸ ︷︷ ︸

PIE.T.R.R2

ẋf(t, θ)dθ = 1︸︷︷︸
PIE.A.R.R0

xf(t, s).
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5.3 Converting a DDE to a PIE
Just like PDEs, DDEs (and other delay-differential equations) can also be equivalently repre-
sented as PIEs. For example, consider the following DDE

ẋ(t) =
[
−1.5 0
0.5 −1

]
x(t) +

∫ 0

−1

[
3 2.25
0 0.5

]
x(t + s)ds +

∫ 0

−2

[
−1 0
0 −1

]
x(t + s)ds,

where x(t) ∈ R2 for t ≥ 0. We declare this system as a structure DDE in PIETOOLS as
>> DDE.A0 = [-1.5, 0; 0.5, -1];
>> DDE.Adi{1} = [3, 2.25; 0, 0.5]; DDE.tau(1) = 1;
>> DDE.Adi{2} = [-1, 0; 0, -1]; DDE.tau(2) = 2;

We can then convert the DDE to a PIE by calling
>> PIE = convert_PIETOOLS_DDE(DDE,‘pie’)
PIE =

pie_struct with properties:

dim: 1;
vars: [1×2 polynomial];
dom: [1x2 double];

T: [6×6 opvar]; Tw: [6×0 opvar]; Tu: [6×0 opvar];
A: [6×6 opvar]; B1: [6×0 opvar]; B2: [6×0 opvar];

C1: [0×6 opvar]; D11: [0×0 opvar]; D12: [0×0 opvar];
C2: [0×6 opvar]; D21: [0×0 opvar]; D22: [0×0 opvar];

In this structure, we note that dim=1, indicating that the PIE is 1D, even though the state
x(t) ∈ R2 in the DDE is finite-dimensional. This is because, in order to incorporate the delayed

signals, the state is augmented to x(t) =
[

x(t)
x1(t)
x2(t)

]
∈
[

R2

L2
2[−1,0]

L2
2[−1,0]

]
, where

x1(t, s) = x(t + τ1s) = x(t + s), and, x2 = x(t + τ2s) = x(t− 2s)

for s ∈ [−1, 0]. Here, the artificial states x1(t) and x2(t) will have to satisfy

ẋ1(t, s) = ẋ(t + s) = ∂rx(r) = ∂sx(t + s) = ∂sx1(t, s),

ẋ2(t, s) = ẋ(t + 2s) = ∂rx(r) = 1
2∂sx(t + 2s) = 1

2∂sx2(t, s) s ∈ [−1, 0]

and we can equivalently represent the DDE as a PDE

ẋ(t) =
[
−1.5 0
0.5 −1

]
x(t) +

∫ 0

−1

[
3 2.25
0 0.5

]
x1(t, s)ds +

∫ 0

−2

[
−1 0
0 −1

]
x2(t, s)dt,

ẋ1(t, s) = ∂sx1(t, s)

ẋ2(t, s) = 1
2∂sx2(t, s)

with BCs x1(t,−1) = x(t), x1(t,−2) = x(t).
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In this system, x1 and x2 must be first-order differentiable with respect to s, suggesting that

the fundamental state associated to this PDE is given by xf(t) =
[

xf,0(t)
xf,1(t)
xf,2(t)

]
=
[

x(t)
∂sx1(t)
∂sx2(t)

]
for t ≥ 0.

The PIE structure derived from the DDE will describe the dynamics in terms of this fundamental
state xf, where we note that, indeed, the objects T and A are of dimension 6× 6. In particular,
we find that

>> T = PIE.T
T =

[1,0] | [0,0,0,0]
[0,1] | [0,0,0,0]
------------------
[1,0] | T.R
[0,1] |
[1,0] |
[0,1] |

T.R =
[0,0,0,0] | [0,0,0,0] | [-1,0,0,0]
[0,0,0,0] | [0,0,0,0] | [0,-1,0,0]
[0,0,0,0] | [0,0,0,0] | [0,0,-1,0]
[0,0,0,0] | [0,0,0,0] | [0,0,0,-1]

where T.P is simply a 2× 2 identity operator, as the first two state variables of the augmented
state x and the fundamental state xf are both identical, and equal to the finite-dimensional state
x(t). More generally, we find that the augmented state can be retrieved from the associated
fundamental state as

x(t, s) =
(
T xf

)
(t, s) =

[
I2×2 ∫ 0

−1 dθ [ 02×2 02×2 ][
I2×2
I2×2

]
∫ 0

s dθ
[
−I2×2 02×2
02×2 −I2×2

] ]
 xf,0(t)

xf,1(t, θ)
xf,2(t, θ)

 =

 xf,0(t)
xf,0(t)−

∫ 0
s xf,1(t, θ)dθ

xf,0(t)−
∫ 0

s xf,2(t, θ)dθ


Then, studying the value of the object A

>> A = PIE.A
A =

[-0.5,2.25] | [-3*s-3,-2.25*s-2.25,2*s+2,0]
[0.5,-2.5] | [0,-0.5*s-0.5,0,2*s+2]

--------------------------------------------
[0,0] | A.R
[0,0] |
[0,0] |
[0,0] |

A.R =
[1,0,0,0] | [0,0,0,0] | [0,0,0,0]
[0,1,0,0] | [0,0,0,0] | [0,0,0,0]

[0,0,0.5000,0] | [0,0,0,0] | [0,0,0,0]
[0,0,0,0.5000] | [0,0,0,0] | [0,0,0,0]

47



we find that the DDE can be equivalently represented by the PIE

(
T ẋf

)
(t, s) =

 ẋf,0(t)
ẋf,0(t)−

∫ 0
s ẋf,1(t, θ)dθ

ẋf,0(t)−
∫ 0

s ẋf,2(t, θ)dθ



=


[
−0.5 2.25
0.5 −2.5

]
xf,0(t) +

∫ 0
−1(s + 1)

([
−3 −2.25
0 −0.5

]
xf,1(t, s) + 2xf,2(t, s)

)
ds

xf,1(t, s)
1
2xf,2(t, s)

 =
(
Axf

)
(t, s)

5.4 Converting an Input-Output System to a PIE
In addition to simple differential systems, systems with inputs and outputs can also be repre-
sented as PIEs. In this case, the PIE takes a more general form

Tuu̇(t) + Twẇ(t) + T ẋf(t) = Axf(t) + B1w(t) + B2u(t),
z(t) = C1xf(t) +D11w(t) +D12u(t),
y(t) = C2xf(t) +D21w(t) +D22u(t), (5.4)

where w denotes the exogenous inputs, u the actuator inputs, z the regulated outputs, and y
the observed outputs. Here, the operator Tu, Tw and T define the map from the fundamental
state xf(t) back to the PDE state as

x(t) = Tuu(t) + Tww(t) + T xf(t),

where the operators Tu and Tw will be nonzero only if the inputs u and w contribute to the
boundary conditions enforced upon the PDE state x. As such, the temporal derivatives u̇ and
ẇ will also contribute to the PIE only if these inputs appear in the boundary conditions, which
may be the case when performing e.g. boundary or delayed control.

In PIETOOLS, systems with inputs and outputs can be converted to PIEs in the same
manner as autonomous systems. For example, consider a 1D heat equation with distributed
disturbance w, and boundary control u, where we can observe the state at the upper boundary,
and we wish to regulate the integral of the state over the entire domain:

ẋ(t, s) = 1
2∂2

s x(t, s) + s(2− s)w(t), s ∈ [0, 1]

z(t) =
∫ 1

0
x(t, s)ds,

y(t) = x(t, 1),
with BCs x(t, 0) = u(t), ∂sx(t, 1) = 0, (5.5)

This system too can be represented as a partial integral equation, describing the dynamics of
the fundamental state xf = ∂2

s x. To arrive at this PIE representation, we once more implement
the PDE using the Command Line Input format as
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>> pvar s t
>> x = pde_var(s,[0,1]);
>> w = pde_var(’in’); u = pde_var(’control’);
>> z = pde_var(’out’); y = pde_var(’observe’);
>> PDE_dyn = diff(x,t) == 0.5*diff(x,s,2) + s*(2-s)*w;
>> PDE_z = z == int(x,s,[0,1]);
>> PDE_y = y == subs(x,s,1);
>> PDE_BCs = [subs(x,s,0) == u; subs(diff(x,s),s,1) == 0];
>> PDE = [PDE_dyn; PDE_z; PDE_y; PDE_BCs];

Then, we can convert this system to an equivalent PIE as before, finding a structure
>> PIE = convert(PDE,‘pie’)
PIE =

pie_struct with properties:

dim: 1;
vars: [1×2 polynomial];
dom: [0 1];

T: [1×1 opvar]; Tw: [1×1 opvar]; Tu: [1×1 opvar];
A: [1×1 opvar]; B1: [1×1 opvar]; B2: [1×1 opvar];
C1: [1×1 opvar]; D11: [1×1 opvar]; D12: [1×1 opvar];
C2: [1×1 opvar]; D21: [1×1 opvar]; D22: [1×1 opvar];

In this structure, the fields T through D22 describe the PI operators T through D22 in the
PIE (5.4). Here, since the exogenous input w does not contribute to the boundary conditions,
it also will not contribute to the map x = Tuu + Tww + T xf from the fundamental state xf to
the PDE state x. As such, we also find that the associated opvar object Tw has all parameters
equal to zero, whereas Tu and T are distinctly nonzero

>> Tw = PIE.Tw
Tw =

[] | []
-----------
[0] | Tw.R

>> Tu = PIE.Tu
Tu =

[] | []
-----------
[1] | Tu.R

>> T = PIE.T
T =

[] | []
---------
[] | T.R

T.R =
[0] | [-s_dum] | [-s]

Note here that only the parameter Tu.Q2 is non-empty for Tu, and only T.R is nonempty for T,
as Tu maps a finite-dimensional state u ∈ R to an infinite dimensional state x ∈ L2[0, 1], whilst

49



T maps an infinite-dimensional state xf ∈ L2[0, 1] to an infinite-dimensional state x ∈ L2[0, 1].
Studying the values of Tu and T, we find that we can retrieve the PDE state as

x = Tuu + T xf = u−
∫ s

0
θxf(θ)dθ −

∫ 1

s
sxf(θ)dθ = u−

∫ s

0
θ∂2

θ x(θ)dθ −
∫ 1

s
s∂2

θ x(θ)dθ

Next, we look at the operators A, B1 and B2. Here, B2 will be zero, as the input u does not
appear in the equation for ẋ, nor does the value of xf = ∂2

s x depend on u. For the remaining
operators, we find that they are equal to

>> A = PIE.A
A =

[] | []
---------
[] | T.R

A.R =
[0.5] | [0] | [0]

>> B1 = PIE.B1
B1 =

[] | []
------------------
[-s^2+2*s] | B1.R

suggesting that the fundamental state xf must satisfy

u̇(t)−
∫ s

0
θẋf(t, θ)dθ −

∫ 1

s
sẋf(t, θ)dθ = 1

2xf(t) + [−s2 + 2s]w(t), s ∈ [0, 1]

This leaves only the output equations. Here, since there is no feedthrough from w into z or
y, the operators D11 and D21 will both be zero. However, despite the actuator input u not
appearing in the PDE equations for z and y, the contribution of u to the BCs means that the
value of the PDE state x = T xf + Tuu also depends on the value of u, and therefore D12 and
D22 are nonzero. In particular, we find that

>> C1 = PIE.C1
C1 =

[] | [0.5*s^2-s]
-----------------
[] | C1.R

>> D12 = PIE.D12
D12 =

[1] | []
-----------
[] | D12.R

>> D22 = PIE.D22
D22 =

[1] | []
-----------
[] | D22.R
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>> C2 = PIE.C2
C2 =

[] | [-s]
----------
[] | C2.R

Here, only the parameters Q1 of C1 and C2 are non-empty, as the operators C1 and C2 map
infinite-dimensional states xf ∈ L2[0, 1] to finite-dimensional outputs z, y ∈ R. Similarly, only
the parameters P of D12 and D22 are non-empty, as D12 and D22 map the finite-dimensional
input u ∈ R to finite-dimensional outputs z, y ∈ R. Combining with the earlier results, we find
that the PDE (5.5) may be equivalently represented by the PIE

u̇(t)−
∫ s

0
θẋf(t, θ)dθ −

∫ 1

s
sẋf(t, θ)dθ = 1

2xf(t, s) + s(2− s)w(t), s ∈ [0, 1], t ≥ 0, (5.6)

z(t) =
∫ 1

0

(1
2s2 − s

)
xf(t, s)ds + u(t),

y(t) = −
∫ 1

0
sxf(t, s)ds + u(t), where xf(t, s) = ∂2

s x(t, s).

5.5 Declaring and Manipulating PIEs
In the previous sections, we showed how equivalent PIE representations of PDE and DDE
systems can be easily computed by simply calling the command convert. However, it is of
course also possible to construct PIE systems directly, which can be convenient when e.g.
building the closed-loop representation after performing PIE estimator or controller synthesis.
In this section, we show how such PIEs can be generated for given PI operators using the
function piess, focusing on systems without inputs and outputs in Subsection 5.5.1, systems
with disturbances and regulated outputs in Subsection 5.5.2, and adding controlled inputs and
observed outputs in Subsection 5.5.3. We will also show how feedback interconnections of PIE
systems can be performed to construct closed-loop PIE representations in Subsection 5.5.4.

5.5.1 Declaring a simple PIE
In its simplest form, a PIE governing the dynamics of a fundamental state xf(t) ∈ Ln

2 [a, b]
is defined by only two PI operators: T and A. For example, the PIE representation of the
transport equation in (5.1) at the start of this section is given by

∂t(T xf)(t, s) =

(T xf)(t,s)︷ ︸︸ ︷∫ s

0
∂txf(t, θ)dθ =

(Axf)(t,s)︷ ︸︸ ︷
2xf(t, s) +

∫ s

0
10xf(t, θ)dθ = (Axf)(t, s), s ∈ [0, 1], t ≥ 0,

with fundamental state xf(t) ∈ L2[0, 1]. Here, the operators T and A defining this representa-
tion can be declared as opvar objects as

>> opvar T A;
>> T.I = [0,1]; A.I = [0,1];
>> T.R.R1 = 1;
>> A.R.R0 = 2; A.R.R1 = 10;
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See Chapter 3 for more details. Now, to construct the PIE representation defined by these
operators, we call the function piess as

>> PIE1 = piess(T,A)
PIE1 =

pie_struct with properties:

dim: 1;
vars: [1×2 polynomial];
dom: [1×2 double];

T: [1×1 opvar]; Tw: [1×0 opvar]; Tu: [1×0 opvar];
A: [1×1 opvar]; B1: [1×0 opvar]; B2: [1×0 opvar];

C1: [0×1 opvar]; D11: [0×0 opvar]; D12: [0×0 opvar];
C2: [0×1 opvar]; D21: [0×0 opvar]; D22: [0×0 opvar];

This returns a pie_struct object PIE with the fields PIE.T and PIE.A set to the input operators
T and A, respectively. Note that the domain and variables defining the PIE are automatically
set equal to those of the operators T and A, and PIETOOLS will throw an error if the variables
or domains of these operators don’t match.

5.5.2 Declaring a PIE with outputs and disturbances
Suppose now that we have a more elaborate PIE of the form,

∂t(T xf)(t) = Axf(t) + Bw(t),
z(t) = Cxf(t) +Dw(t), (5.7)

involving a disturbance w(t) and regulated output z(t), both finite or infinite-dimensional, at
each time t ≥ 0. Now, the dynamics are represented by five PI operators, so declaring this
system with piess also requiring passing all five operators as e.g.

» PIE_zw = piess(T,A,B,C,D);

To illustrate, suppose we have the same system as in the previous subsection, but now with a
finite-dimensional disturbance and regulated output as

∂t

∫ s

0
xf(t, θ)dθ = 2xf(t, s) +

∫ s

0
10xf(t, θ)dθ + 5sw(t),

z(t) =
∫ 1

0
(1− s)xf(t, s)ds.

In this example, the PI operators A and T are the same as in the previous subsection, and the
multiplier operator B : R→ L2[0, 1] and integral operator C : L2[0, 1]→ R are given by

(Bw)(s) := 5sw, ∀w ∈ R, (Cv) :=
∫ 1

0
(1− s)v(s)ds, ∀v ∈ L2[0, 1]. (5.8)

We can declare the integral operator as an opvar object C using the field C.Q2 as
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>> opvar C
>> C.I = [0,1]; s = C.var1;
>> C.Q1 = 1-s;

Here, we set s=C.var1 to use the default spatial variable that PIETOOLS uses for opvar
objects, which is always a safe choice. Formally, we should then also specify the multiplier
operator B : R → L2[0, 1] as an opvar object B with B.Q1=5*s. However, passing polynomial
functions to piess, these functions are automatically interpreted as corresponding multiplier
operators, so that we can simply declare our input-output PIE as

>> PIE2 = piess(T,A,5*s,C,0)
PIE2 =

pie_struct with properties:

dim: 1;
vars: [1×2 polynomial];
dom: [1×2 double];

T: [1×1 opvar]; Tw: [1×1 opvar]; Tu: [1×0 opvar];
A: [1×1 opvar]; B1: [1×1 opvar]; B2: [1×0 opvar];

C1: [1×1 opvar]; D11: [1×1 opvar]; D12: [1×0 opvar];
C2: [0×1 opvar]; D21: [0×1 opvar]; D22: [0×0 opvar];

passing 0 as fifth argument to declare a zero feedthrough D = 0. Note that the resulting
operator PIE2.B1 indeed represents the desired multiplier operator,

>> PIE2.B1
ans =

[] | []
---------------
[5*s1] | ans.R

ans.R =
[] | [] | []

Note also that the field PIE2.Tw, representing the term Twẇ(t) in the left-hand side of the PIE
dynamics is automatically populated with a zero operator of appropriate dimensions,

>> PIE2.Tw
ans =

[] | []
-----------
[0] | ans.R

ans.R =
[] | [] | []

5.5.3 Declaring a PIE with sensing and control
Finally, let us consider a PIE in its most general form as in (5.4), involving not only disturbance
and regulated outputs, but also controlled inputs and observed outputs. This representation
is parameterized by 12 PI operators: three operators {T , Tw, Tu} defining the left-hand side
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of the PIE dynamics, a state operator A, two input operators {B1,B2}, two output operators
{C1, C2}, and four feedthrough operators {D11,D12,D21,D22}. To declare such a PIE for given
operators, we pass the values of the different operator to piess using cell structures as follows:

>> PIE = piess({T,Tw,Tu}, A, {B1,B2}, {C1;C2}, {D11,D12;D21,D22});

Note here that the operators B1 and B2 must be declared using a 1× 2 cell array, whereas the
operators C1 and C2 must be declared using a 2 × 1 cell array. The operators Dij should be
declared accordingly as a 2× 2 cell array. For example, consider the PIE representation of the
PDE in (5.5), given in (5.6), defined by the operators

(T v)(s) := −
∫ s

0
θv(θ)dθ −

∫ 1

s
sv(θ)dθ, (Tuu)(s) := u, ∀s ∈ [0, 1].

(Av)(s) := 1
2v(s), (B1w)(s) = s(2− s),

C1v :=
∫ 1

0

(1
2s2 − s

)
v(s)ds, D12u := u,

C2v := −
∫ 1

0
sv(s)ds, D22u := u.

for v ∈ L2[0, 1] and u, w ∈ R. We can declare these operators as opvar objects as
>> opvar T C1 C2;
>> T.I = [0,1]; C1.I = [0,1]; C2.I = [0,1];
>> s = T.var1; theta = T.var2;
>> T.R.R1 = -s; T.R.R2 = -theta;
>> C1.Q1 = 0.5*s^2-s; C2.Q1 = -s;

where again, we use s=T.var1 and theta=T.var2 to ensure that the primary spatial variable
and dummy variable match the default variables used by PIETOOLS. Of course, we can also
declare the multiplier operators A : L2[0, 1] → L2[0, 1], B1, Tu : R → L2[0, 1], and D12,D22 :
R→ R as opvar operators, but for the purpose of passing them to piess it suffices to declare
them as just

>> A = 0.5; Tu = 1; B1 = s*(2-s);
>> D12 = 1; D22 = 1;

Then, calling
>> PIE3 = piess({T,0,Tu},A,{B1,0},{C1;C2},{0,D12;0,D22})
PIE3 =

pie_struct with properties:

dim: 1;
vars: [1×2 polynomial];
dom: [1×2 double];

T: [1×1 opvar]; Tw: [1×1 opvar]; Tu: [1×1 opvar];
A: [1×1 opvar]; B1: [1×1 opvar]; B2: [1×1 opvar];

C1: [1×1 opvar]; D11: [1×1 opvar]; D12: [1×1 opvar];
C2: [1×1 opvar]; D21: [1×1 opvar]; D22: [1×1 opvar];

we obtain a pie_struct object representing our desired PIE, where we note that e.g. the input
parameter A is automatically augmented to a suitable opvar object as
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>> PIE3.A
ans =

[] | []
-----------
[] | ans.R

ans.R =
[0.5000] | [0] | [0]

representing a multiplier operator A : L2[0, 1] → L2[0, 1]. Note also that in the call to piess,
we can always use 0 or [] for an argument to indicate that the corresponding operator is a zero
operator, and the function will automatically generate an associated opvar object will all zero
parameters. Of course, users should be careful that this only works if piess is able to deduce
the row and column dimensions of the operator from the remaining input arguments.

5.5.4 Taking interconnections of PIEs
A crucial property of the PIE representation of a system is that, due to the lack of boundary
conditions and the algebraic nature of PI operators, we can easily take (feedback) interconnec-
tions of PIEs. To facilitate the computation of such interconnections of pie_struct objects,
PIETOOLS currently offers two functions: closedLoopPIE, for imposing a simple feedback law
u = Kv in a PIE representation, and pielft, for taking the linear fractional transformation of
two PIE systems. To illustrate, consider again the PIE in (5.6), declared as a pie_struct object
in the previous subsection. This PIE involves a finite-dimensional scalar input u(t) ∈ R, and
finite-dimensional scalar output y(t). Suppose now that, e.g. by using the controller synthesis
LPI (see Chapter 13.3, we find that the control law

u(t) = Kxf(t) :=
∫ 1

0
xf(t, s)ds

for PIE state xf(t) ∈ L2[0, 1] is a good control law to e.g. stabilize the system. We can declare
the operator K : L2[0, 1]→ R representing this feedback law as

>> opvar K;
>> K.I = [0,1]; K.Q1 = 1;

Then, to impose this feedback law in our PIE, we can call closedLoopPIE as
>> PIE3_CL1 = closedLoopPIE(PIE3,K)
PIE3_CL1 =

pie_struct with properties:

dim: 1;
vars: [1×2 polynomial];
dom: [1×2 double];

T: [1×1 opvar]; Tw: [1×1 opvar]; Tu: [1×0 opvar];
A: [1×1 opvar]; B1: [1×1 opvar]; B2: [1×0 opvar];

C1: [1×1 opvar]; D11: [1×1 opvar]; D12: [1×0 opvar];
C2: [1×1 opvar]; D21: [1×1 opvar]; D22: [1×0 opvar];
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returning a pie_struct object representing the closed-loop PIE∫ s

0
[1− θ]ẋf(t, θ)dθ +

∫ 1

s
[1− s]ẋf(t, θ)dθ = 1

2xf(t, s) + s(2− s)w(t), s ∈ [0, 1], t ≥ 0,

z(t) =
∫ 1

0

(
1 + 1

2s2 − s
)

xf(t, s)ds,

y(t) =
∫ 1

0
(1− s)xf(t, s)ds.

Note that this PIE representation no longer involves any controlled input u(t), as we have
imposed the feedback law u(t) =

∫ 1
0 xf(t, s)ds.

Now, suppose that we instead want to synthesize a Luenberger-type estimator for our PIE,
simulating an estimate x̂f(t) of the PIE state and ẑ(t) of the output state as

u̇(t)−
∫ s

0
θ ˙̂xf(t, θ)dθ −

∫ 1

s
s ˙̂xf(t, θ)dθ = 1

2 x̂f(t, s) + L(ŷ(t)− y(t)), s ∈ [0, 1], t ≥ 0,

ẑ(t) =
∫ 1

0

(1
2s2 − s

)
x̂f(t, s)ds + u(t),

ŷ(t) = −
∫ 1

0
sx̂f(t, s)ds + u(t),

for some gain L : R → L2[0, 1]. Let a suitable gain L (computed using e.g. the LPI from
Section 13.2) be given by Ly = s(1− s)y for y ∈ R. Then, we can construct the “closed-loop”
system for this value of the gain as

>> opvar L; s = L.var1;
>> L.I = [0,1]; L.Q2 = s*(1-s);
>> PIE3_CL2 = closedLoopPIE(PIE3,L,’observer’)
PIE3_CL2 =

pie_struct with properties:

T: [2×2 opvar]; Tw: [2×1 opvar]; Tu: [2×1 opvar];
A: [2×2 opvar]; B1: [2×1 opvar]; B2: [2×1 opvar];

C1: [2×2 opvar]; D11: [2×1 opvar]; D12: [2×1 opvar];
C2: [0×2 opvar]; D21: [0×1 opvar]; D22: [0×1 opvar];

representing the augmented system of our original PIE with the resulting estimator as

u̇(t)−
∫ s

0
θẋf(t, θ)dθ −

∫ 1

s
sẋf(t, θ)dθ = 1

2xf(t, s) + s(2− s)w(t), s ∈ [0, 1], t ≥ 0,

u̇(t)−
∫ s

0
θ ˙̂xf(t, θ)dθ −

∫ 1

s
s ˙̂xf(t, θ)dθ = 1

2 x̂f(t, s)− s(1− s)
∫ 1

0
θx̂f(t, s)dθ + s(1− s)

∫ 1

0
θxf(t, s)dθ,

z(t) =
∫ 1

0

(1
2s2 − s

)
xf(t, s)ds + u(t),

ẑ(t) =
∫ 1

0

(1
2s2 − s

)
x̂f(t, s)ds + u(t).

Note that this system involves no more observed output y, instead implicitly feeding this output
back into the estimator dynamics. Further note that the PIE now involves two state variables,
(xf(t), x̂f), and two regulated outputs, (z(t), ẑ(t)), corresponding to the true values and their
estimates.
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Finally, aside from imposing simple feedback laws, we can also take a linear fractional
transformation of two complete PIE systems using pielft. To illustrate, suppose that we
combine our earlier estimator and controller, to generate a control effort u(t) for our PIE using
the estimate x̂f(t) of the state as

−
∫ s

0
θ ˙̂xf(t, θ)dθ −

∫ 1

s
s ˙̂xf(t, θ)dθ = 1

2 x̂f(t, s)− s(1− s)
∫ 1

0
θx̂f(t, s)dθ − s(1− s)ŷ(t),

ẑ(t) =
∫ 1

0

(1
2s2 − s

)
x̂f(t, s)ds,

û(t) =
∫ 1

0
x̂f(t, s)ds.

Note now that the output y(t) of our original PIE is used as input ŷ(t) to this estimator PIE,
and we will use the output û(t) to this estimator PIE as input u(t) to our original system. To
declare this estimator system, we again use piess as

>> opvar T A C1;
>> T.I = [0,1]; A.I = [0,1]; C1.I = [0,1];
>> s = T.var1; theta = T.var2;
>> T.R.R1 = -s; T.R.R2 = -theta;
>> A.R.R0 = 0.5; A.R.R1 = -s*(1-s)*theta; A.R.R2 = A.R.R1;
>> C1.Q1 = 0.5*s^2-s;
>> PIE3_est = piess(T,A,{[],-L},{C1;K});

where we use the same operators K and L as before, passing [],-L as argument to declare a
controlled input Lû(t), and passing C1;K as argument to declare an observed output ŷ(t) =
Kx̂f(t), in addition to the regulated output ẑ(t) = C1x̂(t). Then, to take the linear fractional
transformation of our PIE with this estimator system, using the interconnection signals û(t) =
y(t) and u(t) = ŷ(t), we simply call pielft as

>> PIE3_CL3 = pielft(PIE3,PIE3_est)
PIE3_CL3 =

pie_struct with properties:

T: [2×2 opvar]; Tw: [2×1 opvar]; Tu: [2×0 opvar];
A: [2×2 opvar]; B1: [2×1 opvar]; B2: [2×0 opvar];

C1: [2×2 opvar]; D11: [2×1 opvar]; D12: [2×0 opvar];
C2: [0×2 opvar]; D21: [0×1 opvar]; D22: [0×0 opvar];

yielding a pie_struct object representing the system∫ 1

0
˙̂xf(t)−

∫ s

0
θẋf(t, θ)dθ −

∫ 1

s
sẋf(t, θ)dθ = 1

2xf(t, s) + s(2− s)w(t), s ∈ [0, 1], t ≥ 0,

−
∫ s

0
θ ˙̂xf(t, θ)dθ −

∫ 1

s
s ˙̂xf(t, θ)dθ = 1

2 x̂f(t, s)− s(1− s)
∫ 1

0
θx̂f(t, s)dθ + s(1− s)

∫ 1

0
θxf(t, s)dθ,

z(t) =
∫ 1

0

(1
2s2 − s

)
xf(t, s)ds +

∫ 1

0
x̂f(t, s)ds,

ẑ(t) =
∫ 1

0

(1
2s2 − s

)
x̂f(t, s)ds.

This PIE has no more controlled inputs or observed outputs, as the controlled inputs of the first
PIE have been set equal to the observed outputs of the second PIE, and vice versa. However,
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the closed-loop PIE system is expressed in terms of the states, disturbances, and regulated
outputs of both PIE systems.

For additional examples on using piess and pielft to construct closed-loop PIE represen-
tations after controller and observer synthesis, see also demos 5 through 7 in Chapter 11.

Note

When imposing feedback laws using closedLoopPIE, all controlled inputs are assumed
to be governed by the feedback. Thus, the output dimensions of the specified gain must
match the dimensions of the controlled input in the PIE. Similarly, when constructing an
estimator using closedLoopPIE, the input dimensions of the Luenberger gain must match
the dimensions of the observed output. Finally, taking the linear fractional transformation
of two PIEs, the dimensions of the controlled input of the first PIE must match those of
the observed output of the second PIE, and vice versa.

Warning

The structure of opvar objects restricts them to map only the function space Rm×Ln
2 [a, b],

not e.g. L2[a, b]×Rm. As such, the state, input, and output variables in the PIE represen-
tation will always be reordered to place the finite-dimensional variables (e.g ODE states)
ahead of the infinite-dimensional variables (e.g. PDE states). Similarly, state, input, and
output variables on lower-dimensional domains (e.g. 1D PDE states) will always be placed
ahead of variables on higher-dimensional domains (e.g. 2D PDE states). Consequently,
both when converting ODE-PDE or DDE systems to PIEs and when taking e.g. linear
fractional transformations of PIE systems, the order of the states, inputs, and outputs may
be changed.
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Chapter 6

PIESIM: A General-Purpose
Simulation Tool based on PIETOOLS

PIESIM is a general-purpose, versatile, high-fidelity simulation tool, distributed with the
PIETOOLS package. It numerically solves PDEs, as well as coupled PDE/ODEs, and DDE
systems, in one and two dimensions. PIESIM utilizes high-order methods based on Chebyshev
polynomial approximation for spatial discretization and offers temporal discretization schemes
of the order one through four based on implicit backward-difference formulas (BDF). PIESIM
is based on the PDE-to-PIE transformation framework native to PIETOOLS and seamlessly
applies high-order methods to PDE problems while exactly satisfying any arbitrary set of ad-
missible boundary conditions.

6.1 Organization of PIESIM
PIESIM is based on a set of MATLAB functions that perform the following tasks:

1. Discretization of the PDE/DDE/PIE solution domain and the PI operators.

2. Temporal integration using the BDF scheme.

3. Transformation of solution from the PIE (fundamental) state back to the PDE (primary)
state and plotting the solution.

6.2 PIESIM.m - the Main Routine of PIESIM
The main routine of the PIESIM solver is the function PIESIM.m located in the folder
PIESIM/PIESIM_routines. This function can be called using the syntax

» solution = PIESIM(system,opts,uinput,ndiff);

where the inputs are characterized by:

1. system - a PDE, DDE, or a PIE structure (supported in 1D only) - required;

2. opts - simulation options structure - optional;
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3. uinput - structure that describes initial conditions and other options - optional;

4. ndiff - required only if the system defined is of the type ‘PIE’,

and the output:

1. solution - returns the variables associated with the solution field.

Detailed description of the inputs (and their default values if not specified by user) is provided
below.

1. system is the required input that declares the structure of the problem to be numerically
solved. It can take a value of ‘PDE’, ‘DDE’, or a ‘PIE’ (in 1D only). The user is responsible
for declaring this variable using available options in PIETOOLS prior to calling PIESIM.
The system variable does not have a default value. The simulation will not run and an
error will be issued if the variable system is not declared.

2. opts is the optional structure with the fields:

• N (integer≥ 2+d, where d is the order of the highest spatial derivative in the problem)
- polynomial order used in a spatial discretization of a primary state solution -
default N=8

• tf (real > 0) - final time of simulation - default tf=1
• Norder (integer {1, 2, 3, 4}) - order of time integration scheme - default Norder=2
• dt (real > 0) - time step value used in numerical time integration - default dt=0.01
• plot (‘yes’ or ‘no’) - option for plotting solution: returns solution plots if ‘yes’, no

plots if ‘no’ - default plot=‘no’
• ploteig (‘yes’ or ‘no’) - option for plotting discrete eigenvalues of a temporal prop-

agator: returns eigenvalue plot if ‘yes’, no plot if ‘no’ - default ploteig=‘no’

3. uinput is the optional structure with the fields:

• ic - initial conditions defined as a MATLAB symbolic object. Initial conditions
should be specified for the primary states if the system type is ‘PDE’ or ‘DDE’, and
for the fundamental states if the system type is ‘PIE’. ic consists of the following
sub-fields:

– ic.pde - initial conditions for the PDE states defined as symbolic objects in ‘sx’
(1D), or ‘sx’, ‘sy’ (2D)

– ic.ode - initial conditions for the ODE states defined as scalars
The order of entries in the ic.pde, ic.ode arrays should correspond to the order of
states in the originally declared problem (of the type ‘PDE’, ‘DDE’ or ‘PIE’).

• w - external disturbances defined as a MATLAB symbolic object in ‘st’, ‘sx’ (1D),
or ‘st’, ‘sx’, ‘sy’ (2D)
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• ifexact (true or false, false default) - indicates whether exact solution will be used
for comparison with numerical solution (if true) or not (if false). uinput.ifexact=true
should only be used if exact solution is known. In this case, exact solution needs to
be specified in the uinput.ifexact field - it is provided automatically if PIESIM
built-in examples are used. If uinput.ifexact=true and opts.plot=‘yes’, the
exact solution will be plotted together with the numerical solution.

• exact - used only if uinput.ifexact=true and contains exact solution to the de-
clared problem, specified as a symbolic object in ‘sx’ (1D), or ‘sx’, ‘sy’ (2D)

4. ndiff is a required structure if the system type is ‘PIE’. ndiff is a vector of integers spec-
ifying the number of differentiable states based on the index location, such as ndiff(i) is
the number of states that are (i− 1) times differentiable in space. For example, [0, 2, 1]
stands for (0) continuous, (2) continuously differentiable, and (1) twice continuously dif-
ferentiable states.

Warning

uinput.ic.PDE is used for both PDE and PIE inputs to PIESIM() function, however, when
a PDE is passed, uinput.ic.PDE stores initial conditions for the PDE, whereas when a
PIE is passed, uinput.ic.PDE stores initial conditions for the PIE!

PIESIM.m function returns an output structure solution with the fields:

• tf - scalar - actual final time of the solution

• final.pde - PDE solution at the final time

– In 1D problems - array of size N+1 × ns, ns - total number of PDE states
– In 2D problems - cell array final.pde{1, 2}

final.pde{1} - array containing the solution for states that are only the functions
of one variable - array of size (N+1) × (nx+ny), nx - number of states depending
only on s1, ny - number of states depending only on s2
final.pde{2} - array containing the solution for states that are the functions of two
variables - array of size (N+1) × (N+1) × ns, ns - number of states depending on
both s1 and s2

• final.ode - array of size no (number of ODE states) - ODE solution at the final time

• final.observed - array of size noo (number of observed outputs) - final value of observed
outputs

• final.regulated - array of size nro (number of regulated outputs) - final value of regu-
lated outputs

• timedep.dtime - array of size 1× Nsteps - array of discrete time values at which the
time-dependent solution is computed. Nsteps - number of time steps - is calculated as
Nsteps= floor(tf/dt)
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• timedep.pde - time-dependent PDE solution

– In 1D problems - array of size N+1 × ns × Nsteps, ns - total number of PDE states
– In 2D problems - cell array timedep.pde{1, 2}

timedep.pde{1} - array containing the solution for states that are only the functions
of one variable - array of size (N+1) × (nx+ny) × Nsteps, nx - number of states
depending only on s1, ny - number of states depending only on s2
timedep.pde{2} - array containing the solution for states that are the functions of
two variables - array of size (N+1) × (N+1) × ns × Nsteps, ns - number of states
depending on both s1 and s2

• timedep.ode - array of size no × Nsteps - time-dependent solution of ODE states

• timedep.observed - array of size noo × Nsteps - time-dependent value of observed
outputs

• timedep.regulated - array of size nro × Nsteps - time-dependent value of regulated
outputs

Note on final time

If (tf/dt) is not an integer value, i.e Nsteps = floor(tf/dt) ̸= (tf/dt), the final time tf is
adjusted as tf = Nsteps × dt. The time step value dt is always used as specified by the
user and is never changed intrinsically.

Note on solution output

In contrast to uinput.ic.pde, irrespective of the input, both final.pde and
solution.timedep.pde fields always store the value of the primary state (reconstructed)
solution to the original PDE/DDE problem, i.e. T v + Tww + Tuu as the value.

6.3 Running PIESIM
PIESIM can be run from any location within PIETOOLS, as long as the desired ‘PDE’, ‘DDE’
or ‘PIE’ structure has already been defined, by calling the PIESIM.m function as

» solution = PIESIM(system);

when the default options for opts and uinput will be used, or via

» solution = PIESIM(system,opts,uinput);

when opts and uinput will be declared by the user prior to calling the PIESIM.m function.
Note that the user may choose to declare either opts or uinput independently while leaving

the other input argument as default, with calling
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» solution = PIESIM(system,opts);

or
» solution = PIESIM(system,uinput);

respectively.
If ‘PIE’ argument is passed into PIESIM as the system type, the additional input ndiff

specifying the order of differentiability of the original PDE/DDE states is required as described
in Section 6.2, i.e.

» solution = PIESIM(PIE,ndiff);

with the default values of opts and uinput or

» solution = PIESIM(PIE,opts,uinput,ndiff);

with the user-specified values of opts and uinput.
PIETOOLS distribution has built-in examples and demonstrations of how to run PIESIM.

These examples can be found in:

1. PIESIM demonstrations accessible from “PIETOOLS_Code_Illustrations_Ch6_PIESIM”
located in the folder “PIETOOLS_demos/snippets_from_manual”. These are described
in details in Chapter 6.4 of this manual.

2. PIETOOLS demonstrations located in the folder “PIETOOLS_demos” of PIETOOLS
(see Chapter 11 of this manual). Some of the demonstrations (specifically, demonstrations
1, 5, 6, 7 and 9) feature PIESIM.

3. PIETOOLS examles in the file PIETOOLS_PDE.m. The script PIETOOLS_PDE.m allows
user to select predefined examples (1 through 40) from the PIETOOLS example library
(located in the folder “PIETOOLS_examples”), featuring both 1D and 2D problems. It
then offers the user an option to run stability or a controller synthesis script (based on the
example) by selecting the ‘y’ option. Regardless of whether ‘y’ or ‘n’ is selected, PIESIM
is executed afterwards.

4. PIESIM examples located in the files examples_pde_library_PIESIM_1D and
examples_pde_library_PIESIM_2D within the “PIESIM” folder, for 1D and 2D prob-
lems respectively. To run examples from the “PIESIM” folder, a MATLAB executable
solver_PIESIM.m is provided in the same folder. To execute the examples using
solver_PIESIM.m, the user should first adjust the desired problem dimension by setting
dim=1 for 1D problems or dim=2 for 2D problems within solver_PIESIM.m file. The user
then must choose the example number by setting the variable example to the correspond-
ing example number which can range between 1 and 38 for 1D problems and between 1
and 19 for 2D problems. All examples in the “PIESIM” folder come with the provided
analytical solution that will automatically be plotted alongside the numerical solution if
uinput.ifexact=true and opts.plot=‘yes’ are selected. This feature provides a good
option for benchmarking PIESIM numerical solutions and performing convergence checks,
if needed.
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Note on Numerical Stability

The backward-difference formula is an implicit scheme whose region of stability lies out-
side of a small circle in the right half of the complex plane. This means that numerical
simulations may be unstable if a discrete system has eigenvalues with small positive real
parts. These eigenvalues can arise if the underlying physical problem is unstable or if the
discretization errors move otherwise stable eigenvalues into the right half-plane. This situa-
tion may occur especially if the actual system has eigenvalues close to purely imaginary, as
in systems with very little dissipation. PIESIM has a built-in check of numerical stability
and issues a warning if the scheme is unstable. It also provides a recommendation on the
time step size when the scheme may stabilize, if the recommended value is less than one.
Increasing time step to a value higher than one is not recommended, since it will lead to
large numerical errors. If this situation occurs, it is likely that the underlying physical
problem is unstable, and the corresponding warning is issued.

6.4 PIESIM Demonstrations
This section presents several illustrative examples on how PIESIM can be simulated systems
in PDE, DDE and PIE representation. Note that, although the figures displayed in this
section have been modified slightly from the default figures returned by PIESIM, the script
“PIETOOLS_Code_Illustrations_Ch6_PIESIM” located in the folder
“PIETOOLS_demos/snippets_from_manual” contains full codes to reproduce each of these
plots.

6.4.1 PIESIM Demonstration A: 1D PDE example
In this section, we will demonstrate the standard process involved in simulation of 1D PDEs,
simulating Example 4 from examples_pde_library_PIESIM_1D using the following code.

Code Block 6

» syms sx st;
» [PDE,uinput]=examples_pde_library_PIESIM_1D(4);
» uinput.exact(1) = -2*sx*st-sxˆ2;
» uinput.ifexact=true;
» uinput.w(1) = 0;
» uinput.w(2) = -4*st-4;
» uinput.ic.PDE = -sxˆ2;
» opts.plot = ‘yes’;
» opts.N = 8;
» opts.tf = 1;
» opts.Norder = 2;
» opts.dt=1e-3;
» solution = PIESIM(PDE,opts,uinput);
» tval = solution.timedep.dtime;
» xval = reshape(solution.timedep.pde(:,1,:),opts.N+1,[]);
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We will explain each line used in the above code. First, we load an example from the PIESIM
examples library. An example can be selected by specifying the example number (between 1
and 38 for 1D problems) to load the example.

[PDE,uinput]=examples_pde_library_PIESIM_1D(4);

In this demonstration, we choose the example

ẋ(t, s) = s∂2
s x(t, s), s ∈ [0, 2], t ≥ 0 (6.1)

x(t, 0) = w1(t), x(t, 2) = w2(t), x(0, s) = −s2.

where w1(t) = 0 and w2(t) = −4t−4. For this PDE, the exact solution is known and is given by
the expression x(t, s) = −2st−s2 which can be specified under uinput structure for verification
as shown below.

» uinput.exact(1) = -2*sx*st-sxˆ2;
» uinput.ifexact = true;

Likewise, other input parameters such as initial conditions and inputs at the boundary are
specified as

» uinput.w(1) = 0;
» uinput.w(2) = -4*st-4;
» uinput.ic.PDE = -sxˆ2;

where sx, st are MATLAB symbolic objects. However, the example automatically defines
the uinput structure and the above expressions are provided for demonstration only and not
necessary when using a PDE from example library. Once the PDE and system inputs are
defined, we may choose to specify simulation parameters under opts structure.

>> opts.plot = ‘yes’;
>> opts.N = 8;
>> opts.tf = 1;
>> opts.Norder = 2;
>> opts.dt = 1e-3;

First, we turn on the plotting by setting the plotting option to ‘yes’. Next, we specify the order
of spatial discretization N (order of Chebyshev polynomials to be used in the approximation of
the PDE solution) and the time of simulation, tf. Then, we select the order of the temporal
integration scheme (backward-difference scheme) as 2 and the time step as 1e-3. If these
parameters are not specified, they will be set at their default values as listed in Section 6.2.
However, the user can modify these parameters as needed. Now that we have defined all
necessary and optional parameters, we can run the simulation using the command for the PDE
example:

» solution = PIESIM(PDE,opts,uinput);
» tval = solution.timedep.dtime;
» xval = reshape(solution.timedep.pde(:,1,:),opts.N+1,[]);

We obtain the time steps at which the solution is computed from soution.timedep.dtime,
and the value of the PDE state x(t, s) at these times from solution.timedep.pde. Note that
the number of columns of this latter field matches the number of state variables in our system,
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so we extract the first (and in this case only) column of this array. Element xval(i,j) will
then specify the value of our PDE state at grid point i and time step j. An isosurface plot of
these values is shown in Figure 6.1, along with the simulated and exact value of the PDE state
at the final time t = 1. These plots are produced by PIESIM if opts.plot=‘yes’ is chosen.

Figure 6.1: Simulated evolution of the PDE state x(t, s) (left) and final value x(t = 1, s) (right)
for the PDE (6.1), along with the analytic solution at the final time.

6.4.2 PIESIM Demonstration B: 2D PDE example
Simulation of 2D ODE-PDE systems can be done with PIESIM in much the same way to that
of 1D systems. To illustrate, consider the following system, consisting of a 2D PDE coupled to
1D PDEs and an ODE at the boundaries,

ẋ1(t) = −x1(t), t ≥ 0, (6.2)

∂tx1(t, s1) = 1
π2 ∂2

s1x2(t, s1), s1 ∈ [0, 1],

∂tx3(t, s2) = 1
π2 ∂2

s2x3(t, s2), s2 ∈ [0, 5],

∂tx4(t, s1, s2) = 1
2π2

(
∂2

s1x4(t, s1) + ∂2
s2x4(t, s1)

)
,

x2(t, 0) = x(t), ∂s1x2(t, 1) = 0,

x3(t, 0) = x(t), ∂s2x3(t, 5) = 0,

x4(t, 0, s2) = x3(t, s2) ∂s1x4(t, 1, s2) = 0,

x4(t, s1, 0) = x2(t, s1) ∂s2x4(t, s1, 5) = 0,

This system can be readily declared using the Command Line Input format as shown in Chap-
ter 4, but is also included in the PIESIM 2D example library as example number 9. Starting
with initial conditions

x1(0) = 10, x2(0, s1) = 10 cos(πs1), x3(0, s2) = 10 cos(πs2),
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x4(0, s1, s2) = 10 cos(πs1) cos(πs2), (6.3)

the exact solution to the PDE, x(t) = (x1(t), x2(t), x3(t), x4(t), is given by x(t) = e−tx(0). We
can numerically approximate this solution through simulation with PIESIM by running the
following code.

Code Block 7

First, extract our desired example PDE:
>> [PDE,~] = examples_pde_library_PIESIM_2D(9);

Next, set the initial conditions and exact solution:
>> syms sx sy st real
>> u_ex = 10*cos(sym(pi)*sx)*cos(sym(pi)*sy)*exp(-st);
>> uinput.exact(1) = subs(subs(u_ex,sy,0),sx,0);
>> uinput.exact(2) = subs(u_ex,sy,0);
>> uinput.exact(3) = subs(u_ex,sx,0);
>> uinput.exact(4) = u_ex;
>> uinput.ic.x = subs(uinput.exact,st,0);
>> uinput.ifexact = true;

Also, set the options for simulation
>> opts.plot = ’yes’;
>> opts.N = 16;
>> opts.tf = 1;
>> opts.dt = 1e-3;

Finally, simulate and extract solution
>> [solution,grids] = PIESIM(PDE,opts,uinput);
>> x1val = solution.timedep.ode; % x1(t)
>> x2fin = solution.final.pde{1}(:,1); % x2(t=tf,s1);
>> x3fin = solution.final.pde{1}(:,2); % x3(t=tf,s2);
>> x4fin = solution.final.pde{2}; % x4(t=tf,s1,s2);
>> s1_grid = grids.phys(:,1);
>> s2_grid = grids.phys(:,2);

Running this code, the solution to the PDE (6.2) is simulated up to time t = 1, using a time
step of ∆t = 10−3. Spatial discretization is performed using 16× 16 Chebyshev polynomials in
the spatial variables s1 and s2.

Note that, since we are simulating a 2D PDE, the output field solution.final.pde (as well
as solution.timedep.pde) will be a cell, with the first element containing the solution of the 1D
PDE states at the final time and each grid point, and the second element containing the solution
of the 2D PDE state at the final time and all grid points. In this case, the simulated value of
x2(1, s1) at all grid points in s1 ∈ [0, 1] is stored in the first column solution.final.pde1(:,1),
and the simulated value of x3(1, s2) is stored in the second column solution.final.pde1(:,2).
The output x4fin=solution.final.pde2 will be an (16+1)×(16+1) array, with each element
x4fin(i,j) specifying the value of x4(t, s1, s2) at the ith grid point along s2 ∈ [0, 5], and the
jth gridpoint along s1 ∈ [0, 1]. The values of these grid points are stored in the output field
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grid.phys, with the first column specifying grid points along the first spatial direction s1, and
the second column specifying grid points along the second spatial direction s2.

The simulated value of the 1D and 2D PDE states at the final time t = 1 are displayed in
Fig. 6.2 and Fig. 6.3, respectively, along with the value of the exact solution at that time.

Figure 6.2: Numerical and true values of the 1D PDE states x2(t) and x3(t) from the ODE-
PDE (6.2) at t = 1, simulated with initial conditions as in (6.3).

Figure 6.3: Numerical and true values of the 2D PDE state x4(t) from the ODE-PDE (6.2) at
t = 1, simulated with initial conditions as in (6.3).

6.4.3 PIESIM Demonstration C: DDE example
Simulation of DDEs can be performed using the same steps as the simulation of PDEs, only
now passing a DDE structure rather than PDE structure as first argument to the PIESIM()
function. To illustrate, consider a DDE system,

ẋ(t) =
[
−1 2
0 1

]
x(t) +

[
0.6 −0.4
0 0

]
x(t− τa) +

[
0 0
0 −0.5

]
x(t− τb) +

[
1
1

]
w(t) +

[
0
1

]
u(t) (6.4)
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z(t) =

1 0
0 1
0 0

x(t) +

 0
0

0.1

u(t)

where τa = 1 and τb = 2. As shown in Chapter 4, this system can be represented in PIETOOLS
as a structure DDE as follows:

>> DDE.A0=[-1 2;0 1]; DDE.Ai{1}=[.6 -.4; 0 0];
>> DDE.Ai{2}=[0 0; 0 -.5]; DDE.B1=[1;1];
>> DDE.B2=[0;1]; DDE.C1=[1 0;0 1;0 0];
>> DDE.D12=[0;0;.1]; DDE.tau=[1,2];

We simulate the system with an initial state x1(−s) = x2(−2s) = 1 for all s ∈ [0, 1], and with
a disturbance w(t) = −4t− 4, which we declare as simply

>> uinput.w(1) = -4*st-4;
>> uinput.u(1) = 0;

Here, by not specifying any initial conditions, the initial values will default to 1. Now, for the
remaining simulation options, we use the same settings as in Subsection 6.4.1:

>> opts.plot = ’yes’;
>> opts.N = 8;
>> opts.tf = 1;
>> opts.Norder = 2;
>> opts.dt=1e-3;

Then, we can simulate the system and extract the solution as simply
>> solution = PIESIM(DDE,opts,uinput);
>> tval = solution.timedep.dtime;
>> xval = solution.timedep.ode;
>> zval = solution.timedep.regulated;

Note here that the simulated value of the DDE state is stored in solution.timedep.ode –
there is no separate field for DDE solutions. Element xval(i,j) will then give the simulated
value of the ith state at time tval(j). The simulated evolution of the DDE states is displayed
in Figure 6.4
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Figure 6.4: State solutions x1(t) and x2(t) to the DDE (6.4) simulated up to t = 1, with unit
initial conditions and disturbance w(t) = −4t− 4.

6.4.4 PIESIM Demonstration D: PIE example
Simulating the DDE from Section 6.4.3, it appears that this system is unstable. To resolve this,
we can use PIETOOLS to design a stabilizing controller for the PIE, and then visualize the
behaviour of the system under the action of the controller by simulating the closed-loop system.
However, controller synthesis in PIETOOLS is performed in terms of the PIE representation,
and conversion of a PIE back to DDE/PDE format is often tricky. Fortunately, PIESIM() also
supports simulation of systems in the PIE representation, by passing a pie_struct object as
first argument to the function. To illustrate, consider again the DDE (6.4), which we declared
as a DDE structure in the previous subsection. We can synthesize a controller for this system
by first converting it to a PIE, and then calling the controller synthesis LPI (see also Sec. 13.3)
as follows

>> PIE = convert_PIETOOLS_DDE(DDE,’pie’);
>> [~, K, gam] = lpiscript(PIE,’hinf-controller’,’light’);
>> PIE_CL = closedLoopPIE(PIE,K);

Here, PIE will be a pie_struct objecting representing the PIE representation of our DDE,
expressed in terms of a fundamental state xf(t). The output K will then be an opvar object
representing the optimal controller gain K defining the control law u(t) = Kxf(t). Finally,
PIE_CL will be another pie_struct object, representing the PIE dynamics of the system with
the feedback law u(t) = Kxf(t) imposed. Now, to simulate the behaviour of this system, we
can simply call PIESIM for the object PIE_CL. Here, we will use the same options for numerical
integration and discretization as in the previous subsection, setting

>> opts.plot = ’yes’;
>> opts.N = 8;
>> opts.tf = 1;
>> opts.Norder = 2;
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>> opts.dt = 1e-3;
However, for the field uinput, we note that in this case we have no exact solution, nor any con-
trolled input (as PIE_CL represents the closed-loop system), so we declare only the disturbance
w(t) = −4t− 4

>> clear uinput; syms st
>> uinput.w(1) = -4*st-4;

Note that, since we are now simulating a PIE, initial conditions would have to be declared for
the PIE state – not for the DDE or PDE state. However, since we want to model the response
to a zero initial state, we declare no initial conditions in this case, so that the initial state will
default to zero. Finally, in order to simulate a PIE system, we must also specify how many
state variables there are differentiable up to each order. In our case, each of our two DDE state
x1(t), x2(t) will introduce a corresponding fundamental state component x1(t, s), x2(t, s) that is
first-order differentiable with respect to s (see also Sec. 4.3. Thus, we indicate that our system
involves 2 first-order differentiable distributed state as

>> ndiff = [0, 2];

Then, we can finally simulate the closed-loop response of the system using PIESIM as
>> solution = PIESIM(PIE,opts,uinput,ndiff);
>> tval = solution.timedep.dtime;
>> xval = solution.timedep.ode;
>> zval = solution.timedep.regulated;

Here, even though we pass a PIE system to the PIESIM, the values solution.timedep.ode
and solution.timede.pde will still correspond to simulated values of the primary state, not
the fundamental state. The simulated evolution of the DDE state variables is displayed in
Figure 6.5.

Figure 6.5: State solutions x1(t) and x2(t) to the DDE (6.4) with optimal feedback synthesized
with PIETOOLS, simulated up to t = 1, with unit initial conditions and disturbance w(t) =
−4t− 4.
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Note

PIESIM does not currently support simulation of 2D PIEs directly. This feature will be
added in a later release.
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Chapter 7

Declaring and Solving Convex
Optimization Programs on PI
Operators

In Chapter 5 we showed how PIETOOLS can be used to derive an equivalent PIE representation
of any well-posed system of linear partial differential and delay-differential equations. This PIE
representation is free of the boundary conditions and continuity constraints that appear in the
PDE representation, allowing analysis of PIEs to be performed without having to explicitly
account for such additional constraints. In addition, PIEs are parameterized by PI operators,
which can be added and multiplied, and for which concepts of e.g. positivity are well-defined.
This allows us to impose positivity and negativity constraints on PI operators, referred to as
Linear PI Inequalities (LPIs), to define convex optimization programs for testing properties
(such as stability) of PIEs.

In this chapter, we show how these convex optimization problems can be implemented in
PIETOOLS. In particular, in Sections 7.1 and 7.2, we show how an LPI optimization program
can be initialized, and how (PI operator) decision variables can be added to this program
structure. Next, in Section 7.3 we show how PI operator equality and inequality constraints
can be specified, followed by how an objective function can be set for the program in Section 7.4.
In Sections 7.5 and 7.6, we then show how the optimization program can be solved, and how
the obtained solution can be extracted, respectively. Finally, in Section 7.7, we show how pre-
defined executive files can be used to solve standard LPI optimization programs for PIEs, and
how properties in these optimization programs can be modified using the settings files.

To illustrate each of these functions, we consider the problem of constructing an H∞-optimal
estimator for a simple diffusive 2D PDE. This can be done in the PIE representation by solving
an LPI (see Sec. 13.2), and we will illustrate how this LPI can be declared and solved in
PIETOOLS in the following sections. The full codes presented throughout this section are also
included in the script “PIETOOLS_Code_Illustrations_Ch7_LPI_Programming”.
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Example

Consider the problem of designing an H∞-optimal estimator of the form

∂t(T x̂f)(t) = Ax̂f(t) + L
(
y(t)− ŷ(t)

)
, ∂t(T xf(t)) = Axf(t) + B1w(t),

ẑ(t) = C1x̂f(t), for a PIE, z(t) = C1xf(t) +D11w(t),
ŷ(t) = C2x̂f(t), y(t) = C2xf(t) +D21w(t), (7.1)

aiming to find an operator L that minimize the gain supw∈L2[0,∞), w ̸=0
∥ẑ−z∥L2
∥w∥L2

. To construct
such an operator, we solve the LPI,

min
γ,P,Z

γ

P ≻ 0, Q :=

−γI −D⊤11 −(PB1 + ZD21)∗T
(·)∗ −γI C1
(·)∗ (·)∗ (PA+ ZC2)∗T + (·)∗

 ≼ 0 (7.2)

so that, for any solution (γ,P ,Z) to this problem, letting L := P−1Z, the estimation error
will satisfy ∥z − ẑ∥L2 ≤ γ∥w∥L2 . For more details on this LPI, and additional examples of
LPIs and their applications, we refer to Chapter 13.

We will solve the LPI (7.2) for the PIE corresponding to the PDE

∂tx(t, s1, s2) = ∂2
s1x(t, s1, s2) + ∂2

s1x(t, s1, s2) + 4x(t, s1, s2) s1 ∈ [0, 1],
+ s1(1− s1)(s2 + 1)(3− s2)w(t), s2 ∈ [−1, 1],

with BCs 0 = x(t, 0, s2) = x(t, 1, s2),
0 = x(t, s1,−1) = ∂s2x(t, s1, 1),

and outputs z(t) =
∫ 1

0

∫ 1

−1
x(t, s1, s2)ds2ds1 + w(t),

y(t, s1) = x(t, s1, 1). (7.3)

We declare this PDE using the Command Line Input format as
>> pvar s1 s2 t
>> pde_var state x input w output z sense y;
>> x.vars = [s1;s2]; x.dom = [0,1;-1,1];
>> y.vars = s1; y.dom = [0,1];
>> PDE = [diff(x,t)==diff(x,s1,2)+diff(x,s2,2)+4*x +s1*(1-s1)*(s2-1)*(3-s2)*w;

z==int(x,[s1;s2],[0,1;-1,1]) +w;
y==subs(x,s2,1);

subs(x,s1,0)==0; subs(x,s1,1)==0;
subs(x,s2,-1)==0; subs(diff(x,s2),s2,1)==0];

We convert the PDE to an equivalent PIE using convert, and extract the defining PI
operators so that these can be used to declare the LPI (7.2)

>> PIE = convert(PDE,’pie’);
>> T = PIE.T;
>> A = PIE.A; C1 = PIE.C1; C2 = PIE.C2;
>> B1 = PIE.B1; D11 = PIE.D11; D21 = PIE.D21;
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7.1 Initializing an Optimization Problem Structure
In PIETOOLS, optimization programs are stored as program structures prog. These structures
keep track of the free variables in the optimization program, the decision variables in the
optimization program, the constraints imposed upon these decision variables, and the objective
function in terms of these decision variables. Such an optimization program structure must
always be initialized with the function lpiprogram as

>> prog = lpiprogram(vars, dum_vars, dom, dvars, free_vars);

This function takes 5 inputs, only two of which are mandatory:

• vars: A n × 1 array specifying the n spatial variables that appear in the optimization
program. These variables will be independent variables in the optimization program.

• dum_vars: (optional) A n×1 array specifying for each of the spatial variables an associated
dummy variable used for integration in the PI operators. In most cases, this argument
need not be declared, in which case the function automatically generates a dummy variable
for each of the specified spatial variables by adding _dum to the variable name (e.g. s
yields s_dum). This matches the default dummy variables used throughout PIETOOLS.
However, if you explicitly used different dummy variable names to define the PI operators
in your optimization program (e.g. if T.var1=s but T.var2=theta), it is crucial that you
specify these dummy variables when initializing the optimization program as well.

• dom: A n×2 array specifying for each of the n variables the lower boundary (first column)
and upper boundary (second column) of the interval on which this variable exists.

• dvars: (optional) A q × 1 array of decision variables that appear in the optimization
program. Decision variables can also be added to the optimization program structure
later using the functions described in Section 7.2.

• freevars: (optional) A m×1 array of additional independent variables in the optimization
program, that are not necessary spatial variables, and therefore are not restricted to a
particular domain. This field is usually left empty.

The output is a structure representing an optimization program, to which (additional)
decision variables and constraints can be added as shown in the following sections.

Note:

To represent LPI optimization programs, PIETOOLS utilizes the sosprogram optimization
program structure from SOSTOOLS 4.00 [6]. For additional options allowed by SOSTOOLS
not mentioned here, we refer to the SOSTOOLS 4.00 manual.

75



Example

For the LPI (7.2), the relevant spatial variables are (s1, s2) ∈ [0, 1]× [−1, 1]. We initialize
the optimization program structure as

>> prog = lpiprogram([s1;s2], [0,1;-1,1])
prog =

struct with fields:

var: [1×1 struct]
expr: [1×1 struct]

extravar: [1×1 struct]
objective: []

solinfo: [1×1 struct]
vartable: [4×1 polynomial]

varmat: [1×1 struct]
decvartable: {}

dom: [2x2 double]

This initializes an empty optimization program in the spatial variables s1 and s2, existing
on the intervals [0,1] and [-1,1], respectively, and stored in the field vartable

>> prog.vartable
ans =

[ s1]
[ s2]
[ s1_dum]
[ s2_dum]

Note that lpiprogram automatically adds dummy variables s1_dum and s2_dum to the
program, which match the dummy variable defining the PI operators in our PIE:

>> vars = PIE.vars
vars =

[ s1, s1_dum]
[ s2, s2_dum]

If, for whatever reason, you explicitly declared different dummy variables to define your
PI operators (e.g. pvar theta nu), it is vital that you pass these dummy variables to
lpiprogram instead (e.g. using lpiprogram([s1;s2],[theta;nu],[0,1;-1,1]]).

7.2 Declaring Decision Variables
Having shown how to initialize an optimization program structure prog, in this section, we
show how decision variables can be added to the optimization program structure. For the
purposes of implementing LPIs, we distinguish three types of decision variables: standard
scalar decision variables (Subsection 7.2.1), positive semidefinite PI operator decision variables
(Subsection 7.2.2), and indefinite PI operator decision variables (Subsection 7.2.3).
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7.2.1 lpidecvar

The simplest decision variables in LPI programs are represented by scalar dpvar objects, and
can be declared using lpidecvar, as e.g.

>> [prog,d1] = lpidecvar(prog,’d1’); % Generate decision variable with name d1

This function takes an optimization program structure prog, and returns the same structure
but with the decision variable d1 added to it, where the output d1 is a dpvar object which can
then be manipulated using standard operations such as addition and multiplication. Note that
the second argument ’d1’ is an optional input that merely specifies the desired name of the
output decision variable, so that d1.dvarname=’d1’. If the name of the decision variable is not
of importance, an m× n array of decision variables can also be declared as

>> [prog,d_arr] = lpidecvar(prog,[m,n]); % Generate mxn decision variable array

where now d_arr is an m × n dpvar object, with each element d_arr(i,j) being a decision
variable named coeff_k for some k.

Example

In the LPI (7.2), γ is a scalar decision variable, that appears both in the constraints and
the objective function. To declare this variable, we simply call

>> [prog,gam] = lpidecvar(prog, ’gam’)
prog =

struct with fields:

var: [1×1 struct]
expr: [1×1 struct]

extravar: [1×1 struct]
objective: 0

solinfo: [1×1 struct]
vartable: [4×1 polynomial]

varmat: [1×1 struct]
decvartable: {’gam’}

dom: [2x2 double]

returning an optimization program structure with the variable ’gam’ added to the field
decvartable. The output gam is a dpvar object representing this variable, which we will
use to declare constraints in Section 7.3.

7.2.2 poslpivar

In PIETOOLS, positive semidefinite PI operator decision variables P ≽ 0 are parameterized
by positive matrices P ≽ 0 and positive scalar-valued functions g(s) ≥ 0 (for s in the domain)
as P = Z∗d(gP )Zd ⪰ 0, where Zd is a PI operator parameterized by monomials of degree of at
most d (see Theorem 11 in Appendix A). Such PI operators can be declared using the function
poslpivar:

77



» [prog,P] = poslpivar(prog,n,d,opts);

This function takes four inputs, two of which are mandatory:
• prog: An LPI program structure to which to add the PI operator decision variable.

• n: A 2× 1 vector [n0;n1] specifying the dimensions of P :
[

Rn0
L

n1
2 [a,b]

]
→
[

Rn0
L

n1
2 [a,b]

]
for a 1D

operator, or a 4 × 1 vector [n0;n1;n2;n3] specifying the dimensions for a 2D operator

P :

 Rn0
L

n1
2 [a,b]

L
n2
2 [c,d]

L
n3
2 [[a,b]×[c,d]]

→
 Rn0

L
n1
2 [a,b]

L
n2
2 [c,d]

L
n3
2 [[a,b]×[c,d]]

.

• d (optional):

– 1D: A cell structure of the form {a,[b0,b1,b2]}, specifying the degree a of s in
Z1(s), the degree b0 of s in Z2(s, θ), the degree b1 of θ in Z2(s, θ), and the degree
b2 of s and θ combined in Z2(s, θ) (see Thm. 11).

– 2D: A structure with fields d.dx,d.dy,d.d2, specifying degrees for operators along
x ∈ [a, b], along y ∈ [c, d], and along both (x, y) ∈ [a, b]× [c, d];
call help poslpivar_2d for more information.

• opts (optional): A structure with fields

– exclude: 4 × 1 vector with 0 and 1 values. Excludes the block Tij (see Thm. 11)
if i-th value is 1. Binary 16 × 1 array in 2D; call help poslpivar_2d for more
information.

– psatz: Sets g(s) = 1 if set to 0, and g(s) = (b − s)(s − a) if set to 1 in 1D. In 2D,
sets g(x, y) = (b − x)(x − a)(d − y)(y − c) if psatz=1, or g(x, y) = ((x − b+a

2 ) −
b−a

2 )2((y − d+c
2 )− d−c

2 )2.
– sep: Binary scalar value, constrains P.R.R1=P.R.R2 if set to 1. In 2D, this field is

a 6× 1 array; call help poslpivar_2d for more information.

The output is a dopvar class object P representing a positive semidefinite PI operator decision
variable, and an updated program structure prog including this decision variable. The function
poslpivar has other experimental features to impose sparsity constraints on the T matrix of
Thm. 11, which should be used with caution. Call help poslpivar for more information.

Note that, to enforce P ⪰ 0 only for s ∈ [a, b] (or (x, y) ∈ [a, b] × [c, d]), the option psatz
can be used as

>> [prog,P] = poslpivar(prog,n,d);
>> opts.psatz = 1;
>> [prog,P2] = poslpivar(prog,n,d,opts);
>> P = P+P2;

This will allow P to be nonpositive outside of the specified domain I, allowing for more freedom
in the optimization problem. However, since it involves declaring a second PI operator decision
variable P2, it may also substantially increase the computational complexity associated with
setting up and solving the optimization problem.

Note also that the output operator P of poslpivar is only positive semidefinite, i.e. P ⪰ 0.
To ensure positive definiteness, we can add a strictly positive operator ϵI for (small) ϵ > 0 to
P as e.g.
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>> P = P + 1e-5*eye(size(P));

Example

In the LPI (7.2), we have one positive definite PI operator decision variable P ≻ 0. This
operator P should have the same dimensions

[ n0
n1
n2
n3

]
as the operator T , which we declare as

follows:
>> Pdim = T.dim(:,1)
Pdim =

0
0
0
1

With this, we indicate that the operator P should map L2[[0, 1] × [−1, 1]] → L2[[0, 1] ×
[−1, 1]]. In its most general form, such an operator may be defined using multiplier and
integral operators, but to minimize computational cost, we will simply choose P here to be
a (scalar-valued) matrix, excluding any of the integral terms by using the settings

>> P_opts.exclude = [1;
1;1;1;
1;1;1;
0;1;1;1;1;1;1;1;1];

Here, the first three lines are just to exclude all operator components mapping R → R,
L2[0, 1] → L2[0, 1], and L2[−1, 1] → L2[−1, 1], respectively – which will also be excluded
automatically by the specified dimensions of the operator. However, with the last line,
we indicate that we also wish to exclude all integral-type operators mapping L2[[0, 1] ×
[−1, 1]] → L2[[0, 1] × [−1, 1]], only including a multiplier-type operator. Although this
multiplier could still be defined by a polynomial, we will set the degree of this polynomial
to just 0 as

>> Pdeg = 0;

We declare a positive semidefinite PI operator P with these specifications as
>> [prog,P] = poslpivar(prog,Pdim,Pdeg,P_opts)
prog =

struct with fields:

var: [1×1 struct]
expr: [1×1 struct]

extravar: [1×1 struct]
objective: [2×1 double]

solinfo: [1×1 struct]
vartable: [4×1 polynomial]

varmat: [1×1 struct]
decvartable: {2×1 cell}

dom: [2x2 double]
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The output P here is a dopvar2d object, representing a PI operator decision variable rather
than a fixed PI operator. As such, the parameters (e.g P.R00, P.R0x, P.R0y, etc.) defining
this PI operator are dpvar class objects, parameterized by decision variables coeff_i.
These decision variables are collected in the field decvartable of the program structure, and
represent the matrix T in the expansion P = Z∗dTZd, constrained to satisfy T ≽ 0. With
our settings, the variable P will just be a multiplier operator mapping L2[[0, 1]× [−1, 1]]→
L2[[0, 1]× [−1, 1]], with the only non-zero parameter being stored in P.R22{1,1}:

>> P.R22{1,1}
ans =

coeff_1

In the LPI (7.2), the operator P is required to be strictly positive definite, satisfying P ⪰ ϵI
for some ϵ > 0. To enforce this, we let ϵ = 10−4, and ensure strict positivity of P by calling

>> eppos = 1e-4;
>> P = P + eppos*eye(size(P));

7.2.3 lpivar

A general (indefinite) PI operator decision variable Z can be declared in PIETOOLS using the
lpivar function as shown below.

» [prog,Z] = lpivar(prog,n,d);

This function takes three inputs, two of which are mandatory:

• prog: An LPI program structure to which to add the PI operator decision variable.

• n: a 2 × 2 array [m0,n0;m1,n1] specifying the dimensions of Z :
[

Rn0
L

n1
2 [a,b]

]
→

[
Rm0

L
m1
2 [a,b]

]
for a 1D operator, or 4×2 array [m0,n0;m1,n1;m2,n2;m3,n3] specifying the dimensions

for a 2D operator Z :

 Rn0
L

n1
2 [a,b]

L
n2
2 [c,d]

L
n3
2 [[a,b]×[c,d]]

→
 Rm0

L
m1
2 [a,b]

L
m2
2 [c,d]

L
m3
2 [[a,b]×[c,d]]

.

• d (optional):

– 1D: An array structure of the form [b0,b1,b2], specifying the degree b0 of s in Q1,
Q2, R0, the degree b1 of θ in Z.R.R1, Z.R.R2, and the degree b2 of s in Z.R.R1,
Z.R.R2.

– 2D: A structure with fields d.dx,d.dy,d.d2, specifying degrees for operators along
x ∈ [a, b], along y ∈ [c, d], and along both (x, y) ∈ [a, b]× [c, d]; call help lpivar_2d
for more information.

The output is a dopvar (or dopvar2d) object Z representing an indefinite PI decision variable,
and an updated program structure to which the decision variable has been added. Note that,
since PI operator decision variables Z need not be symmetric, the second argument n to the
function lpivar must specify both the output (row) dimensions of the operator Z (n(:,1)),
and the input (column) dimensions of the operator Z (n(:,2)).
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Example

For the LPI (7.2), we need to declare a PI operator decision variable Z which need not
be positive or negative definite. Here, given that C2 : L2[[0, 1] × [−1, 1]] → L2[0, 1], the
operator Z should map L2[0, 1]→ L2[[0, 1]× [−1, 1]], so we specify the dimensions of Z as

>> Zdim = C2.dim(:,[2,1])
Zdim =

0 0
0 1
0 0
1 0

so that in our case Z : L2[0, 1] → L2[[0, 1] × [−1, 1]]. As such, only the parameter Z.R2x
will be non-empty, but this parameter may still involve both a multiplier term (Z.R2x{1})
and partial integral terms (Z.R2x{2} and Z.R2x{3}). We will allow each of these terms to
be defined by polynomials of degree at most 2 in each of the variables, specifying degrees

>> Zdeg = 2;

Using the function lpivar, we then declare an indefinite PI operator decision variable as
>> [prog,Z] = lpivar(prog,Zdim,Zdeg)
prog =

struct with fields:

var: [1×1 struct]
expr: [1×1 struct]

extravar: [1×1 struct]
objective: [33×1 double]

solinfo: [1×1 struct]
vartable: [4×1 polynomial]

varmat: [1×1 struct]
decvartable: {33×1 cell}

dom: [2x2 double]

returning another dopvar2d object Z. We can verify that only the field Z.R2x is defined by
non-zero parameters, with e.g.

>> Z.R2x{1}
ans =

coeff_02 + coeff_04*s2 + coeff_07*s2^2 + coeff_03*s1 + coeff_06*s1*s2
+ coeff_09*s1*s2^2 + coeff_05*s1^2 + coeff_08*s1^2*s2 + coeff_10*s1^2
*s2^2

indicating that the multiplier term is defined by a polynomial of degree 2, as desired. In
total, the object Z is defined by 32 decision variables coeff, increasing the total number of
decision variables in prog.decvartable to 33.
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7.3 Imposing Constraints
Constraints form a crucial aspect of almost every optimization problem. In LPIs, constraints
often appear as inequality or equality conditions on PI operators (e.g. Q ⪯ 0 or Q = 0). These
constraints can be set up using the functions lpi_ineq and lpi_eq respectively, as we show in
the next subsections.

7.3.1 lpi_ineq

Given a program structure prog and dopvar (or dopvar2d) object Q (representing a PI operator
variable Q), an inequality constraint Q ⪰ 0 can be added to the program by calling

» prog = lpi_ineq(prog,Q,opts);

This function takes three input arguments

• prog: An LPI program structure to which to add the constraint Q ⪰ 0.

• Q: A dopvar or dopvar2d object representing the PI operator Q.

• opts (optional): A structure with fields

– psatz: Binary scalar indicating whether to enforce the constraint only locally. If
psatz=0 (default), a constraint Q = R1 will be enforced, where R ⪰ 0 will be
declared as a dopvar or dopvar2d object

» R1=poslpivar(prog,n,d,opts1)

with opts1.psatz=0. If psatz=1 (or psatz=2), a constraint Q = R1 +R2 will be
enforced, with R1 as before, and R2 ⪰ 0 declared as a dopvar or dopvar2d object

» R2=poslpivar(prog,n,d,opts2)

with opts2.psatz=psatz. Using psatz=1 (or alternatively psatz=2 in 2D) allows
the constraint Q ⪰ 0 to be violated outside of the spatial domain I, but may also
substantially increase the computational effort in solving the problem.

Calling lpi_ineq, a modified optimization structure prog is returned with the constraints
Q>=0 included. Note that the constraint imposed by lpi_ineq is always non-strict. For strict
positivity, an offset ϵ > 0 may be introduced, enforcing Q− ϵI ⪰ 0 to ensure Q ⪰ ϵI ≻ 0. This
may be implemented as e.g.

>> prog = lpi_ineq(prog,Q-ep*eye(size(Q)));

where ep is a small positive number.
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Example

For the LPI (7.2), we impose the constraint Q ≼ 0 by calling
>> Iw = eye(size(B1,2)); Iz = eye(size(C1,1));
>> Q = [-gam*Iw, -D11’, -(P*B1+Z*D21)’*T;

-D11, -gam*Iz, C1;
-T’*(P*B1+Z*D21), C1’, (P*A+Z*C2)’*T+T’*(P*A+Z*C2)];

>> Q_opts.psatz = 1;
>> prog = lpi_ineq(prog,-Q,Q_opts);
prog =

struct with fields:

var: [1×1 struct]
expr: [1×1 struct]

extravar: [1×1 struct]
objective: [102185×1 double]

solinfo: [1×1 struct]
vartable: [4×1 polynomial]

varmat: [1×1 struct]
decvartable: {102185×1 cell}

dom: [2x2 double]

We note that lpi_ineq enforces the constraint −Q ≽ 0 by introducing a new PI operator
decision variable R ≽ 0, and imposing the equality constraint −Q = R. In doing so,
lpi_ineq tries to ensure that the degrees of the polynomial parameters defining R match
those of the parameters defining −Q, in this case parameterizingR by 102185−33 = 102152
decision variables (check the size of decvartable). An operator R involving more or fewer
decision variables can also be declared manually, at which point the constraint −Q = R
can be enforced using lpi_eq, as we show next.

7.3.2 lpi_eq

Given a program structure prog and dopvar (or dopvar2d) object Q (representing a PI operator
decision variable Q), an equality constraint Q = 0 can be added to the program by calling

» prog = lpi_eq(prog,Q);

This returns a modified optimization structure prog with the constraints Q=0 included. Since
opvar objects are defined by parameters (Q.P, Q.Q1, Q.Q2, etc.), each of these parameters
will be set to zero in the optimization program. Here, if Q is symmetric, we note that e.g.
Q.Q1=Q.Q2, and therefore only Q.Q1=0 needs to be enforced. To exploit this fact, an argument
’symmetric’ can be passed to lpi_eq as

» prog = lpi_eq(prog,Q,’symmetric’);

This argument is not mandatory, but can reduce the number of equality constraints in the
optimization program, and therefore the computational cost of solving it. Of course, this
argument should only be passed if Q is indeed symmetric!
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Example

For the LPI (7.2), we can enforce the constraint Q ≼ 0 by declaring a new positive semidef-
inite PI operator decision variable R ⪰ 0, and enforcing Q = −R ≼ 0. In particular, as an
alternative to using lpi_ineq as in the previous subsection, we can call

>> Rdeg = 3; R_opts.psatz = 1;
>> [prog_alt,R1] = poslpivar(prog,Q.dim(:,1),Rdeg);
>> [prog_alt,R2] = poslpivar(prog_alt,Q.dim(:,1),Rdeg-1,R_opts);
>> prog_alt = lpi_eq(prog_alt,Q+R1+R2,’symmetric’);
prog_alt =

struct with fields:

var: [1×1 struct]
expr: [1×1 struct]

extravar: [1×1 struct]
objective: [105670×1 double]

solinfo: [1×1 struct]
vartable: [4×1 polynomial]

varmat: [1×1 struct]
decvartable: {105670×1 cell}

dom: [2x2 double]

Here, we chose the degrees of R to be slightly larger than those we used to define P, hoping
to make sure that all monomials appearing in Q can then be matched by those in R. The
new program structure includes the constraints R ≽ 0 and Q+R = 0. The resulting total
number of decision variables (105670) is somewhat larger than in the program obtained
using lpi_ineq in the previous subsection, as the specified degrees Rdeg used to define R
are quite large. Naturally, we can reduce the number of decision variables and thus the
computational cost of solving by specifying smaller degrees Rdeg, but this may come at the
cost of greater conservatism.

7.4 Defining an Objective Function
Aside from constraints, many optimization problems also involve an objective function, aiming
to minimize or maximize some function of the decision variables. To minimize the value of a
linear objective function f(d1, . . . , d1), where d1, . . . , dn are decision variables, call lpisetobj
with as first argument the program structure, and as second argument the function f(d):

>> prog = lpisetobj(prog, f);

where f must be a dpvar object representing the objective function. For example, a function
f(γ1, γ2) = γ1 + 5γ2 could be specified as objective function using

>> [prog,gam] = lpidecvar(prog,[1,2]);
>> f = gam(1) + 5*gam(2);
>> prog = lpisetobj(prog, f);
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Note:

• The objective function must always be linear in the decision variables.

• Only one (scalar) objective function can be specified.

• In solving the optimization program, the value of the objective function will always
be minimized. Thus, to maximize the value of the objective function f(d), specify
−f(d) as objective function.

Example

In the LPI (7.2), the value of the decision variable γ is minimized. As such, the objective
function in this problem is just f(γ) = γ, which we declare as

>> prog = lpisetobj(prog, gam);
prog =

struct with fields:

var: [1×1 struct]
expr: [1×1 struct]

extravar: [1×1 struct]
objective: [102185×1 double]

solinfo: [1×1 struct]
vartable: [4×1 polynomial]

varmat: [1×1 struct]
decvartable: {102185×1 cell}

dom: [2x2 double]

The field objective in the resulting structure prog will be a vector with all elements equal
to zero, except the first element equal to 1, indicating that the objective function is equal
to 1 times the first decision variable in decvartable, which is γ.

7.5 Solving the Optimization Problem
Once an optimization program has been specified as a program structure prog, it can be solved
by calling lpisolve

>> prog_sol = lpisolve(prog,opts);

Here opts is an optional argument to specify settings in solving the optimization program, with
fields

• opts.solve: char type object specifying which semidefinite programming (SDP) solver
to use. Options include ‘sedumi’ (default), ‘mosek’, ‘sdpt3’, and ‘sdpnalplus’. Note that
these solvers must be separately installed in order to use them.

• opts.simplify: Binary value indicating whether the solver should attempt to simplify
the SDP before solving. The simplification process may take additional time, but may
reduce the time of actually solving the SDP.
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After calling lpisolve, it is important to check whether the problem was actually solved. Using
the solver SeDuMi, this can be established looking at e.g. the value of feasratio, which will
be close to +1 if the problem was successfully solved, and the values of pinf and dinf, which
should both be zero if the problem is primal and dual solvable. If lpisolve is unsuccessful
in solving the problem, the problem may be infeasible, or different settings must be used in
declaring the decision variables and constraints (e.g. include higher degree monomials in the
positive operators).

Example

Having declared the full LPI (7.2), we can finally solve the problem as
>> solve_opts.solver = ’sedumi’;
>> solve_opts.simplify = true;
>> prog_sol = lpisolve(prog,solve_opts);

Residual norm: 0.00031666

iter: 18
feasratio: -0.0725

pinf: 0
dinf: 0

numerr: 2
timing: [0.9840 223.2360 0.0320]

wallsec: 224.2520
cpusec: 114.1406

The returned value of feasratio is close to zero, and numerr is 2, indicating that Se-
DuMi has run into serious numerical problems. This is not uncommon when solving LPI
optimization programs where we are simultaneously testing feasibility of some (large) LPI
constraints and minimizing an objective. In such cases, it is often a good idea to run the
optimization program for a fixed a value of the objective function, only testing feasibility
of the LPI, and manually performing bisection on the value of the objective function coef-
ficients if necessary. For example, rerunning this same test but now fixing a value gam==2
a priori, lpisolve returns an output structure

iter: 15
feasratio: 0.8673

pinf: 0
dinf: 0

numerr: 1
timing: [0.3380 2.7187e+02 0.0850]

wallsec: 2.7227e+02
cpusec: 133

Here, we have pinf=0 and dinf=0, indicating that the proposed problem was not found to
be primal or dual infeasible, and the feasratio is quite close to 1. Thus, it appears that the
optimization program was successfully solved, and the LPI (7.2) is feasible for γ = 2.
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7.6 Extracting the Solution
Calling prog_sol=lpisolve(prog), a program structure prog_sol is returned that is very
similar to the input structure prog, defining the solved optimization problem. Given this solved
LPI program structure, we can retrieve the (optimal) value of any decision variable appearing
in the LPI – be it a function specified as an object of type dpvar, or an operator specified as an
object of type dopvar – using the function lpigetsol, passing the solved optimization program
structure prog_sol as first argument, and the considered dpvar or dopvar (dopvar2d) decision
variable as second argument:

>> f_val = lpigetsol(prog_sol,f);
>> Pop_val = lpigetsol(prog_sol,Pop);

Note that the lpiprogram prog_sol must be in a solved state (lpisolve must have been called)
to retrieve the solution for the input dpvar, dopvar, or dopvar2d object. The output f_val will
then by a polynomial class object, and Pop_val will then be opvar or opvar2d class object,
representing a fixed PI operator, with the solved (optimal) values of the decision variables
substituted into the associated parameters.

Example

To extract the optimal value of γ found when solving the LPI (7.2), we call
>> gam_val = lpigetsol(prog_sol,gam)
gam_val =

1.1344

We find that, through proper choice of the operator L, the estimator can achieve an H∞-
norm ∥z̃∥L2

∥w∥L2
≤ 1.1344. Of course, since the optimization program was not found to be

feasible, this bound may not actually be accurate, and we should instead continue with
the solved program structure obtained when fixing γ = 2. To extract the values of the
operators P and Z achieving this gain, we call

>> Pval = lpigetsol(prog_sol,P);
>> Zval = lpigetsol(prog_sol,Z);

The resulting object Pval and Zval are opvar2d objects, representing the values of the
operator P and Z for which the LPI (7.2) holds. Using these values, we can compute an
operator L such that the Estimator (7.1) satisfies ∥z̃∥L2

∥w∥L2
≤ γ = 2, as we show next.

When performing estimator or controller synthesis (see also Chapter 13), the optimal esti-
mator or controller associated with a solved problem has to be constructed from the solved PI
operator decision variables. For example, for the estimator in (7.1), the value of L is determined
by the values of P and Z in the LPI (7.2) as L = P−1Z. To facilitate this post-processing of
the solution, PIETOOLS includes several utility functions.

7.6.1 getObserver

For a solution (P ,Z) to the optimal estimator LPI (7.2), the operator L in the Estimator (7.1)
can be computed as
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>> Lval = getObserver(Pval,Zval);

where Pval and Zval are opvar (opvar2d) objects representing the (optimal) values of P and
Z in the LPI, and Lval is an opvar (opvar2d) object representing the associated (optimal)
value of L in the estimator.

Example

Given the opvar2d objects Pval and Zval, we can finally construct an optimal observer
operator L for the System (7.1) by calling

>> Lval = getObserver(Pval,Zval)
Lval =

[] | [] | [] | []
-----------------------------------
[] | Lval.Rxx | [] | Lval.Rx2
-----------------------------------
[] | [] | Lval.Ryy | Lval.Ry2
-----------------------------------
[] | Lval.R2x | Lval.R2y | Lval.R22

Lval.R2x =

Too big to display | Too big to display | Too big to display

where the expression for Lval.Rx2 is rather complicated. Nevertheless, using this value
for the operator L, an H∞ norm ∥z̃∥L2

∥w∥L2
≤ γ = 2 can be achieved. Performing bisection on

the value of γ, and perhaps increasing the freedom in our optimization problem (e.g. by
increasing the degrees of the monomials defining P and Z), we may be able to achieve a
tighter bound on the H∞ norm for the obtained operator L, or find another operator L
achieving a smaller value of the norm.

7.6.2 getController

For a solution (P ,Z) to the optimal control LPI (13.21) (Section 13.3), the operator K = ZP−1

defining the feedback law u = Kv for optimal control of the PIE (13.20) can be computed as
>> Kval = getController(Pval,Zval);

where Pval and Zval are opvar (opvar2d) objects representing the (optimal) values of P and
Z in the LPI, and Kval is an opvar (opvar2d) object representing the associated (optimal)
value of K in the feedback law u = Kv. Note that this feedback law is described in terms of
the PIE state v, not the state of the associated PDE or TDS. Deriving an optimal controller
for the associated PDE or TDS system will require careful consideration of how the PIE state
relates to the PDE or TDS state.

7.6.3 closedLoopPIE

For a PIE (13.20) and an operator K defining a feedback law u = Kv, a PIE corresponding to
the closed-loop system for the given feedback law can be computed as

88



>> PIE_CL = closedLoopPIE(PIE,Kval);

where Kval is an opvar (opvar2d) object representing the value of K in the feedback law
u = Kv, PIE is a pie_struct object representing the PIE system without feedback, and
PIE_CL is a pie_struct object representing the closed-loop PIE system with the feedback law
u = Kv enforced. Note that the resulting system takes no more actuator inputs u, so that
operators PIE_CL.Tu, PIE_CL.B2, PIE_CL.D12, and PIE_CL.D22 are all empty.

In addition, for a PIE and an operator L defining a Luenberger estimator gain, a PIE for
the closed-loop observed system can be computed as

>> PIE_CL = closedLoopPIE(PIE,Lval,’observer’);

where Lval is an opvar (opvar2d) object representing the value of L in the estimator in (7.1),
PIE is a pie_struct object representing the PIE system in (7.1), and PIE_CL is a pie_struct
object representing the closed-loop PIE system of the form

∂t

([
T 0
0 T

] [
xf
x̂f

])
(t, s) =

([
A 0
−LC2 A+ LC2

] [
xf
x̂f

])
(t, s) +

([
B1
LD21

]
w

)
(t)[

z
ẑ

]
(t) =

([
C1 0
0 C1

] [
xf
x̂f

])
(t) +

([
D11
0

]
w

)
(t)

so that e.g. PIE_CL.A represents the operator
[
A 0
−LC2 A+LC2

]
. Note that, for a PIE with state

xf(t) ∈ Ln
2 and output z(t) ∈ R, the state and output of the closed-loop observed system are

respectively given by
[ xf(t)

x̂f(t)

]
∈ L2n

2 and
[

z(t)
ẑ(t)

]
, where x̂f(t) and ẑ(t) are estimated values of

the PIE state and regulated output, respectively. However, for PIEs with coupled finite- and
infinite-dimensional states

[
x(t)
xf(t)

]
∈
[
Rm

Ln
2

]
, the state of the closed-loop system will be of the form x(t)

x̂(t)
xf(t)
x̂f(t)

 ∈ [ R2m

L2n
2

]
. This is because opvar objects can only represent maps of states in R × L2,

not e.g. states in L2 × R, and so the state components and their estimates will be organized
accordingly.

Example

A full code declaring and solving the optimal estimator LPI (7.2) for the PDE (7.3) has
been included as a script “PIETOOLS_Code_Illustrations_Ch7_LPI_Programming” in
PIETOOLS. An alternative demonstration for how an optimal estimator can be constructed
and simulated is also given in Section 11.5.

7.7 Running Pre-Defined LPIs: Executives and Settings
Combining the steps from the previous sections, we find that the H∞-optimal estimator LPI (7.2)
can be declared and solved for any given PIE structure PIE using roughly the same code. There-
fore, to facilitate solving the H∞-optimal estimator problem, the code has been implemented
in an executive file PIETOOLS_Hinf_estimator, that is structured roughly as
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>> % Extract the operators and initialize the LPI program
>> T = PIE.T; A = PIE.A; B1 = PIE.B1;
>> C1 = PIE.C1; D11 = PIE.D11; C2 = PIE.C2; D12 = PIE.D12;
>> prog = lpiprogram(PIE.vars,PIE.dom);

>> % Declare the objective function min{gamma}
>> [prog,gam] = lpidecvar(prog, ’gam’);
>> prog = lpisetobj(prog, gam);

>> % Declare the positive operator P>=0
>> [prog,P] = poslpivar(prog,T.dim,dd1,options1);
>> if override1==0
>> % Allow P<=0 outside domain PIE.dom
>> [prog,P2] = poslpivar(prog,T.dim,dd12,options12);
>> P = P + P2;
>> end
>> % Enforce strict positivity P>0
>> P.P = P.P + eppos*eye(size(P.P));
>> P.R.R0 = eppos2*eye(size(P.R.R0));

>> % Declare the indefinite operator Z
>> [prog,Z] = lpivar(prog,C2.dim(:,[2,1]),PIE.dom,ddZ);

>> % Enforce the negativity constraint Q<=0
>> Iw = eye(size(B1,2)); Iz = eye(size(C1,1));
>> Q = [-gam*Iw, -D11’, -(P*B1+Z*D21)’*T;

-D11, -gam*Iz, C1;
-T’*(P*B1+Z*D21), C1’, (P*A+Z*C2)’*T+T’*(P*A+Z*C2)+epneg*T’*T];

>> if use_ineq
>> % Enforce using lpi_ineq
>> prog = lpi_ineq(prog,-Q,opts);
>> else
>> % Enforce using lpi_eq
>> [prog,R] = poslpivar(prog,Q.dim(:,1),Q.I,dd2,options2);
>> if override2==0
>> % Allow R<=0 outside of domain Q.I
>> [prog,R2] = poslpivar(prog,Q.dim(:,1),Q.I,dd3,options3);
>> R = R+R2;
>> end
>> % Enforce Q=-R<=0
>> prog = lpi_eq(prog,Q+R,’symmetric’);
>> end

>> % Solve the optimization program and extract the solution
>> prog_sol = lpisolve(prog, sos_opts);
>> gam_val = lpigetsol(prog_sol, gam);
>> Pval = lpigetsol(prog_sol, P);
>> Zval = lpigetsol(prog_sol, Z);
>> Lval = getObserver(Pval, Zval);

We note that, in this code, there are several parameters that can be set, including what degrees
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to use for the PI operator decision variables (dd1, ddZ, dd2, etc.), whether or not to enforce
positivity/negativity strictly and/or locally (eppos, epneg, override1, etc.), and what options
to use in calling each of the different functions (options1, opts, sos_opts, etc.). To specify
each of the options, the executive files such as PIETOOLS_Hinf_estimator can be called with
an optional argument settings, as we describe in the following subsection.

7.7.1 Settings in PIETOOLS Executives
When calling an executive function such as PIETOOLS_Hinf_estimator in PIETOOLS, a second
(optional) argument can be used to specify settings to use in declaring the LPI program. This
argument should be a MATLAB structure with fields as defined in Table 7.1, specifying a value
for each of the different options to be used in declaring the LPI program.

settings Field Application
eppos Nonnegative (small) scalar to enforce strict positivity of Pop.P
eppos2 Nonnegative (small) scalar to enforce strict positivity of Pop.R0
epneg Nonnegative (small) scalar to enforce strict negativity of Dop
sosineq Binary value, set 1 to use sosineq
override1 Binary value, set 1 to let P2op = 0
override2 Binary value, set 1 to let De2op = 0
dd1 1x3 cell structure defining monomial degrees for Pop
dd12 1x3 cell structure defining monomial degrees for P2op
dd2 1x3 cell structure defining monomial degrees for Deop
dd3 1x3 cell structure defining monomial degrees for De2op
ddZ 1x3 array defining monomial degrees for Zop
options1 Structure of poslpivar options for Pop
options12 Structure of poslpivar options for P2op
options2 Structure of poslpivar options for Deop
options3 Structure of poslpivar options for De2op
opts Structure of lpi_ineq options for enforcing Dop ≤ 0
sos_opts Structure of sossolve options for solving the LPI

Table 7.1: Fields of settings structure passed on to PIETOOLS executive files

To help in declaring settings for the executive files, PIETOOLS includes several pre-defined
settings structures, allowing LPI programs of varying complexity to be constructed. In partic-
ular, we distinguish extreme, stripped, light, heavy and veryheavy settings, corresponding
to LPI programs of increasing complexity. A settings structure associated to each can be
extracted by calling the function lpisettings, using

>> settings = lpisettings(complexity, epneg, simplify, solver);

This function takes the following arguments:

• complexity: A char object specifying the complexity for the settings. Can be one of
‘extreme’, ‘stripped’, ‘light’, ‘heavy’, ‘veryheavy’ or ‘custom’.

• epneg: (optional) Positive scalar ϵ indicating how strict the negativity condition Q ≼
ϵ∥T ∥2 would need to be in e.g. the LPI for stability. Defaults to 0, enforcing Q ≼ 0.
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• simplify: (optional) A char object set to ‘psimplify’ if the user wishes to simplify the
SDP produced in the executive before solving it, or set to ‘’ if not. Defaults to ‘’.

• solver: (optional) A char object specifying which solver to use to solve the SDP in the
executive. Options include ‘sedumi’ (default), ‘mosek’, ‘sdpt3’, and ‘sdpnalplus’. Note
that these solvers must be separately installed in order to use them.

Note that, using higher-complexity settings, the number of decision variables in the optimization
problem will be greater. This offers more freedom in solving the optimization program, thereby
allowing for (but not guaranteeing) more accurate results, but also (substantially) increasing
the computational effort. We therefore recommend initially trying to solve with e.g. stripped
or light settings, and only using heavier settings if the executive fails to solve the problem.
Note also that PIETOOLS includes a custom settings file, which can be used to declare custom
settings for the executives.

Once settings have been specified, the desired LPI can be declared and solved for a PIE
represented by a structure PIE by simply calling the corresponding executive file, solving e.g.
the H∞-optimal estimator LPI (7.2) by calling

>> settings = lpisettings(’light’);
>> [prog, Lop, gam, P, Z] = PIETOOLS_Hinf_estimator(PIE, settings);

Alternatively, this executive can also be called using the function lpiscript as
>> [prog, Lop, gam, P, Z] = lpiscript(PIE,’hinf-observer’,’light’);

If successful, this returns the program structure prog associated to the solved problem, as well
as an opvar object Lop and scalar gam xcorresponding to the operator L in the estimator (7.1)
and associated estimation error gain γ, respectively. The function also returns dopvar objects
P and Z, corresponding to the unsolved PI operator decision variables in the LPI.

7.7.2 Executive Functions Available in PIETOOLS
In addition to the H∞-optimal estimation LPI, PIETOOLS includes several other executive
files to run standard LPI programming tests for a provided PIE. For example, stability of the
PIE defined by PIE when w = 0 can be tested by calling

>> [prog] = lpiscript(PIE,’stability’,’light’);

returning the optimization program structure prog associated to the solved program, and dis-
playing a message of whether the system was found to be stable or not in the command window.

Table 7.2 lists the different executive functions that have already been implemented in
PIETOOLS. For each executive, a brief description of its purpose is provided, along with a
mathematical description of the LPI that is solved. Each executive can be called for a PIE
structure with fields

dim: N;
vars: [N×2 polynomial];
dom: [N×2 double];

T: [nx × nx opvar]; Tw: [nx × nw opvar]; Tu: [nx × nu opvar];
A: [nx × nx opvar]; B1: [nx × nw opvar]; B2: [nx × nu opvar];
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C1: [nz × nx opvar]; D11: [nz × nw opvar]; D12: [nz × nu opvar];
C2: [ny × nx opvar]; D21: [ny × nw opvar]; D22: [ny × nu opvar];

representing a PIE of the form

Tuu̇(t) + Twẇ + T ẋf(t) = Axf(t) + B1w(t) + B2u(t),
z(t) = C1xf(t) +D11w(t) +D12u(t),
y(t) = C2xf(t) +D21w(t) +D22u(t).

For more information on the origin and application of each LPI, see the references provided in
the table, as well as Chapter 13.
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Problem LPI
[prog, P] = lpiscript(PIE,’stability’,settings)
Test stability of the PIE for w = 0
and u = 0, by verifying feasibility of
the primal LPI [8].

P ≻ 0
T ∗PA+A∗PT ≼ 0

[prog, P] = lpiscript(PIE,’stability-dual’,settings)
Test stability of the PIE for w = 0
and u = 0 by verifying feasibility of
the dual LPI [9].

P ≻ 0
T PA∗ +APT ∗ ≼ 0

[prog, P, gam] = lpiscript(PIE,’l2gain’,settings)

Determine an upper bound γ on the
H∞-norm supw,z∈L2

∥z∥L2
∥w∥L2

of the PIE
for u = 0, by solving the primal
LPI [8].

min
γ,P

γ

P ≻ 0−γI D∗11 B∗1PT
(·)∗ −γI C1
(·)∗ (·)∗ T ∗PA+A∗PT

 ≼ 0

[prog, P, gam] = lpiscript(PIE,’l2gain-dual’,settings)

Determine an upper bound γ on
the H∞-norm supw,z∈L2

∥z∥L2
∥w∥L2

of the
PIE for u = 0, by solving the dual
LPI [9].

min
γ,P

γ

P ≻ 0−γI D11 T PC1
(·)∗ −γI B∗1
(·)∗ (·)∗ T PA∗ +APT ∗

 ≼ 0

[prog, L, gam, P, Z] = lpiscript(PIE,’hinf-observer’,settings)

Establish an H∞-optimal observer
T ˙̂xf = Ax̂f +L(C1x̂f−y) for the PIE
with u = 0 by solving the LPI and
returning L = P−1Z [1].

min
γ,P,Z

γ

P ≻ 0−γI D∗11 (PB1 + ZD21)∗T
(·)∗ −γI C1
(·)∗ (·)∗ (·)∗ + (PA+ ZC2)∗PT

 ≼ 0

[prog, K, gam, P, Z] = lpiscript(PIE,’hinf-controller’,settings)

Establish an H∞-optimal controller
u = Kxf for the PIE by solving the
LPI and returning K = ZP−1 [9].

min
γ,P,Z

γ

P ≻ 0−γI D11 T (PC1 + ZD12)
(·)∗ −γI B∗1
(·)∗ (·)∗ (·)∗ + (AP + B2Z)T ∗

 ≼ 0

Table 7.2: List of pre-defined executives for analysis and control of PIEs. See also Chapter 13.
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Part II

Additional PIETOOLS Functionality
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Chapter 8

Input Formats for ODE-PDE Systems

In PIETOOLS, there are three main methods for declaring coupled ODE-PDE systems: The
Command Line Input format (via command line or MATLAB scripts), the graphical user
interface (a MATLAB app), and using the sys structure. The first two of these methods
have been presented in Chapter 4, and are the recommended input formats. The last of these
methods, using the sys structure, was introduced in PIETOOLS 2022 as a Command Line
Parser format, and functions similarly to the current Command Line Input format. Although
the sys structure functionality is still available in PIETOOLS 2024, it supports at most 1D
ODE-PDE systems, and it is therefore recommended to use pde_var instead.

In this chapter, we provide a bit more background on each of the three input formats for
ODE-PDE systems. In particular, in Section 8.1, we show how any well-posed, linear, coupled
1D ODE-PDE system can be declared in PIETOOLS using the GUI. In Section 8.2, we then
shift focus to the Command Line Input format, providing a detailed description of how general
ODE-PDE systems can be declared using this format, and how this format actually works
“behind the scenes”. Finally, in Section 8.3, we show how the sys structure can be used to
declare 1D ODE-PDE models as well.

8.1 A GUI for Defining PDEs
In addition to the Command Line Input format, PIETOOLS 2024 also allows PDEs to be
delcared using a graphical user interface (GUI), that provides a simple, intuitive and interactive
visual interface to directly input the model. It also allows declared PDE models to be saved
and loaded, so that the same system can be used in different sessions without having to declare
the model from scratch each time.

To open the GUI, simply call PIETOOLS_PDE_GUI from the command line. You will see
something similar to the picture below:
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Figure 8.1: GUI overview.

Now we will go over the GUI step-by-step to demonstrate how to define your own linear,
1D ODE-PDE model in PIETOOLS.

8.1.1 Step 1: Define States, Outputs and Inputs
First, we start with the right side of the screen as follows:
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Figure 8.2: Step 1: Define States, Outputs and Inputs

1. The drop-down menu PDE State provides a list of all the possible variables to be defined
on your model. Clicking on the PDE State menu reveals the list

Figure 8.3: Adding variables your model

2. After selecting your intended variable, you can add it by clicking on the Add button. Note
that ehen you select PDE State from the drop-down menu and attempt to a PDE state,
you also have to specify the highest order of spatial derivative that the particular state
admits.
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Figure 8.4: Enter the highest order of derivative the particular state admits

3. Once the variables are added, they automatically get displayed in the display panel in the
middle. Since no dynamics have been specified for the model so far, all the variables are
set to the default setting temporarily.

Figure 8.5: After adding the variables to the model

4. At the bottom there are options of Remove, Undo, Redo to delete or recover variables.

8.1.2 Step 2: Select an Equation to Add a Term
Now we specify the dynamics and the terms corresponding to each of the variables defined in
Step 1. This is located on the left hand side of the GUI.
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Figure 8.6: Step 2: Select an Equation to Add a Term

This has two parts. On the top, we have a panel for Select an Equation type and then
select the equation- to choose which part of the model to be defined. Below that panel,
there is another panel that has to be used to Select term type and then define the term-.

1. In the panel titled Select an Equation type and then select the equation-, select
either Dynamics, Output or BC (i.e. Boundary Conditions).

2. If you select Dynamics, all the PDE and ODE states that you specified in Step 1 appear.

3. Once you select the desired state for which to add terms to the dynamics, go down to
Step 2.a Select term type and then define the term-.
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4. For a term involving an individual PDE state, you may have two kinds of terms, a
Standard term, pre-multiplying the state with some coefficients, or a Integral term,
taking some (partial) integral of the state. The Standard option can be used to define
both terms involving states and terms involving inputs. On the other hand, the Integral
option is only available for the PDE states.

• Now in Standard option, one has to select the variable and add the coefficient in the
adjacent panel. Moreover, the PDE states may also contain its derivatives. If you
select a PDE state, you can input the order of derivative (from 0 up to the highest
order derivative for that state), the independent variable with respect to which the
function is defined (it is s for in-domain, 0, 1 for boundary), and the corresponding
coefficient terms. Then, by clicking on the Add button, we can add that term to the
model and it gets shown in the display panel.
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Note:

Only the PDE states can be a function of ‘s’. For other terms, the option of
adding ′s′ as an independent variable is not available.

The order of derivative can not exceed the highest order derivative for that state. If
the input value exceeds that, the following error will be displayed

• One can also add an integral term by selecting Integral. Here, identical to the
Standard option, we can define the order or derivative, the coefficients and the
limits of integral which can be 0 or s for lower limit and s or 1 for upper limit. The
functions are always with respect to θ.

102



5. To define the outputs and boundary conditions, one must follow the same steps as above.

Additional Remarks:

A) The integral term of PDE states can only be a function of ′θ′.
B) Terms can be specified and added only for one variable at a time. Once a desired variable
and one of the options (Dynamics, Output, BC) has been selected at the top, the term can
be added following the instructions at the bottom (Step 2a). In order to select another
variable for which to add a term, the above steps must be repeated.

After adding all the desired terms for dynamics, outputs and boundary conditions, the
complete description of an example model looks something like below:

Figure 8.7: An example of a complete model as displayed in the GUI

8.1.3 Step 3: (Optional) Add or Remove BC
If desired, the user can also add a new boundary condition or remove one. Note that for a PDE
state variable differentiable up to order N , a well-posed PDE must impose exactly N boundary
conditions on this state variable.
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8.1.4 Step 4-5: Parse PDE Parmeters and Convert Them to PIE
1. Once the desired model has been declared, you can extract all the parameters defining this

model by pressing Get PDE Object, storing these parameters in an object called PDE_GUI
which directly gets loaded into the MATLAB workspace.

2. In addition, pressing convert to PIE, you can convert your model to a PIE and store it
in an object called PIE_GUI which directly gets loaded into the MATLAB workspace.

8.2 The Command Line Input Format
In PIETOOLS 2024, the easiest format for declaring ODE-PDE systems is using the Command
Line Input format presented in Chapter 4. Using this format, pde_struct class objects can
be declared using the pde_var function, and subsequently manipulated using e.g. algebraic
operations to declare a broad class of linear ODE-PDEs. In this section, we show how the
pde_struct object actually stores the information necessary to represent such systems, and
how we can use this structure to define a broad class of linear systems. To illustrate, we will
use the following example of a wave equation throughout this section.

Example

∂tx1(t, s1, s2) = x2(t, s1, s2), t ≥ 0,

∂tx2(t, s1, s2) = 5(∂2
s1x1(t, s1, s2) + ∂2

s2x1(t, s1, s2)) + (3− s1)s2u1(t), s1 ∈ [0, 3],
y1(t, s1) = x1(t, s1, 1) + s1w1(t), s2 ∈ [−1, 1],
y2(t, s2) = x2(t, 3, s2) + w2(t),

z(t) =
[
10
∫ 3

0
∫ 1
−1 x1(t, s1, s2)ds2ds1
∂s1∂s2x2(t, 3, 1)

]
,

x1(t, s1,−1) = ∂s2x1(t, s1, 1) = 0,

x1(t, 0, s2) = u2(t− 0.5, s2), ∂s1x1(t, 3, s2) = 0,

x2(t, s1,−1) = ∂s2x2(t, s1, 1) = 0,

x2(t, 0, s2) = ∂s1x1(t, 3, s2) = 0. (8.1)
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8.2.1 Representing State, Input, and Output Variables
In Chapter 4, we showed that a state, input, or output variable can be declared in PIETOOLS
2024 using the function pde_var. A general call to this function takes the form

>> obj = pde_var(type,size,vars,dom,diff);

and may involve up to five inputs:

• type: A character array specifying the desired type of variable. Must be set to ’state’ to
declare an ODE or PDE state variable, x(t), ’input’ (or ’in’) to declare an exogenous
input variable, w(t), ’control’ to declare an actuator input variable, u(t), ’output’ (or
’out’) to declare a regulated output variable, z(t), and ’sense’ the declared a sensed
output variable, y(t). Defaults to ’state’;

• size: An integer specifying the size of the object in case it is vector-valued. Defaults to
1;

• vars: A p× 1 array of type ’polynomial’, specifying the spatial variables on which the
object depends. Defaults to an empty array [], indicating that the object does not vary
in space;

• dom: A p × 2 numeric array specifying for each of the spatial variables the interval on
which it is defined, with the first column specifying the lower limit of the interval, and
the second column the upper limit. Defaults to an array with the same number of rows
as vars, with the first column all zeros, and the second column all ones, indicating that
all spatial variables exist on [0, 1];

• diff: A p × 1 numeric array, specifying the order of differentiability of the object with
respect to each of the spatial variables on which it depends. This can only be declared
for PDE variables, i.e. ’state’ type objects, and is optional.

Note that, in general, the fifth input can be omitted, as PIETOOLS can usually infer the order
of differentiability of PDE states from the declared PDE dynamics. In addition, most of the
remaining inputs admit a default value that is used when no value is specified, so long as
the arguments are passed in the correct order. For example, a scalar-valued PDE state
x(t, s1, s2) on s1, s2 ∈ [0, 1] can be declared as

>> x = pde_var(’state’,1,[s1;s2],[0,1;0,1]);

but can also be declared as e.g.
>> x = pde_var(1,[s1;s2]);

or even just
>> x = pde_var([s1;s2]);

However, we can simplify this call any further, as the spatial variables on which a PDE state
depends must always be specified.

Calling obj=pde_var(...), the output object obj is a pde_struct object representing the
desired state, input, or output variable. To represent these variables, a pde_struct object obj
has the following fields:
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pde_struct

obj.x a cell with each element i specifying a state component xi in the system;
obj.w a cell with each element i specifying an exogenous input wi;
obj.u a cell with each element i specifying an actuator input ui;
obj.z a cell with each element i specifying a regulated output zi;
obj.y a cell with each element i specifying an observed output yi;
obj.BC a cell with each element i specifying a boundary condition for the PDE.
obj.free a cell with each element i specifying a free PDE variable or set of terms.

Depending on the specified type in the call to pde_var, one of these fields will be populated
with a single element representing the desired state, input, or output variable. To this end,
each of the cell elements of the fields will again be a structure, with the following fields:

size an integer specifying the size of the state component, input or output;
vars a p× 1 pvar (polynomial) array (for p ≤ 2), specifying the spatial variables

of the state component, input, or output;
dom a p× 2 array specifying the interval on which each spatial variable exists;
term a cell defining the (differential) equation associated with the state component,

output, or boundary condition;
ID a unique integer value distinguishing the state, input, or output component

from all others;
diff a 1× p array specifying the order of differentiability of the state variable

with respect to each spatial variable;

Naturally, the values of these fields will be populated with the inputs passed to pde_var
(where the order of differentiability will be converted from column to row array). For example,
our PDE state x(t, s1, s2) will be represented as an object x with all fields empty, except the
field x.x, which will be a 1× 1 cell structure with elements

>> x.x{1}
ans =

struct with fields:

size: 1
vars: [2×1 polynomial]
dom: [2×2 double]
ID: 1

where x.x{1}.vars=[s1;s2], and x.x{1}.dom=[0,1;0,1]. In addition, a single free term
representing the state variable will be stored in the field x.free{1}.term{1}. We will show
how exactly such terms are represented in the structure in the next subsection.
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Example

Consider the wave equation example from (8.1). The system is represented as a 2D PDE,
in spatial variables (s1, s2) ∈ [0, 3]× [−1, 1]. We initialize these variables as

>> pvar s1 s2

Now, the system is defined in terms of two PDE state variables, x1(t), x2(t) ∈ L2[[0, 3] ×
[−1, 1], two actuator inputs, u1(t) ∈ R and u2(t) ∈ L2[−1, 1], two exogenous inputs,
w1(t), w2(t) ∈ R, two sensed outputs, y1(t) ∈ L2[0, 3] and y2(t) ∈ L2[−1, 1], and a vector-
valued regulated output z(t) ∈ R2. We can declare these variables as

>> x1 = pde_var(’state’,1,[s1;s2],[0,3;-1,1],[2;2]);
>> x2 = pde_var(’state’,1,[s1;s2],[0,3;-1,1],[2;2]);
>> u1 = pde_var(’control’,1,[],[]);
>> u2 = pde_var(’control’,1,s2,[-1,1]);
>> w1 = pde_var(’input’,1,[],[]);
>> w2 = pde_var(’input’,1,[],[]);
>> y1 = pde_var(’sense’,1,s1,[0,3]);
>> y2 = pde_var(’sense’,1,s2,[-1,1]);
>> z = pde_var(’output’,2,[],[]);

or, equivalently, as
>> x1 = pde_var([s1;s2],[0,3;-1,1]);
>> x2 = pde_var([s1;s2],[0,3;-1,1],[2;2]);
>> u1 = pde_var(’control’);
>> u2 = pde_var(’control’,s2,[-1,1]);
>> w1 = pde_var(’in’);
>> w2 = pde_var(’in’);
>> y1 = pde_var(’sense’,s1,[0,3]);
>> y2 = pde_var(’sense’,s2,[-1,1]);
>> z = pde_var(’out’,2);

Here, we do not specify the order of differentiability of state variable x1(t) with respect to
the spatial variables. This is because, in the PDE (8.1), a second-order derivative of x1
is taken with respect to both variables in the dynamics for x2(t), from which PIETOOLS
will be able to infer the order of differentiability automatically. However, no second-order
spatial derivative is taken of the state variable x2(t), so we manually specify that it is
second-order differentiable with respect to both spatial variables in the call to pde_var.
Failing to specify this may result in issues when converting the system to a PIE.

Displaying e.g. the output variable y2, we get something like
>> y2

y8(t,s2);

Here, the index 8 corresponds to the ID assigned to the output: y2.y{1}.ID=8. This ID is
uniquely generated by the function stateNameGenerator, and is vital for PIETOOLS to
distinguish between the different PDE objects. However, since the value of the IDs tends to
increase quite quickly, the user may consider calling clear stateNameGenerator whenever
declaring a new PDE, to reset the counter for the IDs.
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8.2.2 Declaring Terms
After declaring a PDE variable using pde_var, we can perform a variety of operations on
this variable, including multiplying it with desired coefficients, performing differentiation or
integration, and evaluating it at a particular position. The resulting term involving the PDE
variable is stored in the field free, which is a cell structure with each element free{i} specifying
a separate string of free terms to be used to declare equations. In particular, each element
free{i} has a field term, which is again a cell structure with each element free{i}.term{j}
representing a single term through the fields

term{j}.x; integer specifying which state component,
or term{j}.w; or exogenous input,
or term{j}.u; or actuator input,
or term{j}.y; or sensed output,
or term{j}.z; or regulated output appears in the term;

term{j}.D 1× p integer array specifying the order of the derivative of the state
component term{j}.x in each variable;

term{j}.loc 1× p polynomial or “double” array specifying the spatial position
at which to evaluate the state component term{j}.x;

term{j}.I p× 1 cell array specifying the lower and upper limits of the integral
to take of the state or input;

term{j}.C (polynomial) factor with which to multiply the state or input;
term{j}.delay scalar integer specifying the temporal delay in the state or input;

where p denotes the number of spatial variables on which the component depends. Combined,
these fields can represent a general term involving e.g. a state component xk(t, s) or input
uk(t, s) of the form

∫ U1

L1︸︷︷︸
I

C(s, θ)︸ ︷︷ ︸
C

D︷︸︸︷
∂d

θ xk︸︷︷︸
x

(t−
delay︷︸︸︷

τ ,

loc︷︸︸︷
θ )

 dθ or
∫ U

L︸︷︷︸
I

C(s, θ)︸ ︷︷ ︸
C

uk︸︷︷︸
u

(t−
delay︷︸︸︷

τ ,
︷︸︸︷

θ )

 dθ.

Declaring e.g. a PDE state x2=pde_var([s1;s2],[0,3;-1,1],[2;2] as in the previous sub-
section, this state will be immediately assigned a single term in the field x2.free{1}.term{1},
representing just the variable itself as

>> x2.free{1}.term{1}
ans =

struct with fields:

x: 1
C: 1

loc: [1×2 polynomial]
D: [0 0]
I: {2×1 cell}
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Here, x2.free{1}.term{1}.loc=[s1,s2] and x2.free1.term1.I={[];[]}, so that the state
variable x2 is multiplied with 1, evaluated at (s1, s2) = (s1, s2), and not differentiated or
integrated. Note that the index x2.free{1}.term{1}.x is 1, which is not the same as the ID
x2.x{1}.ID=2, but rather matches the element i of the field x2.x{i} in which the information
on the state variable is stored – no need to worry about this though. Although all the fields in
the structure could be adjusted manually to specify a desired term involving x2, the pde_struct
class comes with a variety of overloaded functions for declaring these values much more easily.

8.2.2a Multiplication

Given a pde_struct object representing some term, we can pre-multiply it with a desired
factor using the standard multiplication operation *. The result is the same term, but now
with coefficients term{j}.C set to the specified factor. For example, to represent 5x1(t, s1, s2),
we simply call

>> trm1 = 5*x1

5 * x1(t,s1,s2);

The result will again be a single term, stored in the field trm1.free{1}.term{1}, where now
the coefficients are set to 5:

>> trm1.free{1}.term{1}.C
ans =

5

Similarly, we can also pre-multiply input variables with desired coefficients, and these coeffi-
cients can also be polynomial. For example, to represent the term (3− s1)s2u1(t), we call

>> trm2 = (3-s1)*s2*u1

C11(s1,s2) * u3(t);

Again, the result is only a single term, in this case represented as
>> trm2.free{1}.term{1}
ans =

struct with fields:

u: 1
C: [1×1 polynomial]
I: {0×1 cell}

where now trm2.free{1}.term{1}=-s1*s2+3*s2. We can also check the value of the coeffi-
cients defining this term by calling the field C directly, with row and column index as displayed,

>> trm2.C{1,1}
ans =

-s1*s2 + 3*s2

Note that pde_struct objects can only represent linear systems, and thus multiplication
of state, input, or output variables with one another is not supported. Also, declaring output
equations wherein the output is multiplied with a factor is not supported.
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8.2.2b Differentiation

Naturally, any PDE will involve partial derivatives of a state variable with respect to spatial
variables. This operation can be performed in the Command Line Input format using the
function diff as

>> trm_new = diff(trm_old,vars,order);

This function takes three arguments:

• trm_old: A pde_struct object representing some term of which to take a derivative;

• vars: A p× 1 array of type ’polynomial’, specifying the spatial variables with respect
to which to take the derivative;

• order: A p× 1 array of integers specifying for each of the variables the desired order of
the derivative of the term with respect to that variable. Defaults to 1;

The output trm_new is then another pde_struct object, representing the derivative of the term
defined by trm_old with respect to each of the variables in vars, up to the order specified in
order. Specifically, the value of the field D in the term will be set to the specified order. For
example, to represent the term 5∂2

s1x1(t, s1, s2), we can take the derivative of 5x1(t, s1, s2) as
>> trm3 = diff(trm1,s1,2)

5 * (d/ds1)^2 x1(t,s1,s2);

The result again represents a single term, stored as
>> trm3.free{1}.term{1}
ans =

struct with fields:

x: 1
C: [1×1 polynomial]

loc: [1×2 polynomial]
D: [2 0]
I: {2×1 cell}

Here, the field D is set to [2 0] to indicate that a second-order derivative is taken of the state
with respect to its first variable. Similarly, we can take the derivative ∂s1∂s2x2(t, s1, s2) as

>> trm4 = diff(x2,[s1;s2])

(d/ds1)(d/ds2) x2(t,s1,s2);

with the derivative now stored as trm4.free{1}.term{1}.D=[1,1].
Note, however, that it is not possible to take derivatives of input or output signals. In

addition, keep in mind that the order of multiplication and differentiation matters, so that e.g.
s1*diff(x2,s1) yields a different result than diff(s1*x2,s1).
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8.2.2c Substitution

Aside from taking derivatives of PDE states, we can also evaluate these PDE states at the
boundary of the domain, using the function subs as

>> trm_new = subs(trm_old,vars,loc);

This function takes three arguments:

• trm_old: A pde_struct object representing some term which to evaluate at some bound-
ary position;

• vars: A p× 1 array of type ’polynomial’, specifying the spatial variables to be substi-
tuted for a position;

• loc: A p× 1 numeric array specifying the value for which each of the variables are to be
substituted. Each value must correspond to either the lower or upper limit of the interval
on which the corresponding variable is defined;

The function returns a pde_struct object trm_new, representing the same term as trm_old
but now evaluated with respect to each of the variables in vars at the position specified in loc.
In particular, the value of the field term{j}.loc will be set to the specified value. For example,
to evaluate our derivative ∂s1∂s2x2(t, s1, s2) (represented by trm4) at (s1, s2) = (3, 1), we call

>> trm5 = subs(trm4,[s1;s2],[3;1])

(d/ds1)(d/ds2) x2(t,3,1);

where now
>> trm5.free{1}.term{1}.loc
ans =

[ 3, 1]

Similarly, we can declare the term x2(t, s1,−1) as
>> trm6 = subs(x2,s2,-1)

x2(t,s1,-1);

where now
>> trm6.free{1}.term{1}.loc
ans =

[ s1, -1]

indicating that the term is evaluated as (s1, s2) = (s1,−1).
Note that only state variables can be evaluated at a boundary – substitution of input

or output variables is not supported. In addition, note that the order of substitution and
multiplication is important, so that e.g. s1*subs(x2,s1,0) yields a different result than
subs(s1*x2,s1,0).
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8.2.2d Integration

Regulated outputs for PDE systems frequently involve an integral of the PDE state. Such an
integral for pde_struct objects can be declared with the function int as

>> trm_new = int(trm_old,vars,dom);

This function too takes three arguments:

• trm_old: A pde_struct object representing some term which to integrate;

• vars: A p× 1 array of type ’polynomial’, specifying the spatial variables with respect
to which to integrate;

• loc: A p×2 numeric or ’polynomial’ array specifying the domain over which integration
is to be performed for each variable, with the first column specifying the lower limit and
the second column the upper limit of the integral. Lower and upper limits must either
correspond to the boundaries of the domain on which the variable is defined, or, for the
purpose of declaring a partial integral, the spatial variable itself;

The returned trm_new is again a pde_struct object representing the same term as trm_old,
but now integrated over the desired domain with respect to the desired variable. Specifically,
the limits of the integral with respect to each variable will be stored in the field term{j}.I.
For example, to declare the integral

∫ 3
0
∫ 1
−1 x1(t, s1, s2)ds2ds1, we call

>> trm7 = 10*int(x1,[s2;s1],[-1,1;0,3])

int_0^3 int_-1^1 [10 * x1(t,s1,s2)] ds2 ds1;

where now
>> trm7.free{1}.term{1}.I{1}
ans =

[ 0, 3]

>> trm7.free{1}.term{1}.I{2}
ans =

[ -1, 1]

If desired, it is also possible to declare partial integrals, for which substitution must be performed
as well as integration. For example, to declare an integral

∫ s1
0 (s1 − θ)x2(t, θ, s2)dθ, we can call

>> pvar s1_dum
>> trm_alt = int((s1-s1_dum)*subs(x2,s1,s1_dum),s1_dum,[0,s1])

int_0^s1 [C11(s1,s1_dum) * x2(t,s1_dum,s2)] ds1_dum;

Here, we first need to introduce a dummy variable for integration, and substitute s1 for this
dummy variable, before taking the integral. Although not strictly necessary, we highly rec-
ommend to always give the dummy variable the same name as its associated primary spatial
variable, but with _dum added, as this is the default used by PIETOOLS.

Note that, unlike differentiation and substitution, integration is supported for input vari-
ables, but not for output variables.
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8.2.2e Delay

Although we recommend using the DDE or DDF format for declaring systems with delay,
pde_struct objects do also allow signals with temporal delay to be declared. This can be done
using the subs function, by substituting the temporal variable t for t−τ , for some desired value
τ . For example, to declare the term u(t− 0.5, s2), we call

>> pvar t
>> trm8 = subs(u2,t,t-0.5)

u4(t-0.5,s2);

Here, we must first declare the temporal variable t, and then we can substitute t for t-0.5.
Note that the variable t will always be interpreted as temporal variable in PIETOOLS,
and therefore should not be used for any other purpose. The value of the delay will be stored
in the aptly named field delay, so that e.g.

>> trm8.free{1}.term{1}
ans =

struct with fields:

u: 1
C: 1
I: {[]}

loc: [1×1 polynomial]
delay: 0.5000

Delay can be added to state variables or exogenous inputs in a similar manner, but is not
supported for output signals.

8.2.2f Addition

Having seen how we can perform a variety of operations on PDE variables to declare a single
term, naturally, we will want to add these terms to create an equation. This can be readily
done with the overloaded function for addition, +. In particular, given two pde_struct ob-
jects, trm_1 and trm_2, each specifying their own terms, we can compute the sum of these
terms as trm_3=trm_1+trm_2, where now trm_3.free{i}.term includes all elements from
trm_1.free{i}.term as well as trm_2.free{i}.term. For example, having declared the term
(3− s1)s2u1(t) as trm2, and 5∂2

s1x1(t, s1, s2) as trm3, we can take their sum as
>> trms9 = trm2+trm3

C11(s1,s2) * u3(t) + 5 * (d/ds1)^2 x1(t,s1,s2);

where now trm9.free{1}.term is a 1× 2 cell array, with each element representing a separate
term, combining the terms from trm2 and trm3. Note that we can determine the coefficients
appearing in this sum of terms by calling field C{1,j}, where j is the desired term number, so
that e.g.
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>> trms9.C{1,1}
ans =

-s1*s2 + 3*s2

and
>> trms9.C{1,2}
ans =

5

Naturally, we can also add more terms to the structure, adding e.g. 5∂2
s2x1(t, s1, s2) as

>> trms10 = 5*diff(x1,s2,2) + trms9

5 * (d/ds2)^2 x1(t,s1,s2) + C12(s1,s2) * u3(t) + 5 * (d/ds1)^2 x1(t,s1,s2);

Note that the coefficients in trms10 have been shifted compared to trms9, so that now e.g.
trms10.C{1,2}=trms9.C{1,1}=-s1*s2+3*s2.

8.2.2g Concatenation

Finally, pde_struct objects can also be concatenated vertically, using the standard MATLAB
function [ ; ], to combine separate sums of terms into a single structure. For example, we
can concatenate the variable x2(t, s1, s2), declared as x2, with the terms 5∂2

s1x2(t, s1, s2) +
5∂2

s2x2(t, s1, s2) = (3− s1)s2u1(t), declared as trms10 as
>> RHS_x = [x2;trms10]

x2(t,s1,s2);
5 * (d/ds2)^2 x1(t,s1,s2) + C12(s1,s2) * u3(t) + 5 * (d/ds1)^2 x1(t,s1,s2);

Here, each row of terms in RHS1 is stored in a separate element of the cell RHS1.free, so
that RHS1.free{1}.term only has a single element representing the variable x2(t, s1, s2), and
RHS1.free{2}.term has three elements, representing the three terms 5∂2

s1x2(t, s1, s2), (3 −
s1)s2u1(t), and 5∂2

s2x2(t, s1, s2). Similarly, we can concatenate the corner value ∂s1∂s2x2(t, 3, 1),
represented by trm5, and the integral 10

∫ 3
0
∫ 1
−1 x1(t, s1, s2)ds2ds1, represented by trm7, as

>> RHS_z = [trm7; tmr5]

int_0^3 int_-1^1 [10 * x1(t,s1,s2)] ds2 ds1;
(d/ds1)(d/ds2) x2(t,3,-1);

8.2.3 Declaring Equations
Having seen how terms for PDEs can be declared and stored using pde_struct objects, all
that remains is to use these terms to declare actual equations. Here, we distinguish three
types of equations, namely state equations (ODEs and PDEs), output equations, and boundary
conditions, all of which can be declared using the function ==.
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8.2.3a State equations

In PIETOOLS, all ordinary and partial differential equations are assumed to involve some
temporal variable, distinct from all other (spatial) variables in the dynamics. That is, any
PDE is expected to model the evolution of some state x(t) ∈ L2[Ω] for t ≥ 0, governed by an
equation

∂tx(t, s) = f(x(t, s), u(t, s), w(t, s), s), s ∈ Ω
where f is some (polynomial) function of x(t, s) and its partial derivatives with respect to s,
as well as any input signals u(t, s) and w(t, s). In the previous subsection, we have seen how
we can declare such a function f in the pde_struct format using multiplication, addition,
differentiation, etc.. Now, to declare the left-hand side of such an equation, ∂tx(t, s), we can
use the function diff just as we did to declare spatial derivatives. For example, to declare the
derivative ∂tx1(t, s1, s2), we call

>> pvar t
>> LHS1 = diff(x1,t);

d_t x1(t,s1,s2);

Here, we first need to declare the temporal variable as pvar t, noting that PIETOOLS will
always interpret this object as temporal variable. Alternatively, we can also use ’t’ to represent
the temporal variable in this case, declaring e.g. ∂tx2(t, s1, s2) as

>> LHS2 = diff(x2,’t’);

d_t x2(t,s1,s2);

The result is again a single term, stored in LHS2.free{1}.term{1}, where now the order of
the temporal derivative is represented through the field tdiff:

>> LHS2.free{1}.term{1}.tdiff
ans =

1

indicating that a first-order temporal derivative is taken of the state variable. Although it is also
possible to declare higher-order temporal derivatives – calling e.g. diff(x2,’t’,2) to declare a
second-order temporal derivative of x2 – keep in mind that PIETOOLS will always convert the
system to a format involving only first-order temporal derivatives when constructing the PIE
representation. In doing so, PIETOOLS will add state components without adding boundary
conditions, so that the resulting representation may not be entirely equivalent, and results of
e.g. stability analysis may be conservative – see also Subsection 8.2.4f.

Given a temporal derivative of a state variable, an equation defining the dynamics of this
state can be easily declared using the function ==, equating this derivative to some desired set
of terms. For example, to declare the equation ∂tx1(t, s1, s2) = x2(t, s1, s2), we simply call

>> x_eq1 = diff(x1,t)==x2

d_t x1(t,s1,s2) = x2(t,s1,s2);

Similarly, having already declared the terms 5∂2
s1x2(t, s1, s2) + (3− s1)s2u1(t) + 5∂2

s2x2(t, s1, s2)
through trms10, we can declare the dynamics for x2 as
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>> x_eq2 = diff(x2,’t’)==trms10

d_t x2(t,s1,s2) = 5*(d/ds2)^2x1(t,s1,s2)+C12(s1,s2)*u3(t)+5*(d/ds1)^2x1(t,s1,s2);

In doing so, the result x_eq2 will store all terms from trms10.free{1}.term in a corresponding
element of x_eq2.x. In particular, since x_eq2 defines only a single state equation, the terms
will be stored in x_eq2.x{1}, so that x_eq2.x{1}.term=trms10.free{1}.term. However, we
can also concatenate the declared equations as

>> x_eqs = [x_eq1; x_eq2]

d_t x1(t,s1,s2) = x2(t,s1,s2);
d_t x2(t,s1,s2) = 5*(d/ds2)^2x1(t,s1,s2)+C22(s1,s2)*u3(t)+5*(d/ds1)^2x1(t,s1,s2);

In this output, the two state equations are stored in separate elements of x_eqs.x, so that in
particular x_eqs.x{2}.term=x_eq2.x{1}.term=trms10.free{1}.term.

Note that, when concatenating equations, the order of the equations may not reflect the
order in which they are specified. For the purposes of e.g. simulation and analysis, the order
of the state components will be determined by the order in which their governing equations
appear, so it is important to always check the final order of the state (as well as input and
output) variables once the full system of equations has been declared.

8.2.3b Output equations

Aside from differential equations, we can also declare output equations, using the same function
==. For example, to declare the observed output equations y1(t, s1) = x1(t, s1) + s1w1(t) and
y2(t, s2) = x2(t, s2) + w2(t), we can call

>> y_eqs = [y1==subs(x1,s2,1)+s1*w1;
y2==subs(x2,s1,3)+w2]

y7(t,s1) = x1(t,s1,1) + C32(s1) * w5(t);
y8(t,s2) = x2(t,3,s2) + w6(t);

In doing so, the output object y_eqs will have the two declared equations stored in y_eqs.y{1}
and y_eqs.y{2}, so that e.g. y_eqs.y{1}.term{2} represents the term s1w1 as

>> y_eqs.y{1}.term{2}
ans =

struct with fields:

w: 1
C: [1×1 polynomial]
I: {0×1 cell}

where y_eqs.y{1}.term{2}.C=s1. Similarly, having declared
[
10
∫ 3

0
∫ 1
−1 x1(t, s1, s2)ds2ds1
∂s1∂s2x2(t, 3, 1)

]
as

RHS_z, we can set the regulated output equation as
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>> z_eqs = z==RHS_z

z9(t) = int_0^3 int_-1^1[C31*x1(t,s1,s2)]ds2 ds1 + C32*(d/ds1)(d/ds2) x2(t,3,1);

Note here that, although the output z(t) is vector-valued, we declared it as only a single variable
z. As such, it will also be assigned only one equation, where now the coefficients C31 and C32
are arrays mapping the scalar-valued terms to the vector-valued outputs. In particular,

>> z_eqs.C{3,1}
ans =

[ 10]
[ 0]

and
>> z_eqs.C{3,2}
ans =

0
1

More generally, the full equation for z will be stored in the field z_eqs.z{1}. Thus, although
concatenation of vector-valued objects is supported, keep in mind that only one equation will
be assigned for each declared variable. Note also that, naturally, equations can only be set if
the number of elements on the left-hand side and right-hand side match.

8.2.3c Boundary conditions

Any well-posed PDE also involves a number of boundary conditions on the state. These too
can be declared as pde_struct objects using the function ==, by setting different terms equal
to one another, or setting a term equal to zero. For example, to declare the boundary condition
x2(t, s1,−1) = 0, we can call

>> BC1 = subs(x2,s2,-1)==0

0 = x2(t,s1,-1);

Here, the zero will always be displayed on the left-hand side of the equation. The actual term
x2(t, s1,−1) that is set equal to zero will be stored in the field BC1.BC{1}.term. Similarly, we
can declare the condition x1(t, 0, s2) = u2(t− 0.5, s2) as

>> BC2 = subs(x1,s1,0)==subs(u2,t,t-0.5)

0 = x1(t,0,s2) - u2(t-0.5,s2);

Again, the equation is represented in the form 0 = F (x, u, w, s), where the function F is stored
in the field BC. In this case, the field BC2.BC{1}.term will have two elements, representing the
terms x1(t, 0, s2) and −u2(t− 0.5, s2).

Note that any equation that does not involve a temporal derivative or an output will be
interpreted as a boundary condition, and added to the field BC.
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Example

Consider the wave equation example from (8.1). Having declared the different state, input,
and output variables, the full PDE system can be declared as

>> pvar t
>> PDE = [diff(x1,t)==x2;

diff(x2,t)==5*(diff(x1,s1,2)+diff(x1,s2,2))+(3-s1)*s2*u1;
y1==subs(x1,s2,1)+s1*w1;
y2==subs(x2,s1,3)+w2;
z ==[10*int(x1,[s1;s2],[0,3;-1,1]);

subs(diff(x2,[s1;s2]),[s1;s2],[3;1])];
subs(x1,s1,0)==subs(u2,t,t-0.5);
subs(x2,s1,0)==0;
subs([x1;x2],s2,-1)==0;
subs(diff([x1;x2],s1),s1,3)==0;
subs(diff([x1;x2],s2),s2,1)==0]

dt x1(t,s1,s2) = x2(t,s1,s2);
dt x2(t,s1,s2) = 5 * (d/ds1)^2 x1(t,s1,s2) + 5 * (d/ds2)^2 x1(t,s1,s2)

+ C23(s1,s2) * u3(t);
y7(t,s1) = x1(t,s1,1) + C32(s1) * w5(t);
y8(t,s2) = x2(t,3,s2) + w6(t);
z9(t) = int_0^3 int_-1^1 [C51 * x1(t,s1,s2)]ds2 ds1

+ C52 * (d/ds1)(d/ds2) x2(t,3,1);
0 = x1(t,0,s2) - u4(t-0.5,s2);
0 = x2(t,0,s2);
0 = x1(t,s1,-1);
0 = x2(t,s1,-1);
0 = (d/ds1) x1(t,3,s2);
0 = (d/ds1) x2(t,3,s2);
0 = (d/ds2) x1(t,s1,1);
0 = (d/ds2) x2(t,s1,1);

8.2.4 Post-Processing of PDE Structures
After you have declared a full system of equations and boundary conditions as a pde_struct
object, you are generally ready to convert the system to a PIE with the function convert,
for the purpose of e.g. stability analysis or estimator or controller synthesis. However, before
converting the system to a PIE, PIETOOLS will first express the system in a particular manner,
e.g. re-ordering the state, input and output variables, accounting for any temporal delays, and
expanding any higher-order temporal derivatives in a manner that involves only first-order
derivatives. Although all of this is done automatically when calling convert, and the user will
generally be informed of these changes in the Command Window, it is important that the user
be aware of what exactly is happening. Moreover, in some cases, it may be useful for the user to
perform these operations themselves. In this subsection, therefore, we list several functions for
post-processing of completed PDE structures that PIETOOLS generally runs when converting
the system to a PIE, and that the user may also benefit from themselves.
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8.2.4a Declaring controlled inputs and observed outputs

Although we highly recommend distinguishing between actuator inputs and disturbances when
first declaring the PDE variables, it is possible to convert disturbances to controlled inputs
after the PDE has been declared as well, using the function setControl as

>> PDE_new = setControl(PDE_old,w);

This function takes as input a PDE system PDE declared as pde_struct, and a desired exogenous
input variable w, and returns a structure PDE_new representing the same as the input, but now
with the variable w converted to an actuator input u. For example to convert the disturbance
w1 in our output equations defined by y_eqs to a controlled input, we call

>> y_eqs_u = setControl(y_eqs,w1)
1 inputs were designated as controlled inputs

y7(t,s1) = x1(t,s1,1) + C32(s1) * u5(t);
y8(t,s2) = x2(t,3,s2) + w6(t);

In the resulting system, the disturbance w1 has been converted to a controlled input u3(t),
and the equation y1(t, s1) = x1(t, s1, 1) + s1w1(t) has been updated accordingly to y1(t, s1) =
x1(t, s1, 1) + s1u3(t) (although different subscripts are used in the display). Similarly, we can
also convert regulated outputs to observed outputs using the function setObserve as

>> PDE_new = setObserve(PDE_old,z);

Rather than a disturbance, this function takes a regulated output variable as second argument,
and converts this output to an observed output in the specified structure. For example, we can
convert the regulated output z(t), represented by z_eqs, to an observed output by calling

>> z_eqs_y = setObserve(z_eqs,z)
1 outputs were designated as observed outputs

y9(t) = int_0^3 int_-1^1[C31*x1(t,s1,s2)]ds2 ds1 + C32*(d/ds1)(d/ds2) x2(t,3,1);

Keep in mind that the functions setControl and setObserve should only be called once
the full PDE system has been declared, to avoid e.g. an input signal appearing as both an
exogenous input and controlled input in the system.

8.2.4b Initializing a PDE structure

After declaring any PDE structure PDE, the user is highly recommended to initialize the struc-
ture by calling PDE=initialize(PDE). This function checks that the PDE has been properly
specified, throwing an error if any terms have not been properly declared, and warning the user
of e.g. missing equations or insufficient boundary conditions. As such, it is important that the
user initializes the system only once all equations have been declared. The function
then displays a summary of the encountered state variables, inputs, outputs, and boundary
conditions, and returns a cleaner display of the system, so that the user can check whether
PIETOOLS has properly interpreted the system. In this summary and the display, the differ-
ent variables are also assigned new indices separate from their IDs, instead matching the order
in which PIETOOLS will consider them. However, these variables may be reordered again
when converting to a PIE, using the function reorder_comps presented in the next subsection.
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Example

Consider again the wave equation example from (8.1), declared as a pde_struct object PDE
in the previous subsection. We initialize the function as follows:

>> PDE = initialize(PDE);

Encountered 2 state components:
x1(t,s1,s2), of size 1, differentiable up to order (2,2) in variables (s1,s2);
x2(t,s1,s2), of size 1, differentiable up to order (2,2) in variables (s1,s2);

Encountered 2 actuator inputs:
u1(t), of size 1;
u2(t,s2), of size 1;

Encountered 2 exogenous inputs:
w1(t), of size 1;
w2(t), of size 1;

Encountered 2 observed outputs:
y1(t,s1), of size 1;
y2(t,s2), of size 1;

Encountered 1 regulated output:
z(t), of size 2;

Encountered 8 boundary conditions:
F1(t,s2) = 0, of size 1;
F2(t,s2) = 0, of size 1;
F3(t,s1) = 0, of size 1;
F4(t,s1) = 0, of size 1;
F5(t,s2) = 0, of size 1;
F6(t,s2) = 0, of size 1;
F7(t,s1) = 0, of size 1;
F8(t,s1) = 0, of size 1;

Note that the inputs and outputs have been re-indexed as u1 and u2, w1 and w2, and y1
and y2.

8.2.4c Reordering components

In order to convert any PDE to a PIE, the state variables, inputs, and outputs have to be
reordered to support representation in terms PI operators (or more accurately, in terms the
opvar and opvar2d representing these operators numerically). This ordering is done primarily
based on the dimension of the spatial domain on which the state, input, or output variable is
defined, starting with finite-dimensional (ODE states) variables, followed by variables on a 1D
domain (1D PDE states), followed by variables on a 2D domain (2D PDE states), etc. This
reordering is done using the function reorder_comps, taking a PDE structure and returning
an equivalent representation wherein the different variables have been re-indexed to match the
order necessary for representation as a PIE.
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Example

Consider again the wave equation example from (8.1), declared as an initialized pde_struct
object PDE_i. Calling reorder_comps, we get the following message

>> PDE_r = reorder_comps(PDE_i)

The order of the state components x has not changed.
The order of the exogenous inputs w has not changed.
The order of the actuator inputs u has not changed.
The order of the regulated outputs z has not changed.
The order of the observed outputs y has not changed.
The boundary conditions have been re-indexed as:

BC3(t,s1) --> BC1(t,s1)
BC4(t,s1) --> BC2(t,s1)
BC7(t,s1) --> BC3(t,s1)
BC8(t,s1) --> BC4(t,s1)
BC1(t,s2) --> BC5(t,s2)
BC2(t,s2) --> BC6(t,s2)
BC5(t,s2) --> BC7(t,s2)
BC6(t,s2) --> BC8(t,s2)

Since the state components, inputs, and outputs have already been ordered correctly when
declaring the system, they are not reordered here. However, the boundary conditions have
been reordered, to first give the boundary conditions depending on the first spatial variable,
s1, follows by the boundary conditions defined in terms of the second spatial variable, s2.
Now, suppose we introduce an ODE state component x3(t), with dynamics ẋ3(t) = −x3(t),
added to the PDE structure as

>> x3 = pde_var();
PDE_2 = initialize([PDE;diff(x3,’t’)==-x3]);

Encountered 3 state components:
x1(t,s1,s2), of size 1, differentiable up to order (2,2) in variables (s1,s2);
x2(t,s1,s2), of size 1, differentiable up to order (2,2) in variables (s1,s2);
x3(t), of size 1, finite-dimensional;

In this system, the finite-dimensional state variable appears last, whereas it must appear
first in the PIE representation. As such, calling now the function reorder_comps, we get
a message

>> PDE_r2 = reorder_comps(PDE_2);

The state components have been re-indexed as:
x3(t) --> x1(t)
x1(t,s1,s2) --> x2(t,s1,s2)
x2(t,s1,s2) --> x3(t,s1,s2)

indicating that in the updated system structure, the state variables have been reordered to
place the finite-dimensional state first.
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8.2.4d Combining spatial variables

Although pde_struct can be used to declare systems involving an arbitrary number of spatial
variables, PIETOOLS 2024 does not support conversion of systems involving more than 2
spatial variables to PIEs. However, in some cases, it is possible to express a higher-dimensional
PDE using fewer spatial variables, by rescaling the domain on which each variable is defined.
For pde_struct objects, this can be achieved using the function combine_vars as

>> PDE_new = combine_vars(PDE_old,[a,b]);

taking a PDE structure representing some desired equation, and returning a structure defining
an equivalent representation of the system, but now with all variables rescaled to exist on the
interval [a,b], and merged where possible. To illustrate, consider the following simple system
of three coupled transport equations

∂tϕ1(t, s1) = ∂s1ϕ1(t, s1), s1 ∈ [0, 1], t ≥ 0
∂tϕ2(t, s2) = ∂s2ϕ2(t, s1), s2 ∈ [0, 2],
∂tϕ3(t, s3) = ∂s3ϕ3(t, s1), s3 ∈ [0, 3],

x1(t, 0) = x2(t, 0) = x3(t, 0) = 0.

We can declare this system using three different spatial variables as
>> pvar s1 s2 s3
>> phi1 = pde_var(s1,[0,1]); phi2 = pde_var(s2,[0,2]); phi3 = pde_var(s3,[0,3]);
>> PDE_alt = [diff(phi1,’t’)==diff(phi1,s1);

diff(phi2,’t’)==diff(phi2,s2);
diff(phi3,’t’)==diff(phi3,s3);
subs(phi1,s1,0)==0; subs(phi2,s2,0)==0; subs(phi3,s3,0)==0];

>> PDE_alt = initialize(PDE_alt)
Warning: Currently, PIETOOLS supports only problems with at most two distinct
spatial variables. Analysis of the returned PDE structure will not be possible.
Try running "combine_vars" to reduce the dimensionality of your problem.

Encountered 3 state components:
x1(t,s1), of size 1, differentiable up to order (1) in variables (s1);
x2(t,s2), of size 1, differentiable up to order (1) in variables (s2);
x3(t,s3), of size 1, differentiable up to order (1) in variables (s3);

Encountered 3 boundary conditions:
F1(t) = 0, of size 1;
F2(t) = 0, of size 1;
F3(t) = 0, of size 1;

d_t x1(t,s1) = d_s1 x1(t,s1);
d_t x2(t,s2) = d_s2 x2(t,s2);
d_t x3(t,s3) = d_s3 x3(t,s3);

0 = x1(t,0);
0 = x2(t,0);
0 = x3(t,0);
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Upon initializing this system, PIETOOLS already throws a warning that the system cannot
be analyzed with PIETOOLS in this form, and recommends running combine_vars to reduce
the dimensionality of the problem. Obeying our computer overlords, we run this function to
combine the variables to exist on the domain [0, 1] as

>> PDE_alt = combine_vars(PDE_alt,[0,1])

Variables (s1,s2) have been merged with variables (s3,s3) respectively.

All spatial variables have been rescaled to exist on the interval [0,1].

d_t x1(t,s) = d_s x1(t,s);
d_t x2(t,s) = 0.5 * d_s x2(t,s);
d_t x3(t,s) = 0.33333 * d_s x3(t,s);

0 = x1(t,0);
0 = x2(t,0);
0 = x3(t,0);

In doing so, the spatial variables s1 and s2 are both merged with the spatial variable s3, all now
converted to a single variable s on the domain [0, 1]. Accordingly, the differential equations are
now also expressed in terms of this single spatial variable, introducing e.g. x2(t, s) = ϕ2(t, 2s) for
s ∈ [0, 1], so that ∂s2ϕ2(t, s2) becomes 1

2∂sx2(t, s). In this manner, the returned system offers an
equivalent representation of the original PDE, through suitable state transformation. Of course,
if the system involves distributed inputs or outputs, those will be transformed accordingly as
well.

Note that, even for systems that do not allow for spatial variables to be merged, the function
combine_vars can still be used to rescale all variables to exist on the same domain, which may
reduce numerical issues in e.g. stability analysis later on.

8.2.4e Expanding delays

Unlike our PDE representation, the PIE representation does not allow for temporal delay to
occur in the state variables or inputs. To resolve this, any delay in the PDE is instead modeled
using a transport equation. Specifically, for any variable v(t − τ, s), be it a state or input
variable, we can introduce a state variable x(t, r, s) = v(t − rτ, s) for r ∈ [0, 1], so that we
can express v(t − τ, s) = x(t, 1, s) wherever it appears in the PDE dynamics. Here, the state
variable x(t) is governed by a transport equation

∂tx(t, r, s) = −1
τ

∂rv(t, r, s), x(t, 0, s) = v(t, s).

This equation is just a standard PDE with a standard boundary conditions, that can be readily
added to the PDE structure and converted to a PIE. In this manner, any temporal delay
in a linear PDE can be equivalently represented by adding a suitable transport equation to
the system, a process which can be performed for a pde_struct object PDE by simply calling
PDE=expand_delays(PDE). This function returns a new structure that offers an equivalent
representation of the input system, but now with an added state component modeled by a
transport equation for each delay present in the system.
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Note that, using the function expand_delay to expand a PDE state x(t− τ, s) with delay,
the boundary conditions on the state x(t) do not get automatically imposed on the newly
introduces state x̂(t, r, s) = x(t − rτ, s) modeling the delay. This may introduce conservatism
when e.g. analyzing stability of the system.

Example

Consider again the wave equation example from (8.1), declared as an initialized pde_struct
object PDE_i. As declared, the system involves a delayed input u2(t − 0.5, s2) in the
boundary conditions, which we can expand to get

>> PDE_d = expand_delays(PDE_i)

Added 1 state components:
x3(t,s2,ntau_3) := u2(t-ntau_3,s2);

Variable s1 has been merged with variable ntau_3.

All spatial variables have been rescaled to exist on the interval [-1,1].

d_t x1(t,s1,s2) = x2(t,s1,s2);
d_t x2(t,s1,s2) = 2.2222 * d_s1^2 x1(t,s1,s2) + 5 * d_s2^2 x1(t,s1,s2)

+ C23(s1,s2) * u1(t);
d_t x3(t,s1,s2) = 4 * d_s2 x3(t,s1,s2);

y1(t,s1) = x1(t,s1,1) + C42(s1) * w1(t);
y2(t,s2) = x2(t,1,s2) + w2(t);

z(t) = int_-1^1 int_-1^1[C61 * x1(t,s1,s2)]ds2 ds1
+ C62 * d_s1 d_s2 x2(t,1,1);

0 = x1(t,-1,s2) - x3(t,-1,s2);
0 = x2(t,-1,s2);
0 = x1(t,s1,-1);
0 = x2(t,s1,-1);
0 = 0.66667 * d_s1 x1(t,1,s2);
0 = 0.66667 * d_s1 x2(t,1,s2);
0 = d_s2 x1(t,s1,1);
0 = d_s2 x2(t,s1,1);
0 = u2(t,s2) - x3(t,1,s2);

In the returned system, a new variable x3(t, s2, r) (where r is ntau_3) is introduced to
model the delayed input u(t− 0.5, s2), adding a transport equation to model x3, as well as
a boundary condition u2(t, s2) = x3(t, 1, s2). However, since this also increases the number
of spatial variables in the system, the function combine_vars (presented in the previous
subsection) is called automatically to rescale all variables to exist on the domain [−1, 1],
and merge the new variable r with the variable s1 (since it cannot be merged with s2).
Accordingly, all the dynamics have been rescaled as well, so that e.g. the term 5∂2

s1x(t, s1)
becomes 5(2

3)2 = ∂2
s1x1(t, s1) to account for the fact that s1 has been rescaled from the

domain [0, 3] to the domain [−1, 1].
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8.2.4f Expanding higher-order temporal derivatives

As briefly illustrated earlier, the Command Line Input format can also be used to declare
systems with higher-order temporal derivatives. However, the PIE representation does not
actually support such higher-order temporal derivatives. Nevertheless, we can easily get around
this issue by introducing additional state variables. For example, consider the following wave
equation

∂2
t x1(t, s1, s2) = 5

(
∂2

s1x1(t, s1, s2) + ∂2
s2x1(t, s1, s2)

)
, (s1, s2) ∈ [0, 3]× [−1, 1], t ≥ 0,

x1(t, 0, s2) = ∂s1x1(t, 3, s2) = 0,

x1(t, s1,−1) = ∂s2x1(t, s1, 1) = 0,

which we can declare as
>> PDE_w = [diff(x1,’t’,2)==5*(diff(x1,s1,2)+diff(x1,s2,2));

subs(x1,s1,0)==0; subs(diff(x1,s1),s1,3)==0;
subs(x1,s2,-1)==0; subs(diff(x1,s2),s2,1)==0];

>> PDE_w = initialize(PDE_w)

Encountered 1 state component:
x(t,s1,s2), of size 1, differentiable up to order (2,2) in variables (s1,s2);

Encountered 4 boundary conditions:
F1(t,s2) = 0, of size 1;
F2(t,s2) = 0, of size 1;
F3(t,s1) = 0, of size 1;
F4(t,s1) = 0, of size 1;

d_t^2 x(t,s1,s2) = 5 * d_s1^2 x(t,s1,s2) + 5 * d_s2^2 x(t,s1,s2);

0 = x(t,0,s2);
0 = d_s1 x(t,3,s2);
0 = x(t,s1,-1);
0 = d_s2 x(t,s1,1);

Now, to get rid of the second-order temporal derivative in this system, we can introduce a new
state variable x2(t) = ∂tx1(t). Then, the wave equation can be equivalently expressed in a
format involving only first-order temporal derivatives as

∂tx1(t, s1, s2) = x2(t, s1, s2), (s1, s2) ∈ [0, 3]× [−1, 1], t ≥ 0,

∂2
t x1(t, s1, s2) = 5

(
∂2

s1x1(t, s1, s2) + ∂2
s2x1(t, s1, s2)

)
x1(t, 0, s2) = ∂s1x1(t, 3, s2) = x2(t, 0, s2) = ∂s1x2(t, 3, s2) = 0,

x1(t, s1,−1) = ∂s2x1(t, s1, 1) = x2(t, s1,−1) = ∂s2x2(t, s1, 1) = 0.

Given the pde_struct object PDE_w representing our wave equation, we can similarly expand
this system in a format involving only first-order temporal derivatives, using the function
expand_delays as
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>> PDE_w2 = expand_tderivatives(PDE_w)

Added 1 state component:
x2(t,s1,s2) := d_t x1(t,s1,s2)

Warning: No BCs have been imposed on the newly added state components
representing the higher order temporal derivatives.

Results of e.g. stability tests may be very conservative.

d_t x1(t,s1,s2) = x2(t,s1,s2);
d_t x2(t,s1,s2) = 5 * d_s1^2 x1(t,s1,s2) + 5 * d_s2^2 x1(t,s1,s2);

0 = x1(t,0,s2);
0 = d_s1 x1(t,3,s2);
0 = x1(t,s1,-1);
0 = d_s2 x1(t,s1,1);

The resulting structure represents the expected (expanded) PDE dynamics in terms of x1(t)
and x2(t) = ∂tx1(t). However, as the function also warns, no boundary conditions are imposed
upon this new state variable x2(t). Analyzing the stability or norm of this system, the lack of
boundary conditions on the newly introduced state may result in more conservative results.

8.3 The sys Format for 1D ODE-PDEs
In PIETOOLS 2022, a Command Line Parser was introduced for declaration of 1D ODE-PDE
systems, using the sys and state structures. Although the pde_var function has replaced
this sys-based input format in PIETOOLS 2024, 1D ODE-PDEs can still be declared using
this older Command Line Parser format as well. In this section, we give an overview of how
the state and sys classes can be used for defining and manipulating 1D ODE-PDE systems.
Furthermore, we will also specify valid modes of manipulating these objects in MATLAB and
potential caveats while using these objects.

8.3.1 state class objects
All symbols used to define a systems are either polynomial type (part of SOSTOOLS) or state
type (part of PIETOOLS). Here, we will focus on state class objects and methods defined for
such objects. First, any state class object has the following properties that can be freely
accessed (but should not be modified directly).

state

This class has the following properties:

1. type: Type of variable; It is a cell array of strings that can take values in {′ode′ ,′ pde′

,′ out′ ,′ in′}

2. veclength: Positive integer

3. var: Cell array of polynomial row vectors (Multipoly class object)
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4. diff_order: Cell array of non-negative integers (same size as var)

The first independent variable stored in each row of the state.var cell structure is always
the time variable t. Spatial variables are stored in location 2 and on-wards. For example,

» X = state(’pde’); x = state(’ode’);
» X.var

ans =
[ t, s]

» x.var

ans =
[ t ]

Differentiation information is stored as a cell array where the cell structure has the same
size as state.var with non-negative integers specifying order of differentiation w.r.t. the
independent variable based on the location. For the above example, we have

» X.diff_order

ans =
[ 0, 0]

» y = diff(X,s,2);
» y.diff_order

ans =
[ 0, 2]

Note, user can indeed edit these properties directly by assignment. For example, the code
» x = state(’pde’);
» x.diff_order = [0,2];

defines the symbol x as a function x(t, s), and converts it to the second derivative ∂2
s x(t, s).

This is same as the code
» x = state(’pde’);
» x = diff(x,s,2);

Since, this permanently changes x to its second spatial derivative in the workspace, such direct
manipulation of the properties should be avoided at all costs.

Declaring/initializing state variables The initialization function state() takes two input
arguments (both are optional):

• type: The argument is reserved to specification of the type of the state object (defaults
to ’ode’, if not specified)

• veclength: The size of the vector-valued state (defaults to one, if not specified)
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d = state(’pde’,3);

Alternatively, multiple states can be defined collectively using the command shown below,
however, all such states will default to the type ’ode’ and length 1.

state a b c;

Operations on state class objects All of the following operations should give us a terms
(an internal class that cannot be accessed or modified by users) class object which is defined
by some PI operator times a vector of states. Operators/functions that are used to manipulate
state objects are:

1. addition: x+y or x-y

2. multiplication: K*x

3. vertical concatenation: [x;y]

4. differentiation: diff(x,s,3)

5. integration: int(x,s,[0,s])

6. substitution: subs(x,s,0)

Caveats in operations on state class objects While manipulation of state class objects,
the users must adhere the following rules stated in the table 8.1. All the operations listed in
the table are invalid.

Addition of time derivatives is not allowed, since that usually leads to a descriptor dynamical
PDE system which is not supported by PIETOOLS. For example, consider the following PDE.

ẋ(t) + ẏ(t) = ∂2
s x(t, s)

2ẏ(t) = 5∂2
s y(t, s).

This PDE cannot be implemented directly using the command line parser. Since,
the left hand side of the equation has a coefficient different from identity, the user needs to first
separate it as

ẋ(t) = ∂2
s x(t, s)− 2.5∂2

s y(t, s)
ẏ(t) = 2.5∂2

s y(t, s).

Now, we can define this PDE using the following code:
>> pvar t s;
>> x = state(’pde’); y = state(’pde’);\
>> odepde= sys();
>> odepde = addequation(odepde, diff(x,t)-diff(x,s,2)-2.5*diff(y,s,2));
>> odepde = addequation(odepde, diff(y,t)-2.5*diff(y,s,2));
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Likewise, we do not permit adding outputs with outputs, outputs with time derivatives, or
right multiplication which also lead to descriptor type systems. Coupling on left hand side of
these equations must be manually resolved before defining the PDE in PIETOOLS.

Other limitations to note are, PIETOOLS does not support temporal-spatial mixed deriva-
tives, integration in time, and evaluation of functions at specific time or inside the spatial do-
main. For example, for a state x(t, s) with s ∈ [0, 1] we cannot find x(t = 2, s) or x(t, s = 0.5).
x can only be evaluated at the boundary s = 0 or s = 1.

8.3.2 sys class objects
sys

This class has following accessible properties:

• equation: stores all the equations added to the system object in a column vector
where every row is an equation with zero on the right hand side (i.e., row(i)=0 for
every i)

• type: type of the system (currently supports ‘pde’ and ‘pie’)

• params: either a pde_struct or pie_struct object

• dom: a 1× 2 vector double (value of first element must be strictly smaller than that
of second element)

• Other hidden properties:

1. states: a vector of all states, inputs, outputs appearing in the equation property
2. ControlledInputs: A vector with length same as the states property with 0 or

1 value. This vector specifies whether a state is a controlled input or not.
3. ObservedOutputs: A vector with length same as the states property with 0 or

1 value. This specifies whether a state is an observed output or not.

sys class methods Methods used to modify a sys() object are listed below.

• addequation: adds an equation to the obj.equation property; syntax addequation(obj,
eqn)

• removeequation: removes equation in row i from the obj.equation property; syntax
removeequation(obj,i)

• setControl: sets a chosen state x as a control input; syntax setControl(obj,x)

• setObserve: sets a chosen state x as an observed output; syntax setObserve(obj,x)

• removeControl: removes a chosen state x from the set of control inputs; syntax
removeControl(obj,x)
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Operation type Incorrect or ‘not-permitted’ operations

Addition

✖ Adding two time derivatives: diff(x,t)+diff(x,t)

✖ Adding two outputs: z1+z2

✖ Adding time derivative and outptu: diff(x,t)+z

Multiplication

✖ Multiplying two states: x*x

✖ Multiplying non-identity with time derivative/output:
2*diff(x,t) or -1*z

✖ Right multiplication: x*3

Differentiation
✖ Higher order time derivatives: diff(x,t,2)

✖ Mixed derivatives of space and time:
diff(diff(x,t),s,2)

Substitution

✖ Substituting a double for time variable: subs(x,t,2)

✖ Substituting positive time delay: subs(x,t,t+5)

✖ Substitution values other than pvar variable or boundary val-
ues

Integration

✖ Integration of time variable: int(x,t,[0,5])

✖ both limits being non-numeric: int(x,s,[theta,eta])

✖ limit same as variable of integration: int(x,s,[s,1])

Concatenation
✖ Horizontal concatenation: [x,x]

✖ Blank spaces in vertical concatentation: [x + y; z]

Table 8.1: This table lists all the invalid forms of operations on state class objects. The left
column specifies the type of operation whereas the right column lists the operations that are
INVALID for that ‘type’ of operation.
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• removeObserve: removes a chosen state x from the set of observed outputs; syntax
removeObserve(obj,x)

• getParams: parses symbolic equations from obj.equation property to get pde_struct
object which is stored in obj.params; syntax getParams(obj)

• convert: converts obj.params from pde_struct to pie_struct object; syntax
convert(obj,’pie’)

WARNING:

sys class object properties should not be modified directly (unless you know what you are
doing); Use the methods provided above.
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Chapter 9

Batch Input Formats for Time-Delay
Systems

In Chapter 4, we showed how time-delay systems (TDSs) can be implemented as delay differ-
ential equations (DDEs) in PIETOOLS. In that chapter, we further hinted at the fact that
PIETOOLS also allows TDSs to be declared in two alternative representations: as neutral type
systems (NDSs) and as differential difference equations (DDFs). In this chapter, we will provide
more details on how to work with such NDS and DDF systems in PIETOOLS. In particular,
in Section 9.1, we recall the DDE representation, and show what NDS and DDF systems look
like, and how systems of each type can be declared in PIETOOLS. In Section 9.2, we then show
how NDS and DDE systems can be converted to the DDF representation in PIETOOLS, and
how each type of TDS can be converted to a PIE.

9.1 Representing Systems with Delay
In this section, we show how time-delay systems in DDE, NDS and DDF representation can
be declared in PIETOOLS, focusing on DDE systems in Subsection 9.1.1, NDS systems in
Subsection 9.1.2, and DDF systems in Subsection 9.1.3. For more information on how to
declare systems in DDE representation in PIETOOLS, we refer to Section 4.3

9.1.1 Input of Delay Differential Equations
The DDE data structure allows the user to declare any of the matrices in the following general
form of Delay-Differential equation.ẋ(t)

z(t)
y(t)

 =

A0 B1 B2
C1 D11 D12
C2 D21 D22


x(t)
w(t)
u(t)

+
K∑

i=1

Ai B1i B2i

C1i D11i D12i

C2i D21i D22i


x(t− τi)
w(t− τi)
u(t− τi)



+
K∑

i=1

∫ 0

−τi

Adi(s) B1di(s) B2di(s)
C1di(s) D11di(s) D12di(s)
C2di(s) D21di(s) D22di(s)


x(t + s)
w(t + s)
u(t + s)

 ds (9.1)

In this representation, it is understood that

• The present state is x(t).
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• The disturbance or exogenous input is w(t). These signals are not typically known or
alterable. They can account for things like unmodelled dynamics, changes in reference,
forcing functions, noise, or perturbations.

• The controlled input is u(t). This is typically the signal which is influenced by an actuator
and hence can be accessed for feedback control.

• The regulated output is z(t). This signal typically includes the parts of the system to
be minimized, including actuator effort and states. These signals need not be measured
using senors.

• The observed or sensed output is y(t). These are the signals which can be measured using
sensors and fed back to an estimator or controller.

To add any term to the DDE structure, simply declare is value. For example, to represent

ẋ(t) = −x(t− 1), z(t) = x(t− 2)

we use
» DDE.tau = [1 2];
» DDE.Ai{1} = -1;
» DDE.C1i{2} = 1;

All terms not declared are assumed to be zero. The exception is that we require the user to
specify the values of the delay in DDE.tau. When you are done adding terms to the DDE struc-
ture, use the function DDE=PIETOOLS_initialize_DDE(DDE), which will check for undeclared
terms and set them all to zero. It also checks to make sure there are no incompatible dimen-
sions in the matrices you declared and will return a warning if it detects such malfeasance. The
complete list of terms and DDE structural elements is listed in Table 9.1.

9.1.1a Initializing a DDE Data structure

The user need only add non-zero terms to the DDE structure. All terms which are not added
to the data structure are assumed to be zero. Before conversion to another representation or
data structure, the data structure will be initialized using the command

DDE = initialize_PIETOOLS_DDE(DDE)

This will check for dimension errors in the formulation and set all non-zero parts of the DDE
data structure to zero. Not that, to make the code robust, all PIETOOLS conversion utilities
perform this step internally.

9.1.2 Input of Neutral Type Systems
The input format for a Neutral Type System (NDS) is identical to that of a DDE except for 6
additional terms:

ẋ(t)
z(t)
y(t)

 =

A0 B1 B2
C1 D11 D12
C2 D21 D22


x(t)
w(t)
u(t)

+
K∑

i=1

Ai B1i B2i Ei

C1i D11i D12i E1i

C2i D21i D22i E2i




x(t− τi)
w(t− τi)
u(t− τi)
ẋ(t− τi)
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ODE Terms:
Eqn. (9.1) DDE. Eqn. (9.1) DDE. Eqn. (9.1) DDE.

A0 A0 B1 B1 B2 B2
C1 C1 D11 D11 D12 D12
C2 C2 D21 D21 D22 D22

Discrete Delay Terms:
Eqn. (9.1) DDE. Eqn. (9.1) DDE. Eqn. (9.1) DDE.

Ai Ai{i} B1i B1i{i} B2i B2i{i}
C1i C1i{i} D11i D11i{i} D12i D12i{i}
C2i C2i{i} D21i D21i{i} D22i D22i{i}

Distributed Delay Terms: May be functions of pvar s
Eqn. (9.1) DDE. Eqn. (9.1) DDE. Eqn. (9.1) DDE.

Adi Adi{i} B1di B1di{i} B2di B2di{i}
C1di C1di{i} D11di D11di{i} D12di D12di{i}
C2di C2di{i} D21di D21di{i} D22di D22di{i}

Table 9.1: Equivalent names of Matlab elements of the DDE structure terms for terms in
Eqn. (9.1). For example, to set term XX to YY, we use DDE.XX=YY. In addition, the delay τi is
specified using the vector element DDE.tau(i) so that if τ1 = 1, τ2 = 2, τ3 = 3, then DDE.tau=[1
2 3].

+
K∑

i=1

∫ 0

−τi

Adi(s) B1di(s) B2di(s) Edi(s)
C1di(s) D11di(s) D12di(s) E1di(s)
C2di(s) D21di(s) D22di(s) E2di(s)




x(t + s)
w(t + s)
u(t + s)
ẋ(t + s)

ds (9.2)

These new terms are parameterized by Ei, E1i, and E2i for the discrete delays and by Edi, E1di,
and E2di for the distributed delays. As for the DDE case, these terms should be included in a
NDS object as, e.g. NDS.E{1}=1.

9.1.2a Initializing a NDS Data structure

The user need only add non-zero terms to the NDS structure. All terms which are not added
to the data structure are assumed to be zero. Before conversion to another representation or
data structure, the data structure will be initialized using the command

>> NDS = initialize_PIETOOLS_NDS(NDS);

This will check for dimension errors in the formulation and set all non-zero parts of the NDS
data structure to zero. Not that, to make the code robust, all PIETOOLS conversion utilities
perform this step internally.

9.1.3 The Differential Difference Equation (DDF) Format
A Differential Difference Equation (DDF) is a more general representation than either the DDE
or NDS. Most importantly, unlike the DDE or NDS, it allows one to represent the structure of
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the delayed channels. As such, it is the only representation for which the minimal realization
features of PIETOOLS are defined. Nevertheless, the general form of DDF is more compact
that of the DDE or NDS. The distinguishing feature of the DDF is decomposition of the output
signal from the ODE part into sub-components, ri, each of which is delayed by amount τi.
Identification of these ri is often challenging and hence most users will input the system as an
ODE or NDS and then convert to a minimal DDF representation. The form of a DDF is given
as follows.


ẋ(t)
z(t)
y(t)
ri(t)

 =


A0 B1 B2
C1 D11 D12
C2 D21 D22
Cri Br1i Br2i


x(t)
w(t)
u(t)

+


Bv

D1v

D2v

Drvi

 v(t)

v(t) =
K∑

i=1
Cviri(t− τi) +

K∑
i=1

∫ 0

−τi

Cvdi(s)ri(t + s)ds. (9.3)

As for a DDE or NDS, each of the non-zero parameters in Eqn. (9.3) should be added to
the DDF structure, along with the vector of values of the delays DDF.tau. The elements of the
DDF structure which can be defined by the user are included in Table 9.3.

9.1.3a Initializing a DDF Data structure

The user need only add non-zero terms to the DDF structure. All terms which are not added
to the data structure are assumed to be zero. Before conversion to another representation or
data structure, the data structure will be initialized using the command

>> DDF = initialize_PIETOOLS_DDF(DDF);

This will check for dimension errors in the formulation and set all non-zero parts of the DDF
data structure to zero. Not that, to make the code robust, all PIETOOLS conversion utilities
perform this step internally.

9.2 Converting between DDEs, NDSs, DDFs, and PIEs
For a given delay system, there are several alternative representations of that system. For
example, a DDE can be represented in the DDE, DDF, or PIE format. However, only the DDF
and PIE formats allow one to specify structure in the delayed channels, which are infinite-
dimensional. For that reason, it is almost always preferable to efficiently convert the DDE or
NDS to either a DDF or PIE - as this will dramatically reduce computational complexity of the
analysis, control, and simulation problems (assuming you have tools for analysis, control and
simulation of DDFs and PIEs - which we do!). However, identifying an efficient DDF or PIE
representation of a given DDF/NDS is laborious for large systems and requires detailed under-
standing of the DDF format. For this reason, we introduce a set of functions for automating
this conversion process.
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9.2.1 DDF to PIE
To convert a DDF data structure to an equivalent PIE representation, we have two utilities
which are typically called sequentially. The first uses the SVD to identify and eliminate unused
delay channels. The second naïvely converts a DDF to an equivalent PIE.

9.2.1a Minimal DDF Realization of a DDF

The typical first step in analysis, simulation and control of a DDF is elimination of unused delay
channels. This is accomplished using the SVD to identify such channels in a DDF structure
and output a smaller, equivalent DDF structure. To use this utility, simply declare your DDF
and enter the command

>> DDF = minimize_PIETOOLS_DDF(DDF);

9.2.1b Converting a DDF to a PIE

Having constructed a minimal (or not) DDF representation of a DDE, NDS or DDF, the next
step is conversion to an equivalent PIE. To use this utility, simply declare your DDF structure
and enter the command

>> PIE = convert_PIETOOLS_DDF(DDF,’pie’);

9.2.2 DDE to DDF or PIE
We next address the problem of converting a DDE data structure to a DDF or PIE data
structure. Because the DDE representation does not allow one to represent structure, this
conversion is almost always performed by first computing a minimized DDF representation
using minimize_PIETOOLS_DDE2DDF, followed possibly by converting this DDF representation
to a PIE. Both steps are included in the function convert_PIETOOLS_DDE, allowing the minimal
DDF representation and PIE representation of a DDE structure DDE to be computed as

>> [DDF, PIE] = convert_PIETOOLS_DDE(DDE);

Here, the function convert_PIETOOLS_DDE computes the minimal DDF representation by call-
ing minimal_PIETOOLS_DDE2DDF, which uses the SVD to eliminate unused delay channels in
the DDF - resulting in a much more compact representation of the same system. As such, the
minimal DDF representation can be computed by calling minimal_PIETOOLS_DDE2DDF directly
as

>> DDF = minimal_PIETOOLS_DDE2DDF(DDF);

or by calling convert_PIETOOLS_DDE with a second argument ’ddf’
>> DDF = convert_PIETOOLS_DDE(DDE,’dde’);

Similarly, if only the PIE representation is desired, the user can also call
>> PIE = convert_PIETOOLS_DDE(DDE,’pie’);

though the procedure for computing the PIE will still involve computing the DDF representation
first.
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9.2.2a DDE direct to PIE [NOT RECOMMENDED!]

Although it should never be used in practice, we also include a utility to construct the equivalent
naïve PIE representation of a DDE. This is occasionally useful for purposes of comparison. To
use this utility, simply declare your DDE and enter the command

>> DDF = convert_PIETOOLS_DDE2PIE_legacy(DDE);

Because of the limited utility of the unstructured representation, we have not included a naïve
DDE to DDF utility.

9.2.3 NDS to DDF or PIE
Finally, we next address the problem of converting a NDS data structure to a DDF or PIE data
structure. Like the DDE, the NDS representation does not allow one to represent structure and
so the typical process is involves 3 steps: direct conversion of the NDS to a DDF; constructing
a minimal representation of the resulting DDF using minimize_PIETOOLS_DDF; and conversion
of the reduced DDF to a PIE. These three steps have been combined into a single function
convert_PIETOOLS_NDS, computing the DDF represenation, minimizing this representation,
and converting this representation to a PIE. All three resulting structures can be returned by
calling

>> [DDF\_max, DDF, PIE] = convert\_PIETOOLS\_NDS(NDS);

where now DDF_max corresponds to the non-minimized DDF representation of NDS, and DDF
corresponds to the minimized representation. If the user only want to compute this DDF
representation, it is computationally cheaper to call the function with only two outputs,

>> [DDF\_max, DDF] = convert\_PIETOOLS\_NDS(NDS);

or to call the function with a second argument ’ddf’,
>> [DDF] = convert\_PIETOOLS\_NDS(NDS,’ddf’);

Similarly, if only the non-minimized DDF representation is desired, the function should called
with a single output,

>> DDF\_max = convert\_PIETOOLS\_NDS(NDS,’ddf_max’);

or with a second argument ’ddf_max’,
>> DDF\_max = convert\_PIETOOLS\_NDS(NDS,’ddf_max’);

It is also possible to pass an argument ’pie’, calling
>> PIE = convert\_PIETOOLS\_NDS(NDS,’pie’);

returning only the PIE representation, even though the DDF representations will also be com-
puted.
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ODE Terms:
Eqn. (9.2) NDS. Eqn. (9.2) NDS. Eqn. (9.2) NDS.

A0 A0 B1 B1 B2 B2
C1 C1 D11 D11 D12 D12
C2 C2 D21 D21 D22 D22

Discrete Delay Terms:
Eqn. (9.2) NDS. Eqn. (9.2) NDS. Eqn. (9.2) NDS. Eqn. (9.2) NDS.

Ai Ai{i} B1i B1i{i} B2i B2i{i} Ei Ei{i}
C1i C1i{i} D11i D11i{i} D12i D12i{i} E1i E1i{i}
C2i C2i{i} D21i D21i{i} D22i D22i{i} E2i E2i{i}

Distributed Delay Terms: May be functions of pvar s
Eqn. (9.2) NDS. Eqn. (9.2) NDS. Eqn. (9.2) NDS. Eqn. (9.2) NDS.

Adi Adi{i} B1di B1di{i} B2di B2di{i} Edi Edi{i}
C1di C1di{i} D11di D11di{i} D12di D12di{i} E1di E1di{i}
C2di C2di{i} D21di D21di{i} D22di D22di{i} E2di E2di{i}

Table 9.2: Equivalent names of Matlab elements of the NDS structure terms for terms in
Eqn. (9.2). For example, to set term XX to YY, we use NDS.XX=YY. In addition, the delay τi is
specified using the vector element NDS.tau(i) so that if τ1 = 1, τ2 = 2, τ3 = 3, then NDS.tau=[1
2 3].

ODE Terms:
Eqn. (9.3) DDF. Eqn. (9.3) DDF. Eqn. (9.3) DDF. Eqn. (9.3) DDF.

A0 A0 B1 B1 B2 B2 Bv Bv
C1 C1 D11 D11 D12 D12 D1v D1v
C2 C2 D21 D21 D22 D22 D2v D2v
Cri Cri{i} Br1i Br1i{i} Br2i Br2i{i} Drvi Drvi{i}

Discrete Delay Terms:
Eqn. (9.3) DDF.

Cvi Cvi{i}

Distributed Delay Terms: May be functions of pvar s
Eqn. (9.3) DDF.

Cvdi(s) Cvdi{i}

Table 9.3: Equivalent names of Matlab elements of the DDF structure terms for terms in
Eqn. (9.3). For example, to set term XX to YY, we use DDF.XX=YY. In addition, the delay τi is
specified using the vector element DDF.tau(i) so that if τ1 = 1, τ2 = 2, τ3 = 3, then DDF.tau=[1
2 3].
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Chapter 10

Operations on PI Operators in
PIETOOLS: opvar and dopvar

In Chapter 5, we showed how PI operators could be declared as opvar and opvar2d objects in
PIETOOLS. In Chapter 7, we showed how the similar class of dopvar (and dopvar2d) objects
can be used to represent PI operator decision variables in convex optimization programs. In
this Chapter, we detail some features of these opvar and dopvar classes, showing how standard
operations on PI operators can be easily performed using the opvar classes in PIETOOLS.
In particular, we first recall the structure of opvar and opvar2d objects in Setion 10.1, also
showing how such objects can be declared in PIETOOLS.. In Section 10.2, we then show
algebraic operations such as addition of opvar objects can be performed in PIETOOLS, after
which we show how matrix operations such as concatenation can be performed on opvar objects
in Section 10.3. Finally, in Section 10.4, we outline a few additional operations for opvar objects.
For more information on the theory behind these operations, we refer to Appendix A, as well
as papers such as [10].

Note

Unless stated otherwise, the operations on opvar objects presented in the following sections
can also be performed on opvar2d, dopvar and dopvar2d class objects. To reduce notation,
these operations will be illustrated only for opvar class objects.

10.1 Declaring opvar and dopvar Objects
In this section, we briefly recall how opvar objects are structured, and how they represent PI
operators in 1D. We also briefly introduce the dopvar class, showing how such objects can be
declared in a similar manner to opvar objects. For more information on the opvar2d structure
for PI operators in 2D, we refer to Chapter 3.

10.1.1 The opvar Class
In PIETOOLS, 4-PI operators are represented by opvar objects, which are structures with 8

accessible fields. In particular, letting T :
[

Rn0

Ln1
2 [a, b]

]
→

[
Rm0

Lm1
2 [a, b]

]
be a 4-PI operator of the
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form
(
T x

)
(s) =

[
Px0 +

∫ b
a Q1(s)x1(s)ds

Q2(s)x0 + R0(s)x1(s) +
∫ s

a R1(s, θ)x1(θ)dθ +
∫ b

s R2(s, θ)x1(θ)dθ

]
(10.1)

for x =
[
x0
x1

]
∈
[

Rn0

Ln1
2 [a, b]

]
, we can declare T as an opvar object T with the following fields

opvar fields

dim = [m0,n0;
m1,n1]

2× 2 array of type double specifying the dimensions of the function spaces[
Rm0

L
m1
2 [a,b]

]
and

[
Rn0

L
n1
2 [a,b]

]
the operator maps to and from;

var1 = s 1× 1 pvar (polynomial class) object specifying the spatial variable s;
var2 = theta 1× 1 pvar (polynomial class) object specifying the dummy variable θ;
I = [a,b] 1× 2 array of type double, specifying the interval [a, b] on which the spatial

variables s and θ exist;
P = P m0 × n0 array of type double or polynomial defining the matrix P ;
Q1 = Q1 m0 × n1 array of type double or polynomial defining the function Q1(s);
Q2 = Q2 m1 × n0 array of type double or polynomial defining the function Q2(s);
R.R0 = R0 m1 × n1 array of type double or polynomial defining the function R0(s);
R.R1 = R1 m1 × n1 array of type double or polynomial defining the function R1(s, θ);
R.R2 = R2 m1 × n1 array of type double or polynomial defining the function R2(s, θ);

As an example, suppose we want to declare the 4-PI operator T :
[

R2

L3
2[2,3]

]
→
[

R3

L2[2,3]

]
defined

as

(
T x

)
(r) =


P︷ ︸︸ ︷[ 1 0

0 2
3 4

]
x0 +

∫ 3
2

Q1(r)︷ ︸︸ ︷[
r2 0 0
3 r3 0
0 r+2∗r2 0

]
x1(r)dr

[ −5r 6 ]︸ ︷︷ ︸
Q2(s)

x0 +
∫ r

2 [ r 2ν 3(r−ν) ]︸ ︷︷ ︸
R1(r,ν)

x1(ν)dν

, r ∈ [2, 3],

for any x = [ x0
x1 ] ∈

[
R2

L3
2[2,3]

]
. To declare this operator, we first initialize an opvar object T, using

the syntax
>> opvar T
ans =

[] | []
-----------
[] | ans.R

ans.R =
[] | [] | []

This command creates an empty opvar object T with all dimensions 0. Consequently, the
parameters P,Qi,Ri are initialized to 0 × 0 matrices. Since we know the operator T to map[

R2

L3
2[2,3]

]
→

[
R3

L2[2,3]

]
, we can specify the desired dimension of the opvar object T using the

command
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>> T.dim = [3 2; 1 3]
T =

[0,0] | [0,0,0]
[0,0] | [0,0,0]
[0,0] | [0,0,0]
----------------
[0,0] | T.R

T.R =
[0,0,0] | [0,0,0] | [0,0,0]

Here, by assigning a value to dim, the parameters are adjusted to zero matrices of appropriate
dimensions. We note that, this command is not strictly necessary, as the dimensions of T will
also be automatically adjusted once we specify the values of the parameters.

Next, we assign the interval [2, 3] on which the functions x1 ∈ L3
2[0, 3] are defined, by setting

the field I as
» T.I = [2,3];

Since the parameters defining T also depend on r, ν ∈ [2, 3], we have to assign these variables
as well. For this, we represent them by pvar objects r and nu, and set the values of T.var1
and T.var2 as

>> pvar r nu
>> T.var1 = r; T.var2 = nu;

Note that, if the parameters Qi and R.Ri are constant, there is no need to declare the variables
var1 or var2, in which case these fields will default to var1=s and var2=theta. Having declared
the variables, we finally set the values of the parameters, by assigning them to the appropriate
fields of T

>> T.P = [1,0; 0,2; 3,4];
>> T.Q1 = [r^2, 0, 0; 3, r^3, 0; 0, r+2*r^2, 0];
>> T.Q2 = [-5*r, 6];
>> T.R.R1 = [r, 2*nu, 3*r-nu]
T =

[1,0] | [r^2,0,0]
[0,2] | [3,r^3,0]
[3,4] | [0,2*r^2+r,0]

----------------------
[-5*r,6] | T.R

T.R =
[0,0,0] | [r,2*nu,-nu+3*r] | [0,0,0]

Note

dim is dependent on size of the 6 parameters P, Qi and R.Ri. Modifying those parameters
automatically changes the value stored in dim property. If the dimensions of the parameters
are incompatible, dim will store Nan as its value to alert the user about the discrepancy.

141



10.1.2 dpvar objects and the dopvar class
In addition to polynomial functions, polynomial decision variables can also be declared in
PIETOOLS. Such decision variables are used in polynomial optimization programs, optimizing
over the values of the coefficients defining these polynomials. To declare such polynomial deci-
sion variables, we use the dpvar class, extending the polynomial class to represent polynomials
with decision variables. For example, to represent a variable quadratic polynomial

p(c0, c1, c2; x) = c0 + c1x + c2x
2,

with unknown coefficient {c0, c1, c2}, we use
>> pvar x
>> dpvar c0 c1 c2
>> p = c0 + c1*x + c2*x^2
p =

c0 + c1*x + c2*x^2

Here, the second line decision variables c0, c1 and c2, and the third line uses these decision vari-
ables to declare the decision variable polynomial p(c0, c1, c2; x) as a dpvar object p. Crucially,
this variable is affine in the coefficients c0, c1 and c2, as dpvar objects can only be used to
represent decision variable polynomials that are affine with respect to their coefficients. This is
because PIETOOLS cannot tackle polynomial optimization programs that are nonlinear in the
decision variables, and accordingly, the dpvar structure has been built to exploit the linearity
of the decision variables to minimize computational effort.

Using polynomial decision variables, we can also define PI operator decision variables, defin-
ing the parameters Q1 through R2 by polynomial decision variables rather than polynomials.
For example, suppose we have an operator D : L2

2[0, 1]→ L2
2[0, 1] defined as(

Dx
)
(s) =

[
c1 c2s
c2s c3s

2

]
︸ ︷︷ ︸

R0(s)

x(s) +
∫ 1

s

[
c4s

2 c5sθ
−c6sθ c7θ

2

]
︸ ︷︷ ︸

R2(s,θ)

x(θ)dθ, s ∈ [0, 1]

for x ∈ L2
2[0, 1], where c1 through c7 are unknown coefficients. Then, we can declare the

parameters R1 and R2 as dpvar class objects by calling
>> pvar s th
>> dpvar c1 c2 c3 c4 c5 c6 c7
>> R0 = [c1, c2*s; c2*s, c3*s^2];
>> R2 = [c4, c5*s*th; c6*s*th, c7*th^2];

Then, we can declare D as a dopvar object D. Such dopvar objects have a structure identical to
that of opvar objects, with the only difference being that the parameters P through R.R2 can
be declared as dpvar objects. Accordingly, we declare the dopvar object D in a similar manner
as we would and opvar objects:

>> dopvar D;
>> D.I = [0,1];
>> D.var1 = s; D.var2 = th;
>> D.R.R0 = R0; D.R.R1 = R2
D =

[] | []
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---------
[] | D.R

D.R =
[c1,c2*s] | [0,0] | [c4,c5*s*th]

[c2*s,c3*s^2] | [0,0] | [c6*s*th,c7*th^2]

10.2 Algebraic Operations on opvar Objects
In this section, we go over various methods that help in manipulating and handling of opvar
objects in PIETOOLS. In particular, in Subsection 10.2.1, we show how the sum of two PI
operators can be computed in PIETOOLS, followed by the composition of PI operators in
Subsection 10.2.2. In Subsection 10.2.3, we then show how to take the adjoint of a PI operator,
and finally, in Subsection 10.2.4, we show how a numerical inverse of a PI operator can be
computed. To illustrate each of these operations, we use the PI operators A,B :

[
R2

L2[−1,1]

]
→[

R2

L2[−1,1]

]
defined as

(
Ax

)
(s) =

 [ 1 0
2 −1 ] x0 +

∫ 1
−1

[
1−s
s+1

]
x1(s)ds

[ 10s −1 ] x0 + 2x1(s) +
∫ s
−1(s− θ)x1(θ)dθ +

∫ 1
s (s− θ)x1(θ)dθ

, (10.2)

(
Bx
)
(s) =

 [ 1 0
0 3 ] x0

[ 5s −s ] x0 + s2x1(s) +
∫ 1

s θx1(θ)dθ

, s ∈ [−1, 1],

for x = [ x0
x1 ] ∈

[
R2

L2[−1,1]

]
. We declare these operators as

>> pvar s th
>> opvar A B;
>> A.I = [-1,1]; B.I = [-1,1];
>> A.var1 = s; B.var1 = s;
>> A.var2 = th; B.var2 = th;
>> A.P = [1,0;2,-1]; B.P = [1,0;0,3];
>> A.Q1 = [1-s;s+1];
>> A.Q2 = [10*s,-1]; B.Q2 = [5*s,-s];
>> A.R.R0 = 2; B.R.R0 = s^2;
>> A.R.R1 = (s-th);
>> A.R.R2 = (s-th); B.R.R2 = th;

10.2.1 Addition (A+B)
opvar objects, A and B, can be added simply by using the command

» A+B

For two opvar objects to be added, they must have same dimensions (A.dim=B.dim), domains
(A.I=B.I), and variables (A.var1=B.var1). Furthermore, if A (or B) is a scalar then PIETOOLS
considers that as adding A*I (or B*I) where I is an identity matrix. Again, this operation is
appropriate if and only if dimensions match. Similarly, if A (or B) is a matrix with matching
dimension, it can be added to opvar B (or A) using the same command.
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Example Adding the opvar objects A and B corresponding to operators A,B defined as in
Equation (10.2), we find

>> C = A+B
C =

[2,0] | [-s+1]
[2,2] | [s+1]

------------------
[15*s,-s-1] | C.R

C.R =
[s^2+2] | [s-th] | [s]

suggesting that, for x = [ x0
x1 ] ∈

[
R2

L2[−1,1]

]
,

(
Ax

)
(s) +

(
Bx
)
(s) =

 [ 2 0
2 2 ] x0 +

∫ 1
−1

[
1−s
s+1

]
x1(s)ds

[ 15s −s−1 ] x0 + (s2 + 2)x1(s) +
∫ s
−1(s− θ)x1(θ)dθ +

∫ 1
s sx1(θ)dθ

.

10.2.2 Multiplication (A*B)
opvar objects, A and B, can be composed simply by using the command

» A*B

For two opvar objects to be composed, they must have the same domains (A.I=A.B), the same
variables (A.var1=B.var1 and A.var2=B.var2), and the output dimension of B must match
the input dimension of A (A.dim(:,2)=B.dim(:,1)). Furthermore, if A (or B) is a scalar then
PIETOOLS considers that as a scalar multiplication operation, thus multiplying all parameters
of B (or A) by that value.

Example Composing the opvar objects A and B corresponding to operators A,B defined as
in Equation (10.2), we find

>> C = A*B
C =

[-2.3333,0.66667] | [-1.5*s^3+2*s^2+1.5*s]
[5.3333,-3.6667] | [1.5*s^3+2*s^2+0.5*s]

-------------------------------------------
[20*s-3.3333,-2*s-2.3333] | C.R

C.R =
[2*s^2] | [2*s*th^2-1.5*th^3+s*th+0.5*th] | [2*s*th^2-1.5*th^3+s*th+2.5*th]

suggesting that, for x = [ x0
x1 ] ∈

[
R2

L2[−1,1]

]
,

(
A
(
Bx
))

(s) =


[
−2 1

3
2
3

5 1
3 −3 2

3

]
x0 +

∫ 1
−1

[
−1 1

2 s3+2s2+1 1
2 s

1 1
2 s3+2s2+ 1

2 s

]
x1(s)ds

[ 20s−3 1
3 −2s−2 1

3 ] x0 + 2s2x1(s) +
∫ s
−1(2sθ2 − 11

2θ3 + sθ + 1
2θ)x1(θ)dθ

+
∫ 1

s (2sθ2 − 11
2θ3 + sθ + 21

2θ)x1(θ)dθ

 .
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Note

Although dopvar objects can be multiplied with opvar objects and vice versa, producing a
dopvar object in both cases, it is not possible to compute the composition of two dopvar
objects. This is because dopvar objects depend linearly (affinely) on the decision variables,
and the composition of two dopvar objects would require taking the product of decision
variables. Similarly for dopvar2d objects.

10.2.3 Adjoint (A’)
The adjoint of an opvar object A can be calculated using the command

» A’

For an operator A : RLn0,n1 [a, b]→ RLm0,m1 [a, b], the adjoint A∗ : RLm0,m1 [a, b]→ RLn0,n1 [a, b]
will be such that, for any x ∈ RLn0,n1 [a, b] and y ∈ RLm0,m1 [a, b],

⟨Ax, y⟩RL = ⟨x,A∗y⟩RL ,

where for x = [ x0
x1 ] ∈

[
Rn0

L
n1
2 [a,b]

]
= RLn0,n1 [a, b] and y = [ y0

y1 ] ∈
[

Rn0
L

n1
2 [a,b]

]
= RLn0,n1 [a, b],

⟨x, y⟩RL := ⟨x0, y0⟩+ ⟨x1, y1⟩L2
= xT

0 y0 +
∫ b

a
[x1(s)]T y1(s)ds

Example Computing the adjoint of the opvar object A corresponding to operator A defined
as in Equation (10.2), we find

>> AT = A’
AT =

[1,2] | [10*s]
[0,-1] | [-1]

------------------
[-s+1,s+1] | AT.R

AT.R =
[2] | [-s+th] | [-s+th]

suggesting that, for x = [ x0
x1 ] ∈

[
R2

L2[−1,1]

]
,

(
A∗x

)
(s) =

[
[ 1 2

0 −1 ] x0 +
∫ 1
−1 [ 10s

−1 ] x1(s)ds
[ 1−s s+1 ] x0 + 2x1(s) +

∫ 1
−1(θ − s)x1(θ)dθ +

∫ 1
s (θ − s)x1(θ)dθ

]
.

10.2.4 Inverse (inv_opvar(A))
The inverse of an opvar object A can be numerically calculated, using the function

» inv_opvar(A)

See Lemma 9 for details on Inversion formulae.
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Example Computing the inverse of the opvar object A corresponding to operator A defined
as in Equation (10.2), we find

>> Ainv = inv_opvar(A)
Ainv =

[-0.2,-0.4] | [ 0.3*s + 0.2]
[1.2,0.4] | [ -0.3*s - 0.7]

------------------------------------------
[ 0.3*s+0.7,1.35*s+0.65] | AT.R

Ainv.R =
[0.5] | [-1.2*s*th-0.675*s-0.3*th-0.575] | [-1.2*s*th-0.675*s-0.3*th-0.575]

suggesting that, for x = [ x0
x1 ] ∈

[
R2

L2[−1,1]

]
(
A−1x

)
(s) =

 [ −0.2 −0.4
1.2 0.4 ] x0 +

∫ 1
−1

[
0.3s+0.2
−0.3s−0.7

]
x1(s)ds

[ 0.3s+0.7 1.35s+0.65 ] x0 + 0.5x1(s) +
∫ 1
−1(−1.2sθ − 0.675s− 0.3θ − 0.575)x1(θ)dθ

+
∫ 1

s (−1.2sθ − 0.675s− 0.3θ − 0.575)x1(θ)dθ

 .

Note

An inverse function has not been defined for opvar2d, dopvar, or dopvar2d objects.

10.3 Matrix Operations on opvar Objects
In this section, we show how matrix operations on opvar objects can be performed. In par-
ticular, in Subsection 10.3.1, we show how desired rows and columns of opvar objects can
be extracted, and in Subsection 10.3.2 we show how opvar objects can be concatenated. Al-
though we explain these operations only for opvar objects, they can also be applied to dopvar,
opvar2d, and dopvar2d objects. For the purpose of illustration, we once more use the 4-PI
operator A :

[
R2

L2[−1,1]

]
→

[
R2

L2[−1,1]

]
defined in Equation (10.2), represented in PIETOOLS by

the opvar object A,
>> A
A =

[1,0] | [-s+1]
[2,-1] | [s+1]

----------------
[10*s,-1] | A.R

A.R =
[2] | [s-th] | [s-th]

10.3.1 Subs-indexing (A(i,j))
Just like matrices, 4-PI operators can be sliced to extract desired rows or columns, returning
new 4-PI operators in lower dimensions. This index slicing is performed in the same manner
as for matrices, extracting rows row_ind and columns col_ind of an opvar object T as
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» T(row_ind, col_ind)

However, indexing 4-PI operators is slightly different from matrix indexing due to presence of
multiple components. These components can be visualized as being stacked as in a matrix:

B =
[

P Q1
Q2 Ri

]
Then, row indices specified in row_ind correspond to the rows in this big matrix. Column
indices, col_ind, are associated with the columns of this big matrix in similar manner. The
retrieved slices are put in appropriate components and a 4-PI operator is returned. Note that the
bottom-right block of the big matrix B has 3 components in Ri. If indices in the slice correspond
to rows and columns in this block, then the slice is extracted from all three components and
stored in a Ri part of the new sliced PI operator.

Example Consider the opvar object A corresponding to the operator A :
[

R2

L2[−1,1]

]
→[

R2

L2[−1,1]

]
defined as in Equation (10.2). We can decompose this operator into subcompo-

nents A =
[
A11 A12
A21 A22

]
, where A11 : R → R2, A12 :

[
R

L2[−1,1]

]
→ R2, A21 : R → L2[−1, 1] and

A22 : L2[−1, 1]→ L2[−1, 1], by taking
>> A11 = A([1,2],1)
A11 =

[1] | []
[2] |
-----------
[] | A11.R

A11.R =
[] | [] | []

>> A12 = A([1,2],2:3)
A12 =

[0] | [-s+1]
[-1] | [s+1]
-------------

[] | A12.R
A12.R =

[] | [] | []

>> A21 = A(3,1)
A21 =

[] | []
---------------
[10*s] | A21.R

A21.R =
[] | [] | []

>> A22 = A(3,2:3)
A22 =

[] | []
-------------
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[-1] | A12.R
A22.R =

[2] | [s-th] | [s-th]

10.3.2 Concatenation ([A,B], [A;B])
Just like matrices, multiple opvar objects can be concatenated, provided the dimensions match.
In particular, two opvar objects A and B can be horizontally or vertically concatenated by
respectively using the commands

» [A B] % for horizontal concatenation
» [A; B] % for vertical concatenation

Note that concatenation of opvar objects is allowed only if their spatial domain is the same
(A.I=B.I), and the variables involved in each are identical (A.var1=B.var1 and A.var2=B.var2).
Moreover, A and B can be horizontally concatenated only if they have the same row dimensions
(A.dim(:,1)=B.dim(:,1), and they can be concatenated vertically only if they have the same
column dimensions (A.dim(:,2)=B.dim(:,2)). Finally, note that opvar objects can only rep-
resent maps Rn0 × Ln1

2 → Rm0 × Lm1
2 . Therefore, if e.g. A: L2 → R and B: L2 → L2, then the

concatenation [B;A]: L2 → R× L2 can be represented as an opvar object, but the concatena-
tion [B;A]: L2 → L2 × R cannot. Therefore, this latter concatenation is currently prohibited.
Similarly, if A: R → L2 and B: L2 → L2, we can take the concatenation [A,B]: R × L2 → L2,
but we cannot concatenate [B,A]: L2 ×R→ L2.

Example Consider the opvar objects A11, A12, A21 and A22, corresponding to the operator
A =

[
A11 A12
A21 A22

]
defined in (10.2), decomposed as in the previous subsection. Then, we can

reconstruct an opvar object A representing the full operator A as
>> A = [A11, A12; A21, A22]
A =

[1,0] | [-s+1]
[2,-1] | [s+1]

----------------
[10*s,-1] | A.R

A.R =
[2] | [s-th] | [s-th]

10.4 Additional Methods for opvar Objects
There are some additional functions included in PIETOOLS that can be used in debugging or
as the user sees fit. In this section, we compile the list of those functions, without going into
details or explanation. However, users can find additional information by using help command
in MATLAB.
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Function Name Description
A==B The function checks whether the variables, domain, di-

mensions and parameters of the operators A and B are
equal, and returns a binary value 1 if this is the case, or
0 if it is not. The function can also be used to check if
an operator A has all parameters equal to zero operator
by calling A==0.

isvalid(P) The function returns a logical value. 0 is everything is
in order, 1 if the object has incompatible dimensions,
2 if property P is not a matrix, 3 if properties Q1, Q2
or R0 are not polynomials in s, 4 if properties R1 or R2
are not polynomials in s and θ. For opvar2d objects,
returns boolean value true or false to indicate if P is
appropriate or not.

degbalance(T) Estimates polynomial degrees needed to create an opvar
object Q associated to a positive PI operator Q ⪰ 0 in
poslpivar, such that T=Q has at least one solution.

getdeg(T) Returns highest and lowest degree of s and θ in the
components of the opvar object T.

rand_opvar(dim, deg) Creates a random opvar object of specified dimensions
dim and polynomial degrees deg.

show(T,opts) Alternative display format for opvar objects with op-
tional argument to omit selected properties from display
output. Not defined for opvar2d objects.

opvar_postest(T) Numerically test for sign definiteness of T. Returns -1 if
negative definite, 0 if indefinite and 1 if positive definite.
Use opvar_postest_2d for opvar2d objects.

diff_opvar(T) Returns composition of derivative operator with opvar
T as described in Lem. 10. Use diff(T) for opvar2d
objects.
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Part III

Examples and Applications
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Chapter 11

PIETOOLS Demonstrations

In this Chapter, we illustrate several applications of PIE simulation and LPI programming,
and how each of these problems can be implemented in PIETOOLS. Each of these prob-
lems has also been implemented as a DEMO file in PIETOOLS, which can be found in the
PIETOOLS_demos directory. Note that, although running these demos will not produce the
plots presented throughout this chapter, the code to reproduce each of these figures has been
added in the script “PIETOOLS_Code_Illustrations_Ch11_Demos”.

11.1 DEMO 1: Stability Analysis and Simulation
With this demo, we illustrate how an ODE-PDE model can be simulated with PIESIM, and
how stability of the system can be tested using LPI programming. For this purpose, we consider
the same damped 1D wave equation coupled to a stable ODE as in Chapter 2, given by

ẋ(t) = −x(t),
ẍ(t, s) = c2∂2

s x(t, s)− b∂sx(t, s) + sw(t), s ∈ (0, 1), t ≥ 0,

r(t) = x(t, 1)− x(t, 0).

for some given velocity c and viscous damping coefficient b, and with external disturbance
w(t) ∈ R and regulated output r(t) ∈ R. To implement this system in PIETOOLS, we introduce
the PDE state ϕ = (∂sx, ẋ). Then, the system can be equivalently expressed as

ẋ(t) = −x(t) (11.1)

ϕ̇(t, s) =
[
0 1
c 0

]
∂sϕ(t, s) +

[
0 0
0 −b

]
ϕ(t, s) +

[
0
s

]
w(t), s ∈ (0, 1), t ≥ 0,

r(t) =
∫ 1

0
ϕ1(t, s)ds.

For e.g. c = 1 and b = 0.01, this system can be declared in PIETOOLS as
% Declare independent variables
pvar t s;
% Declare state, input, and output variables
phi = pde_var(2,s,[0,1]); x = pde_var();
w = pde_var(’in’); r = pde_var(’out’);
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% Declare system equations
c=1; b=.01;
eq_dyn = [diff(x,t,1)==-x

diff(phi,t,1)==[0 1; c 0]*diff(phi,s,1)+[0;s]*w+[0 0;0 -b]*phi];
eq_out= r==int([1 0]*phi,s,[0,1]);
bc1 = [0 1]*subs(phi,s,0)==0; % add the boundary conditions
bc2 = [1 0]*subs(phi,s,1)==x;
odepde = [eq_dyn;eq_out;bc1;bc2];

To see whether this system is stable, we first simulate it using PIESIM. For this, we consider
an initial value of the ODE state x(0) = 1

2 , and initial PDE state values ϕ1(0, s) = 5 sin(2πs)
and ϕ2(0, s) = 0. We further assume the disturbance to be given by a decaying but oscillating
function w(t) = e−t sin(5t). We declare these values as

% % Declare initial values and disturbance
syms st sx;
uinput.ic.ODE = 0.5;
uinput.ic.PDE = [0.5-sx,sin(pi*sx)];
uinput.w = sin(5*st)*exp(-st);

Now, to perform simulation with these values, we will use PIESIM, expanding the PDE state
ϕ(t, s) using 16 Chebyshev in s polynomial, and simulating up to time t = 9, using a time step
of 0.03.

opts.plot = ’yes’; % plot the solution
opts.N = 16; % expand using 16 Chebyshev polynomials
opts.tf = 9; % simulate up to t = 9;
opts.dt = 0.03; % use time step of 3*10^-2

Having declared these settings, we call PIESIM to simulate as
[solution,grids] = PIESIM(odepde, opts, uinput);
tval = solution.timedep.dtime;
phi1 = reshape(solution.timedep.pde(:,1,:),opts.N+1,[]);
phi2 = reshape(solution.timedep.pde(:,2,:),opts.N+1,[]);
zval = solution.timedep.regulated;
wval = subs(uinput.w,st,tval);

extracting the values of the ODE and PDE state at each time step, as well as those of the
disturbance and regulated output. Note that the PDE state solutions are provided only at the
N + 1 = 17 grid points at each time step. Fig. 11.1 and Fig. 11.2 show the simulated evolution
of the different ODE and PDE state variables, as well as the regulated output.
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Figure 11.1: Simulated value of PDE state variables ϕ1(t, s) = ∂sx(t, s) and ϕ2(t, s) = ∂tx(t, s)
associated to the ODE-PDE (11.1).

Figure 11.2: Simulated value of ODE state variable x(t) and regulated output r(t) =∫ 1
0 ϕ1(t, s)ds associated to the ODE-PDE (11.1).

From the figures it appears that, although oscillatory, solutions to the system are stable, not
growing with time (despite the presence of disturbances). To verify that the system is indeed
stable, we can test stability in the PIE representation. To this end, we first convert the system
to a PIE as

pie = convert(odepde);
T = pie.T;
A = pie.A; B = pie.B1;
C = pie.C1; D = pie.D11
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For our ODE-PDE system (11.1), the associated PIE representation takes the form

∂t(T xf)(t) = Axf(t) + Bw(t),
z(t) = Cxf(t) +Dw(t),

where now xf(t, s) = (x(t), ∂sϕ1(t, s), ∂sϕ2(t, s)) ∈ R× L2
2[0, 1]. In the absence of disturbances,

w(t) = 0, stability of the autonomous system can be tested by solving the LPI

P ≻ 0, T ∗PA+APT ⪯ 0. (11.2)

This LPI can be declared and solved as
% % Initialize LPI program
prog = lpiprogram(s,[0,1]);

% % Declare decision variables:
% % P: R x L2^2 --> R x L2^2, P>0
[prog,P] = poslpivar(prog,[1;2]);
P = P + 1e-4; % enforce P>=1e-4

% % Set inequality constraints:
% % A’*P*T + T’*P*A <= 0
Q = A’*P*T + T’*P*A;
opts.psatz = 1; % allow Q>=0 outside domain
prog = lpi_ineq(prog,-Q,opts);

% % Solve and retrieve the solution
solve_opts.solver = ’sedumi’; % use SeDuMi to solve
solve_opts.simplify = true; % simplify SDP before solving
prog = lpisolve(prog,solve_opts);

Running this code, we find that the optimization program defined by prog is feasible, indicating
that the operators defined by A and T indeed represent a stable system. Thus, the ODE-PDE
system (11.1) is stable.

11.2 DEMO 2: Estimating the Volterra Operator Norm
The Volterra integral operator T : L2[0, 1]→ L2[0, 1] is perhaps the simplest example of a 3-PI
operator, defined as (

T x
)
(s) =

∫ s

0
x(θ)dθ, s ∈ [0, 1],

for any x ∈ L2[0, 1]. In PIETOOLS, this operator can be easily declared as
a=0; b=1;
opvar Top;
Top.R.R1 = 1; Top.I = [a,b];

Then, an upper bound on the norm of this operator can be computed by solving the LPI

min
γ≥0

γ,
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s.t. T ∗T ≤ γ,

so that case C = √γ for any feasible value γ is an upper bound on the norm of T . This
optimization problem is an LPI, that can be declared and solved in PIETOOLS as

% % Initialize LPI program
prob = lpiprogram(Top.vars,Top.I);

% % Declare decision variables:
% % gam \in \R
[prob,gam] = lpidecvar(prob,’gam’);

% % Set inequality constraints
% % Top’*Top-gam <= 0
opts.psatz = 1; % Allow gam-Top’*Top<0 outside of [a,b]
prob = lpi_ineq(prob,gam-Top’*Top,opts); % lpi_ineq(prob,Q) enforces Q>=0

% % Set objective function:
% % min gam
prob = lpisetobj(prob, gam);

% % Solve LPI and retrieve solution
prob = lpisolve(prob);
operator_norm = sqrt(double(lpigetsol(prob,gam)));

This code can also be run by calling “volterra_operator_norm_DEMO”. We obtain an upper
bound C = 0.68698 on the induced norm ∥T ∥ of the Volterra operator. The exact value of the
induced norm of this operator is known to be equal to ∥T ∥ = 2

π
= 0.6366....

11.3 DEMO 3: Solving the Poincaré Inequality
In a one dimensional domain Ω = [a, b], the Poincaré inequality imposes a bound on the norm
of a function x(s) in terms of the spatial derivative ∂sx(s) of this function,

∥x∥L2 ≤ C∥∂sx∥L2 , ∀x ∈ W1[a, b],

where

W1[a, b] := {x ∈ L2[a, b] | ∂sx ∈ L2[a, b], x(a) = x(b) = 0}.

The challenge of finding a smallest value of C for which this inequality holds can be posed as
an optimization problem

min
γ≥0

γ,

s.t. ⟨x, x⟩L2
− γ ⟨∂sx, ∂sx⟩L2

≤ 0, ∀x ∈ W1[a, b]

setting C = √γ. To declare this problem, we first note that (assuming ∂2
s x exists) we can

represent x and ∂sx in terms of a fundamental state ∂2
s x ∈ L2[a, b], which is free of the boundary
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conditions and continuity constraints imposed upon x and ∂sx. To represent this in PIETOOLS,
we introduce an artificial PDE

ẋ(t, s) = ∂2
s x(t, s), s ∈ [a, b],

z(t, s) = ∂sx(t, s),
x(t, a) = x(t, b) = 0,

which we declare as
a = 0; b = 1;
pvar t s
x = pde_var(1,s,[a,b]);
z = pde_var(’output’,1,s,[a,b]);
PDE = [diff(x,t)==diff(x,s,2);

z==diff(x,s,1);
subs(x,s,a)==0;
subs(x,s,b)==0];

Here, we take a second-order derivative of x in the PDE to explicitly indicate that x must be sec-
ond order differentiable, as we wish to derive a PIE representation in terms of the fundamental
state xf := ∂2

s x. To obtain this PIE representation, we call convert,
PIE = convert(PDE);
H2op = PIE.T; % (H2op*x_{ss}) = x;
H1op = PIE.C1; % (H1op*x_{ss}) = x_{s}

arriving at an equivalent PIE representation of the system as
∂t(H2xf)(t, s) = xf(t, s), s ∈ [a, b],

z(t, s) = (H1xf)(t, s).
In this representation, the fundamental state xf := ∂2

s x is free of any boundary conditions and
continuity constraints. Moreover, we note that

H2xf(t, s) = x(t, s), and, H1xf(t, s) = ∂sx(t, s).
As such, the Poincaré inequality optimization problem can be equivalently represented as

min
γ≥0

γ, s.t. ⟨H2v,H2v⟩ − γ ⟨H1v,H1v⟩ ≤ 0, ∀v ∈ L2[a, b]

giving rise to an LPI
min
γ≥0

γ, s.t. γH∗1H1 −H∗2H2 ⪰ 0.

We declare and solve this LPI in PIETOOLS as
% % Initialize LPI program
prob = lpiprogram(s,[a,b]);

% % Declare decision variables:
% % gam \in \R
[prob,gam] = lpidecvar(prob,’gam’); % scalar decision variable

% % Set inequality constraints:
% % gam*H1op’*H1op’ - H2op’*H2op >= 0
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opts.psatz = 1; % allow gam H1op’*H1op < H2op’*H2op outside of [a,b]
prob = lpi_ineq(prob,gam*(H1op’*H1op)-H2op’*H2op,opts);

% % Set objective function:
% % min gam
prob = lpisetobj(prob, gam);

% % Solve LPI and retrieve solution
prob = lpisolve(prob);
poincare_constant = sqrt(double(lpigetsol(prob,gam)));

This code can also be run calling the function “DEMO3_poincare_inequality”, arriving at a
constant C = 0.4271 that satisfies the Poincaré inequality on the domain [a, b] = [0, 1]. On this
domain, a minimal value of C is known to be C = 1

π
= 0.3183....

11.4 DEMO 4: Finding an Optimal Stability Parameter
We consider a reaction-diffusion equation on an interval [a, b],

ẋ(t, s) = λx(t, s) + ∂2
s x(t, s), s ∈ [a, b], x(t, a) = x(t, b) = 0,

for some λ ∈ R. On the interval [a, b] = [0, 1], this system is know to be stable whenever
λ ≤ π2 = 9.8696.... In PIETOOLS, we can numerically estimate this limit using the function
stability_PIETOOLS. In particular, we may equivalent represent the PDE as a PIE of the form

∂t

(
T xf

)
(t, s =

(
A(λ)xf

)
(t, s), s ∈ [a, b],

where xf(t, s) := ∂2
s x(t, s). Then, a maximal value of λ for which the PIE is stable can be

estimated by solving the optimization problem

max
λ∈R,P∈Π

λ,

s.t. P ≻ 0,

T ∗PA(λ) +A∗(λ)PT ≼ 0.

Unfortunately, both λ and P are decision variables in this optimization program, and so the
product PA(λ) is not linear in the decision variables. As such, this problem cannot be directly
implemented as a convex optimization program. However, for any fixed value of λ, stability of
the PIE can be verified by testing feasibility of the LPI

P ≻ 0, T ∗PA(λ) +A∗(λ)PT ≼ 0,

an optimization program that has already been implemented in stability_PIETOOLS. There-
fore, to estimate an upper bound on the value of λ for which the PDE is stable, we can test
stability for given values of λ, and perform bisection over some domain λ ∈ [λmin, λmax] to find
an optimal value. For our demonstration, we use λmin = 0 and λmax = 20, testing stability for
8 values of λ between these upper and lower bounds:
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%%% Set bisection limits for lam.
lam_min = 0; lam_max = 20;
lam = 0.5*(lam_min + lam_max);
n_iters = 8;

Using these settings, we perform bisection to find a largest value of λ for which stability
of the system can be verified. In particular, for a given value of λ ∈ [λmin, λmax], we build a
PDE structure PDE representing the system, compute the associated PIE structure PIE, and
test stability of this PIE by solving the LPI. Then, we check the value of feasratio in the
output optimization program structure, which should be close to 1 if the LPI was successfully
solved, and thus the system was found to be stable.

• If the system is stable, then it is stable for any value of λ smaller than the value lam used
in the test. As such, we update the value of λmin ← λ, and repeat the test with a greater
value λ = 1

2(λmin + λmax).

• If stability could not be verified, then stability can also not be verified for any value of λ
greater than the value lam used in the test. As such, we update the value of λmax ← λ,
and repeat the test with a greater value λ = 1

2(λmin + λmax).

This algorithm can be implemented as
%%% Perform bisection on the value of lam
for iter = 1:n_iters

% =============================================
% === Declare the operators of interest

% Declare system as PDE.
x = pde_var(’state’,1,s,[0,1]);
PDE = [diff(x,t)==diff(x,s,2)+lam*x;

subs(x,s,0)==0;
subs(x,s,1)==0];

% Convert to PIE.
PIE = convert(PDE,’pie’);
T = PIE.T; A = PIE.A;

% =============================================
% === Declare the LPI

% % Initialize LPI program
prog = lpiprogram(s,[0,1]);

% % Declare decision variables:
% % P:L2-->L2, P>0
[prog,P] = poslpivar(prog,T.dim);
P = P + 1e-4; % enforce P>=1e-4

% % Set inequality constraints:
% % A’*P*T + T’*P*A <= 0
Q = A’*P*T + T’*P*A;
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opts.psatz = 1; % allow Q>=0 outside domain
prog = lpi_ineq(prog,-Q,opts);

% % Solve and retrieve the solution
solve_opts.solver = ’sedumi’; % use SeDuMi to solve
solve_opts.params.fid = 0; % suppress output in command window
prog = lpisolve(prog,solve_opts);

% % Alternatively, uncomment to run pre-defined stability executive
% prog = lpiscript(PIE,’stability’,settings);

% Check if the system is stable
is_pinf = prog.solinfo.info.pinf; % is primal feasible?
is_dinf = prog.solinfo.info.dinf; % is dual feasible?
feasrat = prog.solinfo.info.feasratio; % ratio should be close to 1
if is_dinf || is_pinf || abs(feasrat-1)>0.1

% Stability cannot be verified --> decrease value of lam...
lam_max = lam;
lam = 0.5*(lam_min + lam_max);

else
% The system is stable --> try larger value of lam...
lam_min = lam;
lam = 0.5*(lam_min + lam_max);

end
end

This code can also be called using “DEMO4_stability_parameter_bisection”. Running this
demo, we find that stability can be verified whenever λ ≤ 9.8438, approaching the analytic
bound of λ = π2 ≈ 9.8696

11.5 DEMO 5: Constructing and Simulating an Optimal
Estimator

We consider a reaction-diffusion PDE, with an observed output y,

ẋ(t, s) = ∂2
s x(t, s) + 4x(t, s) + w(t), s ∈ [0, 1],

with BCs 0 = x(t, 0) = ∂sx(t, 1),

and outputs z(t) =
∫ 1

0
x(t, s)ds + w(t),

y(t) = x(t, 1). (11.3)

This PDE can be easily declared in PIETOOLS as
% Declare independent variables (time and space)
pvar t s
% Declare state, input, and output variables
x = pde_var(1,s,[0,1]); w = pde_var(’in’);
z = pde_var(’out’); y = pde_var(’sense’);
% Declare the sytem equations
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lam = 4;
PDE = [diff(x,t) == diff(x,s,2) + lam*x + w; % PDE

z == int(x,s,[0,1]) + w; % regulated output
y == subs(x,s,1); % observed output
subs(x,s,0) == 0; % first boundary condition
subs(diff(x,s),s,1) == 0]; % second boundary condition

display_PDE(PDE);

at which point an equivalent PIE representation can be derived by calling convert:
PIE = convert(PDE,’pie’); PIE = PIE.params;
T = PIE.T;
A = PIE.A; C1 = PIE.C1; C2 = PIE.C2;
B1 = PIE.B1; D11 = PIE.D11; D21 = PIE.D21;

Then, the PDE (11.3) can be equivalently represented by a PIE

∂t

(
T xf

)
(t, s) =

(
Axf

)
(t, s) +

(
B1w

)
(t, s), s ∈ [0, 1]

z(t) =
(
C1xf

)
(t) +

(
D11w)(t),

y(t) =
(
C2xf

)
(t) +

(
D12w)(t), (11.4)

where we define xf := ∂2
s x, and where x = T xf.

We consider the problem of designing an optimal estimator for the PIE (11.4). In particular,
we construct an estimator of the form

∂t(T x̂f)(t) = Ax̂f(t) + L
(
y(t)− ŷ(t)

)
,

ẑ(t) = C1x̂f(t),
ŷ(t) = C2x̂f(t), (11.5)

so that the error e(t, s) := x̂f(t, s) − xf(t, s) in the state and z̃(t) := ẑ(t) − z(t) in the output
satisfy

∂t(T e)(t) = (A− LC2)e(t)− (B1 + LD21)w(t)
z̃(t) = C1e(t)−D11w(t). (11.6)

The goal of H∞-optimal estimation, then, is to determine a value for the observer operator L
that minimizes the gain γ := ∥z̃∥L2

∥w∥L2
from disturbances w to errors z̃ in the output. To construct

such an operator, we solve the LPI,

min
γ,P,Z

γ

P ≻ 0, Q :=

−γI −D⊤11 −(PB1 + ZD21)∗T
(·)∗ −γI C1
(·)∗ (·)∗ (PA+ ZC2)∗T + (·)∗

 ≼ 0 (11.7)

so that, for any solution (γ,P ,Z) to this problem, letting L := P−1Z, the estimation error will
satisfy ∥ẑ − z∥ ≤ γ∥w∥. For more details, see Section (13.2). This LPI can be implemented in
PIETOOLS as
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% % Initialize LPI program
prog = lpiprogram(s,[0,1]);

% % Declare decision variables:
% % gam \in \R, P:L2-->L2, Z:\R-->L2
% Scalar decision variable
[prog,gam] = lpidecvar(prog,’gam’);
% Positive operator variable P>=0
opts.sep = 1; % set P.R.R1=P.R.R2
[prog,P] = poslpivar(prog,T.dim,4,opts);
% Indefinite operator variable Z: \R-->L2
[prog,Z] = lpivar(prog,[0,1;1,0],4);

% % Set inequality constraints:
% % Q <= 0
Q = [-gam, -D11’, -(P*B1+Z*D21)’*T;

-D11, -gam, C1;
-T’*(P*B1+Z*D21), C1’, (P*A+Z*C2)’*T+T’*(P*A+Z*C2)];

prog = lpi_ineq(prog,-Q);

% % Set objective function:
% % min gam
prog = lpisetobj(prog, gam);

% % Solve and retrieve the solution
prog_sol = lpisolve(prog);
% Extract solved value of decision variables
gam_val = lpigetsol(prog_sol,gam);
Pval = lpigetsol(prog_sol,P);
Zval = lpigetsol(prog_sol,Z);
% Build optimal observer operator L
Lval = getObserver(Pval,Zval);

returning a value Lval of the operator L such that the L2-gain ∥z̃∥L2
∥w∥L2

is bounded from above
by gam_val.

Given the observer operator L, we can construct the Estimator (11.5), obtaining a PIE

∂t

([
T 0
0 T

] [
xf
x̂f

])
(t, s) =

([
A 0
−LC2 A+ LC2

] [
xf
x̂f

])
(t, s) +

([
B1
LD21

]
w

)
(t)[

z
ẑ

]
(t) =

([
C1 0
0 C1

] [
xf
x̂f

])
(t) +

([
D11
0

]
w

)
(t)

We can construct this PIE in PIETOOLS by first declaring the estimator dynamics with input
signal y using piess, and then taking the linear fractional transformation of the original PIE
with this estimator PIE, as

PIE_est = piess(T,A+Lval*C2,-Lval,C1(1,:));
PIE_CL = pielft(PIE,PIE_est);

Alternatively, this system could also be constructed using the function closedLoopPIE as
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PIE_CL = closedLoopPIE(PIE,Lval,’observer’);

returning the closed-loop system associated to the original PIE as in (11.4) defined by PIE,
and the observer as in (11.5) with operator L defined by Lval. Then, we can use PIESIM
to simulate the evolution of the PDE state x(t) =

(
T xf

)
(t) and its estimate x̂(t) =

(
T x̂f

)
(t)

associated to the system defined by PIE_CL. For this, we first declare initial conditions
[

xf(0,s)
x̂f(0,s)

]
and values of the disturbance w(t) as

% % Declare initial values and disturbance
syms st sx real
uinput.ic.PDE = [-10*sx; % actual initial PIE state value

0]; % estimated initial PIE state value
uinput.w = 2*sin(pi*st);

Here we use symbolic objects st and sx to represent a temporal variable t and spatial variable
s respectively. Note that, since we will be simulating the PIE directly, the initial conditions
uinput.ic.PDE will also correspond to the initial values of the PIE state

[
xf(0,s)
x̂f(0,s)

]
, not to those

of the PDE state. Here, we let the initial PIE state xf(0) be parabolic, and start with an
estimate of this state that is just x̂f(0) = 0. Given these initial conditions, we then simulate
the evolution of the PDE state [ x

x̂ ] = [ T 0
0 T ]

[ xf
x̂f

]
using PIESIM as

% % Set options for discretization and simulation
opts.plot = ’yes’; % plot the solution
opts.N = 8; % expand using 8 Chebyshev polynomials
opts.tf = 2; % simulate up to t = 2
opts.dt = 1e-3; % use time step of 10^-3
ndiff = [0,0,2]; % PDE state involves 2 second order differentiable state variables

% % Simulate solution to the PIE with estimator.
[solution,grid] = PIESIM(PIE_CL,opts,uinput,ndiff);
% % Extract actual and estimated state and output at each time step.
tval = solution.timedep.dtime;
x_act = reshape(solution.timedep.pde(:,1,:),opts.N+1,[]);
x_est = reshape(solution.timedep.pde(:,2,:),opts.N+1,[]);
z_act = solution.timedep.regulated(1,:);
z_est = solution.timedep.regulated(2,:);

Here, we expand the solution using 8 Chebyshev polynomials, and we simulate up to opts.tf=2,
taking time steps of opts.dt=1e-3. Having obtained the solution, we then collect the actual
values x(t, s) of the PDE state at each time step and each grid point in x_act, and the estimated
values x̂(t, s) of the PDE state at each time step and each grid point in x_est. Plotting the
obtained values at several grid points, as well as the error x_eta-x_act in estimated state, we
obtain a graph as in Figure 11.3.
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Figure 11.3: Simulated value of PDE state x(t, s) and estimated state x̂(t, s), along with the
error e = x̂(t, s) − x(t, s) associated to the PDE (11.3) at several grid points s ∈ [0, 1], using
the Estimator (11.5) with operator L computed by solving the H∞-optimal estimator LPI. See
the file “PIETOOLS_Code_Illustrations_Ch11_Demos” for the code to achieve these plots.

As Figure 11.3 shows, the value of the estimate state x̂ at each of the grid points quickly
converges to that of the actual state x, despite starting off with a rather poor estimate of x̂ = 0.
Within a time of 1, the values of the actual and estimated state become indistinguishable (at
the displayed scale), with the error converging to zero. This is despite the fact that the value
of the state itself continues to increase, as the PDE (11.3) is unstable.

The full code constructing the optimal estimator, simulating the PDE state and its estimate,
and plotting the results has been included in PIETOOLS as the demo file
“DEMO5_Hinf_Optimal_Estimator”.

11.6 DEMO 6: H∞-optimal Controller synthesis for PDEs
We consider an unstable reaction-diffusion PDE, with output z, disturbance w and control
input u

ẋ(t, s) = ∂2
s x(t, s) + 4x(t, s) + sw(t) + su(t), s ∈ [0, 1],

with BCs 0 = x(t, 0) = ∂sx(t, 1),

and outputs z(t) =
[∫ 1

0 x(t, s)ds + w(t)
u(t)

]
. (11.8)

This PDE can be easily declared in PIETOOLS as
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% Declare independent variables (time and space)
pvar t s
% Declare state, input, and output variables
x = pde_var(’state’,1,s,[0,1]);
z = pde_var(’output’,2);
w = pde_var(’input’,1); u = pde_var(’control’,1);
% Declare the sytem equations
lam = 5;
PDE = [diff(x,t) == diff(x,s,2) + lam*x + s*w + s*u;

z == [int(x,s,[0,1])+w; u];
subs(x,s,0)==0;
subs(diff(x,s),s,1)==0];

Next, we convert the PDE system to a PIE by using the following code and extract relevant PI
operators for easier access:

PIE = convert(PDE,’pie’);
T = PIE.T;
A = PIE.A; C1 = PIE.C1; B2 = PIE.B2;
B1 = PIE.B1; D11 = PIE.D11; D12 = PIE.D12;

Then, the PDE (11.8) can be equivalently represented by a PIE

∂t

(
T ẋf

)
(t, s) =

(
Axf

)
(t, s) +

(
B1w

)
(t, s) +

(
B2u

)
(t, s), s ∈ [0, 1]

z(t) =
(
C1xf

)
(t) +

(
D11w)(t) +

(
D12u)(t), (11.9)

where we define xf := ∂2
s x and x = T xf.

We now attempt to find a state-feedback H∞-optimal controller for the PIE (11.9). In
particular, we use u(t) = Kxf(t), where K : L2 → R is a PI operator of the form

Kxf =
∫ b

a
K(s)xf(s)ds.

Then we get the closed-loop system

∂t(T xf)(t) = (A+ B2K)xf(t) + B1w(t),
z(t) = (C1 +D12K)xf(t) +D11w(t). (11.10)

Next, we solve the LPI for H∞-optimal control to find a K that minimizes the gain γ := ∥z∥L2
∥w∥L2

from disturbances w to errors z̃ in the output. For more details, see Section (13.3). To find
such an operator, we solve the LPI,

min
γ,P,Z

γ

s.t. P ≻ 0,

−γI D11 T (PC1 + ZD12)
(·)∗ −γI B∗1
(·)∗ (·)∗ T (AP + B2Z)∗ + (AP + B2Z)T ∗

 ≼ 0, (11.11)

so that, for any solution (γ,P ,Z) to this problem, letting K := ZP−1, we have ∥z∥ ≤ γ∥w∥.
We can declare and solve this LPI in PIETOOLS as follows:
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% % Initialize LPI program
prog = lpiprogram(s,[0,1]);

% % Declare decision variables:
% % gam \in \R, P:L2-->L2, Z:\R-->L2
% Scalar decision variable
[prog,gam] = lpidecvar(prog,’gam’);
% Positive operator variable P>=0
[prog,P] = poslpivar(prog,[0,0;1,1],4);
% Enforce strict positivity P >= 1e-3
P = P + 1e-3;
% Indefinite operator variable Z
[prog,Z] = lpivar(prog,[1,0;0,1],2);

% % Set inequality constraints:
% % Q <= 0
Q = [-gam*eye(2), D11, (C1*P+D12*Z)*(T’);

D11’, -gam, B1’;
T*(C1*P+D12*Z)’, B1, (A*P+B2*Z)*(T’)+T*(A*P+B2*Z)’];

prog = lpi_ineq(prog,-Q);

% % Set objective function:
% % min gam
prog = lpisetobj(prog, gam);

% % Solve and retrieve the solution
prog_sol = lpisolve(prog);
% Extract solved value of decision variables
gam_val = lpigetsol(prog_sol,gam);
Pval = lpigetsol(prog_sol,P);
Zval = lpigetsol(prog_sol,Z);
% Build the optimal control operator K.
Kval = getController(Pval,Zval,1e-3);

Alternatively, this LPI could also be solved using the executive PIETOOLS_Hinf_control, as
e.g.

settings = lpisettings(’heavy’);
[prog, Kval, gam_val] = PIETOOLS_Hinf_control(PIE, settings);

Using either option, we obtain an opvar class object Kval representing a value of the operator
K such that the L2-gain ∥z∥L2

∥w∥L2
is bounded from above by gam_val. Next, we construct the

closed-loop PIE using the function piess as
PIE_CL = piess(T,A+B2*Kval,B1,C1+D12*Kval,D11);

or, equivalently, using the function closedLoop_PIE as
PIE_CL = closedLoopPIE(PIE,Kval);

Having constructed the closed-loop PIE representation, we can use PIESIM to simulate the
evolution of the PDE state x(t) =

(
T xf

)
(t) associated to the system defined by PIE_CL. In this
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case, we simulate with an initial condition x(0, s) = 4
π2 sin(π

2 s), and disturbance w(t) = sin(πt)
t+ϵ

,
where we introduce ϵ = 2.2204 · 10−16 to avoid a singularity at t = 0. Note that, since we are
simulating a PIE, we must also specify the initial value of the PIE state xf(t) = ∂2

s x(t), yielding
xf(0, s) = sin(π

2 s). We declare these values as shown below
% % Declare initial values and disturbance
syms st sx real
uinput.ic.PDE = sin(sx*pi/2);
uinput.w = sin(pi*st)./(st+eps);

Next, we set the parameters related to the numerical scheme and simulation as shown below
% % Set options for discretization and simulation
opts.plot = ’yes’; % plot the solution
opts.N = 16; % expand using 16 Chebyshev polynomials
opts.tf = 2; % simulate up to t = 2
opts.dt = 1e-2; % use time step of 10^-2
ndiff = [0,0,1]; % PDE state involves 1 2nd-order differentiable state

In this case, the state involves only a single 2nd-order differentiable variable x(t, s), and we
expand this state using 16 Chebyshev polynomials in s. We use these settings to simulate the
open- (without controller) and closed-loop (with controller) PIEs as

% Simulate uncontrolled PIE and extract solution
[solution_OL,grid] = PIESIM(PIE,opts,uinput,ndiff);
tval = solution_OL.timedep.dtime;
x_OL = reshape(solution_OL.timedep.pde(:,1,:),opts.N+1,[]);
z_OL = solution_OL.timedep.regulated(1,:);
% Simulate controlled PIE and extract solution
[solution_CL,~] = PIESIM(PIE_CL,opts,uinput,ndiff);
x_CL = reshape(solution_CL.timedep.pde(:,1,:),opts.N+1,[]);
z_CL = solution_CL.timedep.regulated(1,:);
u_CL = solution_CL.timedep.regulated(2,:);
w = double(subs(uinput.w,st,tval));

The resulting values of the PDE state in the open- and closed-loop setting are plotted in
Fig. 11.4, at several time instances. The corresponding evolution of the regulated output is
displayed in Fig. 11.5. The figures show that, as expected, the state and regulated output
blow up if no control is exerted, as the PDE (11.8) is unstable. However, using the control
u(t) = Kxf(t) with gain K computed by solving the LPI (11.11), the PDE state converges to
zero within 1 second – despite the presence of a disturbance w(t) – and the regulated output
z(t) =

∫ 1
0 x(t, s)ds + w(t) becomes driven entirely by the disturbance w(t).

The full code for designing the optimal controller and simulating the PDE state has been
included in PIETOOLS as the demo file “DEMO6_Hinf_optimal_control”.
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Figure 11.4: Simulated value of PDE state x(t, s) solution to (11.8) at several times t ∈ [0, 1],
both without (left) and with (right) feedback u(t) = (Kxf)(t), starting with x(0, s) =
− 4

π2 sin(π
2 s) and with disturbance w(t) = sin(πt)

t+ϵ
.

Figure 11.5: Simulated evolution of regulated output z(t) to (11.8), both without (left) and
with (right) feedback u(t) = (Kxf)(t), starting with x(0, s) = − 4

π2 sin(π
2 s) and with disturbance

w(t) = sin(πt)
t+ϵ

.
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11.7 DEMO 7: Observer-based Controller design and
simulation for PDEs

In Sections 11.5 and 11.6, we showed the procedure to find optimal estimator and controller
for a PDE. The controller was designed based on the information of the complete PDE state,
which, in practice, is unrealistic. So, in this section, we use the observer and controller obtained
in the previous sections and couple them by changing the control law to be dependent on the
estimated state instead of PDE state, i.e., we set u = Kx̂f, where K is the control gains obtained
in 11.6 and x̂f is the PIE state estimate from the observer found in 11.5.

For demonstration, we reuse the unstable reaction-diffusion PDE, with output z, disturbance
w and control input u

ẋ(t, s) = ∂2
s x(t, s) + 4x(t, s) + sw(t) + su(t), s ∈ [0, 1],

with BCs 0 = x(t, 0) = ∂sx(t, 1),

and outputs z(t) =
[∫ 1

0 x(t, s)ds
u(t)

]
y(t) = x(t, 1). (11.12)

Recall that this PDE can be defined using the code
% Declare independent variables (time and space)
pvar t s
% Declare state, input, and output variables
x = pde_var(’state’,1,s,[0,1]);
w = pde_var(’input’,1); u = pde_var(’control’,1);
z = pde_var(’output’,2); y = pde_var(’sense’,1);
% Declare the sytem equations
lam = 5;
PDE = [diff(x,t) == diff(x,s,2) + lam*x + s*w + s*u;

z == [int(x,s,[0,1]); u];
y == subs(x,s,1);
subs(x,s,0)==0;
subs(diff(x,s),s,1)==0];

Next, we convert the PDE system to a PIE by using the following code and extract relevant
PI operators for easier access:

PIE = convert(PDE,’pie’);
T = PIE.T;
A = PIE.A; B1 = PIE.B1; B2 = PIE.B2;
C1 = PIE.C1; D11 = PIE.D11; D12 = PIE.D12;
C2 = PIE.C2; D21 = PIE.D21; D22 = PIE.D22;

A detailed presentation on how to manually perform optimal observer and controller synthe-
sis for PIE systems is already given in Section 11.5 and Section 11.6 respectively, and therefore,
will not be repeated here. Instead, we will simply compute the optimal observer gain L and
controller gain K using the respective executive functions, as
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settings = lpisettings(’heavy’);
[prog_k, Kval, gam_co_val] = PIETOOLS_Hinf_control(PIE, settings);
[prog_l, Lval, gam_ob_val] = PIETOOLS_Hinf_estimator(PIE, settings);

Now, recall from Equations (11.5) and (11.9) that the combined system is given by

∂t

(
T xf

)
(t) =

(
Axf

)
(t) +

(
B1w

)
(t) +

(
B2u

)
(t),

z(t) =
(
C1xf

)
(t) +

(
D11w)(t) +

(
D12u)(t),

∂t(T x̂f)(t) = Ax̂f(t) + L
(
C2xf(t)− C2x̂f(t)

)
,

ẑ(t) = C1x̂f(t). (11.13)

Using the observer-controller coupling, u = Kx̂f, we get the closed-loop PIE

∂t

([
T 0
0 T

] [
xf
xf

])
(t, s) =

([
A B2K
−LC2 A+ LC2

] [
xf
xf

])
(t, s) +

([
B1
LD21

]
w

)
(t)[

z
ẑ

]
(t) =

([
C1 D12K
0 C1

] [
xf
x̂f

])
(t) +

([
D11
0

]
w

)
(t). (11.14)

We can construct the above closed-loop system using the code
PIE_est = piess(T,A+Lval*C2,-Lval,{C1(1,:);Kval});
PIE_CL = pielft(PIE,PIE_est);

first constructing a PIE for the estimated state x̂f(t, s), with input y(t) and output u(t) =
(Kx̂f)(t), and then taking the linear fractional transformation with the original PIE to obtain
the closed-loop system.

Once, we have the closed-loop PIE object, we can use PIESIM to simulate the system for
some initial conditions and disturbances. In this case, we consider the disturbance w(t) = 10e−t

and initial state x(0, s) = −5
3s3 + 5s, so that the initial fundamental state is xf(0, s) = −10s.

For the state estimate x̂f(t, s), we assume to start with no information, setting x̂f(0, s) = 0. We
simulate the open-loop (without control or observer) and closed-loop systems for these values
of the initial state and disturbance using the code

% % Declare initial values and disturbance
syms st sx real
uinput.ic.PDE = [-10*sx; 0];
uinput.w = 10*exp(-st);

% % Set options for discretization and simulation
opts.plot = ’yes’; % plot the solution
opts.N = 8; % Expand using 8 Chebyshev polynomials
opts.tf = 2; % Simulate up to t = 2
opts.dt = 1e-2; % Use time step of 10^-2
ndiff = [0,0,1]; % The state involves 1 state variable
ndiff_CL = [0,0,2]; % The closed-loop system involves 2 state variables

% % Perform the actual simulation
% Simulate uncontrolled PIE and extract solution
[solution_OL,grid] = PIESIM(PIE,opts,uinput,ndiff);
tval = solution_OL.timedep.dtime;
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x_OL = reshape(solution_OL.timedep.pde(:,1,:),opts.N+1,[]);
z_OL = solution_OL.timedep.regulated(1,:);
% Simulate controlled PIE and extract solution
[solution_CL,~] = PIESIM(PIE_CL,opts,uinput,ndiff_CL);
x_CL = reshape(solution_CL.timedep.pde(:,1,:),opts.N+1,[]);
xhat_CL = reshape(solution_CL.timedep.pde(:,2,:),opts.N+1,[]);
z_CL = solution_CL.timedep.regulated(1,:);
zhat_CL = solution_CL.timedep.regulated(3,:);
u_CL = solution_CL.timedep.regulated(2,:);
w = double(subs(uinput.w,st,tval));

Note here that the field ndiff for the closed-loop system is set to [0,0,2] (rather than
[0,0,1]), as the closed-loop PIE system has two 2nd-order differentiable PDE states (PDE
state and observer state).

The simulated evolutions of the PDE state and regulated output are plotted in Fig. 11.6
and Fig. 11.7, respectively, both for the open- and closed-loop systems. The figures show that
the observer-based controller indeed stabilizes the system, with the PDE state and regulated
output of the closed-loop system both converging to zero. The control effort u(t) = Kx̂f(t) used
to achieve this stabilization is displayed in Fig. 11.8. Although this control effort is initially
quite large, the effort quickly decays as the PDE state converges to the equilibrium.

The full code for designing the optimal controller and simulating the PDE state has been
included in PIETOOLS as the demo file “DEMO7_observer_based_control”.

Figure 11.6: Simulated value of PDE state x(t, s) solution to (11.8) at several times t ∈ [0, 1],
without (left) and with (right) the observer-based feedback u(t) = (Kx̂f)(t), starting with state
x(0, s) = −5

3s3 + 5s and estimate x̂(0, s) = 0, and with disturbance w(t) = 10e−t.
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Figure 11.7: Simulated evolution of regulated output z(t) to (11.8), both without (left) and with
(right) the observer-based feedback u(t) = (Kx̂f)(t), starting with state x(0, s) = −5

3s3 + 5s
and estimate x̂(0, s) = 0, and with disturbance w(t) = 10e−t.

Figure 11.8: Control effort u(t) = (Kx̂f)(t) for (11.8), computed by solving the LPIE (11.11),
and simulated with initial state x(0, s) = −5

3s3+5s, initial estimate x̂(0, s) = 0, and disturbance
w(t) = 10e−t.

11.8 DEMO 8: H2-Norm Analysis of PDEs
Consider the following 1D pure-convection equation with homogeneous Dirichlet boundary con-
dition:

∂tx(t, s) = ∂sx(t, s) + (s− s2)w(t) s ∈ [0, 1], t ∈ R+ (11.15)
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z(t) =
∫ 1

0
x(t, s)ds,

x(t, 1) = 0. (11.16)

We want to compute the H2-norm of this system, as defined in Sec. 13.1.7. To compute the
H2 norm, the following LPI may be used. First, we declare the PDE in PIETOOLS as

% % Declare system as PDE
% Declare independent variables (time and space)
pvar s t
% Declare state, input, and output variables
x = pde_var(’state’,1,s,[0,1]);
w = pde_var(’in’,1);
z = pde_var(’out’,1);
% Declare the sytem equations
pde = [diff(x,t,1)==diff(x,s,1)+(s-s^2)*w; % dynamics

z==int(x,s,[0,1]); % output equation
subs(x,s,1)==0];; % boundary condition

pde=initialize(pde);

Then, we convert the system to the equivalent PIE representation as
PIE = convert(pde,’pie’);
T = PIE.T; A = PIE.A;
B1 = PIE.B1; C1 = PIE.C1;

min
µ,P

γ

P ≻ 0
trace(C1PC∗1) ≤ µ

APT ∗ + T PA∗ + B1B∗1 ≼ 0 (11.17)

If feasible for some µ ≥ 0 and PI operator P , then ∥Σ∥H2 ≤ γ = √µ. Note that this is
reduced version of (13.13) in the particular case where Q = PT ∗, with a coercive operator
P ≻ 0.

To declare and solve the LPI, the following command-lines are used.
% % Initialize LPI program
prog = lpiprogram(s,[0,1]);

% % Declare decision variables:
% % gam \in \R, W:L2-->L2, Z:\R-->L2
% Scalar decision variable
[prog,gam] = lpidecvar(prog,’gam’);
% Positive operator variable W>=0 with default polynomial degrees up to 3.
[prog,W] = poslpivar(prog,[0;1]);

% % Set inequality constraints:
% % A W T* + T W A* + B1 B1* <= 0
% % gam >= trace(C1 W C1*)
% Operator inequality Dop<=0
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Dop = A*W*T’+T*W*A’+B1*B1’;
prog = lpi_ineq(prog,-Dop);
% Scalar inequality gam >= trace(C1 W C1*)
Aux = C1*W*C1’;
traceVal = trace(Aux.P);
prog = lpi_ineq(prog, gam-traceVal);

% % Set objective function:
% % min gam
prog = lpisetobj(prog, gam);

% % Solve and retrieve the solution
opts.solver = ’sedumi’; % Use SeDuMi to solve the SDP
prog_sol = lpisolve(prog,opts);
% Extract solved value of decision variables
gamd = sqrt(double(lpigetsol(prog_sol,gam)));
Wc = lpigetsol(prog_sol,W);
PIETOOLS gives γ = 0.1016 as output with the default settings used, an upper-bound

on the H2 norm of the system. The same value of 0.1016 can also be obtained by numerical
integration of the output z(t) to the non-zero initial condition as defined in Eq. (13.11).

11.9 DEMO 9: L2-Gain Analysis of (2D) PDEs
Consider the following 2D reaction-diffusion equation with Dirichlet-Neumann boundary con-
ditions:

∂tx(t, s1, s2) = ∂2
s1x(t, s1, s2) + ∂2

s2x(t, s1, s2) + λx(t, s1, s2) + w(t), s1, s2 ∈ [a, b]× [c, d],

z(t) =
∫ b

a

∫ d

c
x(t, s1, s2) ds2ds1, t ∈ R+,

x(t, a, s2) = x(t, b, s2) = 0, x(t, s1, c) = ∂s2x(t, s2, d) = 0. (11.18)

We simulate the output response of the system to a bounded disturbance, for parameter values
a = c = 0, b = d = 1, and λ = 5. To this end, we first declare the PDE in PIETOOLS as

% Declare independent variables (time and space)
pvar s1 s2 t
% Declare state, input, and output variables
a = 0; b = 1;
c = 0; d = 1;
x = pde_var(’state’,1,[s1;s2],[a,b;c,d]);
w = pde_var(’in’,1);
z = pde_var(’out’,1);
% Declare the sytem equations
lam = 5;
PDE = [diff(x,t) == diff(x,s1,2) +diff(x,s2,2) + lam*x + w;

z == int(x,[s1;s2],[a,b;c,d]);
subs(x,s1,a)==0;
subs(x,s1,b)==0;
subs(x,s2,c)==0;
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subs(diff(x,s2),s2,d)==0];
PDE = initialize(PDE);

Next, we declare the disturbance and initial values for simulation. For our purposes, we con-
sider a zero initial state x(0, s1, s2) = 0, and a decaying but oscillating disturbance w(t) =
20 sin(πt)e−t/2, which we declare using symbolic variables as

% % Declare initial values and disturbance
syms st sx sy real
uinput.ic.PDE = 0;
uinput.w = 20*sin(pi*st)*exp(-st/2);

We simulate the solution up to a time T = 10, performing temporal integration using a time
step of ∆t = 10−2, and expanding in space using 8 × 8 Chebyshev polynomials. To perform
this simulation, we call PIESIM as

opts.plot = ’yes’; % don’t plot the final solution
opts.N = 8; % Expand using 8x8 Chebyshev polynomials
opts.tf = 10; % Simulate up to t = 10
opts.dt = 1e-2; % Use time step of 10^-2

[solution,grid] = PIESIM(PDE,opts,uinput,ndiff);

A plot of the simulated evolution of the regulated state is shown in Fig. 11.9.

Figure 11.9: Simulated evolution of regulated output z(t)to (11.18) in response to a disturbance
w(t) = 20 sin(πt)e−t/2, starting with a zero initial state.

From the figure, it appears that the system is stable, with the bounded (decaying) dis-
turbance w ∈ L2[0,∞) also resulting in a bounded (decaying) output z ∈ L2[0,∞). In fact,
the value of the regulated output appears to be roughly one tenth that of the disturbance at
any time t ≥ 0, suggesting that the L2-gain supw,z∈L2[0,∞),w ̸=0

∥z∥L2
∥w∥L2

of the system may also be
bounded by 0.1. To compute a more accurate upper bound γ on the value of this gain, we
solve the L2-gain LPI presented in Sec. 13.1.4. To this end we first, compute the equivalent
PIE representation of the PDE as
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PIE = convert(PDE);
T = PIE.T;
A = PIE.A; C = PIE.C1;
B = PIE.B1; D = PIE.D11;

Given these operators, the PIE representation of the PDE (11.18) takes the form

∂t(T xf)(t) = Axf(t) + Bw(t),
z(t) = Cxf(t) +Dw(t),

where the fundamental state xf(t) ∈ L2[[a, b] × [c, d]] corresponds to the highest-order mixed
derivative of the PDE state, xf(t) = ∂2

s1∂2
s2x(t). Given this PIE representation, a smallest upper

bound on the L2-gain of the PDE can be computed by solving the LPI:

min
γ∈R, P

γ,

s.t. P ≻ 0,

 −γ D B∗PT
D −γ C
T ∗PB C∗ A∗PT + T ∗PA


Note that this is reduced version of (13.7) in the particular case where Q = PT ∗, with a

coercive operator P ≻ 0. We declare and solve this LPI as
% % Initialize LPI program
prog = lpiprogram([s1;s2],[a,b;c,d]);

% % Declare decision variables:
% % gam \in \R, P:L2-->L2, Z:\R-->L2
% Scalar decision variable
[prog,gam] = lpidecvar(prog,’gam’);
% Positive operator variable P>=0
[prog,P] = poslpivar(prog,T.dim);

% % Set inequality constraints:
% % Q <= 0
Q = [-gam, D’, (P*B)’*T;

D, -gam, C;
T’*(P*B), C’, (P*A)’*T+T’*(P*A)];

opts_Q.psatz = 2;
prog = lpi_ineq(prog,-Q,opts_Q);

% % Set objective function:
% % min gam
prog = lpisetobj(prog, gam);

% % Solve and retrieve the solution
prog_sol = lpisolve(prog,opts);
% Extract solved value of decision variable
gam_val = double(lpigetsol(prog_sol,gam));

Solving this LPI, we find an upper bound on the L2-gain of the system as γ = 0.09431,
approaching the true value of the L2-gain of approximately 0.09397..
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Chapter 12

Libraries of PDE and TDS Examples in
PIETOOLS

In Chapters 4, 8 and 9, we have shown how partial differential equations and time-delay sys-
tems can be declared in PIETOOLS through different input formats. To help get started with
each of these input formats, PIETOOLS includes a variety of example pre-defined PDE and
TDS systems, including common examples and particular models from the literature. These
examples are collected in the PIETOOLS_examples folder, and can be accessed calling the func-
tion examples_PDE_library_PIETOOLS and the scripts examples_DDE_library_PIETOOLS and
examples_NDSDDF_library_PIETOOLS. In this Chapter, we illustrate how this works, focusing
on PDE examples in Section 12.1, and TDS examples in Section 12.2.

12.1 A Library of PDE Example Problems
To help get started with analysing and simulating PDEs in PIETOOLS, a variety of PDE
models have been included in the directory PIETOOLS_examples/Examples_Library. These
systems include common PDE models, as well as examples from the literature, and are defined
through separate MATLAB functions. Each of these functions takes two arguments

1. GUI: A binary index (0 or 1) indicating whether the example should be opened in the
graphical user interface;

2. params: A string for specifying allowed parameters in the system.

For example, calling help PIETOOLS_PDE_Ex_Reaction_Diffusion_Eq, PIETOOLS indicates
that this function declares a reaction-diffusion PDE

ẋ(t, s) = λx(t, s) + ∂2
s x(t, s), s ∈ [0, 1],

x(t, 0) = x(t, 1) = 0,

where the value of the parameter λ can be set. Then, calling
>> PDE = PIETOOLS_PDE_Ex_Reaction_Diffusion_Eq(0,{’lam=10;’})

we obtain a pde_struct object PDE representing the reaction-diffusion equation with λ = 10.
Calling
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>> PDE = PIETOOLS_PDE_Ex_Reaction_Diffusion_Eq(1,{’lam=10;’})

The PDE will also be loaded in the GUI, though a default value of λ = 9.86 will be used, as
the GUI will always load a pre-defined file, which cannot be adjusted from the command line.

To simplify the process of extracting PDE examples, PIETOOLS includes a function
examples_PDE_library_PIETOOLS. In this function, each of the pre-defined PDEs is assigned
an index, allowing desired PDEs to be extracted by calling examples_PDE_library_PIETOOLS
with the associated index. For example, scrolling through this function we find that the reaction-
diffusiong equation is the fifth system in the list, and therefore, we can obtain a pde_struct
object defining this system by calling the library function with argument “5”, returning

>> PDE = examples_PDE_library_PIETOOLS(5);
--- Extracting ODE-PDE example 5 ---

(d/dt) x(t,s) = 9.86 * x(t,s) + (d^2/ds^2) x(t,s);
0 = x(t,0);
0 = x(t,1);

Would you like to run the executive associated to this problem? (y/n)
-->

We note that the function asks whether an executive should be run for the considered PDE.
This is because, for each of the PDE examples, an associated LPI problem has also been
declared, matching one of the executive files (see also Chapter 13). For the reaction-diffusion
equation, the proposed executive is the PIETOOLS_stability function, testing stability of the
PDE. Entering yes in the command line window, this executive will be automatically run,
whilst entering no will stop the function, and just return the pde_struct object PDE.

Using the examples_PDE_library_PIETOOLS function, parameters in the PDE can also be
adjusted, calling e.g.

>> PDE = examples_PDE_library_PIETOOLS(5,’lam=10;’);
--- Extracting ODE-PDE example 5 ---

(d/dt) x(t,s) = 10 * x(t,s) + (d^2/ds^2) x(t,s);
0 = x(t,0);
0 = x(t,1);

Similarly, if multiple parameters can be specified, we specify each of these parameters separately.
For example, we note that Example 7 corresponds to a PDE

ẋ(t, s) = c(s)x(t, s) + b(s)∂sx(t, s) + a(s)∂2
s x(t, s), x(t, 0) = ∂sx(t, 1) = 0,

where the values of the functions a(s), b(s) and c(s) for s ∈ [0, 1] can be specified. As such, we
can declare this PDE for a = 1, b = 2 and c = 3 by calling

>> PDE = examples_PDE_library_PIETOOLS(7,’a=1;’,’b=2;’,’c=3;’);
--- Extracting ODE-PDE example 7 ---

(d/dt) x(t,s) = 3 * x(t,s) + 2 * (d/ds) x(t,s) + (d^2/ds^2) x(t,s);
0 = x(t,0);
0 = (d/ds) x(t,1);

Finally, we can also open the PDE in the GUI by calling
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>> examples_PDE_library_PIETOOLS(7,’GUI’);
--- Extracting ODE-PDE example 7 ---

or extract the PDE as a pde_struct (terms-format) and open it in the GUI by calling
>> PDE = examples_PDE_library_PIETOOLS(7,’TERM’,’GUI’);
--- Extracting ODE-PDE example 7 ---

In each case, the function will still ask whether the executive associated with the PDE should
be run as well. Of course, you can also convert the PDE to a PIE yourself using convert, and
then run any desired executive manually, assuming this executive makes sense (e.g. there’s no
sense in computing an H∞-gain if your system has no outputs).

12.2 Libraries of DDE, NDS, and DDF Examples
Aside from the PDE examples, a list of TDS examples is also included in PIETOOLS, in DDE,
NDS, and DDF format. Unlike the PDE problems, however, the TDS examples are not declared
in distinct functions, but are divided over two scripts: examples_DDE_library_PIETOOLS and
examples_NDSDDF_library_PIETOOLS. In each of these scripts, most examples are commented,
and only one example should be uncommented at any time. This example can then be extracted
by calling the script, adding a structure DDE, NDS or DDF to the MATLAB workspace. To extract
a different example, the desired example must be uncommented, and all other examples must
be commented, at which point the script can be called again to obtain a structure representing
the desired system. We expect to update the DDE and NDS/DDF example files in a future
release to match the format used for the PDE example library.

12.2.1 DDE Examples
We have compiled a list of 23 DDE numerical examples, grouped into: stability analysis prob-
lems; input-output systems; estimator design problems; and feedback control problems. These
examples are drawn from the literature and citations are used to indicate the source of each
example. For each group, the relevant flags have been included to indicate which executive
mode should be called after the example has been loaded.

12.2.2 NDS and DDF Examples
There are relatively few DDFs which do not arise from a DDE or NDS. Hence, we have combined
the DDF and NDS example libraries into the script examples_NDSDDF_library_PIETOOLS. The
Neutral Type systems are listed first, and currently consist only of stability analysis problems -
of which we include 13. As for the DDE case, the library is a script, so the user must uncomment
the desired example and call the script from the root file or command window. For the NDS
problems, after calling the example library, in order to convert the NDS to a DDF or PIE, the
user can use the following commands:

>> NDS = initialize_PIETOOLS_NDS(NDS);
>> DDF = convert_PIETOOLS_NDS(NDS,’ddf’);
>> DDF = minimize_PIETOOLS_DDF(DDF);
>> PIE = convert_PIETOOLS_DDF(DDF,’pie’);
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In contrast to the NDS case, we only include 3 DDF examples. The first two are difference
equations which cannot be represented in either the NDS or DDE format. The third is a
network control problem, which is also included in the DDE library in DDE format.
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Chapter 13

Standard Applications of LPI
Programming

In Chapter 7, we showed how general LPI optimization programs can be declared and solved in
PIETOOLS. In this chapter, we provide several applications of LPI programming for analysis,
estimation, and control of PIEs. Recall that such PIEs take the form

∂t(T xf)(t) + Twẇ(t) + Tuu̇(t) = Axf(t) + B1w(t) + B2u(t), xf(0) = xI

z(t) = C1xf(t) +D11w(t) +D12u(t),
y(t) = C2xf(t) +D21w(t) +D22u(t), (13.1)

where xf =
[ x0

x1
x2
x3

]
∈

 Rn0
L

n1
2 [a,b]

L
n2
2 [c,d]

L
n3
2 [[a,b]×[c,d]]

, and where T through D22 are all PI operators. In Sec-

tion 13.1, we provide several LPIs for stability analysis and H∞-gain estimation of such PIEs,
setting u = 0. Then, in Section 13.2, we present an LPI for H∞-optimal estimation of PIEs of
the form (13.1), followed by an LPI for H∞-optimal full-state feedback control in Section 13.3.
We note that, almost all of these LPIs have already been implemented as executive functions
in PIETOOLS, and we will refer to these executives when applicable.

13.1 LPIs for Analysis of PIEs
Using LPIs, several properties of a PIE as in Equation (13.1) may be tested, as listed in this
section. In particular, the LPIs listed below are extensions of classical results used in analysis
of ODEs using LMIs. For most of these LPIs, PIETOOLS includes an executive function that
may be run to solve it for a given PIE.

13.1.1 Operator Norm
For a PI operator T , an upper bound √γ on the operator norm ∥T ∥ can be computed by
solving the following LPI.

min
γ,P

γ
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T ∗T − γ ≼ 0 (13.2)

This LPI has not been implemented as an executive in PIETOOLS, but has been imple-
mented in the demo file volterra_operator_norm_DEMO (see also Section 11.2).

13.1.2 Stability
For given PI operators T and A, stability of the PIE

∂t(T xf)(t) = Axf(t) (13.3)

can be tested by solving the following LPI.

P ≻ 0
T ∗PA+A∗PT ≼ 0 . (13.4)

If there exists a PI operator P such that this LPI is feasible, then the PIE is stable. Given
a structure PIE, this LPI may be solved for the associated PIE by calling

>> [prog, Pop] = PIETOOLS_stability(PIE, settings);

or
>> [prog, Pop] = lpiscript(PIE, ’stability’, settings);

Here prog will be an LPI program structure describing the solved problem and Pop will be a
dopvar object describing the (unsolved) decision operator P from which the solved operator
can be derived using

>> Pop = getsol_lpivar(prog,Pop);

See Chapter 7 for more information on the operation of this function and the settings input.

13.1.3 Dual Stability
For given PI operators T and A, stability of the PIE (13.3) can also be tested by solving the
following LPI.

P ≻ 0
T PA∗ +APT ∗ ≼ 0 (13.5)

If there exists a PI operator P such that this LPI is feasible, then the PIE is stable. Given
a structure PIE, this LPI may be solved for the associated PIE by calling

>> [prog, Pop] = PIETOOLS_stability_dual(PIE, settings);

or
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>> [prog, Pop] = lpiscript(PIE, ’stability-dual’, settings);

Here prog will be an LPI program structure describing the solved problem and Pop will be a
dopvar object describing the (unsolved) decision operator P .

13.1.4 Input-Output Gain
Consider a system of the form

∂t(T xf)(t) = Axf(t) + B1w(t), xf(0) = 0
z(t) = C1xf(t) +D11w(t), (13.6)

where w ∈ Lnw
2 [0,∞). Then, z ∈ Lnz

2 [0,∞), and ∥z∥L2 ≤ γ∥w∥L2 , if the following LPI is
feasible.

min
γ,Q,R

γ

T ∗Q = Q∗T = R ⪰ 0−γI D∗11 B∗1Q
(·)∗ −γI C1
(·)∗ (·)∗ Q∗A+A∗Q

 ≼ 0 (13.7)

Given a structure PIE, this LPI may be solved for the associated PIE by calling
>> [prog, Qop, gam] = PIETOOLS_Hinf_gain(PIE, settings);

or
>> [prog, Qop, gam] = lpiscript(PIE, ’l2gain’, settings);

Here prog will be an LPI program structure describing the solved problem, and gam will be the
smallest value of γ for which the LPI was found to be feasible, offering a bound on the L2-gain
from w to z of the system. The output Pop will be a dopvar object describing the (unsolved)
decision operator P .

13.1.5 Dual Input-Output Gain
For a System (13.6) with w ∈ Lnw

2 [0,∞), an upper bound γ on the L2-gain from w to z can
also be obtained by solving the LPI

min
γ,Q,R

γ

T Q = Q∗T ∗ = R ⪰ 0−γI D11 C1Q
(·)∗ −γI B∗1
(·)∗ (·)∗ Q∗A∗ +AQ

 ≼ 0 (13.8)

Given a structure PIE, this LPI may be solved for the associated PIE by calling

182



>> [prog, Qop, gam] = PIETOOLS_Hinf_gain_dual(PIE, settings);

or
>> [prog, Qop, gam] = lpiscript(PIE, ’l2gain-dual’, settings);

Here prog will be an LPI program structure describing the solved problem, and gam will be the
found optimal value for γ. The output Pop will be a dopvar object describing the (unsolved)
decision operator P .

13.1.6 Positive Real Lemma
For a PIE of the form of Eq. (13.6), we can test whether the system is passive by solving the
LPI

P ≻ 0[
−D∗11 −D11 B∗1PT − C1

(·)∗ T ∗PA+A∗PT

]
≼ 0 (13.9)

If there exists a PI operator P such that this LPI is feasible, then the system is passive. Note
that this LPI has not been implemented as an executive in PIETOOLS.

13.1.7 H2-Norm
For a PIE of the form

∂t(T xf)(t) = Axf(t) + B1w(t), xf(0) = 0
z(t) = C1xf(t), (13.10)

we can compute the H2-norm by extending its usual definition to PIEs as follows: consider
solutions of the auxiliary PIE

∂t(T xf)(t) = Axf(t),
z(t) = C1xf(t), T xf(0) = B1x0. (13.11)

We define the H2 norm of System (13.10), denoted Σ, as

∥Σ∥H2 := sup
z,x satisfy (13.11)

∥x0∥=1

∥z∥L2 .

Then, we can compute an optimal upper-bound on this H2-norm by solving the following
LPI:

min
γ,R,Q,W

γ

R ≽ 0, γ > 0
Q∗T = T ∗Q = R[
−γI C1
C∗1 A∗Q+Q∗A

]
≼ 0

183



[
W B∗1Q
Q∗B1 R

]
≽ 0

trace(W) ≤ γ (13.12)

If (13.12) is feasible for some γ > 0, PI operator R,W ≽ 0, and Q, then ∥Σ∥H2 ≤ γ.
Given a structure PIE, this LPI may be solved for the associated PIE by calling
>> [prog, Wm, gam, Rop, Qop] = PIETOOLS_H2_norm_o(PIE, settings);

or
>> [prog, Wm, gam, Rop, Qop] = lpiscript(PIE, ’h2norm’, settings);

Here prog will be an LPI program structure describing the solved problem, and gam will be
the smallest value of γ for which the LPI was found to be feasible, offering a bound on the
H2-norm of the system. The outputs Rop, Qop, Wm will be dopvar objects describing the
(unsolved) decision operators. Note that, in the most common case when the input w(t) is
finite-dimensional, the operator W is a matrix.

13.1.8 Dual H2-Norm
For a system (13.10), an optimal upper bound γ on the H2 norm can also be found by solving
the LPIs

min
γ,R,Q,W

γ

R ≽ 0, γ > 0
Q∗T ∗ = T Q = R[
−γI B∗1
B1 AQ+Q∗A∗

]
≼ 0[

W C1Q
Q∗C∗1 R

]
≽ 0

trace(W) ≤ γ (13.13)

Given a structure PIE, this LPI may be solved for the associated PIE by calling
>> [prog, Wm, gam, Rop, Qop] = PIETOOLS_H2_norm_c(PIE, settings);

or
>> [prog, Wm, gam, Rop, Qop] = lpiscript(PIE, ’h2norm-dual’, settings);

Here prog will be an LPI program structure describing the solved problem, and gam will be
the smallest value of γ for which the LPI was found to be feasible, offering a bound on the
H2-norm of the system. The outputs Rop, Qop, Wm will be dopvar objects describing the
(unsolved) decision operators. Note that, in the most common case when the output z(t) is
finite-dimensional, the operator W is a matrix.
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13.2 LPIs for Optimal Estimation of PIEs

13.2.1 H∞ Estimator
For the following PIE

∂t(T xf)(t) + Twẇ(t) + Tuu̇(t) = Axf(t) + B1w(t) + B2u(t),
z(t) = C1xf(t) +D11w(t) +D12u(t),
y(t) = C2xf(t) +D21w(t) +D22u(t), (13.14)

a state estimator has the following structure:

∂t(T x̂f)(t) + Tuu̇(t) = Ax̂f(t) + L(ŷ(t)− y(t)) + B2u(t),
ẑ(t) = C1x̂f(t) +D12u(t)
ŷ(t) = C2x̂f(t) +D22u(t), (13.15)

so that the errors e := x̂f − xf and z̃ := ẑ − z in respectively the state and regulated output
estimates satisfy

∂t(T e)(t)− Twẇ(t) = (A+ LC2)e(t)− (B1 + LD21)w(t),
z̃(t) = C1e(t)−D11w(t)

The H∞-optimal estimation problem amounts to synthesizing L such that the estimation error
z̃ := ẑ − z admits ∥z̃∥ ≤ γ∥w∥ for a particular γ > 0. To establish such an estimator, we can
solve the following LPI.

min
γ,P,Z

γ

P ≻ 0T
∗

w (PB1 + ZD21) + (·)∗ 0 (·)∗
0 0 0

−(PA+ ZC2)∗Tw 0 0

+
−γI −D⊤11 −(PB1 + ZD21)∗T

(·)∗ −γI C1
(·)∗ (·)∗ (PA+ ZC2)∗T + (·)∗

 ≼ 0 (13.16)

Then, if this LPI is feasible for some γ > 0 and PI operators P and Z, then, letting
L := P−1Z, the estimation error will satisfy ∥z̃∥ ≤ γ∥w∥. Given a structure PIE, this LPI may
be solved for the associated PIE by calling

>> [prog, Lop, gam, Pop, Zop] = PIETOOLS_Hinf_estimator(PIE, settings);

or
>> [prog, Lop, gam, Pop, Zop] = lpiscript(PIE, ’hinf-observer’, settings);

Here prog will be an LPI program structure describing the solved problem, gam will be the
found optimal value for γ, and Lop will be an opvar object describing the optimal estimator
L. Outputs Pop and Zop will be opvar objects describing the solved operators P and Z. See
Chapter 7 for more information on how LPIs are solved and on the settings input.
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13.2.2 H2 Estimator
For the following PIE

∂t(T xf)(t) + Tuu̇(t) = Axf(t) + B1w(t) + B2u(t),
z(t) = C1xf(t) +D12u(t),
y(t) = C2xf(t) +D21w(t) +D22u(t), (13.17)

a state estimator with the following structure:

∂t(T x̂f)(t) + Tuu̇(t) = Ax̂f(t) + L(ŷ(t)− y(t)) + B2u(t),
ẑ(t) = C1x̂f(t) +D12u(t)
ŷ(t) = C2x̂f(t) +D22u(t). (13.18)

so that the errors e := x̂f − xf and z̃ := ẑ − z in respectively the state and regulated output
estimates satisfy

∂t(T e)(t) = (A+ LC2)e(t)− (B1 + LD21)w(t),
z̃(t) = C1e(t)

The estimation problem is to find L such that, for some γ > 0 the above system, called Σe, has
H2-norm ∥Σe∥H2 ≤ γ. The optimal estimator can be found by solving the following LPI.

min
γ,Z,P,W

γ

γ > 0
trace(W) ≤ γ

P ≻ 0[
−γI C1
C∗1 A∗PT + T ∗PA+ T ∗ZC2 + C∗2Z∗T

]
≼ 0[

W −(B∗1P +D∗21Z∗)
−(PB1 + ZD21) P

]
≽ 0 (13.19)

If this LPI is feasible for some γ > 0, PI operators P , Z, and W , then, letting L := P−1Z, the
estimation error will satisfy ∥z̃∥ ≤ γ∥w∥. Given a structure PIE, this LPI may be solved for
the associated PIE by calling

>> [prog, Lop, gam, Pop, Zop, Wop] = PIETOOLS_H2_estimator(PIE,settings);

or
>> [prog, Lop, gam, Pop, Zop, Wop] = lpiscript(PIE, ’h2-observer’, settings);

Here prog will be an LPI program structure describing the solved problem, gam will be the
found optimal value for γ, and Lop will be an opvar object describing the optimal estimator L.
Outputs Pop, Zop, and Wop will be opvar objects describing the solved operators P ,Z and W .
See Chapter 7 for more information on how LPIs are solved and on the settings input.
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13.3 LPIs for Optimal Control of PIEs

13.3.1 H∞ Control
In this section, we discuss the synthesis of H∞ optimal control of a PIE of the form

∂t(T xf)(t) = Axf(t) + B1w(t) + B2u(t), xf(0) = 0
z(t) = C1xf(t) +D11w(t) +D12u(t), (13.20)

where w, z ∈ L2[0,∞). The problem of synthesizing an H∞-optimal controller amounts to
determining a PIE operator K such that, using the full-state feedback law u(t) = Kv(t), the
regulated output z admits ∥z∥L2 ≤ γ∥w∥L2 for a particular γ > 0. To establish such a controller,
we can solve the LPI

min
γ,P,Z

γ

P ≻ 0−γI D11 (C1P +D12Z)T ∗
D∗11 −γI B∗1
()∗ B1 ()∗ + (AP + B2Z) T ∗

 ≼ 0 (13.21)

If this LPI is feasible for some γ > 0 and PI operators P and Z, then, letting K := ZP−1,
the L2-gain for the controlled system with u = Kxf will be such that ∥z∥ ≤ γ∥w∥. Given a
structure PIE, this LPI may be solved for the associated PIE by calling

>> [prog_sol, Kop, gamma, Pop, Zop] = PIETOOLS_Hinf_control(PIE,settings);

or
>> [prog_sol, Kop, gamma, Pop, Zop] = lpiscript(PIE, ’hinf-controller’, settings);

Here prog will be an LPI program structure describing the solved problem, gam will be the
found optimal value for γ, and Kop will be an opvar object describing the optimal feedback
K. Outputs Pop and Zop will be opvar objects describing the solved operators P and Z. See
Chapter 7 for more information on how LPIs are solved and on the settings input.

13.3.2 H2 Controller
For a PIE of the form

∂t(T xf)(t) = Axf(t) + B1w(t) + B2u(t), xf(0) = 0
z(t) = C1xf(t) +D12u(t), (13.22)

with w, z ∈ L2[0,∞). The problem is to determine K such that, using the full-state feedback
law u(t) = Kxf(t), the regulated output z of the closed loop system, denoted Σc has H2 norm
∥Σc∥H2 ≤ γ for a particular γ > 0.

The controller can be found by solving the following LPI.

min
γ,Z,P,W

γ
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P ≻ 0, γ > 0
trace(W) ≤ γ[
−γI B∗1
B1 APT ∗ + T PA∗ + B2Z + Z∗B∗2

]
≼ 0[

W C1P +D12Z
P∗C∗1 + Z∗D∗12 P

]
≽ 0 (13.23)

If the LPI is feasible, let K = ZP−1. Given a structure PIE, this LPI may be solved for the
associated PIE by calling

>>[prog, Kop, gam, Pop, Zop, Wop] = PIETOOLS_H2_control(PIE, settings);

or
>> [prog, Kop, gam, Pop, Zop, Wop] = lpiscript(PIE, ’h2control’, settings);

Here prog will be an LPI program structure describing the solved problem, and gam will be
the smallest value of γ for which the LPI was found to be feasible, offering a bound on the
H2-norm of Σc. The outputs Pop, Zop, and Wop will be opvar objects describing the solved
decision operators P ,Z, and W . See Chapter 7 for more information on how LPIs are solved
and on the settings input.
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Part IV

Appendices
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Appendix A

PI Operators and their Properties

In this appendix, we discuss in a bit more detail the crucial properties of PI operators that
PIETOOLS relies on for implementation and analysis of PIEs. For this, in Section A.1, we first
recap the definitions of PI operators as presented in Chapter 5, also introducing some notation
that we will continue to use throughout the appendix. In Section A.2, A.3, and A.4, we show
that respectively the sum, composition, and adjoint of PI operators can be expressed as PI
operators. In Section A.5, and A.6, we then show how the respectively the inverse of a PI
operator, and the composition of a PI operator with a differential operator can be computed.
Finally, in Section A.7, we show how a cone of positive PI operators can be parameterized by
positive matrices, allowing an LPI constraint P ≽ 0 to be posed as an LMI P ≽ 0.

For more information on PI operators, and full proofs of each of the results, we refer to
e.g. [5] [8] (1D) and [4] (2D).

A.1 PI Operators on Different Function Spaces
Recall that we denote the space of square integrable functions on a domain Ω as L2[Ω], with
inner product

⟨x, y⟩L2
=
∫

Ω

[
x(s)

]T
y(s)ds.

In defining the different PI operators, we will restrict ourselves to domains of 1D or 2D hyper-
cubes. In 1D, such a hypercube is simply an interval [a, b], for which we define the following PI
operator:

Definition 1 (3-PI Operator). For given parameters

R := {R0, R1, R2} ∈
{
Lm×n

2 [a, b], Lm×n
2

[
[a, b]2

]
, Lm×n

2

[
[a, b]2

]}
=: Nm×n

1D [a, b],

we define the associated 3-PI operator P [R] := P{R0,R1,R2} : Ln
2 [a, b]→ Lm

2 [a, b] as

(
P [R]x

)
(s) := R0(s)x(s) +

∫ s

a
R1(s, θ)x(θ)dθ +

∫ b

s
R2(s, θ)x(θ)dθ, (A.1)

for any x ∈ Ln
2 [a, b].
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We note that 3-PI operators can be seen as (one possible) generalization of matrices to
infinite dimensional vector spaces. In particular, suppose we have a matrix P ∈ Rm×n, which
we decompose as P = D + L + U , where D is diagonal, L is strictly lower triangular, and U is
strictly upper-triangular. Then, for any x ∈ Rn, the ith element of the product Px is given by:

(
Px

)
i

= Diixi +
i−1∑
j=1

Lijxj +
n∑

j=i+1
Uijxj.

Compare this to the value of P [R]x at a position s ∈ [a, b] for some x ∈ L2[a, b] and 3-PI
parameters R:

(
P [R]x

)
(s) = R0(s)x(s) +

∫ s

a
R1(s, θ)x(θ)dθ +

∫ b

s
R2(s, θ)x(θ)dθ.

Replacing row and column indices (i, j) by primary and dummy variables (s, θ), and perform-
ing integration instead of summation, 3-PI operators have a structure very similar to that of
matrices, wherein we can recognize a diagonal, lower-triangular, and upper-triangular part.
Accordingly, we will occasionally refer to a PI operator of the form P{R0,0,0} as a diagonal 3-PI
operator, and to PI operators of the forms P{0,R1,0} and P{0,0,R2} as lower- and upper-triangular
PI operators respectively. The similar structure between matrices and PI operator also ensures
that matrix operations such as addition and multiplication are valid for PI operators as well,
as we will discuss in more detail in the next sections.

To map functions on a domain [a, b]× [c, d] ⊂ R2, we also define the 9-PI operator:

Definition 2 (9-PI Operator). For given parameters

R :=

R00 R01 R02
R10 R11 R12
R20 R21 R22


∈

 Lm×n
2

[
[a, b]× [c, d]

]
Lm×n

2
[
[a, b]× [c, d]2

]
Lm×n

2
[
[a, b]× [c, d]2

]
Lm×n

2
[
[a, b]2 × [c, d]

]
Lm×n

2
[
[a, b]2 × [c, d]2

]
Lm×n

2
[
[a, b]2 × [c, d]2

]
Lm×n

2
[
[a, b]2 × [c, d]

]
Lm×n

2
[
[a, b]2 × [c, d]2

]
Lm×n

2
[
[a, b]2 × [c, d]2

]
 =: Nm×n

2D

[
[a, b]×[c, d]

]

we define the associated 9-PI operator P [R] := P
[

R00 R01 R02
R10 R11 R12
R20 R21 R22

]
: Ln

2

[
[a1, b1] × [a2, b2]

]
→

Lm
2

[
[a1, b1]× [a2, b2]

]
as

(P[R]x) (s, r) = R00(s, r)x(s, r) +
∫ r

c
R01(s, r, ν)x(s, ν)dν +

∫ d

r
R02(s, r, ν)x(s, ν)dν

+
∫ s

a
R10(s, r, θ)x(θ, r)dθ +

∫ s

a

∫ r

c
R11(s, r, θ, ν)x(θ, ν)dνdθ +

∫ s

a

∫ d

r
R12(s, r, θ, ν)x(θ, ν)dνdθ

+
∫ b

s
R20(s, r, θ)x(θ, r)dθ +

∫ b

s

∫ r

c
R21(s, r, θ, ν)x(θ, ν)dνdθ +

∫ b

s

∫ d

r
R22(s, r, θ, ν)x(θ, ν)dνdθ

(A.2)

for any x ∈ Ln
2

[
[a1, b2]× [a2, b2]

]
.

Note that, similar to how 3-PI operators can be seen as a generalization of matrices, operat-
ing on infinite-dimensional states x(s) instead of a finite-dimensional vectors xi, 9-PI operators

191



are a generalization of (a particular class of) tensors, operating on infinite-dimensional states
x(s, r) instead of matrix-valued states xij. However, this comparison is not quite as easy to
visualize as that between 3-PI operators and matrices, so we will mostly use 3-PI operators to
illustrate the different properties of PI operators in the remaining sections.

Finally we define a general class of PI operators, encapsulating 3-PI operators and 9-PI
operators, as well as matrices and “cross-operators”. In particular, we consider operators defined

on the set Zn
[
[a, b], [c, d]

]
:=

 Rn0

Lns
2 [a, b]

Lnr
2 [c, d]

Ln2
2
[
[a, b]× [c, d]

]
, where n := {n0, ns, nr, n2}, with each element

being a coupled state of finite-dimensional variables x0 ∈ Rn0 , 1D functions xs ∈ Lns
2 [a, b] and

xr ∈ Lnr
2 [a, b], and 2D functions x2 ∈ Ln2

2

[
[a, b]× [c, d]

]
.

Definition 3 (PI Operator). For any operator R : Zn
[
[a, b], [c, d]

]
→ Zm

[
[a, b], [c, d]

]
with m :=

{m0, ms, mr, m2} and n := {n0, ns, nr, n2}, we say that R is a PI operator, denoted by R ∈
Πm×m if there exist parameters

R :=

 R00 R0s R0r R02
Rs0 Rss Rsr Rs2
Rr0 Rrs Rrr Rs2
R20 R2s R2r R22



∈


Rm0×n0 Lm0×ns

2 [a, b] Lm0×nr
2 [c, d] Lm0×n2

2
[
[a, b]× [c, d]

]
Lms×n0

2 [a, b] Nms×ns
1D [a, b] Lms×nr

2
[
[a, b]× [c, d]

]
Nms×n2

1D←2D

[
[a, b], [c, d]

]
Lmr×n0

2 [c, d] Lmr×ns
2

[
[a, b]× [c, d]

]
Nmr×nr

1D [c, d] Nmr×n2
1D←2D

[
[c, d], [a, b]

]
Lm2×n0

2
[
[a, b]× [c, d]

]
Nm2×ns

2D←1D

[
[a, b], [c, d]

]
Nm2×nr

2D←1D

[
[c, d], [a, b]

]
Nm2×nr

2D

[
[a, b]× [c, d]

]
 =: Nm×n

[
[a, b]× [c, d]

]

such that

R = (P[R]x) (s, r)

= P
[

R00 R0s R0r R02
Rs0 Rss Rsr Rs2
Rr0 Rrs Rrr Rs2
R20 R2s R2r R22

] [ x0xsxrx2

]

:=


R00x0 +

∫ b
a R0s(s)xs(s)ds +

∫ d
c R0r(r)xr(r)dr +

∫ b
a

∫ d
c R02x2(s, r)drds

Rs0(s)x0 +
(
P[Rss]xs

)
(s) +

∫ d
c Rsr(s, r)xr(r)dr +

(
P[Rs2]x2

)
(s)

Rr0(r)x0 +
∫ b

a Rrs(s, r)xs(s)ds +
(
P[Rrr]xr

)
(r) +

(
P[Rr2]x2

)
(r)

R20(s, r)x0 +
(
P[R2s]xs

)
(s, r) +

(
P[R2r]xr

)
(s, r) +

(
P[R22]x2

)
(s, r)

 , (A.3)

for any x =
[ x0

xs
xr
x2

]
∈

 Rn0

Lns
2 [a, b]

Lnr
2 [c, d]

Ln2
2
[
[a, b]× [c, d]

]
=: Zn, where for given parameters

P := {P0, P1, P2}

∈
{

Lms×n2
2

[
[a, b]×[c, d]

]
, Lms×n2

2
[
[a, b]2×[c, d]

]
, Lms×n2

2
[
[a, b]2×[c, d]

]}
=: Nms×n2

1D←2D

[
[a, b], [c, d]

]
,

Q := {Q0, Q1, Q2}

∈
{

Lms×n2
2

[
[a, b]×[c, d]

]
, Lms×n2

2
[
[a, b]2×[c, d]

]
, Lms×n2

2
[
[a, b]2×[c, d]

]}
=: Nms×n2

2D←1D

[
[a, b], [c, d]

]
,

we define

(
P[P ]x2

)
(s) :=

∫ d

c

[
P0(s, r)x2(s, r) +

∫ s

a
P1(s, r, θ)x2(θ, r)dθ +

∫ b

s
P2(s, r, θ)x(θ, r)dθ

]
dr,
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(
P[Q]xs

)
(s, r) := Q0(s, r)xs(s) +

∫ s

a
Q1(s, r, θ)xs(θ)dθ +

∫ b

s
Q2(s, r, θ)xs(θ)dθ,

for any x2 ∈ Ln2
2

[
[a, b]× [c, d]

]
and xs ∈ Lns

2 [a, b].

A.2 Addition of PI Operators
An obvious but crucial property of PI operators is that the sum of two PI operators (of appro-
priate dimensions) is again a PI operator.

Lemma 4. For any PI parameters Q, R ∈ Nm×n
[
[a, b], [c, d]

]
, there exist unique parameters

P ∈ Nm×n
[
[a, b], [c, d]

]
such that

P [R] + P [Q] = P [P ].

That is, for any x ∈ Zn
[
[a, b], [c, d]

]
,(

(P [Q] + P [R])x
)
(s) =

(
P [P ]x)(s).

Proof. We outline the proof for 3-PI operators, for which it is easy to see that, by linearity of
the integral,(
P{R0,R1,R2}x

)
(s) +

(
P{Q0,Q1,Q2}x

)
(s)

= [R0(s) + Q0(s)]x(s) +
∫ s

a
[R1(s, θ) + Q1(s, θ)]x(θ)dθ +

∫ b

s
[R2(s, θ) + Q2(s, θ)]x(θ)dθ

=
(
P{R0+Q0,R1+Q1,R2+Q2}x

)
(s).

Similar results can be easily derived for more general PI operators. For a full proof, we refer
to [5].

Comparing the addition operation for 3-PI operators to that for matrices A, B ∈ Rm×n,
we can draw direct parallels. In particular, where the sum C = A + B of two matrices is
simply computed by adding the elements [C]ij = [A]ij + [B]ij for each row i and column j,
the sum of two 3-PI operators is computed by simply adding the values of the parameters
P (s, θ) = Q(s, θ) + R(s, θ) at each position s and θ within the domain.

A.3 Composition of PI Operators
In addition to the sum of two PI operators being a PI operator, the composition of two PI
operators can also be shown to be a PI operator, as stated in the following lemma:
Lemma 5. For any PI parameters R1 ∈ Nm×p

[
[a, b], [c, d]

]
and R2 ∈ N p×n

[
[a, b], [c, d]

]
, there

exist unique parameters R3 ∈ Nm×n
[
[a, b], [c, d]

]
such that

P [R1] ◦ P [R2] = P [R3].

That is, for any x ∈ Zn
[
[a, b], [c, d]

]
,(

P [R1]
(
P [R2]x

))
(s) =

(
P [R3]x)(s).
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Proof. We once again outline the proof only for 3-PI operators. For this, we define the indicator
function

I(s− θ) =
1, if s ≥ θ

0. else

allowing us to write, e.g.
(
P{R0,R1,R2}x

)
(s) = R0(s)x +

∫ b

a

[
I(s− θ)R1(s, θ) + I(θ − s)R2(s, θ)

]
x(θ)dθ.

Furthermore, we have the following relations for the indicator function

I(s− η)I(η − θ) =
I(s− θ), if η ∈ [θ, s],

0, else,
I(s− η)I(θ − η) = I(s− θ)I(θ − η) + I(θ − s)I(s− η)

Using the first relation, it follows that for any R1, Q1 ∈ Lms×ns
2

[
[a, b]2

]
,

(
P{0,R1,0}

(
P{0,Q1,0}x

))
(s) =

∫ s

a
R1(s, η)

∫ η

a
Q1(η, θ)x(θ)dθdη

=
∫ b

a

∫ b

a
I(s− η)I(η − θ)R1(s, η)Q1(η, θ)x(θ)dθdη

=
∫ s

a

[∫ s

θ
R1(s, η)Q1(η, θ)dη

]
x(θ)dθ =

(
P{0,P11,0}x

)
(s),

where P11(s, θ) :=
∫ s

θ R1(s, η)Q1(θ, η)dη. Similarly, we can show that
(
P{0,R1,0}

(
P{0,0,Q2}x

))
(s) =

∫ s

a

[∫ θ

a
R1(s, η)Q2(η, θ)dη

]
x(θ)dθ +

∫ b

s

[∫ s

a
R1(s, η)Q2(η, θ)dη

]
x(θ)dθ

(
P{0,0,R2}

(
P{0,Q1,0}x

))
(s) =

∫ s

a

[∫ b

s
R2(s, η)Q1(η, θ)dη

]
x(θ)dθ +

∫ b

s

[∫ b

θ
R2(s, η)Q1(η, θ)dη

]
x(θ)dθ

(
P{0,0,R2}

(
P{0,0,Q2}x

))
(s) =

∫ b

s

[∫ θ

s
R2(s, η)Q2(θ, η)dη

]
x(θ)dθ =

(
P{0,0,P22}x

)
(s),

proving that the composition of lower-triangular and upper-triangular partial integrals can
always be expressed as partial integrals as well. It is also easy easy to see that(
P{R0,0,0}

(
P{0,Q1,Q2}x

))
(s) =

∫ s

a
R0(s)Q1(s, θ)x(θ)dθ +

∫ b

s
R0(s)Q2(s, θ)x(θ)dθ =

(
P{0,P01,P02}x

)
(s),(

P{0,R1,R2}
(
P{Q0,0,0}x

))
(s) =

∫ s

a
R1(s, θ)Q0(θ)x(θ)dθ +

∫ b

s
R2(s, θ)Q2(θ)x(θ)dθ =

(
P{0,P10,P20}x

)
(s),

from which it follows that the composition of any 3-PI operators can be expressed as a 3-PI
operator as well. Moreover, since we can repeat these steps along any spatial directions, this
result extends to more general (2D) PI operators as well. For a full proof, we refer to [10].
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We note again the similarity to matrices: just like the product of two lower triangular
matrices L1, L2 is a lower triangular matrix L3, the composition of two lower-triangular 3-PI
operators P{0,R1,0},P{0,Q1,0} is also a lower-triangular 3-PI operator P{0,P11,0}. Similarly, the
product of two upper-triangular 3-PI operators P{0,0,R2},P{0,0,Q2} is also an upper-triangular 3-
PI operator P{0,0,P22}, but the composition of lower- and upper-triangular PI operators need not
be lower- or upper-triangular – just as with matrices. Finally, the composition of a diagonal
operator P{R0,0,0} with a lower- or upper-diagonal PI operator is also respectively lower- or
upper-diagonal.

A.4 Adjoint of PI Operators
To define the adjoint of a PI operatorR ∈ Πm×normaln, we first recall the definition of the function

space that these operators map: Zn
[
[a, b], [c, d]

]
:=

 Rn0

Lns
2 [a, b]

Lnr
2 [c, d]

Ln2
2
[
[a, b]× [c, d]

]
, where n := {n0, ns, nr, n2},

with each element being a coupled state of finite-dimensional variables x0 ∈ Rn0 , 1D functions
xs ∈ Lns

2 [a, b] and xr ∈ Lnr
2 [a, b], and 2D functions x2 ∈ Ln2

2

[
[a, b]× [c, d]

]
. We endow this space

with the inner product

⟨x, y⟩Z = ⟨x0, y0⟩+ ⟨xs, ys⟩L2
+ ⟨xr, yr⟩L2

+ ⟨x2, y2⟩L2

= xT
0 y0 +

∫ b

a
[xs(s)]T y(s)ds +

∫ d

c
[xr(r)]T y(r)dr +

∫ b

a

∫ d

c
[x2(s, r)]T y(s, r)drds

Defining this inner product, we can also define the adjoint of PI operators.

Lemma 6. For any PI parameters R ∈ Nm×n
[
[a, b], [c, d]

]
, there exist unique parameters Q ∈

N n×m
[
[a, b], [c, d]

]
such that (

P [R]
)∗

= P [Q],

where P∗ denotes the adjoint of a PI operator P. That is, for any x ∈ Zn
[
[a, b], [c, d]

]
and

y ∈ Zm
[
[a, b], [c, d]

]
,

⟨P [R]x, y⟩Z = ⟨x,P [Q]y⟩Z .

Proof. We outline the proof only for 4-PI operators. In particular, let n = {n0, n1, 0, 0} and
m = {m0, m1, 0, 0}, and let B =

[
P Q1
Q2 {R0,R1,R2}

]
define a 4-PI operator P [B] ∈ Πn×m. Define

B̂ =
[

P̂ Q̂1
Q̂2 {R̂0,R̂1,R̂2}

]
, where

P̂ = P T , Q̂1(s) = QT
2 (s), R̂1(s, θ) = RT

2 (θ, s),
Q̂2(s) = QT

1 (s), R̂0(s) = RT
0 (s), R̂2(s, θ) = RT

1 (θ, s),

Then, for arbitrary x = [ x0
x1 ] ∈ Zn and y = [ y0

y1 ] ∈ Zm, we note that

⟨P [B]x, y⟩Z = [Px0]T y0 +
[∫ b

a
Q1(s)x1(s)ds

]T

y0 +
∫ s

a
[Q2(s)x0]T y1(s)ds +

∫ b

a
[R0(s)x1(s)]T y1(s)ds
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+
∫ b

a

[(∫ b

a
I(s− θ)R1(s, θ) + I(θ − s)R2(s, θ)

)
x1(θ)dθ

]T

y1(s)ds

= x0[P T y0] + xT
0

[∫ b

a
QT

2 (s)y1(s)ds

]
+
∫ b

a
xT

1 (s)
[
QT

1 (s)y0
]

ds +
∫ b

a
xT

1 (s)
[
RT

0 (s)y1(s)
]

ds

+
∫ b

a
xT

1 (s)
[(∫ b

a
I(−θ − s)R1(θ, s) + I(s− θ)R2(θ, s)

)
y1(θ)dθ

]
ds

=
〈
x,P [B̂]y

〉
Z

.

We note again the similarities with matrices: Just like the adjoint of a matrix can be
determined by switching the rows and columns, the adjoint of a 3-PI operator is determined
by switching the primary and dual variables (s, θ), as well as switching the lower- and upper-
triangular parts.

A.5 Inversion of PI operators
In this section, we address the problem of invertibility, required to constructing the controllers
and estimators from the feasible solutions to the LPIs described in the main text. For example,
the controller gain K is given by the relation K = ZP−1. P−1, although is a 4-PI operator, may
not have polynomial parameters. Hence the inverse is approximated numerically. To find the
inverse of a 4-PI operator, P

[
P, Q1

Q2,{Ri}

]
, we first find the inverse of 3-PI operators of the form

P{Ri}.

A.5.1 Inversion of 3-PI operators
First, we note that any matrix-valued polynomial H(s, θ) can be factored as F (s)G(θ). Then,
for any given 3-PI operator P{I,H1,H2} with matrix-valued polynomial parameters H1 and H2,
we have

P{I,H1,H2} = P{I,−F1G1,−F2G2}, where
Hi(s, θ) = −Fi(s)Gi(θ),

for some matrix-valued polynomials Fi and Gi. We can now find an inverse for P{I,H1,H2} using
the following result.

Lemma 7. Suppose F1 : [a, b] → Rn×p, G1 : [a, b] → Rp×n, F2 : [a, b] → Rn×q, G2 : [a, b] →
Rq×n and U is the unique function that satisfies the equation

U(s) = I(p+q) +
∫ s

a

[
G1(t)F1(t) G1(t)F2(t)
−G2(t)F1(t) −G2(t)F2(t)

]
U(t)dt,

where U is partitioned as

U =
[
U11 U12
U21 U22

]
, U11(s) ∈ Rp×p, U22(s) ∈ Rq×q.
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Then, the 3-PI operator P{I,−F1G1,−F2G2} is invertible if and only if U22(b) is invertible and
(P{I,−F1G1,−F2G2})−1 = P{I,L1,L2},

where

L1(s, t) =
[
F1(s) F2(s)

]
U(s)V (t)

[
G1(t)
−G2(t)

]
− L2(s, t), (A.4a)

L2(s, t) = −
[
F1(s) F2(s)

]
U(s)PV (t)

[
G1(t)
−G2(t)

]
, (A.4b)

P =
[

0p×p 0p×q

U22(b)−1U21(b) Iq

]
,

and V is the unique function satisfying the equation

V (t) = I(p+q) −
∫ t

a
V (s)

[
G1(s)F1(s) G1(s)F2(s)
−G2(s)F1(s) −G2(s)F2(s)

]
ds.

Proof. Proof can be found in [3, Chapter IX.2].

Using Lemma 2.2. of [3, Chapter IX.2], we can use an iterative process and numerical inte-
gration to approximate U and V functions in the above result at discrete spatial points. Them,
a polynomial that best fits the data, in a least-squares sense, can be used as an approximation.
Thus, we find an approximated inverse for 3-PI operators of the form P{I,R1,R2} where Ri are
matrix-valued polynomials. By extension, given an invertible R0, we can obtain the inverse of
a general 3-PI operator as shown below.
Corollary 8. Suppose R0 : [a, b] → Rn×n, R1, R2 : [a, b]2 → Rn×n, with R0 invertible on [a, b].
Then, the inverse of the 3-PI operator, P{Ri}, is given by P{R̂0,R̂1,R̂2} where

R̂0(s) = R0(s)−1, R̂i(s, θ) = Li(s, θ)R̂0(θ), i ∈ {1, 2},
where L1 and L2 are as defined in (A.4) for functions Fi and Gi such that Fi(s)Gi(θ) =
R0(s)−1Ri(s, θ).
Proof. Let Ri be as stated above.

(P{R0(s),R1(s,θ),R2(s,θ)})−1

= (P{R0(s),0,0}P{I,R0(s)−1R1(s,θ),R0(s)−1R2(s,θ)})−1

= (P{I,R0(s)−1R1(s,θ),R0(s)−1R2(s,θ)})−1(P{R0(s),0,0})−1

= P{I,L1(s,θ),L2(s,θ)}P{R0(s)−1,0,0}

= P{R0(s)−1,L1(s,θ)R0(θ)−1,L2(s,θ)R0(θ)−1}.

where Li are obtained from the Lemma 7 and the composition of PI operators is performed
using the formulae in [8].

Note the above expressions for the inverse are exact, however, in practice, R−1
0 may not

have an analytical expression (or very hard to determine). Thus, finding Fi and Gi such that
Fi(s)Gi(θ) = R0(s)−1Ri(s, θ) may not be possible. To overcome this problem, we approximate
R−1

0 by a polynomial which guarantees that R−1
0 Ri are polynomials and can be factorized into

Fi and Gi. Using this approach, we can find an approximate inverse for P{Ri} using Lemma 7.
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A.5.2 Inversion of 4-PI operators
Given, R0, R1, R2 with R0 invertible, we proposed a way to find the inverse of the operator
P{Ri}. Now, we use this method to find the inverse of a 4-PI operator P

[
P, Q1

Q2,{Ri}

]
. Given P ,

Q1, Q2 and Ri with invertible P and R0. For this aim, we assume invertibility of the 3-PI
operator P{Ri} in the following result.

Corollary 9. Suppose P ∈ Rm×m, Q1 : [a, b] → Rm×n, Q2 : [a, b] → Rn×m R0 : [a, b] → Rn×n

and R1, R2 : [a, b]2 → Rn×n are matrices and matrix-valued polynomials such that P−1
{Ri} is

invertible according to Cor. 8 and call P{R̂i} := P−1
{Ri}. Then, P := P

[
P, Q1

Q2,{Ri}

]
∈ Π4 is invertible

if and only if the matrix
T = P − P

[
∅, Q1
∅,{∅}

]
P{R̂i}P

[
∅, ∅

Q2,{∅}

]
is invertible. Furthermore

P−1 = UP
[

T −1, 0
0,
{

R̂i

}]V ,

where

U = P
[

I, 0
0,
{

R̂i

}]P[ I, 0
−Q2,{Ri}

]
,

V = = P
[

I, −Q1

0,
{

R̂i

}]P[I, 0
0,
{

R̂i

}].
Proof. A proof may be found in Sec. VII of [9].

A.6 Composition of Differential and PI operator
Given the well-known relationship between integrals and derivatives (think e.g. the fundamental
theorem of calculus), it is natural to assume that the composition of a differential operator and
a PI operator may be expressed as a PI operator as well. Unfortunately, this is not true in
general, as e.g. the operator P defined as

(
Pv

)
(s) = P (s)v(s) is a PI operator, but there

clearly does not exist a PI operator Q such that ∂s

(
Pv

)
(s) =

(
Qv

)
(s). Nevertheless, if the

function v is differentiable, i.e. v ∈ H1, then we can always express the derivative of
(
Pv

)
(s)

for a PI operator P in terms of v(s) and ∂sv(s) as ∂s

(
Pv

)
(s) =

(
Q [ v

∂sv ]
)
(s), as we show in

the next lemma.

Lemma 10. Suppose P
[

P, Q1
Q2,{Ri}

]
: Rm×Hn

1 → Rp×Lq
2, and define ∂sP

[
P, Q1

Q2,{Ri}

]
: Rm×Hn

1 ×
Ln

2 → Rp × Lq
2 as

∂sP
[

P, Q1
Q2,{Ri}

]
= P

[
0, 0

Q̄2,
{

R̄i

}] (A.5)
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where Q̄2(s) = ∂sQ2(s), R̄0(s) =
[
∂sR0(s) + R1(s, s)−R2(s, s) R0(s)

]
and R̄i(s, θ) =

[
∂sRi(s, θ) 0

]
for i ∈ {1, 2}. Then, for any x ∈ Rm, x ∈ Hn

1 ,

∂s

(
P
[

P, Q1
Q2,{Ri}

] [
x
x

])
=
(

∂sP
[

P, Q1
Q2,{Ri}

])  x
x

∂sx


Proof. The result can be easily derived using the Leibniz integral rule, stating that for any
F ∈ H1[a, b]2,

d

ds

(∫ U(s)

L(s)
F (s, θ)dθ

)
= F (s, U(s)) d

ds
U(s)− F (s, L(s)) d

ds
L(s) +

∫ U(s)

L(s)

d

ds
F (s, θ)dθ.

For a similar result for PI operators in 2D, we refer to [4].

A.7 Matrix Parametrization of Positive Definite PI Op-
erators

In order to be able to solve optimization programs involving PI operator P , we need to be able
to enforce positivity constraints P ≽ 0. For this, we parameterize PI operators by positive
matrices, expanding them as P = Z∗PZ for a fixed operator Z, and positive semidefinite
matrix P ≽ 0. The following theorem provides a sufficient condition for positivity of a 4-PI
operator defined as

(
P
[

P, Q1
Q2, {Ri}

]
x
)
(s) =

[
Px0 +

∫ b
a Q1(s)x1(s)ds

Q2(s)x0 + R0(s)x1(s) +
∫ s

a R1(s, θ)x1(θ)dθ +
∫ b

s R2(s, θ)x1(θ)dθ

]
(A.6)

for x =
[
x0
x1

]
∈
[

Rn0

Ln1
2 [a, b]

]
. This result allows us to parameterize a cone of positive PI opera-

tors as positive matrices, implement LPI constraints as LMI constraints, allowing us to solve
optimization problems with PI operators using semi-definite programming solvers.

Theorem 11. For any functions Z1 : [a, b]→ Rd1×n, Z2 : [a, b]× [a, b]→ Rd2×n, if g(s) ≥ 0 for
all s ∈ [a, b] and

P = T11

∫ b

a
g(s)ds,

Q(η) = g(η)T12Z1(η) +
∫ b

η
g(s)T13Z2(s, η)ds +

∫ η

a
g(s)T14Z2(s, η)ds,

R1(s, η) = g(s)Z1(s)⊤T23Z2(s, η) + g(η)Z2(η, s)⊤T42Z1(η) +
∫ b

s
g(θ)Z2(θ, s)⊤T33Z2(θ, η)dθ

+
∫ s

η
g(θ)Z2(θ, s)⊤T43Z2(θ, η)dθ +

∫ η

a
g(θ)Z2(θ, s)⊤T44Z2(θ, η)dθ,

R2(s, η) = g(s)Z1(s)⊤T32Z2(s, η) + g(η)Z2(η, s)⊤T24Z1(η) +
∫ b

η
g(θ)Z2(θ, s)⊤T33Z2(θ, η)dθ

199



+
∫ η

s
g(θ)Z2(θ, s)⊤T34Z2(θ, η)dθ +

∫ s

a
g(θ)Z2(θ, s)⊤T44Z2(θ, η)dθ,

R0(s) = g(s)Z1(s)⊤T22Z1(s). (A.7)

where

T =


T11 T12 T13 T14
T21 T22 T23 T24
T31 T32 T33 T34
T41 T42 T43 T44

 ≽ 0,

then the operator P
[

P, Q1
Q2,{Ri}

]
as defined in (A.6) is positive semidefinite, i.e.

〈
x,P

[
P, Q1

Q2,{Ri}

]
x
〉
≥

0 for all x ∈ Rm × Ln
2 [a, b].

To see the PIETOOLS implementation, check Section 7.2.2. For an extension of this result
to 2D PI operators, we refer to [4].
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